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ABSTRACT Tremendous systems are rapidly evolving based on the trendy Internet of Things (IoT) in 
various domains. Different technologies are used for communication between the massive connected 
devices through all layers of the IoT system, causing many security and performance issues. Regression and 
integration testing are considered repeatedly, in which the vast costs and efforts associated with the frequent 
execution of these inflated test suites hinder the adequate testing of such systems. This necessitates the 
focus on exploring innovative scalable testing approaches for large test suites in IoT-based systems. In this 
paper, a scalable framework for continuous integration and regression testing in IoT-based systems (IoT-
CIRTF) is proposed, based on IoT-related criteria for test case prioritization and selection. The framework 
utilizes search-based techniques to provide an optimized prioritized set of test cases to select from. The 
selection is based on a trained prediction model for IoT standard components using supervised deep 
learning algorithms to continuously ensure the overall reliability of IoT-based systems. The experiments are 
held on two GSM datasets. The experimental results achieved prioritization accuracy up to 90% and 92% 
for regression testing and integration testing respectively. This provides an enhanced and efficient 
framework for continuous testing of IoT-based systems, as per IoT-related criteria for the prioritization and 
selection purposes. 

INDEX TERMS Deep learning, Integration testing, IoT, Regression testing, Test case prioritization, Test 
case selection, Search-based techniques 

I. INTRODUCTION 

The Internet of Things (IoT)-based systems are increasingly 
penetrating all business industries, in which the main 
characteristic of these systems is the heterogeneity of their 
components and technologies. Huge numbers of diverse 
independent devices, such as embedded objects, actuators 
and sensors, are continuously connected, leading to an 
enormous scale of components [1]. Such systems usually 
include a data generator layer, which aggregates data from 
all connected devices. Then through the network layer, 
different protocols and gateways are used for data transition 
to apply analytical processes, providing appropriate 
services to the targeted user’s applications [2]. Testing is 
required at all stages, when everything is connected, and 

data are transmitted through networks [3]. Issues and 
threats are increasingly faced, especially regarding the 
privacy of critical personal data in order to maintain 
security and performance processes [4]. 

Thus, research studies on testing IoT-based systems are 
dramatically increasing, in which the changes on such large 
systems are endless. Continuous runtime regression and 
integration testing are repeatedly required to face the 
frequent dynamic integration of IoT components [5], as 
well as system change requests. A huge number of test 
cases (TCs) are usually generated over time that could be 
relevant or irrelevant to a specific new integration or 
change request. Hence, the need for minimizing the number 
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of executed TCs is exponentially increasing to reduce 
testing costs and maximize efficiency.  

Many limitations have been explored for testing IoT 
systems, such as the inability to handle the dynamicity of 
connected components [6], diversity of network protocols 
and technologies [7], real time complexity and scalability of 
systems that manage their connectivity [8]. In addition, the 
systems’ interoperability should be frequently verified by 
checking  the  consistency of services provided by different 
sensors [1], as well as the transmitted data between 
receivers and suppliers should be verified against the 
confidentiality of networks and the safety of users’ data [9]. 

The applicability of automated test suites generation 
through Model Based Testing (MBT) Techniques have 
been investigated, in which TCs can be constructed from a 
graph model, i.e. finite state machines, UML diagrams, etc. 
[10] to continuously generate test suites and execute 
automatically in order to check the coverage of newly 
added components [5]. However, MBT techniques lacked 
to effectively execute the generated test suites as per any 
new changes [11]. Thus, they do not support integration and 
regression testing, in which all generated test suites should 
be executed in such rapidly evolving systems [12]. Such 
critical limitation causes great time and cost consumption. 
Consequently, the selection and prioritization of test suites 
are vitally needed to execute the related TCs only during 
regression testing, avoiding redundancy and irrelevant TCs. 
On the other hand, Search Based Testing (SBT) techniques 
have been considered for TCs prioritization and reduction, 
such as Genetic Algorithms (GAs), Hill climbing, Ant 
Colony and Simulated Annealing (SA) techniques [8]. They 
proved lower performance and high time consumption, 
compared to MBT, when used for TCs generation [13]. Yet, 
SBT techniques have never been investigated for testing 
IoT-based systems. 

In this paper, a scalable framework for prioritizing and 
selecting TCs in IoT-based systems (IoT-CIRTF) is 
introduced based on deep learning and SBT techniques. 
This framework is intended to support continuous 
integration testing and regression testing for IoT-based 
systems by providing an optimized self-adaptive prioritized 
set of TCs to select from to continuously ensure the overall 
reliability of these systems upon the addition or removal of 
their independent components. The SBT techniques are 
utilized to select the relevant TCs after the training phase of 
the proposed framework on the IoT system specifications 
using the Long Short-Term Memory (LSTM) classifier, 
which is a deep learning supervised prediction algorithm 
[26][27]. Deep learning algorithms have not been 
considered for testing IoT-based systems yet, in which IoT-
CIRTF uses them to classify the given TCs to the targeted 
IoT components. The matched TCs are then executed with 
respect to the change requests in the requirements -for 
regression testing - or to the newly added modules of the 
specific IoT system -for integration testing. 

II. RELATED WORK 

Several testing approaches have been directed to IoT-based 
systems, where MBT techniques were dominant [29][30]. 
Some MBT limitations were addressed, such as the time 
consumed for TCs generation and TCs redundancy when 
reconfigurations or changes occur, and the lack of TCs 
prioritization or selection approaches to handle continuous 
integration and regression testing in IoT-based systems [31]. 
Some studies lacked the presence of a real-world case study, 
or the scalability of testing approaches to fit IoT-based 
systems. Another challenge was the process automation, in 
which the tracking and testing of runtime systems were very 
exhaustive in terms of time and cost [10]. The following 
subsections present the main approaches introduced in the 
literature that consider testing in IoT systems.  

A.  TESTING TECHNIQUES IN IOT-BASED SYSTEMS 

Most of the MBT techniques used for TCs generation in IoT 
systems from modeled systems were based on reformatting 
the model to an XML code, then constructing TCs from that 
generated code. In [32], a runtime verification of IoT systems 
was achieved using an MBT tool, which generated a 
sequence diagram and TCs statements during runtime with 
an event processing language for complex diagrams. This 
approach was developed and tested using Constrained 
Application Protocol (COAP) only for data transmission 
between devices, which made it unavailable for any other 
protocols. [33] introduced an approach for runtime testing in 
component-based systems. By applying TCs selection and 
MBT techniques, it selected TCs from previously created and 

new ones as per changes using UPPAAL tool. Yet, it was not 
proven experimentally how efficient it worked with IoT 
systems. 
 

In [34], a study for some testing tools for IoT systems was 
presented, like MBTAAS, IOTSim and MAMMotH for TCs 
generation from models. A comparison was made to show 
what to use when considering different IoT systems’ layers 
and the testing types to cover according to the systems’ 
complexity. The absence of reliable evaluation, in terms of 
accuracy and efficiency, was the main limitation. 

In [35], the VDM++ formal specification tool was 
investigated for integration testing in distributed systems. It 
used sequence diagrams to generate relevant TCs and 
overcome their explosive number by observing the system to 
decide whether a distribution of the integrated components 
would be required to test locally by manual testers. 

Authors in [10], emphasized that there are still influential 
and unexplored areas for TCs effective selection, in which 
many tools lacked TCs prioritization, wasting huge time, cost 
and efforts. They recommended that there should be 
selection-based criteria to prioritize TCs of IoT-based 
systems, including all functional and non-functional 
requirements. The survey of [36], discussed that all current 
testing techniques for IoT systems lack integration testing 
handling. 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3039931, IEEE Access

 

3 
 

B.  TEST CASES PRIORITIZATION IN IOT SYSTEMS 

Some metrics were proposed in [30] to measure the 
importance of TCs and decide the most valuable ones to 
prioritize and rerun for regression testing. The suggested 
metrics included measuring the faulted devices’ locations in 
the area around using Newton’s law to select TCs according 
to the nearest devices, in which TCs were generated as per 
the location of devices. This was dependent on the system’s 
behavior with experienced testers, indicating that there was 
no standard generic approach to apply for IoT-based systems, 
as the metrics would differ from one system to another. 

For the selection of relevant TCs at retesting phases, the 
Ant Colony Optimization algorithm was proposed in [37] 
integrated with Bayesian approaches to calculate the 
probability of each TC. TCs appearing the most in detected 
failures had a higher priority. No experiments were 
conducted to evaluate the proposed approach. Furthermore, it 
was not mandatory to select the same set of TCs due to any 
changes, as it should have considered another metrics, such 
as the propagation of the changed features or components. 

C. RESEARCH GAP AND LIMITATIONS IN IOT TESTING 

Most of the testing-related studies in IoT-based systems have 
shown a real focus on TCs generation using MBT 
techniques, supporting TCs generation for newly added 
components. However, this raises a crucial concern regarding 
their applicability for continuous integration and regression 
testing in such evolving IoT-based systems, provided the 
increasing number of associated TCs. Thus, further 
investigations are needed to prioritize and select TCs in order 
to minimize the time and efforts required for the repeated 
integration and regression testing expected for IoT-based 
systems, allowing fast faults detection and localization with 
respect to new changes or components. The current literature 
lacks proven experimentations for efficient and reliable 
approaches to face the detected challenges. 

III.  THE IOT CONTINUOUS INTEGRATION AND 
REGRESSION TESTING FRAMEWORK (IOT-CIRTF) 

In this study, an IoT-related framework for continuous 
integration and regression testing (IoT-CIRTF) is proposed 
based on a hybrid combination of deep learning and search-
based techniques. Fig.1 presents the system architecture of 
the proposed framework. It consists of three main layers as 
described in the following subsections. 

A. THE IOT COMPONENTS TRAINING LAYER 

As the number of requirements in IoT systems and their 
associated test cases is increasing continuously, the cost and 
time needed to test such systems are directly proportional. 
This layer is responsible for generating a trained model for  
IoT components in order to learn the specifications of the 
IoT system and classify them according to standard IoT 
system components. The created model would provide the 

backbone to automate the classification, selection and 
prioritization of test cases throughout the framework,   
decreasing the overall time, efforts and cost of testing IoT 
systems. The input of this layer is the specifications of the 
IoT system to extract the standard components. These 
specifications describe the different and huge number of 
components and technologies connected in the IoT system, 
such as data gathering (i.e. RFID, Sensors, actuators, GPS), 
communication protocols (i.e. MQTT, HTTP, Wifi, Zigbee, 
WAN), cloud processing and user devices/applications. The 
layer consists of some modules as follows: 

 IoT specifications pre-processing, in which the 
specifications are cleaned and reduced by omitting stop 
words and redundancy using NLP techniques. 

 IoT components features extraction, which uses the 
LSTM deep learning classifier to analyze the cleaned 
reduced specifications, resulted from the previous 
process to extract the main features of the IoT system’s 
specifications. The extracted features represent the 
selected words having high weights from the whole 
specifications, which are needed to classify the IoT 
TCs in the next layer effectively [14][15]. These 
features describe certain IoT standard components, 
which are the defined classes (i.e. user device, 
protocols and  gateways, sensors and actuators, data 
processing). The LSTM classifier was proven to work 
effectively with long sequences [16]. It calculates the 
probability of each word to follow another, given the 
sequences of words with their weights. 

 IoT components training by classifier, in which it 
works on the extracted features by the classifier based 
on LSTM algorithm [26][27]. Algorithm 1 presents the 
LSTM classifier, consisting of four layers/nodes.  

The extracted features are used by the classifier in order to 
recognize the classification pattern to follow, so that the class 
labels that the IoT components belong to are determined 
[28]. The output is the IoT components trained model that is 
used in the next layers of the framework to classify the IoT 
TCs as per the IoT components.  

In our IoT-CIRTF, LSTM classifier is modified to fit long 
sequences of the IoT requirements and is configured to work 
on four layers/nodes, in which LSTM functions run four 
times to increase the accuracy of learning, avoiding low 
accuracies when applying two LSTM layers/nodes [20]. The 
first layer uses the Sigmoid function to calculate the scalar 
value of the three main LSTM gates (i.e., forget, input and 
output gates), maintaining their values in [0, 1] range as 
shown in (1), (2), (3) [19]: 

 �(�) = �(��,��(�) + ��,�ℎ(���)) + ��                (1) 

    �(�) = �(��,��(�) + ��,�ℎ(���)) + ��                (2)  

 �(�) = �(��,��(�) + ��,�ℎ(���)) + ��      (3)
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FIGURE. 1: The proposed IoT Continuous Integration and Regression 
Testing Framework (IoT-CIRTF). 

 

Algorithm 1 LSTM deep learning algorithm in IoT-
CIRTF.     

 
1 

Output: Learned classifier 
Begin 

2 Initialize sequence length (SL) to a large value  
3 For i in range (0, SL) 
4 If at the first node 
5 C_R= Random() //Initialize cell vector (C) 

to a  random value 
6 H_R= Random() //Initialize hidden value 

(h) to a random value 
7    Else  
8       C_R=C_N and H_R=H_N 
9 End if 

10 Calculate the gates’ activation functions using 
Sigmoid function. 

11 Calculate the candidate values (CV) using 
Sigmoid function.  

12 Calculate new cell (C_N) using CV, 
previous cell (C_R), forget gate (f) and input 
gate (i). 

13 Calculate new hidden value (H_N) using 
output gate (o) and new cell (C_N) by CV. 

14 Generate vector of possible outcome classes 
probabilities for output sequence using 
Softmax function.   

15 Calculate the cross-entropy loss function. 
16 End for //iterating sequences in training set  
17 End // iterated for 4 layers/nodes of LSTM 

 

Where �(�) is the forget gate that defines how many 
features with very low weights are going to be ignored,   �(�) 
is the current feature/word in the IoT system’s 
specifications sequences at time t. �(�) is the input gate that 
represents the input sequence of IoT system’s features or 
words, �(�) is the output gate that defines the words/features 
to be added to the hidden gate ℎ(�) for later use, which may 
be added to the sequence of extracted features as in (6). 
Hence, the first iteration of ℎ(�) is initialized with a random 
value. ��,�,��,�,��,� and ��,�,��,�, ��,� are the weights 
of�(�), ��,�� , �� are the biases (initialized by 1), to be 
learned during the training of the classifier. The cell state 
represents the current input of features/words, as well as 
how many features to forget from the previous cell state. 

Next, the new hidden value and the new cell state are 
calculated as shown in (4), (5) and (6) [19]: 

��(�) = �(��,�. �(�) + ��,�. ℎ(���) + ��)            (4) 

�(�) = �(�). �(���) + �(�). ��(�)      (5) 

ℎ(�) = �(�). �(�(�))                      (6) 

Where ��(�) is the candidate value to use as an input for the 
next cell �(�) through time �, ��,� and ��,� are the weights 
for the current word � and the previous hidden state ℎ(���), 
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�� is the bias value initialized by 1,  �(�) is the new cell state 
value, and �(���)is the previous cell state. The new hidden 
state ℎ(�) is calculated by multiplying the data to output �(�) 
by the Sigmoid of the current cell state value �(�(�)).  

The results are then passed as an input to the Softmax 
function to output a normalized vector (values between 0 
and 1) [17]. Softmax function operates on a vector of 
multiple classes to get a vector of the potential probabilities 
of the outcome classes. Hence, the training is conducted on 
the sequences of IoT specifications having their predicted 
class labels. These classes are determined as per the 
common architectures of IoT-based systems based on the 
IoT system’s standard components as: sensors and 
actuators, protocols and gateways, user devices and data 
processing [22][23].   

The third layer boosts the learning model using the 
Backpropagation Through Time (BPTT) gradient technique 
[24]. BPTT is used to improve learning by enhancing the 
given weights to decrease the loss value and increase the 
accuracy of classification using a learning rate decay 
technique. It starts from the final output and moves 
backward through the same gates to re-train the classifier, 
where changes are applied to the weights. The network is 
then rolled up with the updated weights. This helps having a 
more accurate classifier. Thus, the learning decay rate 
determines the maximum number of possible call backs.  

Finally, the Cross-Entropy Loss function is considered 
to evaluate the accuracy of the LSTM classifier as shown in 
(7) [25]:  

�� = −∑ ��,�. ���( ��, �)
�
���     (7) 

Where �� is the Cross-Entropy, � is the current class,  � is 
number of classes, ��,� is 1 in case the observed class �� 
equals �, otherwise ��,� is 0, and ���( ��, �) is the log of the 
probability of having class �. Thus, �� sums the loss value 
given the probabilities of all classes. The lower the loss 
value, the higher the accuracy of the classifier [21]. 

B. THE IOT TEST CASES CLASSIFICATION LAYER 

This layer is responsible for classifying the TCs of the IoT 
system as per the IoT standard components using the 
trained model generated from the IoT Components Training 
Layer. The created classes would narrow the search space 
of TCs for selection and prioritization during the continuous 
regression and integration testing of the IoT system. The 
inputs are all previous test runs for this IoT system and the 
traceability matrix that has a list of IoT TCs mapped to 
requirements. It consists of several modules as follows: 

 IoT test cases attributes extraction: the previous test 
runs and the traceability matrix of the system’s 
specifications are considered to extract the main data 
identifying each TC, such as ID, name, description, 
coverage rate (CR), fault detection rate (FDR) and 
execution time (ET). The CR of a TC is the value of 

how many system’s requirements are covered by this 
TC, the fault detection rate is the value of how many 
faults are detected by this TC compared to the total 
number of defects, and the execution time is the time 
taken by the TC to execute. 

The extracted TCs’ attributes are used to classify 
TCs as per the IoT components, where the CR, FDR 
and ET are further utilized for TCs prioritization. The 
priority of a TC increases when its coverage and fault 
detection rates are higher while its execution time is 
lower [43][44]. The coverage rate is calculated for each 
TC by the summation of the covered requirements 
divided on the total number of the requirements as 
shown in (8) [45]:                

                       ������ = ∑
���

�

�
�����

      (8) 

Where �� is the coverage rate, ����is the TC 
identity, ��� is the requirement identity and �is the 
total number of requirements. Using the previous IoT 
system’s runs, the FDR and ET are extracted for each 
TC as per the traceability matrix. FDR is calculated by 
the summation of the faults that are covered by the TC 
as shown in (9) [46]: 

                    ������� = ∑
����

��

�
�����

                  (9) 

Where ��� is the fault detection rate, ���� is the TC 
identity, � is the fault, ���  is the fault identity and � 
is the total number of faults.  

 The test cases classification as per IoT components, 
with the extracted attributes, as the TC name, ID, 
description, as well as the IoT components’ trained 
model, are proposed to classify each TC as per the IoT 
standard components. The classification of TCs 
facilitates the selection of relevant TCs for the next 
layer, when a new module in case of integration testing 
or change requests in case of regression testing are 
encountered. The output of this layer is the classified 
TCs as per the IoT components. 

C. THE IOT SELECTION AND PRIORITIZATION LAYER 

This layer is responsible for selecting and prioritizing IoT 
TCs either for integration or regression testing based on the 
received inputs. TCs are prioritized and selected for a 
regression testing if the input is a change request, whereas 
if the inputs are the system architecture and new 
specifications, then TCs are selected and prioritized for an 
integration testing as follows. 

 Change request classification as per IoT components, 
which indicates the application of regression testing 
for IoT TCs selection. The input is expected to be the 
change request, which should be classified as per the 
IoT components using the generated IoT components 
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trained model. The classification of the change request 
determines the class of the IoT standard component 
for this change request to which it belongs to, whether 
sensors and actuators, protocols and gateways, user 
devices, or data processing. This helps reducing the 
costs and efforts required to select TCs by narrowing 
the search space out of the massive set of all TCs. 
After this classification, the IoT TCs selection starts 
based on the classified changed request and the 
classified IoT system TCs from the previous layer. 
Thus, IoT TCs are selected. 

 IoT Integration testing Recommender, in which the 
Modules Interfaces Extraction receives a new module 
and the IoT system architecture, indicating the 
application of integration testing for IoT TCs 
selection. This optimizes integration testing for the 
nature of IoT systems. It extracts the modules’ 
interfaces that are related to the integration between 
the input module’s specifications and its adjacent 
modules. Modules Dependency Calculation is then 
responsible of calculating the dependency of modules 
by identifying the required number of stubs and 
drivers, in order to recommend the efficient 
integration testing approach to consider next, i.e. top-
down, bottom-up or sandwich … etc., that decreases 
the number of needed stubs or drivers at the 
Integration Testing Handler. The integration testing 
approach is recommended based on the number of 
connected modules to this new module to test. If the 
number of connected follower modules are less than 
the connected ancestor modules but not yet 
implemented, then stubs are needed. If the number of 
the connected ancestor modules are less than the 
connected follower modules but not yet implemented, 
then drivers are needed. If the number of stubs and 
drivers is equal, then it is recommended to use stubs 
over drivers [40]. Otherwise, if all ancestor and 
follower modules are implemented, then all related 
TCs are selected without the need for any stubs or 
drivers. 

 Test cases selection using the classified IoT 
components, in which the relevant TCs are selected 
during the regression or integration testing according 
to the related IoT standard components. In case of 
regression testing, the change request in IoT 
specifications that is under consideration should have 
been classified as per the IoT standard components. 
Accordingly, the TCs related to the classified IoT 
standard component are selected. In case of integration 
testing, TCs are selected based on the new IoT module 
under consideration with respect to the provided 
system architecture. The modules that are expected to 
be connected to the new module determine the set of 
TCs to select, which are classified according to IoT 
standard components.       

 Test Cases prioritization using multi search-based 
techniques, in which the proposed IoT-CIRTF utilizes 
GAs [42] and SA [41] search-based techniques 
according to the extracted attributes CR, FDR and ET, 
to use in the prioritization Fitness Function (FF) [41]. 
By calculating FF for each TC, IoT-CIRTF decides 
whether this sequence of TCs is better than the 
previous sequence. The prioritization process starts by 
choosing a random TC, creating a sequence of ordered 
TCs. This sequence may not be the best solution, and 
accordingly, calculations keep processing until they 
stop as per a stop condition determined by the SBT 
algorithm to find the best sequence of ordered TCs. FF 
calculates each TCs weight as shown in (10):  

   ��(����) = ∑
�������.(��������)

���

�
���                      (10) 

Where ���� is the TC identity, ������� is the TC index 
indicating its position in the ordered sequence, � is the 

total number of TCs, ��� is the coverage rate, ���� is 
the fault detection rate and ��� is the execution time of 
the TC. The SBT algorithm keeps running until 
reaching the stopping condition, which represents the 
number of iterations to keep running for both SA 
and GA algorithms [48][49][50][51]. Algorithm 2 
presents GA as the global search approach, while 
Algorithm 3 presents SA as the local search 
approach as applied in the proposed IoT-CIRTF. 

          

Algorithm 2 Simulated Annealing for IoT TCs Prioritization 
in IoT-CIRTF.  

Output: TCs prioritized, with the highest priority value.  
1 Begin 
2  Generate an initial solution (Sol) 
3  Set Best solution (SolBest) = Sol 
4 Set initial number of iterations value (T0)    

//T0>0, iterates until the end of iterations.  
5  Loop 
6 Select a random neighbor TC Solp  
7 Calculate FF for Sol. 
8 Calculate FF for Solp. 
9 Calculate Δ = FF(Solp)−FF(Sol). 

10 If Δ<0 then  
11     Sol = Solp. 
12 End if 
13 If Δ≥0 then 
14     Sol = Solp with probability P(Δ,T). 
15 End if 
16 If FF(Sol)≥FF(SolBest) then 
17      SolBest = Sol. 
18 End if 
19 Upgrade the remained number of iterations (T)  

//using the initialized reduction rate. 
20  End loop //iterations number (T0<=0). 
21   End 
22 Return SolBest//best sequence of ordered TCs. 
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Algorithm 3 Genetic Algorithm for IoT TCs Prioritization in 
IoT-CIRTF. 

Output: TCs prioritized with the highest priority value.   
Begin 1 
    Generate an initial population (P) 2 
    Initialize  iteration i: i=1 3 
    Generate n number of TCs  4 
        Loop  5 
          Calculate FF for P  6 

     Choose two TCs based on FF //Selection 7 
     Generate new offspring //Crossover combination 8 
     Perform mutation on each TC  //Mutation 9 
     Choose new Population of TCs //Acceptance 10 

          If (Optimal solution reached)  11 
           Break Loop 12 

          Else 13 
           Return to step 6 //Generate a new population 14 

          End if 15 
End 16 
Return prioritized TCs  17 

 
SBT is used to search for an optimized sequence of 

ordered TCs. Local search approaches search for the 
best solution by looking to the nearby solution TC, 
while global search approaches find the optimum 
solution anywhere in the search space. IoT-CIRTF 
applies both approaches to validate the accuracy of 
finding the best sequence of TCs, in which the number 
of TCs in IoT systems should be reduced to effectively 
manage the time and cost needed for continuous 
testing. Both approaches are adapted by modifying FF 
as shown in (6), where the weights of TCs are 
calculated as per the three essential parameters CR, 
FDR, ET. The output of IoT-CIRTF is the selected 
prioritized TCs for the regression or integration testing 
in the IoT-based system. 

IV.  IOT-CIRTF EXPERIMENTAL EVALUATION 

Various experimentations were considered to evaluate the 
proposed IoT Continuous Integration and Regression Testing 
Framework (IoT-CIRTF) with respect to the accuracy 
encountered at three perspectives: the deep learning layer, the 
TCs classification layer, and the IoT TCs selection and 
prioritization layer while applying regression and integration 
testing for IoT-based systems. 

A. THE DATASET 

The global system for mobile communications (GSM) was 
used as our dataset [52]. It was selected for our 
experimentation as it includes IoT system specifications and 
their associated TCs. It supports mobile operators for cellular 
networks, where huge devices are connected to obtain 
services through the internet. To avoid failures when 
connecting IoT devices to mobile networks, GSM has 
provided two datasets: IoT device connection efficiency and 
Mobile IoT (MIoT). Both datasets include the architecture 

for the configuration of the mobile network controls, 
consisting of common TCs as per the IoT systems 
specifications. The IoT device connection efficiency dataset 
includes 80 requirements and 100 TCs [53] [54], whereas the 
MIoT dataset contains 51 requirements and 41 TCs [55].  

The component diagram of this architecture shows the 
dependency between the components, which will be used for 
the integration testing evaluation as described later. We have 
created the traceability matrix (TR) for these datasets to 
present the related TCs of all requirements, and other 
documents showing all TCs with their previous runs 
information and extracted attributes [56]. Sample parts of the 
used datasets based on GSM are shown in Fig.2. 

 
(a) Sample part of the created traceability matrix for the GSM 

dataset, after adding the IoT components’ interfaces IDs. 
 

 
(b) Sample part of the extracted TCs’ attributes. 

FIGURE.2: Sample parts of the used dataset based on GSM. 

B.  THE EXPERIMENTAL METHODOLOGY 

A system was developed for IoT-CIRTF using JAVA 8 and 
Python 3.7.3 programming languages. Experiments are 
performed on an Intel(R) Core (TM) i7-75500U CPU (2.40 
GHz), 8 GB RAM and 64-bit Windows 8 operating system. 
Several runs were conducted to create and train LSTM 
classifier reaching best accuracy when using 4 layers/ nodes 
of LSTM and around 100 epochs to cover the whole IoT 
system specifications. 

As for the prioritization, SBT (GA and SA) required to 
execute a number of iterations based on the stop conditions 
of both algorithms to reach the best solution of ordered TCs. 
The main evaluation criterion for TCs prioritization is 
measured by precision, where it is defined by the total 
number of TCs in the correct order, divided by the total 
number of TCs as shown in (11) by [57]. 
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                              (11) 

Where �� is the total number of TCs correctly ordered, i.e. 

true positive, and �� is the total number of TCs incorrectly 
ordered, i.e. false positive. The experiments can be 
categorized into three perspectives to examine each layer at 
IoT-CIRTF as detailed below. 

C. IOT COMPONENTS TRAINING LAYER EVALUATION 

In order to examine the learning process of mapping the IoT 
system specifications to the IoT standard components (i.e. 
User device, protocols and gateways, sensors and actuators, 
data processing), the used datasets were split into 80% for 
training and 20% for testing. The learning was then applied 
using two layers of LSTM, i.e. Bi-directional algorithm. An 
average accuracy of 75% was obtained, where the large 
sentences in the IoT specifications led to the need for 
improving the results. Therefore, four layers of LSTM were 
applied [58], leading to an average accuracy of 96%. 

D. IOT TEST CASES CLASSIFICATION LAYER 
EVALUATION 

As for the evaluation of TCs classification as per the four 
standard IoT components based on the LSTM classifier, the 
TCs classification’s accuracy was 96% on average, with an 
average of 100 epochs, after having an accuracy of 75% 
when using two layers of LSTM only. Other studies as in 
[59] have achieved accuracy of 92.84%, 97.2% in [60], 74% 
in [61], and (81.2%) in [62] when applying adaptations on 
the number of layers with long sequences of data in different 
prediction and classification applications. based on the best 
trained LSTM classifier [63].  

Fig.3 shows the classification accuracy of both datasets 
through the loss rate using the Cross-Entropy Loss function 
for the four layers of LSTM. The results indicate that the loss 
rate percentage decreases as the number of LSTM classifier 
layers increases, in which using more layers prompts having 
less classification errors with the used classifier [64]. 

 

FIGURE.3: The loss rate for both datasets with respect to the LSTM 
layers. 

 

V.  IOT TEST CASES SELECTION AND PRIORITIZATION 
EXPERIMENTAL RESULTS 

The experiments on this layer consider two main parts: for 
regression testing and for integration testing. The evaluation 
is based on the selection and prioritization results as follows. 

A. REGRESSION TESTING EXPERIMENTAL RESULTS 

The correct selection of TCs is determined by the IoT 
system’s traceability matrix that matches the IoT standard 
component as per the classified change request. Fig.4 shows 
the results of TCs prioritization for regression testing, where 
the y axis represents the FF value of the selected prioritized 
TCs, and the x axis represents the number of iterations. 
Prioritization was applied using both SA and GA algorithms 
for both mentioned datasets. The results are shown through 
10 iterations. The total number of iterations varied according 
to the used algorithm and stopping condition. The FF values 
of the MIoT dataset are lower than those of the IoT device 
efficiency dataset, as the size of the later dataset is larger 
[56]. The results indicate that GA works more accurate with 
large datasets, since it is a global SBT technique that pursues 
a population of values rather than singular neighbor values as 
in the case of local SBT algorithms like the SA algorithm.  
 

The results of SA are near to the results of GA for the 
regression testing with the used datasets, where the number 
of selected TCs for regression testing is less than the TCs 
selected for integration testing. The increase of FF triggers 
better sequence of selected ordered TCs, due to the increase 
of FDR, CR and the decrease of ET. In addition, precision is 
calculated to validate the accuracy of the prioritization 
results. The average precisions achieved for the IoT device 
connection efficiency dataset were 72% and 88% for the SA 
and GA algorithms respectively. The average precisions 
achieved for the MIoT dataset were 90% and 81% using SA 
and GA algorithms respectively, resulted at the final 
iteration, as shown in Fig.6. 

B. INTEGRATION TESTING EXPERIMENTAL RESULTS 

The evaluation of Integration testing at IoT-CIRTF is 
determined by the efficiency of deciding the correct 
integration testing type. The architecture is read as an XML 
file, then the dependency is calculated between the newly 
implemented module to test and the ancestor and follower 
modules to determine the optimum integration testing type. 
Fig.5 shows the TCs prioritization accuracy results using 
both GA and SA algorithms, where the x axis presents the 
number of iterations and the y axis presents the FF value of 
the selected prioritized TCs.  

The accuracy of the prioritized selected TCs using GA and 
SA for integration testing was examined by precision. In the 
case of the IoT device connection efficiency dataset, the 
precision average values were 80% and 92% for the SA and 
GA algorithms respectively. As for the MIoT dataset, the 
average precisions were 77% and 89% for SA and GA 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3039931, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017) 

9 
 

respectively. The precision values resulted from the final 
iteration of the used algorithms, as shown on Fig.6. GA 
proved more efficient percentages when used for the 
integration testing, where the number of selected TCs was 
more than those for the regression testing. Prioritization 
using global SBT such as GA is more efficient with larger 
selected TCs. 
 

 

FIGURE.4: Results of TCs prioritization for regression testing for both 
used datasets using SA and GA. 

 

FIGURE.5: Results of TCs prioritization for integration testing when 
receiving a new IoT system module for both datasets using SA and GA. 

 

FIGURE.6: Results of precision percentages for prioritized selected TCs 
using SA and GA for both datasets. 

 

VI.  CONCLUSION 

Challenges are usually faced during the integration and 
regression testing of IoT systems, in which the nature of 
these systems requires continuous testing. In this paper, the 
IoT Continuous Integration and Regression Testing 
Framework (IoT-CIRTF) is proposed for continuous 
regression and integration testing in IoT-based systems based 
on a hybrid combination of deep learning and search-based 
techniques. The LSTM classifier was trained for two IoT-
based system specifications datasets, achieving an average 
accuracy of 96% using 100 epochs for 4 layers.  

The classifier considered 4 standard components of IoT 
systems, with loss rates of 4% and 6% when applied for the 
IoT device connection efficiency and Mobile IoT (MIoT) 
datasets respectively, indicating the accuracy of the classifier. 
The prioritization accuracy of the selected TCs for both 
integration and regression testing was examined by 
calculating the precision. The results for regression testing 
were 72% and 88% using Simulated Annealing (SA) and 
Genetic algorithms (GAs) algorithms for the IoT device 
connection efficiency dataset, and 90% and 81% using SA 
and GA algorithms for the Mobile IoT (MIoT) dataset 
respectively. As for the integration testing, the precision 
results were 80% and 92% using SA and GA algorithms for 
the IoT device connection efficiency dataset, and 77% and 
89% using SA and GA for the MIoT dataset respectively.  

As for the future work, it is planned to extend our proposed 
IoT-CIRTF framework to include other IoT testing areas, 
such as compatibility testing, configuration testing, 
scalability testing and security testing. 
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