
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3039931, IEEE Access

1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

A Framework for Continuous Regression
and Integration Testing in IoT Systems
based on Deep Learning and Search-
based Techniques

Noha Medhat1, Sherin M. Moussa1, Nagwa L. Badr1, and Mohamed F. Tolba2, Senior
Member, IEEE

1Department of Information Systems, Faculty of Computer and Information Sciences, Ain Shams University, Cairo, 11566, Egypt
2Department of Scientific Computing, Faculty of Computer and Information Sciences, Ain Shams University, Cairo, 11566, Egypt

Corresponding author: Sherin M. Moussa (sherinmoussa@cis.asu.edu.eg), Noha Medhat (e-mail: noha_medhat@cis.asu.edu.eg).

ABSTRACT Tremendous systems are rapidly evolving based on the trendy Internet of Things (IoT) in
various domains. Different technologies are used for communication between the massive connected
devices through all layers of the IoT system, causing many security and performance issues. Regression and
integration testing are considered repeatedly, in which the vast costs and efforts associated with the frequent
execution of these inflated test suites hinder the adequate testing of such systems. This necessitates the
focus on exploring innovative scalable testing approaches for large test suites in IoT-based systems. In this
paper, a scalable framework for continuous integration and regression testing in IoT-based systems (IoT-
CIRTF) is proposed, based on IoT-related criteria for test case prioritization and selection. The framework
utilizes search-based techniques to provide an optimized prioritized set of test cases to select from. The
selection is based on a trained prediction model for IoT standard components using supervised deep
learning algorithms to continuously ensure the overall reliability of IoT-based systems. The experiments are
held on two GSM datasets. The experimental results achieved prioritization accuracy up to 90% and 92%
for regression testing and integration testing respectively. This provides an enhanced and efficient
framework for continuous testing of IoT-based systems, as per IoT-related criteria for the prioritization and
selection purposes.

INDEX TERMS Deep learning, Integration testing, IoT, Regression testing, Test case prioritization, Test
case selection, Search-based techniques

I. INTRODUCTION

The Internet of Things (IoT)-based systems are increasingly
penetrating all business industries, in which the main
characteristic of these systems is the heterogeneity of their
components and technologies. Huge numbers of diverse
independent devices, such as embedded objects, actuators
and sensors, are continuously connected, leading to an
enormous scale of components [1]. Such systems usually
include a data generator layer, which aggregates data from
all connected devices. Then through the network layer,
different protocols and gateways are used for data transition
to apply analytical processes, providing appropriate
services to the targeted user’s applications [2]. Testing is
required at all stages, when everything is connected, and

data are transmitted through networks [3]. Issues and
threats are increasingly faced, especially regarding the
privacy of critical personal data in order to maintain
security and performance processes [4].

Thus, research studies on testing IoT-based systems are
dramatically increasing, in which the changes on such large
systems are endless. Continuous runtime regression and
integration testing are repeatedly required to face the
frequent dynamic integration of IoT components [5], as
well as system change requests. A huge number of test
cases (TCs) are usually generated over time that could be
relevant or irrelevant to a specific new integration or
change request. Hence, the need for minimizing the number

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3039931, IEEE Access

2

of executed TCs is exponentially increasing to reduce
testing costs and maximize efficiency.

Many limitations have been explored for testing IoT
systems, such as the inability to handle the dynamicity of
connected components [6], diversity of network protocols
and technologies [7], real time complexity and scalability of
systems that manage their connectivity [8]. In addition, the
systems’ interoperability should be frequently verified by
checking the consistency of services provided by different
sensors [1], as well as the transmitted data between
receivers and suppliers should be verified against the
confidentiality of networks and the safety of users’ data [9].

The applicability of automated test suites generation
through Model Based Testing (MBT) Techniques have
been investigated, in which TCs can be constructed from a
graph model, i.e. finite state machines, UML diagrams, etc.
[10] to continuously generate test suites and execute
automatically in order to check the coverage of newly
added components [5]. However, MBT techniques lacked
to effectively execute the generated test suites as per any
new changes [11]. Thus, they do not support integration and
regression testing, in which all generated test suites should
be executed in such rapidly evolving systems [12]. Such
critical limitation causes great time and cost consumption.
Consequently, the selection and prioritization of test suites
are vitally needed to execute the related TCs only during
regression testing, avoiding redundancy and irrelevant TCs.
On the other hand, Search Based Testing (SBT) techniques
have been considered for TCs prioritization and reduction,
such as Genetic Algorithms (GAs), Hill climbing, Ant
Colony and Simulated Annealing (SA) techniques [8]. They
proved lower performance and high time consumption,
compared to MBT, when used for TCs generation [13]. Yet,
SBT techniques have never been investigated for testing
IoT-based systems.

In this paper, a scalable framework for prioritizing and
selecting TCs in IoT-based systems (IoT-CIRTF) is
introduced based on deep learning and SBT techniques.
This framework is intended to support continuous
integration testing and regression testing for IoT-based
systems by providing an optimized self-adaptive prioritized
set of TCs to select from to continuously ensure the overall
reliability of these systems upon the addition or removal of
their independent components. The SBT techniques are
utilized to select the relevant TCs after the training phase of
the proposed framework on the IoT system specifications
using the Long Short-Term Memory (LSTM) classifier,
which is a deep learning supervised prediction algorithm
[26][27]. Deep learning algorithms have not been
considered for testing IoT-based systems yet, in which IoT-
CIRTF uses them to classify the given TCs to the targeted
IoT components. The matched TCs are then executed with
respect to the change requests in the requirements -for
regression testing - or to the newly added modules of the
specific IoT system -for integration testing.

II. RELATED WORK

Several testing approaches have been directed to IoT-based
systems, where MBT techniques were dominant [29][30].
Some MBT limitations were addressed, such as the time
consumed for TCs generation and TCs redundancy when
reconfigurations or changes occur, and the lack of TCs
prioritization or selection approaches to handle continuous
integration and regression testing in IoT-based systems [31].
Some studies lacked the presence of a real-world case study,
or the scalability of testing approaches to fit IoT-based
systems. Another challenge was the process automation, in
which the tracking and testing of runtime systems were very
exhaustive in terms of time and cost [10]. The following
subsections present the main approaches introduced in the
literature that consider testing in IoT systems.

A. TESTING TECHNIQUES IN IOT-BASED SYSTEMS

Most of the MBT techniques used for TCs generation in IoT
systems from modeled systems were based on reformatting
the model to an XML code, then constructing TCs from that
generated code. In [32], a runtime verification of IoT systems
was achieved using an MBT tool, which generated a
sequence diagram and TCs statements during runtime with
an event processing language for complex diagrams. This
approach was developed and tested using Constrained
Application Protocol (COAP) only for data transmission
between devices, which made it unavailable for any other
protocols. [33] introduced an approach for runtime testing in
component-based systems. By applying TCs selection and
MBT techniques, it selected TCs from previously created and

new ones as per changes using UPPAAL tool. Yet, it was not
proven experimentally how efficient it worked with IoT
systems.

In [34], a study for some testing tools for IoT systems was
presented, like MBTAAS, IOTSim and MAMMotH for TCs
generation from models. A comparison was made to show
what to use when considering different IoT systems’ layers
and the testing types to cover according to the systems’
complexity. The absence of reliable evaluation, in terms of
accuracy and efficiency, was the main limitation.

In [35], the VDM++ formal specification tool was
investigated for integration testing in distributed systems. It
used sequence diagrams to generate relevant TCs and
overcome their explosive number by observing the system to
decide whether a distribution of the integrated components
would be required to test locally by manual testers.

Authors in [10], emphasized that there are still influential
and unexplored areas for TCs effective selection, in which
many tools lacked TCs prioritization, wasting huge time, cost
and efforts. They recommended that there should be
selection-based criteria to prioritize TCs of IoT-based
systems, including all functional and non-functional
requirements. The survey of [36], discussed that all current
testing techniques for IoT systems lack integration testing
handling.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3039931, IEEE Access

3

B. TEST CASES PRIORITIZATION IN IOT SYSTEMS

Some metrics were proposed in [30] to measure the
importance of TCs and decide the most valuable ones to
prioritize and rerun for regression testing. The suggested
metrics included measuring the faulted devices’ locations in
the area around using Newton’s law to select TCs according
to the nearest devices, in which TCs were generated as per
the location of devices. This was dependent on the system’s
behavior with experienced testers, indicating that there was
no standard generic approach to apply for IoT-based systems,
as the metrics would differ from one system to another.

For the selection of relevant TCs at retesting phases, the
Ant Colony Optimization algorithm was proposed in [37]
integrated with Bayesian approaches to calculate the
probability of each TC. TCs appearing the most in detected
failures had a higher priority. No experiments were
conducted to evaluate the proposed approach. Furthermore, it
was not mandatory to select the same set of TCs due to any
changes, as it should have considered another metrics, such
as the propagation of the changed features or components.

C. RESEARCH GAP AND LIMITATIONS IN IOT TESTING

Most of the testing-related studies in IoT-based systems have
shown a real focus on TCs generation using MBT
techniques, supporting TCs generation for newly added
components. However, this raises a crucial concern regarding
their applicability for continuous integration and regression
testing in such evolving IoT-based systems, provided the
increasing number of associated TCs. Thus, further
investigations are needed to prioritize and select TCs in order
to minimize the time and efforts required for the repeated
integration and regression testing expected for IoT-based
systems, allowing fast faults detection and localization with
respect to new changes or components. The current literature
lacks proven experimentations for efficient and reliable
approaches to face the detected challenges.

III. THE IOT CONTINUOUS INTEGRATION AND
REGRESSION TESTING FRAMEWORK (IOT-CIRTF)

In this study, an IoT-related framework for continuous
integration and regression testing (IoT-CIRTF) is proposed
based on a hybrid combination of deep learning and search-
based techniques. Fig.1 presents the system architecture of
the proposed framework. It consists of three main layers as
described in the following subsections.

A. THE IOT COMPONENTS TRAINING LAYER

As the number of requirements in IoT systems and their
associated test cases is increasing continuously, the cost and
time needed to test such systems are directly proportional.
This layer is responsible for generating a trained model for
IoT components in order to learn the specifications of the
IoT system and classify them according to standard IoT
system components. The created model would provide the

backbone to automate the classification, selection and
prioritization of test cases throughout the framework,
decreasing the overall time, efforts and cost of testing IoT
systems. The input of this layer is the specifications of the
IoT system to extract the standard components. These
specifications describe the different and huge number of
components and technologies connected in the IoT system,
such as data gathering (i.e. RFID, Sensors, actuators, GPS),
communication protocols (i.e. MQTT, HTTP, Wifi, Zigbee,
WAN), cloud processing and user devices/applications. The
layer consists of some modules as follows:

 IoT specifications pre-processing, in which the
specifications are cleaned and reduced by omitting stop
words and redundancy using NLP techniques.

 IoT components features extraction, which uses the
LSTM deep learning classifier to analyze the cleaned
reduced specifications, resulted from the previous
process to extract the main features of the IoT system’s
specifications. The extracted features represent the
selected words having high weights from the whole
specifications, which are needed to classify the IoT
TCs in the next layer effectively [14][15]. These
features describe certain IoT standard components,
which are the defined classes (i.e. user device,
protocols and gateways, sensors and actuators, data
processing). The LSTM classifier was proven to work
effectively with long sequences [16]. It calculates the
probability of each word to follow another, given the
sequences of words with their weights.

 IoT components training by classifier, in which it
works on the extracted features by the classifier based
on LSTM algorithm [26][27]. Algorithm 1 presents the
LSTM classifier, consisting of four layers/nodes.

The extracted features are used by the classifier in order to
recognize the classification pattern to follow, so that the class
labels that the IoT components belong to are determined
[28]. The output is the IoT components trained model that is
used in the next layers of the framework to classify the IoT
TCs as per the IoT components.

In our IoT-CIRTF, LSTM classifier is modified to fit long
sequences of the IoT requirements and is configured to work
on four layers/nodes, in which LSTM functions run four
times to increase the accuracy of learning, avoiding low
accuracies when applying two LSTM layers/nodes [20]. The
first layer uses the Sigmoid function to calculate the scalar
value of the three main LSTM gates (i.e., forget, input and
output gates), maintaining their values in [0, 1] range as
shown in (1), (2), (3) [19]:

 �(�) = �(��,��(�) + ��,�ℎ(���)) + �� (1)

 �(�) = �(��,��(�) + ��,�ℎ(���)) + �� (2)

 �(�) = �(��,��(�) + ��,�ℎ(���)) + �� (3)

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3039931, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

4

FIGURE. 1: The proposed IoT Continuous Integration and Regression
Testing Framework (IoT-CIRTF).

Algorithm 1 LSTM deep learning algorithm in IoT-
CIRTF.

1

Output: Learned classifier
Begin

2 Initialize sequence length (SL) to a large value
3 For i in range (0, SL)
4 If at the first node
5 C_R= Random() //Initialize cell vector (C)

to a random value
6 H_R= Random() //Initialize hidden value

(h) to a random value
7 Else
8 C_R=C_N and H_R=H_N
9 End if

10 Calculate the gates’ activation functions using
Sigmoid function.

11 Calculate the candidate values (CV) using
Sigmoid function.

12 Calculate new cell (C_N) using CV,
previous cell (C_R), forget gate (f) and input
gate (i).

13 Calculate new hidden value (H_N) using
output gate (o) and new cell (C_N) by CV.

14 Generate vector of possible outcome classes
probabilities for output sequence using
Softmax function.

15 Calculate the cross-entropy loss function.
16 End for //iterating sequences in training set
17 End // iterated for 4 layers/nodes of LSTM

Where �(�) is the forget gate that defines how many
features with very low weights are going to be ignored, �(�)
is the current feature/word in the IoT system’s
specifications sequences at time t. �(�) is the input gate that
represents the input sequence of IoT system’s features or
words, �(�) is the output gate that defines the words/features
to be added to the hidden gate ℎ(�) for later use, which may
be added to the sequence of extracted features as in (6).
Hence, the first iteration of ℎ(�) is initialized with a random
value. ��,�,��,�,��,� and ��,�,��,�, ��,� are the weights
of�(�), ��,�� , �� are the biases (initialized by 1), to be
learned during the training of the classifier. The cell state
represents the current input of features/words, as well as
how many features to forget from the previous cell state.

Next, the new hidden value and the new cell state are
calculated as shown in (4), (5) and (6) [19]:

��(�) = �(��,�. �(�) + ��,�. ℎ(���) + ��) (4)

�(�) = �(�). �(���) + �(�). ��(�) (5)

ℎ(�) = �(�). �(�(�)) (6)

Where ��(�) is the candidate value to use as an input for the
next cell �(�) through time �, ��,� and ��,� are the weights
for the current word � and the previous hidden state ℎ(���),

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3039931, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

5

�� is the bias value initialized by 1, �(�) is the new cell state
value, and �(���)is the previous cell state. The new hidden
state ℎ(�) is calculated by multiplying the data to output �(�)
by the Sigmoid of the current cell state value �(�(�)).

The results are then passed as an input to the Softmax
function to output a normalized vector (values between 0
and 1) [17]. Softmax function operates on a vector of
multiple classes to get a vector of the potential probabilities
of the outcome classes. Hence, the training is conducted on
the sequences of IoT specifications having their predicted
class labels. These classes are determined as per the
common architectures of IoT-based systems based on the
IoT system’s standard components as: sensors and
actuators, protocols and gateways, user devices and data
processing [22][23].

The third layer boosts the learning model using the
Backpropagation Through Time (BPTT) gradient technique
[24]. BPTT is used to improve learning by enhancing the
given weights to decrease the loss value and increase the
accuracy of classification using a learning rate decay
technique. It starts from the final output and moves
backward through the same gates to re-train the classifier,
where changes are applied to the weights. The network is
then rolled up with the updated weights. This helps having a
more accurate classifier. Thus, the learning decay rate
determines the maximum number of possible call backs.

Finally, the Cross-Entropy Loss function is considered
to evaluate the accuracy of the LSTM classifier as shown in
(7) [25]:

�� = −∑ ��,�. ���(��, �)
�
��� (7)

Where �� is the Cross-Entropy, � is the current class, � is
number of classes, ��,� is 1 in case the observed class ��
equals �, otherwise ��,� is 0, and ���(��, �) is the log of the
probability of having class �. Thus, �� sums the loss value
given the probabilities of all classes. The lower the loss
value, the higher the accuracy of the classifier [21].

B. THE IOT TEST CASES CLASSIFICATION LAYER

This layer is responsible for classifying the TCs of the IoT
system as per the IoT standard components using the
trained model generated from the IoT Components Training
Layer. The created classes would narrow the search space
of TCs for selection and prioritization during the continuous
regression and integration testing of the IoT system. The
inputs are all previous test runs for this IoT system and the
traceability matrix that has a list of IoT TCs mapped to
requirements. It consists of several modules as follows:

 IoT test cases attributes extraction: the previous test
runs and the traceability matrix of the system’s
specifications are considered to extract the main data
identifying each TC, such as ID, name, description,
coverage rate (CR), fault detection rate (FDR) and
execution time (ET). The CR of a TC is the value of

how many system’s requirements are covered by this
TC, the fault detection rate is the value of how many
faults are detected by this TC compared to the total
number of defects, and the execution time is the time
taken by the TC to execute.

The extracted TCs’ attributes are used to classify
TCs as per the IoT components, where the CR, FDR
and ET are further utilized for TCs prioritization. The
priority of a TC increases when its coverage and fault
detection rates are higher while its execution time is
lower [43][44]. The coverage rate is calculated for each
TC by the summation of the covered requirements
divided on the total number of the requirements as
shown in (8) [45]:

 ������ = ∑
���

�

�
�����

 (8)

Where �� is the coverage rate, ����is the TC
identity, ��� is the requirement identity and �is the
total number of requirements. Using the previous IoT
system’s runs, the FDR and ET are extracted for each
TC as per the traceability matrix. FDR is calculated by
the summation of the faults that are covered by the TC
as shown in (9) [46]:

 ������� = ∑
����

��

�
�����

 (9)

Where ��� is the fault detection rate, ���� is the TC
identity, � is the fault, ��� is the fault identity and �
is the total number of faults.

 The test cases classification as per IoT components,
with the extracted attributes, as the TC name, ID,
description, as well as the IoT components’ trained
model, are proposed to classify each TC as per the IoT
standard components. The classification of TCs
facilitates the selection of relevant TCs for the next
layer, when a new module in case of integration testing
or change requests in case of regression testing are
encountered. The output of this layer is the classified
TCs as per the IoT components.

C. THE IOT SELECTION AND PRIORITIZATION LAYER

This layer is responsible for selecting and prioritizing IoT
TCs either for integration or regression testing based on the
received inputs. TCs are prioritized and selected for a
regression testing if the input is a change request, whereas
if the inputs are the system architecture and new
specifications, then TCs are selected and prioritized for an
integration testing as follows.

 Change request classification as per IoT components,
which indicates the application of regression testing
for IoT TCs selection. The input is expected to be the
change request, which should be classified as per the
IoT components using the generated IoT components

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3039931, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

6

trained model. The classification of the change request
determines the class of the IoT standard component
for this change request to which it belongs to, whether
sensors and actuators, protocols and gateways, user
devices, or data processing. This helps reducing the
costs and efforts required to select TCs by narrowing
the search space out of the massive set of all TCs.
After this classification, the IoT TCs selection starts
based on the classified changed request and the
classified IoT system TCs from the previous layer.
Thus, IoT TCs are selected.

 IoT Integration testing Recommender, in which the
Modules Interfaces Extraction receives a new module
and the IoT system architecture, indicating the
application of integration testing for IoT TCs
selection. This optimizes integration testing for the
nature of IoT systems. It extracts the modules’
interfaces that are related to the integration between
the input module’s specifications and its adjacent
modules. Modules Dependency Calculation is then
responsible of calculating the dependency of modules
by identifying the required number of stubs and
drivers, in order to recommend the efficient
integration testing approach to consider next, i.e. top-
down, bottom-up or sandwich … etc., that decreases
the number of needed stubs or drivers at the
Integration Testing Handler. The integration testing
approach is recommended based on the number of
connected modules to this new module to test. If the
number of connected follower modules are less than
the connected ancestor modules but not yet
implemented, then stubs are needed. If the number of
the connected ancestor modules are less than the
connected follower modules but not yet implemented,
then drivers are needed. If the number of stubs and
drivers is equal, then it is recommended to use stubs
over drivers [40]. Otherwise, if all ancestor and
follower modules are implemented, then all related
TCs are selected without the need for any stubs or
drivers.

 Test cases selection using the classified IoT
components, in which the relevant TCs are selected
during the regression or integration testing according
to the related IoT standard components. In case of
regression testing, the change request in IoT
specifications that is under consideration should have
been classified as per the IoT standard components.
Accordingly, the TCs related to the classified IoT
standard component are selected. In case of integration
testing, TCs are selected based on the new IoT module
under consideration with respect to the provided
system architecture. The modules that are expected to
be connected to the new module determine the set of
TCs to select, which are classified according to IoT
standard components.

 Test Cases prioritization using multi search-based
techniques, in which the proposed IoT-CIRTF utilizes
GAs [42] and SA [41] search-based techniques
according to the extracted attributes CR, FDR and ET,
to use in the prioritization Fitness Function (FF) [41].
By calculating FF for each TC, IoT-CIRTF decides
whether this sequence of TCs is better than the
previous sequence. The prioritization process starts by
choosing a random TC, creating a sequence of ordered
TCs. This sequence may not be the best solution, and
accordingly, calculations keep processing until they
stop as per a stop condition determined by the SBT
algorithm to find the best sequence of ordered TCs. FF
calculates each TCs weight as shown in (10):

 ��(����) = ∑
�������.(��������)

���

�
��� (10)

Where ���� is the TC identity, ������� is the TC index
indicating its position in the ordered sequence, � is the

total number of TCs, ��� is the coverage rate, ���� is
the fault detection rate and ��� is the execution time of
the TC. The SBT algorithm keeps running until
reaching the stopping condition, which represents the
number of iterations to keep running for both SA
and GA algorithms [48][49][50][51]. Algorithm 2
presents GA as the global search approach, while
Algorithm 3 presents SA as the local search
approach as applied in the proposed IoT-CIRTF.

Algorithm 2 Simulated Annealing for IoT TCs Prioritization
in IoT-CIRTF.

Output: TCs prioritized, with the highest priority value.
1 Begin
2 Generate an initial solution (Sol)
3 Set Best solution (SolBest) = Sol
4 Set initial number of iterations value (T0)

//T0>0, iterates until the end of iterations.
5 Loop
6 Select a random neighbor TC Solp
7 Calculate FF for Sol.
8 Calculate FF for Solp.
9 Calculate Δ = FF(Solp)−FF(Sol).

10 If Δ<0 then
11 Sol = Solp.
12 End if
13 If Δ≥0 then
14 Sol = Solp with probability P(Δ,T).
15 End if
16 If FF(Sol)≥FF(SolBest) then
17 SolBest = Sol.
18 End if
19 Upgrade the remained number of iterations (T)

//using the initialized reduction rate.
20 End loop //iterations number (T0<=0).
21 End
22 Return SolBest//best sequence of ordered TCs.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3039931, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

7

Algorithm 3 Genetic Algorithm for IoT TCs Prioritization in
IoT-CIRTF.

Output: TCs prioritized with the highest priority value.
Begin 1
 Generate an initial population (P) 2
 Initialize iteration i: i=1 3
 Generate n number of TCs 4
 Loop 5
 Calculate FF for P 6

 Choose two TCs based on FF //Selection 7
 Generate new offspring //Crossover combination 8
 Perform mutation on each TC //Mutation 9
 Choose new Population of TCs //Acceptance 10

 If (Optimal solution reached) 11
 Break Loop 12

 Else 13
 Return to step 6 //Generate a new population 14

 End if 15
End 16
Return prioritized TCs 17

SBT is used to search for an optimized sequence of

ordered TCs. Local search approaches search for the
best solution by looking to the nearby solution TC,
while global search approaches find the optimum
solution anywhere in the search space. IoT-CIRTF
applies both approaches to validate the accuracy of
finding the best sequence of TCs, in which the number
of TCs in IoT systems should be reduced to effectively
manage the time and cost needed for continuous
testing. Both approaches are adapted by modifying FF
as shown in (6), where the weights of TCs are
calculated as per the three essential parameters CR,
FDR, ET. The output of IoT-CIRTF is the selected
prioritized TCs for the regression or integration testing
in the IoT-based system.

IV. IOT-CIRTF EXPERIMENTAL EVALUATION

Various experimentations were considered to evaluate the
proposed IoT Continuous Integration and Regression Testing
Framework (IoT-CIRTF) with respect to the accuracy
encountered at three perspectives: the deep learning layer, the
TCs classification layer, and the IoT TCs selection and
prioritization layer while applying regression and integration
testing for IoT-based systems.

A. THE DATASET

The global system for mobile communications (GSM) was
used as our dataset [52]. It was selected for our
experimentation as it includes IoT system specifications and
their associated TCs. It supports mobile operators for cellular
networks, where huge devices are connected to obtain
services through the internet. To avoid failures when
connecting IoT devices to mobile networks, GSM has
provided two datasets: IoT device connection efficiency and
Mobile IoT (MIoT). Both datasets include the architecture

for the configuration of the mobile network controls,
consisting of common TCs as per the IoT systems
specifications. The IoT device connection efficiency dataset
includes 80 requirements and 100 TCs [53] [54], whereas the
MIoT dataset contains 51 requirements and 41 TCs [55].

The component diagram of this architecture shows the
dependency between the components, which will be used for
the integration testing evaluation as described later. We have
created the traceability matrix (TR) for these datasets to
present the related TCs of all requirements, and other
documents showing all TCs with their previous runs
information and extracted attributes [56]. Sample parts of the
used datasets based on GSM are shown in Fig.2.

(a) Sample part of the created traceability matrix for the GSM

dataset, after adding the IoT components’ interfaces IDs.

(b) Sample part of the extracted TCs’ attributes.

FIGURE.2: Sample parts of the used dataset based on GSM.

B. THE EXPERIMENTAL METHODOLOGY

A system was developed for IoT-CIRTF using JAVA 8 and
Python 3.7.3 programming languages. Experiments are
performed on an Intel(R) Core (TM) i7-75500U CPU (2.40
GHz), 8 GB RAM and 64-bit Windows 8 operating system.
Several runs were conducted to create and train LSTM
classifier reaching best accuracy when using 4 layers/ nodes
of LSTM and around 100 epochs to cover the whole IoT
system specifications.

As for the prioritization, SBT (GA and SA) required to
execute a number of iterations based on the stop conditions
of both algorithms to reach the best solution of ordered TCs.
The main evaluation criterion for TCs prioritization is
measured by precision, where it is defined by the total
number of TCs in the correct order, divided by the total
number of TCs as shown in (11) by [57].

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3039931, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

8

 �� � ������ =
��

�����
 (11)

Where �� is the total number of TCs correctly ordered, i.e.

true positive, and �� is the total number of TCs incorrectly
ordered, i.e. false positive. The experiments can be
categorized into three perspectives to examine each layer at
IoT-CIRTF as detailed below.

C. IOT COMPONENTS TRAINING LAYER EVALUATION

In order to examine the learning process of mapping the IoT
system specifications to the IoT standard components (i.e.
User device, protocols and gateways, sensors and actuators,
data processing), the used datasets were split into 80% for
training and 20% for testing. The learning was then applied
using two layers of LSTM, i.e. Bi-directional algorithm. An
average accuracy of 75% was obtained, where the large
sentences in the IoT specifications led to the need for
improving the results. Therefore, four layers of LSTM were
applied [58], leading to an average accuracy of 96%.

D. IOT TEST CASES CLASSIFICATION LAYER
EVALUATION

As for the evaluation of TCs classification as per the four
standard IoT components based on the LSTM classifier, the
TCs classification’s accuracy was 96% on average, with an
average of 100 epochs, after having an accuracy of 75%
when using two layers of LSTM only. Other studies as in
[59] have achieved accuracy of 92.84%, 97.2% in [60], 74%
in [61], and (81.2%) in [62] when applying adaptations on
the number of layers with long sequences of data in different
prediction and classification applications. based on the best
trained LSTM classifier [63].

Fig.3 shows the classification accuracy of both datasets
through the loss rate using the Cross-Entropy Loss function
for the four layers of LSTM. The results indicate that the loss
rate percentage decreases as the number of LSTM classifier
layers increases, in which using more layers prompts having
less classification errors with the used classifier [64].

FIGURE.3: The loss rate for both datasets with respect to the LSTM
layers.

V. IOT TEST CASES SELECTION AND PRIORITIZATION
EXPERIMENTAL RESULTS

The experiments on this layer consider two main parts: for
regression testing and for integration testing. The evaluation
is based on the selection and prioritization results as follows.

A. REGRESSION TESTING EXPERIMENTAL RESULTS

The correct selection of TCs is determined by the IoT
system’s traceability matrix that matches the IoT standard
component as per the classified change request. Fig.4 shows
the results of TCs prioritization for regression testing, where
the y axis represents the FF value of the selected prioritized
TCs, and the x axis represents the number of iterations.
Prioritization was applied using both SA and GA algorithms
for both mentioned datasets. The results are shown through
10 iterations. The total number of iterations varied according
to the used algorithm and stopping condition. The FF values
of the MIoT dataset are lower than those of the IoT device
efficiency dataset, as the size of the later dataset is larger
[56]. The results indicate that GA works more accurate with
large datasets, since it is a global SBT technique that pursues
a population of values rather than singular neighbor values as
in the case of local SBT algorithms like the SA algorithm.

The results of SA are near to the results of GA for the
regression testing with the used datasets, where the number
of selected TCs for regression testing is less than the TCs
selected for integration testing. The increase of FF triggers
better sequence of selected ordered TCs, due to the increase
of FDR, CR and the decrease of ET. In addition, precision is
calculated to validate the accuracy of the prioritization
results. The average precisions achieved for the IoT device
connection efficiency dataset were 72% and 88% for the SA
and GA algorithms respectively. The average precisions
achieved for the MIoT dataset were 90% and 81% using SA
and GA algorithms respectively, resulted at the final
iteration, as shown in Fig.6.

B. INTEGRATION TESTING EXPERIMENTAL RESULTS

The evaluation of Integration testing at IoT-CIRTF is
determined by the efficiency of deciding the correct
integration testing type. The architecture is read as an XML
file, then the dependency is calculated between the newly
implemented module to test and the ancestor and follower
modules to determine the optimum integration testing type.
Fig.5 shows the TCs prioritization accuracy results using
both GA and SA algorithms, where the x axis presents the
number of iterations and the y axis presents the FF value of
the selected prioritized TCs.

The accuracy of the prioritized selected TCs using GA and
SA for integration testing was examined by precision. In the
case of the IoT device connection efficiency dataset, the
precision average values were 80% and 92% for the SA and
GA algorithms respectively. As for the MIoT dataset, the
average precisions were 77% and 89% for SA and GA

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3039931, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

9

respectively. The precision values resulted from the final
iteration of the used algorithms, as shown on Fig.6. GA
proved more efficient percentages when used for the
integration testing, where the number of selected TCs was
more than those for the regression testing. Prioritization
using global SBT such as GA is more efficient with larger
selected TCs.

FIGURE.4: Results of TCs prioritization for regression testing for both
used datasets using SA and GA.

FIGURE.5: Results of TCs prioritization for integration testing when
receiving a new IoT system module for both datasets using SA and GA.

FIGURE.6: Results of precision percentages for prioritized selected TCs
using SA and GA for both datasets.

VI. CONCLUSION

Challenges are usually faced during the integration and
regression testing of IoT systems, in which the nature of
these systems requires continuous testing. In this paper, the
IoT Continuous Integration and Regression Testing
Framework (IoT-CIRTF) is proposed for continuous
regression and integration testing in IoT-based systems based
on a hybrid combination of deep learning and search-based
techniques. The LSTM classifier was trained for two IoT-
based system specifications datasets, achieving an average
accuracy of 96% using 100 epochs for 4 layers.

The classifier considered 4 standard components of IoT
systems, with loss rates of 4% and 6% when applied for the
IoT device connection efficiency and Mobile IoT (MIoT)
datasets respectively, indicating the accuracy of the classifier.
The prioritization accuracy of the selected TCs for both
integration and regression testing was examined by
calculating the precision. The results for regression testing
were 72% and 88% using Simulated Annealing (SA) and
Genetic algorithms (GAs) algorithms for the IoT device
connection efficiency dataset, and 90% and 81% using SA
and GA algorithms for the Mobile IoT (MIoT) dataset
respectively. As for the integration testing, the precision
results were 80% and 92% using SA and GA algorithms for
the IoT device connection efficiency dataset, and 77% and
89% using SA and GA for the MIoT dataset respectively.

As for the future work, it is planned to extend our proposed
IoT-CIRTF framework to include other IoT testing areas,
such as compatibility testing, configuration testing,
scalability testing and security testing.

REFERENCES
[1] F.Alkhabbas, R. Spalazzese, and P. Davidsson, Characterizing

Internet of Things Systems through Taxonomies: A Systematic
Mapping Study, Internet of Things, vol. 7, p. 100084, 2019.

[2] A. Vakaloudis and C. O. Leary, A framework for rapid integration of
IoT Systems with industrial environments, 2019 IEEE 5th World
Forum Internet Things, pp. 601–605, 2019.

[3] N. Medhat, S. Moussa, N. Badr and M. F. Tolba, Testing Techniques
in IoT-based Systems. 2019 Ninth International Conference on
Intelligent Computing and Information Systems (ICICIS), Cairo,
Egypt, 2019, pp.394-401,doi: 10.1109/ICICIS46948.2019.9014711.

[4] Fu, Y., Chen, H., Zheng, Q., Yan, Z., Kantola, R., Jing, X., Cao,
J., Li, H., 2020, An Adaptive Security Data Collection and
Composition Recognition method for security measurement over
LTE/LTE-A networks. J. Netw. Comput. Appl. 155.
https://doi.org/10.1016/j.jnca.2020102549

[5] R. Mohammad and H. Hamad, Automation Testing and Monitoring
Lab on the Cloud for IOT Smart Fleet System (ATML & SFS). 2018.

[6] A. K. Gomez and S. Bajaj, Challenges of testing complex internet of
things (IoT) devices and systems, Proc. 2019 11th Int. Conf. Knowl.
Syst. Eng. KSE 2019, pp. 1–4, 2019.

[7] M. Noor and W. H. Hassan, “Current research on Internet of Things
(IoT) security: A survey Computer Networks, 2018.

[8] M. Sirshar, Software Quality Assurance testing methodologies in
IoT. no. December 2019, 2020.

[9] Z. B. Celik, Program Analysis of Commodity IoT Applications for.
no. December, 2018.

[10] M. Leotta et al., An acceptance testing approach for internet of things
systems. IET Softw., vol. 12, no. 5, pp. 430–436, 2018.

[11] M. Krichen, 2019. Improving Formal Verification and Testing
Techniques for Internet of Things and Smart Cities. Mobile
Networks and Applications.

[12] L. Gutiérrez-Madroñal, I. Medina-Bulo, and J. J. Domínguez-

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3039931, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

10

Jiménez, IoT–TEG: Test event generator system. Journal of Systems
and Software, vol. 137, pp. 784–803, 2018.

[13] M. T. An and E. Analysis, Cost and Effectiveness of Search-Based
Techniques for. vol. 27, no. 4, pp. 601–622, 2017.

[14] Romero, A., Gatta, C., Camps-valls, G., Member, S., 2015. Sensing
Image Classification. IEEE Trans. Geosci. Remote Sens. 1
Unsupervised 54, 1–14.
https://doi.org/10.1109/TGRS.2015.2478379.

[15] Chen, Z., Zou, H., Yang, J.F., Jiang, H., Xie, L., 2020. WiFi
Fingerprinting Indoor Localization Using Local Feature-Based Deep
LSTM. IEEE Syst. J. 14, 3001–3010.
https://doi.org/10.1109/JSYST.2019.2918678

[16] Yang, B., Sun, S., Li, J., Lin, X., Tian, Y., 2019. Traffic flow
prediction using LSTM with feature enhancement. Neurocomputing
332, 320–327. https://doi.org/10.1016/j.neucom.2018.12.016

[17] Wang, Z., Zhu, Z., Li, D., 2020. Collaborative and geometric multi-
kernel learning for multi-class classification 99.
https://doi.org/10.1016/j.patcog.2019.107050

[18] Li, Z., He, D., Tian, F., Chen, W., Qin, T., Wang, L., Liu, T., 2018.
Towards Binary-Valued Gates for Robust LSTM Training.

[19] Elsworth, S., Stefan, G., n.d. Time Series Forecasting Using LSTM
Networks : A Symbolic Approach 1–12.

[20] Liu, G., Guo, J., 2019. PT US CR. Neurocomputing.
https://doi.org/10.1016/j.neucom.2019.01.078

[21] Gelly, G., Gauvain, J.L., 2017. Spoken Language Identification using
LSTM-based Angular Proximity 2566–2570.

[22] Lv, W., Meng, F., Zhang, C., Lv, Y., Cao, N., Jiang, J., 2017. A
General Architecture of IoT System 659–664.
https://doi.org/10.1109/CSE-EUC.2017.124

[23] Mocrii, D., Chen, Y., Musilek, P., 2018. Internet of Things IoT-
based smart homes : A review of system architecture , software ,
communications , privacy and security. Internet of Things 1–2, 81–
98. https://doi.org/10.1016/j.iot.2018.08.009

[24] Merity, S., Keskar, N.S., Socher, R., 2015. Regularizing and
Optimizing LSTM Language Models.

[25] Zhang, Z., 2018. Generalized Cross Entropy Loss for Training Deep
Neural Networks with Noisy Labels.

[26] W. Yu, M. Yi, X. Huang, X. Yi, and Q. Yuan, Make it directly:
Event extraction based on tree-LSTM and Bi-GRU. IEEE Access,
vol. 8, pp. 14344–14354, 2020.

[27] Sansano, E., 2020. A study of deep neural networks for human
activity recognition 1–27. https://doi.org/10.1111/coin.12318

[28] Stuhlsatz, A., Lippel, J., Zielke, T., 2010. Feature extraction for
simple classification. Proc. - Int. Conf. Pattern Recognit. 1525–1528.
https://doi.org/10.1109/ICPR.2010.377

[29] O. Olajubu, S. Ajit, M. Johnson, S. Thomson, M. Edwards, and S.
Turner, 2017. Automated test case generation from high-level logic
requirements using model transformation techniques. Conf. CEEC
2017 - Proc , 178–182.

[30] Wang, X., Zeng, H., Gao, H., Miao, H., Lin, W., 2019. Location-
Based Test Case Prioritization for Software Embedded in Mobile
Devices Using the Law of Gravitation. Mobile Information Systems
2019, 1–14.

[31] S. Y. Shin, L. C. Briand, and F. Zimmer, Test Case Prioritization for
Acceptance Testing of Cyber Physical Systems : A Multi-objective
Search-Based Approach. pp. 49–60.

[32] Incki, K., Ari, I., 2018. Democratization of runtime verification for
internet of things. Computers & Electrical Engineering 68, 570–580.

[33] M. Krichen and M. Lahami, “Towards a Runtime Testing
Framework for Dynamically Adaptable Internet of Things Networks
in Smart Cities,” pp. 589–607, 2020.

[34] J. P. Dias, F. Couto, A. C. R. Paiva, and H. S. Ferreira, A brief
overview of existing tools for testing the internet-of-things. Proc.
2018 IEEE 11th International Conference on Software Testing,
Verification and Validation Workshops, ICSTW, pp. 104–109, 2018.

[35] B. Lima, Automated scenario-based integration testing of time-
constrained distributed systems. Proc, 2019 IEEE 12th Int. Conf.
Softw. Testing, Verif. Validation, ICST 2019 , 486–488.

[36] Bures et al., M., Klima, M., Rechtberger, V., Bellekens, X.,
Tachtatzis, C., Atkinson, R., Ahmed, B.S., 2020, Interoperability and
Integration Testing Methods for IoT Systems: A Systematic Mapping
Study.

[37] L. Zhang, “Intelligent Regression Testing for Internet of Things
Wireless Device Using Mixed Machine Learning,” pp. 0–10, 2019.

[38] Guseila, L.G., Bratu, D., Moraru, S., 2019. Continuous Testing in the
Development of IoT Applications.

[39] Pallavi, K., Mallapur, J.D., Bendigeri, K.Y., 2018. Remote sensing
and controlling of greenhouse agriculture parameters based on IoT.
2017 Int. Conf. Big Data, IoT Data Sci. BID 2017 2018-Janua, 44–
48. https://doi.org/10.1109/BID.2017.8336571

[40] Pustogarov, I., Wu, Q., Lie, D., 2020. Ex-vivo dynamic analysis
framework for Android device drivers,1088–1105.
https://doi.org/10.1109/sp40000.2020.00094

[41] Mukherjee, R., Patnaik, K.S., 2019. Prioritizing JUnit Test Cases
Without Coverage Information: An Optimization Heuristics Based
Approach. IEEE Access 7, 78092–78107.

[42] W. Jun, Z. Yan, and J. Chen, Test case prioritization technique based
on genetic algorithm. Proc. - 2011 Int. Conf. Internet Computer,
173–175.

[43] Mahdieh, M., Mirian-Hosseinabadi, S. H., Etemadi, K., Nosrati, A.,
& Jalali, S. (2020). Incorporating fault-proneness estimations into
coverage-based test case prioritization methods. Information and
Software Technology, 121(December 2019), 106269.
https://doi.org/10.1016/j.infsof.2020.106269

[44] Rothermel, G., Untcn, R. H., Chu, C., & Harrold, M. J. (2001).
Prioritizing test cases for regression testing. IEEE Transactions on
Software Engineering, 27(10), 929–948.
https://doi.org/10.1109/32.962562

[45] H. Srikanth, L. Williams, J. Osborne, C. Science, and N. Carolina,
System Test Case Prioritization of New and Regression Test Cases.
vol. 00, no. c, pp. 64–73, 2005.

[46] McMaster, S., Memon, A., 2007. Fault detection probability analysis
for coverage-based test suite reduction. IEEE Int. Conf. Softw.
Maintenance, ICSM 335–344.
https://doi.org/10.1109/ICSM.2007.4362646

[47] Ye, Z., Xiao, K., Ge, Y., Deng, Y., 2019. Applying Simulated
Annealing and Parallel Computing to the Mobile Sequential
Recommendation. IEEE Trans. Knowl. Data Eng. 31, 243–256.
https://doi.org/10.1109/TKDE.2018.2827047

[48] Murata, T., Ishibuchi, H., 1994. Performance evaluation of genetic
algorithms for flowshop scheduling problems. IEEE Conf. Evol.
Comput. - Proc. 812–817. https://doi.org/10.1109/icec.1994.349951

[49] Maheswari, R.U., Jeya Mala, D., 2015. Combined Genetic and
simulated annealing approach for test case prioritization. Indian J.
Sci. Technol. 8. https://doi.org/10.17485/ijst/2015/v8i35/81102

[50] Prakash, B., Viswanathan, V., 2020. A comparative study of meta-
heuristic optimisation techniques for prioritisation of risks in agile
software development. Int. J. Comput. Appl. Technol. 62, 175–188.
https://doi.org/10.1504/IJCAT.2020.104688

[51] Balaprakash, P., Wild, S.M., Hovland, P.D., 2013. An experimental
study of global and local search algorithms in empirical performance
tuning. Lect. Notes Comput. Sci. (including Subser. Lect. Notes
Artif. Intell. Lect. Notes Bioinformatics) 7851 LNCS, 261–269.
https://doi.org/10.1007/978-3-642-38718-0_26

[52] Adewole AP, Egunjobi TO, 2012. Foundation of Computer Science
FCS. Int. J. Appl. Inf. Syst. 4, 6–12.

[53] Haq, I., Rahman, Z.U., Ali, S., Faisal, E.M., 2017. GSM Technology:
Architecture, Security, and Future Challenges. Int. J. Sci. Eng. Adv.
Technol. 5, 70–74.

[54] GSM, 2014. IoT Device Connection Efficiency Guidelines 1–73.
[55] GSM, 2015. IoT Device Connection Efficiency Common Test Cases

30 January 2015 1–51.
[56] GSM, 2017. MIoT Test Requirements 1–24. TC, G., 2017. MIoT

Test Cases 1–40
[57] Noha Medhat, Sherin Moussa, "loT Specifications, Traceability

Matrix and Test Cases based on GSM", IEEE Dataport, 2020.
[Online]. Available: http://dx.doi.org/10.21227/f3j5-nm63.
Accessed: Oct. 15, 2020.

[58] Ye, X., Fang, F., Wu, J., Bunescu, R., Liu, C., 2019. Bug Report
Classification Using LSTM Architecture for More Accurate Software
Defect Locating. Proc. - 17th IEEE Int. Conf. Mach. Learn. Appl.
ICMLA 2018 1438–1445.
https://doi.org/10.1109/ICMLA.2018.00234

[59] Ullah, F.U.M., Ullah, A., Member, S., Haq, I.U., Member, S., 2019.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3039931, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

11

Short-Term Prediction of Residential Power Energy Consumption
via CNN and Multilayer Bi-directional LSTM Networks. IEEE
Access PP, 1. https://doi.org/10.1109/ACCESS.2019.2963045

[60] Ullah, A., Ahmad, J., Muhammad, K., Sajjad, M., Baik, S.W.,
Technology, C., Image, D., 2017. Action Recognition in Video
Sequences using Deep Bi-directional LSTM with CNN Features
3536, 1–11. https://doi.org/10.1109/ACCESS.2017.2778011

[61] Khan, M.A., Karim, R., 2019. SS symmetry A Scalable and Hybrid
Intrusion Detection System Based on the Convolutional-LSTM
Network.

[62] Xia, T., Song, Y., Zheng, Y., Pan, E., Xi, L., 2020. Computers in
Industry An ensemble framework based on convolutional bi-

directional LSTM with multiple time windows for remaining useful
life estimation. Comput. Ind. 115, 103182.
https://doi.org/10.1016/j.compind.2019.103182

[63] Li, S., Li, W., Cook, C., Zhu, C., Gao, Y., 2018. Independently
Recurrent Neural Network (IndRNN): Building A Longer and
Deeper RNN 5457–5466.

[64] Liu, G., & Guo, J. (2019). Bidirectional LSTM with attention
mechanism and convolutional layer for text classification.
Neurocomputing. https://doi.org/10.1016/j.neucom.2019.01.078

