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1 Introduction
The development of architectures for control systems has been an active area of
research for at least twenty years [Bittici]. This research has produced many different
structures for understanding and constructing control systems. Usually these structures
are called either architectures or frameworks. While the literature uses the terms
architecture and framework almost interchangeably, we will make a distinction. We
will use the term architecture to refer to a description of the design and structure of a
system and the term framework to refer to a structure external to an architecture, which
organizes information about the architecture and the application of the architecture. 

A control architecture is an architecture for a control system. Different control
architectures address a wide range of issues and discuss these issues in varying
terminology. The variability in terminology makes it difficult to understand the results
from the development and application of other researchers’ architectures; the breadth
of issues makes it difficult to use these results.

To remedy this situation, it is necessary to have a common terminology for discussing
control architectures and a common framework for organizing information about
control architectures. While some work in these areas has been done, neither a
terminology nor a framework has been universally accepted. 

Based upon the examination of many control architectures for computer integrated
manufacturing (CIM) and robotics, the authors propose a terminology for discussing
control architectures and a framework for describing control architectures. Together
these give a vocabulary and a structure for discussing the construction of a control
architecture. Since our framework is more general than those described in the literature,
it can also be used to relate frameworks to each other.

This paper presents our proposed terminology and framework, relates them to other
proposed terminologies and frameworks and discusses issues related to the construction
of an architecture using the our framework.

1.1 Related Research

In the following sections, we will discuss literature related to both terminologies for
control architectures and frameworks for architectures. While our discussion
concerning standardized terminology is confined to the literature on control
architectures, our discussion about frameworks includes literature from several related
fields. The search for a standardized terminology is discussed in Section 1.1.1, and
frameworks are discussed in Section 1.1.2.

1.1.1 Terminology

Although the need for a standardized terminology in the field of control architectures
has long been recognized, there have been few efforts to define a standardized
terminology. One notable effort is a glossary of standard computer control system
terminology [ISA] prepared by the Glossary Committee of the Purdue Workshop on
Standardization of Industrial Computer Languages held at Purdue University in 1969.
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This glossary was updated in 1985 and contains definitions for many useful terms like
“controller”, “real-time”, and “response-time”. However, it is oriented toward physical
systems and does not contain terms needed by more abstract architectures.

Currently, International Standards Organization Technical Committee 184,
Subcommittee 5 Working Group 1 is constructing a framework for enterprise
integration which can be used to coordinate standards that pertain to a Computer
Integrated Manufacturing (CIM) enterprise. While the primary thrust of this effort is to
identify constructs for modeling a CIM enterprise, a terminology is also under
development. The results of this effort are not yet mature enough for use [ISO2].
Recently, International Standards Organization Technical Committee 184,
Subcommittee 5 Working Group 3 (Electronic Data Exchange) and the ISO Central
Secretariat have begun to define a semantic repository of terms which would be
unambiguous across several different languages. 

1.1.2 Frameworks

The framework which the authors are presenting is geared toward providing a structure
for identifying issues which must be addressed in constructing a control architecture.
As far as the authors are aware, there is no other framework specifically designed for
this purpose. However, there are many frameworks which serve either to aid in the
classification of architectures or to organize information about architectures. While a
comprehensive literature survey is beyond the scope of this paper, we will indicate
some of the important work which has been done in this area.

1.1.2.1 Systems Theory

Systems theory provides a holistic approach to analyzing many diverse types of
systems. It has been used to analyze systems in the fields of biology, management, and
engineering to name a few. The field of cybernetics, in particular, is concerned with
control and communication theory [Checkland]. The framework for enterprise
integration under construction by the International Standards Organization Technical
Committee 184 Subcommittee 5 Working Group 1, maps systems theory concepts into
concepts useful for modeling a CIM enterprise [ISO2]. This framework’s stated
purpose is “to provide a framework for the coordination of existing, emerging, and
future standards for the modeling of manufacturing enterprises to facilitate Computer
Integrated Manufacturing (CIM)”. The framework identifies a CIM enterprise as a
hybrid system with human, physical, and conceptual entities. It identifies key concepts
for modeling an enterprise, dividing these concepts into the broad categories of
business modeling, organization/technical structure, and operation of a manufacturing
facility. Particular emphasis is placed on concepts for business modeling and
organization/technical structure.

1.1.2.2 Zachman’s Framework for Information Systems Architecture (ISA)

Zachman’s framework for information architecture has gained acceptance among those
familiar with systems theory for analyzing both information systems and more general
systems. “It provides a systematic taxonomy of concepts for relating things in the world
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to the representations in the computer” [Zachman]. This framework was derived by
analogy from examples in the disciplines of architecture and manufacturing. The
framework consists of five rows and three columns, creating 15 boxes for organizing
information. The rows represent different views of the information, and in each case a
different type of model is required. The rows are:

(1) scope—the overall model of the business

(2) enterprise model—model of the business from the point of view of the owner

(3) system model—model of the information system of the business

(4) technology model—design of the technological implementation of the model
in (3)

(5) detailed description—detailed design for the implementation of the
technology model

The three columns represent views or ways of looking at the data; these are data,
function, and network (or location). Each of the 15 cells may contain a type of
information qualitatively different from that of other cells and require a separate type
of representation. In 1992, Zachman and Sowa broadened the original framework to
include three additional columns, corresponding to who is using the information, when
the information is to be used, and why (for what purpose) the information is to be used.
A formal mechanism for expressing the ISA framework based on conceptual graphs has
also been added [Sowa].

1.1.2.3 CIM Frameworks

Within the field of Computer Integrated Manufacturing (CIM), many frameworks
either for classifying architectures or for organizing information about architectures
have been advanced. We will discuss only three which we feel to be important and
representative.

The Computer Integrated Manufacturing Open System Architecture (CIM-OSA) is an
open architecture for the integration of the design and operation of a CIM enterprise. It
was developed by the AMICE consortium of ESPRIT, a European program aimed at
improving the competitiveness of member companies. CIM-OSA has produced, as part
of the architecture, a Modeling Framework which gives main dimensions for modeling
a CIM enterprise. This has been accepted as a European pre-standard [CEN].

The framework provides a structure for organizing information about architectures.
There are three dimensions in this framework: architectural genericity, modeling, and
views. Architectural genericity is a measure of the applicability of a concept across the
manufacturing domain. Three levels are identified along this dimension: generic,
partial, and particular. Generic means the concept applies in any enterprise; particular
means that the concept applies only to a specific enterprise; partial means that it applies
to some subset of enterprises. The modeling dimension corresponds to traditional
software engineering stages: requirements definition, design, and implementation. The
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dimension of views identifies distinct aspects of the enterprise which must be modeled.
The views expressed in CIM-OSA are function, information, resource, and
organization. [Sastrón] provides a lucid overview of the CIM-OSA architecture.

Two frameworks designed to identify dimensions for the comparison and classification
of CIM architectures are advanced by Bohms and Biemans. We will discuss each of
these in turn.

In [Bohms] nine dimensions for classifying Computer Integrated Manufacturing
systems are identified.

(1) modeling level—which distinguishes between different meta-levels of
modeling. Bohms lists three meta-levels: reality itself, models of reality,
models of models (frameworks),

(2) language level—different levels of modeling language are required,
including those in which to express languages,

(3) aspect—a set of views which are thought to be important for modeling CIM,
e.g., function, information, resource,

(4) composition—the amount of detail included in the model, ranges from global
to detailed,

(5) scope—the range of applicability of the architecture,

(6) representation—different ways may be needed to express the same semantic
content for different purposes and using different languages,

(7) product life cycle—which part of the product life cycle the architecture
includes, e.g., design, production, maintenance, etc.

(8) actuality—whether the architecture is to apply to currently existing systems
or to future systems,

(9) specification level—the degree of choice left in the architecture for the
implementor.

Section 4 of [Bohms] proposes decompositions of each of the nine dimensions into
points or regions. For example, the modeling level dimension has three points: CIM
Framework, CIM Models, CIM in Practice.

In section 2 of [Biemans] a second set of dimensions is identified. They are not
explicitly called dimensions in the paper.

(1) flexibility—the ability to accommodate changes in products, operations or
facility layout1,

(2) precision of architecture definitions—the degree of ambiguity remaining in
architectural definition, 

(3) generality of a CIM architecture—applicability over different production
organizations over time,

1. section heading in [Biemans] is “allocation of tasks”
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(4) level of abstraction of a CIM architecture—a facility can be described at
many levels of abstraction above the physical level.

The two sets of dimensions just described reveal the difficulty of establishing a
comprehensive method of characterizing architectures. Although the area covered by
the last three of Biemans’ dimensions is largely covered by Bohms’ dimensions, in no
case is there good match between a single dimension from one set and a single
dimension from the other. Each of the dimensions may be of interest in some situations.

1.1.2.4 Frameworks for Integrating Manufacturing Enterprises

In 1990, a joint task group of the IFAC (International Federation of Automatic Control)
Manufacturing Technology and Computers Committees and the IFIP (International
Federation for Information Processing) Technical Committee for Computer
Applications in Technology was formed to study presently available architectures for
enterprise integration of manufacturing enterprises. The results of this study have
recently been published in a number of forms. [Williams] The study presented a
comparison of three architectures for CIM (CIM-OSA, GRAI-GIM, and the Purdue
enterprise architecture), recommendations for completing each of the architectures for
use as an integrating framework, and a taxonomy of the area of study which aids in the
identification of problems which need to be overcome in the integration effort. While
the scope of this effort is different from our own, the conclusion regarding the need for
a methodology to construct an architecture is relevant.

The task force found that, since each company is different, the methodology for
building a CIM system is critical.  In the task group report, a methodology includes:

(1) creation of a reference model which shows in a global and generic way how
to structure a project to create an integrated enterprise or subsection of the
enterprise,

(2) one or more modeling formalisms to build up models to study and evaluate
the reference model defined in (1),

(3) a structured approach for the program taking the existing system to a future
system meeting the objectives.  The structured approach must cover the life
cycle of the project,

(4) performance evaluation criteria for evaluation from several points of view
(such as economics, reliability, etc.).

2 Proposed Framework
We propose a framework for control architectures which organizes information about
architectures in a way which is useful for the construction of an architecture. The
framework may also be useful for the analysis and comparison of existing architectures,
but these applications of the framework will not be discussed in this paper. The
relationship of this framework to others will be discussed in Section 2.5.
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Our framework is based upon the notions of tier of architectural definition (which we
will usually shorten to tier) and element of architectural definition. These terms will be
described in detail shortly.

An instance of the framework, filled out with details of a specific architecture is termed
an architectural complex. Roughly speaking, an architectural complex consists of a set
of populated tiers. Each tier contains all the elements of architectural definition, and the
elements from one tier are closely related to elements of the same type in other tiers. An
extremely abbreviated example of an architectural complex is provided in Section 2.4.

2.1 Preliminary Definitions

A class of situations in which an architecture is intended to be used is termed its
domain. For example, an architecture might apply to the manufacture of discrete parts.
The realization of an architecture in hardware and software will be called an
implementation of the architecture.

The concepts used in an architecture which have specific meaning to the architecture
will be referred to as architectural units. Architectural units are frequently defined by
giving each one distinct functional characteristics, although this is not the only mode of
definition. We shall refer to the realization of an architectural unit in an implementation
as a component of the implementation.

An atomic unit of an architecture is an architectural unit which the architecture does not
break down further into simpler architectural units. Atomic units are the fundamental
building blocks of an architecture. An architecture typically specifies the functions and
any formal interfaces of each atomic unit.

2.2 Tiers of Architectural Definition

Informally speaking, a tier of architectural definition is a set of the architectural units
grouped together to provide distinctions within the definition of the architectural
complex. For example, a tier of architectural definition can be made for each of the
stages which transform the concepts of an architecture into an implementation. Each
tier represents a set of consistent decisions about architectural units at that phase of
design or implementation.

The set of tiers of architectural definition for a specific architecture form a partition of
the architecture, that is, it has the following properties:

(1) Architectural units representing each of the elements of architectural
definition (defined later in this document) are present in each tier,

(2) each architectural unit is present in exactly one tier.

In addition, the tiers have a sense of order and are interdependent, so that decisions
made at lower tiers are consistent with decisions made at the higher ones.

Because of these properties, tiers of architectural definition may be used to define
conformance classes for the architectural complex. To be in conformance with an
architectural complex to a given tier, an implementation must conform to the
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specifications of the given tier and all the higher tiers of the architectural complex.
Different implementations typically may use the same upper tiers to some tier level of
an architectural complex but require different tiers below that level. Two such
implementations will be in the same conformance class, as defined by the lowest tier
used by both. Being in the same conformance class may guarantee some degree of
interoperability or compatibility.

A precise definition of the concept of tiers requires two additional concepts, relations
and partial orderings. A relation defines an association between architectural units.
Some relations can be used to induce an order upon the set of architectural units which

they associate. Using these relations, it is possible to generate (partial) orderings2 of an
architectural complex that may be used to group architectural units into tiers.

2.2.1 Relations

Three types of relations which are of interest in control architectures are:

decomposition/aggregation, instantiation/classification3, and specialization/
generalization. While relations other than these three types may occur, we are not
aware of any that are applicable to control architectures. 

Decomposition/aggregation relates an item to its parts. For example, a jigsaw puzzle is
an aggregation of its pieces. Each piece of the puzzle is part of the decomposition of the
puzzle. Any architectural unit which is not atomic is an aggregation. 

As an example of manufacturing architectural units in a decomposition/aggregation
relation, let us define a functional architectural unit called a controller. A controller
performs all the functions necessary to operate a machine. We can decompose this
functionality into two simpler architectural units, a planner (which performs any
planning required to control the machine) and an executor (which performs any actions
necessary to control the machine). The planner and executor are a decomposition of the
controller architectural unit. Conversely, the controller contains an aggregation of the
planner and executor.

Instantiation/classification relates a class to instantiations (examples) of the class. For
example, the jigsaw puzzle on the corner of my dresser is an example (instantiation) of
the jigsaw puzzle class. 

As an example of manufacturing architectural units in an instantiation/classification
relation, let us define an architectural unit which refers to any abstract concept in the
factory and call it an entity. We can define any number of instances of an entity, at
various levels of abstraction. We can define an architectural unit called a location,
which refers to physical positions in a factory. In manufacturing, nested classifications

2. an ordering on a set is partial when not every element of the set participates in the ordering. This concept 
will be defined more precisely later in this document.
3. Two senses of classification are intended: (a) to define a new abstract class of which a thing at hand is an 
instance, (b) to find an existing abstract class of which a thing at hand is an instance.
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are frequently used. The location which is on the floor, one foot west and east of the left
door jamb is a specific location. This specific location is an instance of a location,
which is an instance of an abstract entity. 

Specialization/generalization relates two classes of items4. B is a specialization of A (or
equivalently, A is a generalization of B), if every item in B is also in A. For example,
jigsaw puzzles are a subclass of puzzle (other kinds include crossword puzzles, Chinese
finger puzzles, etc.), and, conversely, the class of all puzzles is a generalization of the
class of jigsaw puzzles.

As an example of architectural units in a generalization/specialization relation, consider
that, one might define a general class of messages called “command.” At a somewhat
more concrete (specialized) level, “3-axis machining command” might be defined, and
at an even more concrete level, “fly cut” might be a kind of 3-axis machining command.

2.2.2 Partial Orderings

Many relations (including all relations of the three types just defined) can be used to
define a partial ordering for the set of architectural units in an architectural complex.
In a partial ordering of a set, any two arbitrary set elements need not be related, but for
any two which are, a sense of direction can be established for the relation. If A and B
are architectural units, we may say that A is less than B (denoted A < B) or B is greater
than A (denoted B > A) with respect to the relation. A partial ordering may connect a
chain of architectural units, with the sense of direction being preserved through the
entire chain. For example, if A, B and C are a chain of architectural units with respect
to a partial ordering such that A is less than B, and B is less than C, it follows that A is
also less than C.

We will require that the “<” symbol for a partial ordering have the following sense for
relations of the three identified types:

For decomposition/aggregation relations, A < B means A decomposes
into B and other things.

For specialization/generalization relations, A < B means B is a
specialization of A.

For instantiation/classification relations, A < B means B is an instance of
A, or there is a C such that B is an instance of C, where A < C.

The partial orderings we allow have two restrictions beyond the normal mathematical
definition: (1) we do not allow A < A, (2) the graph of the partial ordering must be a
tree (i.e., if branches separate, they may not rejoin).

4. There is a relationship between classification/instantiation and specialization/generalization. Whenever a 
class has instances which are also classes, instantiation and specialization are indistinguishable.
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2.2.3 Tiers

Within an architectural complex, several relations are usually chosen as part of the
architecture. Each relation applies to a distinct set of architectural units (i.e. no
architectural unit belongs to two such sets), and this set may be partially ordered with
respect to the relation. Since the sets are distinct, we may consider each architectural
unit to belong to at most one relation.

Using the set of partial orderings defined by the relations of an architectural complex,
it is possible to divide the architectural units of an architectural complex into groups
called tiers of architectural definition with respect to that set of relations. The tiers are
totally ordered, and, for any relation used in generating the partial ordering <p, if
architectural unit A is in one tier, and architectural unit B is in a lower tier, it is not
permissible that B <p A. If only one relation is used in constructing the partial ordering
(e.g., abstraction), the total ordering on the tiers will have an obvious meaning and
name (e.g., abstraction). If more than one relation is used in defining the tiers, the total
ordering of the tiers may have a different meaning from any of the relations used to
construct the partial ordering. For example, we may order the architectural units in
terms of abstraction or decomposition, but the total ordering induced on the tiers may
be perceived as domain restriction. Moreover, the total ordering on the tiers may be
defined by more than one relation. For example, several tiers of an architecture may be
related by abstraction, while the others are related to these tiers and each other by
domain restriction.

The grouping of architectural units into tiers must preserve the direction of each
relation, as just described, but it is permissible for both A and B to be in the same tier
with B < A. This differs from our previous thoughts on the subject [Kramer]. For each
relation, the designers of an architectural complex are free to assign the architectural
units of that relation to tiers independently from the methods used for other relations.
If an architectural unit does not take part in any of the relations of the architectural
complex, it may be placed in any tier.

Because the architectural units of any one relation may be assigned to tiers in several
ways, and because the architectural units of different relations are assigned
independently; given a set of relations, there is more than one way a set of tiers can be
defined. As a trivial example, it is always possible to put all architectural units in a
single tier. See Figure 1 for another, more interesting example. Hence, different
architectures can use the same set of relations but still have different tiers of
architectural definition.

In the remainder of the document, we will abbreviate the term tier of architectural
definition to tier and omit the defining relation when it is clear which relation is
intended.
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2.3 Elements of Architectural Definition

The definition of an architectural complex requires a number of elements of
architectural definition. These are:

(1) statement of scope and purpose

(2) domain analyses

(3) architectural specification

(4) methodology for architectural development

(5) conformance criteria

h
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e      j       f              h
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Architectural units in an architectural complex can be organized into disjoint (i. e.
disconnected) trees using a set of partial orderings generated by relations on the
architectural units.

The architectural complex can then be partitioned into tiers in many different
ways, preserving the order of the trees. Since the trees are disjoint, each tree can be
grouped into different tiers as the designers see fit. Three ways of building tiers
consistent with the given set of partial orderings are shown here. Trees are shown
in shaded areas.

Figure 1: Defining Tiers in an Architecture Using Partial Orderings
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Elements of architectural definition are conceptual entities, which may or may not have
any physical realization.

These elements of architectural definition vary in indispensability. For example, an
architecture must have an architectural specification, but it is possible to use an
architecture which omits conformance criteria. Definitions of existing architectures
include different subsets of these elements of architectural definition and place
emphasis on them in varying degrees. A completely defined architectural complex
specifies each of these elements at each tier.

2.3.1 Statement of Scope and Purpose

The statement of scope of a tier describes the domain to which the tier is intended to be
applied. It is useful to identify explicitly items which are out of scope and to identify
general characteristics of the domain which may extend or limit the applicability of the
tier to other domains. The scope of a tier is always larger than, or the same as the scope
of the next lower tier.

A statement of purpose identifies what the objectives of the tier are within the given
scope. The statement of purpose of a tier should be a major determinant of the contents
of the tier. If the objective is to achieve interoperability between components of an
implementation, it would be expected that interfaces between components and the
definition of information shared between the components would be stressed. If the
objective is to guarantee real-time performance of a conforming control system, models
which describe the activities of the system may be stressed.

2.3.2 Domain Analyses

A critical step which must take place before an architecture can be formulated is to
perform analyses of the target domain which reveal its essential characteristics. These
analyses are domain analyses. The type of analyses done, the order in which the
analyses are performed, and the language in which the results are expressed are part of
the methodology for domain analysis. The results of the domain analyses may be very
much different depending on the types of analysis performed and the analysis
methodologies used.

Different frameworks suggest different forms of domain analysis. Functional analysis,
information analysis, and dynamic analysis are commonly used forms of domain
analysis [Jayaraman]. We will use these three in our subsequent discussion of
architectural issues.

A functional analysis of a domain is an analysis of all the functions within the scope of
the architecture which a conforming control system is supposed to be able to perform
and the sequence and dependencies of the functions.

An information analysis of a domain is an analysis of all the information external to
each atomic unit within the scope of the architecture needed for a conforming control
system to function properly.
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A dynamic analysis of a domain is an analysis of the characteristics of the functions and
information in the domain which vary over time during control system operation. It
provides qualitative and quantitative information about the timing, sequence, duration,
and frequency of change in the application of the functions and information of the
domain [Jayaraman]. Real-time requirements would be explored as part of the dynamic
analysis.

2.3.3 Architectural Specifications

An architectural specification is a prescription of what the architectural units of a tier
are, how they are connected (logically and physically), and how they interact. It should
specify which of the architectural units are atomic and specify the composition of non-
atomic units. The architectural specification should provide the definitions of any
relations among the architectural units used in the architecture. The architectural
specification forms the core of a tier; it is an essential ingredient. 

The form of architectural specification varies widely. Often, natural language is used
extensively, but formal methods may be used as well. 

2.3.4 Methodology for Architectural Development

A set of procedures for refining and implementing an architecture is called the
methodology for architectural development for the architecture (which we will shorten
to methodology when the meaning is clear).

The architectural specification at each tier of architectural definition is related to, and
used in, generation of an architectural specification for the other related tiers. The
methodology for architectural development specifies how to go about building one tier
from another.

A methodology may specify working top-down (from higher tiers to lower), bottom-
up, or some combination of both in constructing the complete architectural complex.
For example, if the code or specifications for the lowest tier is available, as is often the
case when dealing with vendor-supplied equipment, an implementation-independent
template for the code may be developed. In this case, the methodology would describe
how to use the template.

A methodology for producing an architectural specification at a middle tier of
architectural definition from a specification at a high tier of architectural definition
might include:

(1) performing an activity analysis

(2) using a CASE (Computer-aided Software Engineering) tool embodying the
high-tier specification to define domain-specific tasks, sensors, actuators, etc.

A methodology for producing an architectural specification at a low tier of architectural
definition from a specification at a middle tier of architectural definition might include:

(1) rules for assignment of software modules to computing hardware

(2) rules for using computer language code templates
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(3) timing analysis

(4) methods for making performance measurements

(5) debug mechanisms

If an architecture lacks a methodology for getting between any two tiers of architectural
definition, control systems developers must devise their own methods for making the
transition.

2.3.5 Conformance Criteria

Conformance criteria are standards which specify how an architectural unit at one tier
of an architectural complex conforms to the architectural specifications of a higher tier,
or how a process for building part of an architectural complex conforms to the
development methodology given by the architectural complex for building that part.

A conformance test is a procedure that determines if conformance criteria have been
met.

Conformance criteria and tests are needed for determining whether a control system
actually implements the specifications an architectural complex.

We may define conformance classes of an architectural complex which identify sets of
different and incompatible choices of architectural features. The advantage of defining
conformance classes is the ability to have choices within the architecture, while
allowing the bulk of the architecture to remain unchanged. As noted earlier, tiers
provide a convenient method of defining conformance classes. Conformance classes
could be defined within tiers, but it would seem preferable to split a tier into two tiers
to avoid this.

2.4 An Example of an Architectural Complex

A full description of a useful architectural complex takes dozens to thousands of pages,
so we have not attempted a full example. Table 1 shows an extremely abbreviated view
of an architectural complex with three tiers. Each tier is shown in a row of the table. The
elements of architectural definition are shown as columns of the table. This example
corresponds closely to an architectural complex used in more applied work we have
done. Tier 1 is a reference architecture for machine control, tier 2 is an application of
the reference architecture to machining (metal cutting), and tier 3 is an application of
tier 2 to a specific type of machining center. An architectural complex for a different
specific machining center could have the same two top tiers as those shown in the table,
with a different third tier.
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Table 1: Example of an Architectural Complex
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2.5 Relationships to Other Frameworks

In specifying that all the elements of architectural definition be addressed at each tier,
the proposed framework encourages a complete and grounded description of the
architecture. The IFAC report supports the inclusion of domain analysis with formal
modeling methods, specification of architectures, and the inclusion of a methodology
for the application of the architectures.

As previously stressed, the proposed framework is designed specifically to facilitate the
creation of an architecture. Many architectural proposals (CIM-OSA stands out in this
regard) provide a multidimensional space with many cells (CIM-OSA has 36, for
example) but do not give much guidance regarding development paths to follow
through the space. By using tiers, a linear development path is evident, which may be
followed top down or bottom up. The multidimensional spaces create the impression
that different aspects of an architecture can be handled independently, but experience
shows this is not generally true. Rather, decisions about one dimension interact with
decisions about others. Tiers form checkpoints at which there is opportunity to verify
that decisions on all dimensions are consistent.

Our framework is more generic than other frameworks in that it allows the designer of
the architecture choice of which relations to consider.

The specialization/generalization relation is used to define dimensions in many
frameworks. For example:

(1) In Zachman’s metamodel, it is used in the definition of the implementation
dimension, with associated levels of Scope, Enterprise Model, System
Model, Technology Model, Detailed Description,

(2) In Biemans’ metamodel, it is used in the definition of levels of abstraction,

(3) In Bohms’ metamodel, it is used in the definition of the specification level,

(4) In the CIM-OSA metamodel, it is used in the definition of the dimension of
architectural genericity, with associated levels of generic, partial and
particular.

Some of the criteria for classification specified by other frameworks cannot be
expressed as relations on the architectural units. The criterion of flexibility in Biemans’
dimensions or the dimension of representation in Bohms’ framework are examples.
While each of these is an important characteristic of an architecture, the characteristic
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is the result of variations in two or more dimensions which can be expressed as relations
on the architecture. Variations in the flexibility of an architecture results from
variations in the generality, scope and domain of an architecture. The dimension of
representation captures variations in view, abstraction level and language level.

3 Issues in Developing Architectures
We turn now to issues which must be considered in developing an architecture. The

issues given pertain to architectures in general, not just to control architectures5.
Throughout this section, we will assume that architectures have the five elements of
architectural definition presented in Section 2, but we will not assume that every
architecture has explicit tiers. Where appropriate, we will relate our proposed
framework to the issues.

3.1 Balance among Elements of Architectural Definition

Perhaps the most basic question to be decided when developing an architecture is: what
should be the balance of emphasis in the architecture’s treatment of the five elements
of architectural definition.

Certainly all architectures must have a specification. And to develop a specification,
some analysis of the domain must have been done, whether this analysis is formal or
not. For the other elements, more variation is possible. In the literature, it is common to
read about architectures which do not have an explicit scope or purpose, or which omit
conformance criteria. Some architectures (see [Dornier1], [Dornier2], or [Quintero], for
example) pay great attention to methodology for architectural development. Others (see
[Martin1] through [Martin6], for example) do not discuss methodology at all. We
believe all five elements should be defined at each tier, but the balance among elements
may justifiably vary a great deal.

3.2 Issues Regarding the Scope and Purpose of an Architecture

Defining the scope of an architecture involves determining the degree to which the
architecture, or part thereof, depends upon its context. It is possible to define context-
free infrastructures (e.g., Common Object Request Broker Architecture [OMG]), but
then it is not clear where it is appropriate to use them. It is not clear how context-free it
is feasible for architectures to be. Much research on control architectures has
emphasized defining architectures with as broad a scope as possible. Some researchers
propose that there are aspects of control which are generic [Hatvany], but we propose
that every specification of any value has some limit to its applicability.

In determining the broadest possible scope for an architecture, it is frequently necessary
to look beyond the primary subject matter of the domain. Secondary characteristics of
the domain (such as performance requirements, importance of safety, and need for
resource sharing, among many others) are likely to be the determining characteristics.

5. A list of control architecture issues developed using the framework as a basis may be found in [Kramer].
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It is not unusual for many domains to share relevant secondary characteristics. The
classification of such characteristics is a challenge. To date, we have not seen such a
classification. 

The purpose of an architecture may also affect the scoping. For example, a control
architecture which is designed to make it easy to build conforming implementations
will be much different from one which guarantees that controllers built according to its
specifications will be interoperable.

The authors propose that there are some generic aspects to control, but that, as the
architectural specifications of an architecture become more detailed, the scope of the
architecture will usually have to be narrowed. The concept of tiers provides a
mechanism for permitting different parts of the architecture to have different scopes. 

Natural language seems to be most suitable for the statement of scope and purpose.
However, it may be helpful, in addition, to use an N-dimensional space spanning some
large range and to identify a portion of the space as being within the scope of the
architecture. The selection of axes for this N-dimensional space for the classification of
architectural efforts has been one focus for both the work of the CIM-OSA project
[Jorysz] and the work of ISO 184 SC5 WG1 [ISO1]. In earlier work, we examined the
use of domain, life cycle, and organizational extent as dimensions of scope [Kramer].

3.3 Domain Analysis Issues

Whatever domain analyses are chosen to perform, the purpose and the scope of the
architecture affect the content of the analysis which is performed. Moreover, domain
analyses should be chosen which are compatible with the purpose of the architecture.

An architecture reflects the domain analyses upon which it was based. Domain analysis
is a broad field, and an extensive literature search is beyond the scope of this paper. For
more details and a bibliography, the reader is referred to [Prieto-Diaz]. 

In formulating an architecture, selecting what part of the domain should be analyzed,
and the methodology for analysis are decisions with many ramifications. The first of
these issues is discussed in Section 3.3.1, the second in Section 3.3.2.

3.3.1 Aspects Covered

As suggested in [Bohms], one dimension along which an architecture can be analyzed
is aspects. This is distinct from scope. An aspect is a cross-cutting view of an
architecture from some specialized viewpoint, such as information, communications, or
control flow. Specifying a set of aspects from which to view the problem domain is
essential in formulating an architecture, but often aspects must be inferred from the
architectural specification, since they are not explicitly stated. 

Existing architectures place varying amounts of emphasis on different aspects. As
previously mentioned, an architecture tends to reflect the domain analysis aspects used.
In Section 2 we mentioned functional analysis, information analysis, and dynamic
analysis. The corresponding aspects are, simply, functional, information, and dynamic
aspects. The two most widely accepted of these are functional aspects and information
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aspects. The functional aspects of an architecture describe what a system conforming
to the architecture does. A functional specification would describe what roles
components could fill in the architecture and what functions each of these roles would
encompass. The information aspects of an architecture describe the information
required for the operation of an implementation of an architecture.

The relationship between analysis of functional aspects and analysis of information
aspects is an open issue. Some methodologies insist that they are inextricably
intertwined, whereas others view the two as separable. 

An additional aspect which the authors have found to be important in their own work
is the dynamic aspect of the architectures. The dynamic aspects of a control system
describe how the information and exercise of functions vary over time. In the case of
information, an examination is made of which architectural units need what
information and when, and which architectural units create or change the information
and when. The dynamic analysis of function looks at when architectural units perform
each of their functions. Dynamic analysis includes examining whether the speed of the
system is sufficient to meet the requirements of the application.

For each type of analysis, an appropriate representation must be found. The following
sections discuss the representation of results for each of these types of analysis.

3.3.1.1 Functional Aspects

Frequently, the functions performed by a system are expressed only in the computer-
executable language (C, C++, Ada, etc.) of the implementation. A different approach is
to extract the required functions and express them in a more generic fashion. Such an
extraction gives a functional analysis of the system.

Functional analyses may be stated in natural language or in a formal language.
Examples of formal languages used for this purpose are Activity Scripting Language
(AcSL) [Dornier2], Structured Analysis and Design Technique (SADT) [Ross], and
IDEF0 [FIPS2]. State tables and petri nets [Tanenbaum] may also embody the results
of functional analysis.

3.3.1.2 Information Aspects

As with the functions of a system, required information is often expressed only in data
structures of the computer-executable languages (C, C++, Ada, etc.) of the
implementation. A different approach is to develop conceptual models of the required
information. A conceptual information model of a set of information is a description of
the information, always giving relationships among the members of the set, usually
including the data type of the members of the set, and often giving some of the semantic
content of the information. A conceptual model is expressed in a formal information
modeling language designed for this purpose, such as EXPRESS [ISO3], NIAM
(Natural-Language Information Analysis Methodology) [Verheijen], and IDEF1
[FIPS1]. Some compilers exist which can translate a conceptual model into a specific
computer language or a database schema.
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These languages are suitable for defining items of information in an architecture such
as part designs, tools descriptions, or process plans. They can be used for modeling
other parts of an architecture but were not built for that purpose.

The existence of “domain-independent” information models for architectures is
currently a topic for debate. Some efforts (such as STEP and CIM-OSA) have
attempted to construct such models, while others confine themselves to the construction
of models for more explicitly limited domains [Barkmeyer], [Fiala], [Wavering].

3.3.1.3 Dynamic Aspects.

The performance of a system over time is often one of the most poorly documented
aspects of a system. An analysis of the dynamic aspects is most frequently done when
the system fails to perform satisfactorily. It is, however, possible to build dynamic
models for the system for design and analysis.

Examples of formal languages used for this purpose are IDEF2 [Mayer] and IDEF3
[Menzel]. IDEF2 produces a dynamic model appropriate for constructing simulations;
IDEF3 produces a dynamic model which captures the behavioral aspects of the system.

Commercial tools exist (ObjecTime and StateMate, for example) which provide for
building executable system models. As the model is executed, a graphical user interface
lets the user see how states change, when different modules (which generally embody
different functions) are active, and how information changes. These tools generally
provide log files and utilities which capture and analyze this data. The output typically
might be a table giving how many times a function was executed, how many times a
message of a given type was sent, or how much time was consumed by each module.

3.3.2 Domain Analysis Methodologies

Determining a methodology for domain analysis involves two distinct decisions: 

(1) determining which domain analyses should be used, and

(2) how the various analyses can be combined to give a picture of the domain
sufficient for the purpose and scope of the architecture. 

One frequently used set of analyses is the triple of functional, information, and dynamic

analyses. This triple is supported by the IDEF languages6 mentioned in the previous
section. The associated methodology specifies that functional analysis is performed
first, followed by information analysis, and finally, dynamic analysis.

A currently popular alternative is object-oriented analysis [Dewhurst1]. This technique
mandates that function and information be analyzed simultaneously. This approach
produces “objects” which have both information and operation content. The operations

6. There are many other languages which support each part of this triple. The IDEF languages were designed 
to support the triple together with an associated methodology.
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are one degree removed from functions; the user is required to specify operations which
will cause the system to perform the desired functions. Overall analysis of the dynamics
of the system of objects created is not explicit in this methodology.

The Feature-Oriented Domain Analysis Method developed by the Software
Engineering Institute [Kang] is another methodology which uses multiple types of
analyses to develop an integrated domain analysis. The method is focused on promoting
software reuse, and hence extracts the generalizable aspects of the domain. It
incorporates the following analyses:

(1) Context analysis—setting the boundaries of the domain,

(2) Features analysis—determination of the external interfaces of the
architectural units,

(3) Functional analysis—functional analysis as previously discussed in this
paper and state table description of those architectural units which have
states,

(4) Information analysis—information analysis as previously discussed in this
paper.

Many other alternatives are available. It is unclear what the best methodology is, but
the selection may well involve the domain, scope and purpose of the architecture and
the availability of tools for assisting in the analysis.

3.4 Architectural Specification Issues

In creating the architectural specification, the two basic categories of issues are:

(1) what type of information the specification should include,

(2) how the specification should be described.

Within each of these categories, additional issues are discussed in the following
sections.

3.4.1 Contents of Architectural Specification

In constructing an architectural specification, a key decision is the mode of
specification of the architectural units. Frequently, the mode of specification is related
to the methods used for domain analysis. For example, if separate informational and
functional analyses are performed, it will be natural to describe architectural units as
embodying sets of functions, which have certain inputs and outputs. If an object-
oriented analysis of the domain has been made providing the operations on certain
objects, it will be natural to describe architectural units as objects with associated
behaviors. Once the mode(s) of definition of architectural units are determined, the
types of architectural units must be determined and defined. If the number of types of
atomic units is large, and each type of unit has few functions, the number of required
interactions becomes large. In this case, defining the types, defining the interactions,
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and understanding the dynamics becomes difficult. If atomic units have many functions
and few types of atomic units are used, the overall architecture does not add much
functionality above that of the atomic units. Clearly a balance must be maintained.

The way in which architectural units are defined depends on the purpose of the
architecture, as well. If, for example, we are interested only in using the architecture to
structure our knowledge about a situation, we may well give only a functional
definition of the architectural units. If we are interested in providing an architecture
which guarantees interoperability of the architectural units, additional interfacing
specifications must be defined. 

The relationships between the architectural units must also be defined. The designers
of the architecture must decide which of these units are atomic and how these units can
be combined to form other architectural units. At one end of the spectrum, it might be
decided to select an algorithm for combining any number of arbitrary architectural
units. In this case, it is not necessary to enumerate the allowed combinations. At the
other end of the spectrum, an architecture might allow only specific combinations of
architectural units to exist, i.e., it may enumerate all the combinations. An architecture
can specify some combination of the two strategies for different sets of architectural
units, or may devise a different strategy.

The designers of the architecture must decide which relations should be drawn between
architectural units. For example, one might use the abstraction relation to describe
which architectural units are specializations of each other, or domain restriction to
describe which architectural units are valid in different domains.

The builders of an architecture must decide if they are going to use tiers in the
construction of the architecture. If they do, they must determine what the most
appropriate division is. If the builders have a clear idea of what conformance classes
they wish to define, that may be used as a guideline for specifying tiers, since a tier can
be used to define a conformance class, as observed earlier. For control systems, we
believe that at least three tiers of an architectural complex should be used. Roughly
speaking, tier 1 is a fairly general architecture, tier 2 is an engineering design for an
application, and tier 3 is a description of the software and hardware of the application.

If an architecture defines its architectural units functionally, two large transitions from
the abstract to the concrete will be encountered in implementing the architecture: first,
going from a functional description of an architectural unit to a description of the
interfaces and external behavior of the unit, and, second, assigning the interfaces and
behaviors to (computer) executable processes. In both cases there is a wide range of
choice of how to distribute the more abstract across the more concrete. In the first
transition, specific functions (say, sensory processing or control execution) may be
assigned to single modules or each function may be distributed as subfunctions across
modules. In the second transition, several modules (maybe all of them) may be assigned
to one computer process, or each module may be assigned to its own process, or (at the
extreme) each module may distributed across several processes. Note that in the latter
case, the architectural specification will have to be augmented. We have found that how
modules are distributed across processes is critical in the more abstract tiers of an
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architecture as well as the more concrete ones, because communications issues that
arise in distributed systems percolate back up into the logic of how architectural units
deal with one another.

3.4.2 Description of Architectural Specification

Most architectures are defined in natural language, but this is often vague. A degree of
vagueness is appropriate at a high tier of architectural definition. In fact, several authors
explicitly endorse vagueness. Unfortunately, it is often not clear what is vague by intent
and what is vague inadvertently. The areas of intentional vagueness should be clearly
defined. This is easy in formal modeling languages, and possible, but rarely done, in
natural language.

Formal languages have several advantages over natural languages:

(1) formal languages are much clearer and less ambiguous;

(2) formal languages provide formal methods of linking tiers;

(3) models constructed in formal languages may be checked algorithmically for
logical completeness and syntactic correctness; for some languages,
compilers do these jobs automatically;

(4) when formal languages are used at a low tier of the architecture, compilers
may be written which will produce executable computer code or database
schemas automatically.

The elements of architectural definition are very different, so it is appropriate to use
different formal languages for different elements. Formal languages for expressing
analyses and architectural specifications have been mentioned already. We are not
aware of any formal languages for expressing methodologies for architectural
development.

When an architecture includes several tiers of architectural definition, it may be
appropriate to use different languages for the same element of architectural definition
at different tiers. For example, at the lowest tier, the architectural specification could be
given in a standard computer language, while at the highest tier a formal modeling
language may be suitable.

3.5 Methodology For Architectural Development Issues

As discussed in Section 2, one of the most important elements of architectural
definition is a methodology for architectural development. A methodology tells how to
build an architecture or how to apply the architecture to create an implementation.
Methodologies for the development of control architectures have typically been
adapted from software engineering methodologies. While a literature survey of
software engineering methodologies is beyond the scope of this paper, we will
mentioned three which are frequently used in connection with architectures.
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One of the most widely used software engineering techniques is the waterfall method.
In this methodology, requirements are developed which the system must satisfy, a
design is made which satisfies the requirements, a detailed design is developed, and a
system is developed according to the design. Parts of the system are tested and
integrated, the system is then installed and must be maintained, as long as the system is
in use [Conte]. It is important that the requirements and design phase be diligently
performed, as correcting design mistakes is quite costly.

A popular alternative is the spiral model of software development [Boehm]. In this
model one begins with requirements definition, develops designs, then prototypes. The
prototypes are tested and the results fed back into a design phase where the initial
design is refined or modified as required. This process may be repeated several times. 

A variant of the spiral model which may be applied to control system development is
to create a prototype implementation which demonstrates a vertical slice through all
tiers of architectural definition such that only a narrow subset of the total intended
capabilities of the control system is included in the slice. This results in a working
control system with limited capabilities whose performance can be assessed. The
lessons learned from the assessment are applied in revising the architecture. The revised
architecture is used in the next turn around the spiral, at which time, a wider slice is
included in the implementation. This methodology is commonly referred to as cyclic
development [Quintero], [Senehi2].

Another useful methodology is the transform methodology. In this methodology, a
formal specification of the desired product is made, and the specification is
automatically transformed into code. An iterative loop can improve the performance of
the code, leading to an evaluation of the product. An outer iterative loop may be made
to change the specification based on changing requirements [Boehm]. Many CASE
tools embody this methodology.

CASE tools can be of great help in developing architectures because many aspects of a
methodology for architectural development can be built into a CASE tool. If this is
done, using the CASE tool ensures that the methodology is followed. Thus the
provision of CASE tools alleviates the problem of there being no formal languages for
methodologies.

3.6 Conformance Issues

Conformance criteria and tests are defined in Section 2. In the sections below,
conformance issues are discussed.

3.6.1 Conformance Testing Methods

To determine if an implementation of an architecture conforms to the architectures,
tests must be devised. Methods for determining conformance might include reading
source code, running documents that should be computer-processable through
computers, observing an implementation in action and comparing its behavior with the
behavior expected from a conforming implementation, devising test cases and using
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them to test control systems, and requiring documentation of development activities.
Conformance testing could also include establishment of an organization to do the
testing.

3.6.2 Usefulness of Conformance Testing

The end user of a control system may want to be assured that a component is
conformant with a particular architecture to ensure that it can be used with other
conformant components previously installed or being acquired. Conformance tests can
provide such assurance.

Conformance testing can be useful to the developers of an architecture in the context of
evaluating the architecture. To evaluate an architecture, implementations of the
architecture would have to be built. Each implementation would be a test of the
architecture, provided that the implementation conforms to the architecture.

3.6.3 Testing Conformance in Development

If an architecture includes one or more methodologies for architectural development,
the development process for building an implementation should use them. Using the
methodologies is part of conforming to the architecture.

How can conformance to a methodology be tested? To the extent a methodology for
architectural development is embodied in a CASE tool, conformance to a methodology
may be obtained by ensuring the tool is used. If the methodology is supposed to produce
specific documents (or other products) these can be examined.

3.6.4 Conformance Classes

The builders of an architecture must decide whether to define conformance classes and
if so, how they should be defined. If it is anticipated that features of the specializations
or implementations of an architecture will differ, defining conformance classes may be
useful. The conformance classes will make it evident to potential users of the
architectures where they share features and where they differ. As discussed earlier, tiers
of an architectural complex provide ready-made conformance classes.

3.6.5 Conformance Metrics

In addition to the conformance class itself, which identifies the specifications to which
conformance is required, there is the issue of degree of conformance, which concerns
how close something is to conforming. If the degree of conformance is to be measured,
a conformance metric which assesses how closely the implementation conforms to the
architecture must be devised. This is commonly done by means of a checklist: an
implementation identifies those specifications of the architecture to which it conforms
and those to which it does not.
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3.6.6 Non-Conformance

Once an implementation is built (or while it is being built), it is common that the
implementation offers easy opportunities for improvement by making small changes
contrary to the architectural specifications, so that the implementation is no longer fully
in conformance. Typically, easy changes of this sort have a high hidden cost, in that
they compromise the modularity of a control system, make its behavior less
understandable, make it less portable, and make it harder to reuse, maintain, extend, and
modify, some or all of which are likely to be undesirable to the system’s users. Such
changes may, however, have high value in terms of performance or initial cost. These
factors should be considered in establishing conformance criteria, classes, and metrics.

3.6.7 Standards Issues

To be readily implementable, it helps if an architecture makes use of international,
national or industrial standards. It is unreasonable to expect to find standards for all
features of an architecture, but where standards are appropriate for the needs of the
architecture, they should be used. Some features of an architecture may be covered by
no standards or by developing standards. An architecture must specify which standards
are required and which are not. 

For developing standards there is an issue of suitability of the current state of the
standard. The standard may not yet have a degree of maturity which the developers of
an architecture need. In this case, it is possible to use the standard as much as possible
and add the necessary enhancements to make it useful. When using a developing
standard, there is an additional issue of when to upgrade from one version to another.
Considerable cost may be involved in upgrades, so it is important to evaluate the
stability of the version before switching to it.

4 Conclusion and Future Work
The authors have found the terminology and framework presented here to be useful in
considering control architectures of all types. We put it forth with the hope that others
will also find it useful and, perhaps, improve it.

We have used the terminology and framework to develop a set of issues which need to
be addressed when constructing a control architecture. These issues have been used to
compare two architectures developed at National Institute of Standards and
Technology: the Manufacturing Systems Integration (MSI) architecture [Kramer],
[Senehi1], and the Real-Time Control System (RCS) architecture [Albus1], [Albus2].
The issues and the results of the comparison are documented in [Kramer]. We are
currently using the framework and issues in the construction of an architecture blending
the features of both architectures [Senehi3].
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