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Abstract Bio-inspired robots still rely on classic ro-

bot control although advances in neurophysiology

allow adaptation to control as well. However, the

connection of a robot to spiking neuronal networks

needs adjustments for each purpose and requires fre-

quent adaptation during an iterative development.

Existing approaches cannot bridge the gap between

robotics and neuroscience or do not account for fre-

quent adaptations. The contribution of this paper is

an architecture and domain-specific language (DSL)

for connecting robots to spiking neuronal networks
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for iterative testing in simulations, allowing neurosci-

entists to abstract from implementation details. The

framework is implemented in a web-based platform.

We validate the applicability of our approach with a

case study based on image processing for controlling

a four-wheeled robot in an experiment setting inspired

by Braitenberg vehicles.
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1 Introduction

Bio-inspired robots such as the walking machine

LAURON V [28] often use classic robot control

software whereas the robots parameters such as the

kinematics are adapted from nature. This can be prob-

lematic as classical controllers require to express for

instance the kinematics of the robot explicitly. For

example, the kinematics of LAURON V is inspired by

the stick insect Carausius morosus with four joints per

leg, depicted in Fig. 1. This amounts to 24 degrees of

freedom to control the legs, which is fairly difficult to

express explicitly.

However, advances in neurophysiology often offer

inspiration not only for parameters such as kinematics

but also for robot control algorithms. Spiking neuronal

networks mimic nature’s behavior in detail and can be

used to replace parts of or the entire robot control soft-

ware, utilizing the ability of neural networks to learn

and adapt.

Contrary, the integration especially of spiking neu-

ronal networks in robot control also yields a possi-

bility to validate our understanding of how biological

neural networks are connected to actuators in nature.

This is especially interesting for neurophysiologist

research.

From a researchers point of view, such an inte-

gration requires frequent adaptations of the wiring

between a robot’s sensors, the network and the robot’s

actuators. However, the multitude of technical prob-

lems involved in running a robot and, last but not

least, also the price for more complex biologically

inspired robots with many joints pose a large obsta-

cle for experiments integrating neuronal network

models into the robot controllers. Therefore, an inte-

grated simulation platform that allows users to con-

centrate on the connection between the robot and

the network, leaving aside technical implementation

details, is beneficial both for neurophysiology and

robotics.

To the best of our knowledge, existing approaches

do not sufficiently bridge this gap between robotics

and neuroscience. The simulation of experiments is

often hand-crafted, resulting in duplicated code to

couple the simulations. Furthermore, such simulation

scripts must be adapted if the simulator underneath

changes.

In this paper, we present a framework to support

coupled simulations of robots and spiking neural net-

works through the metapher of Transfer Functions.

To focus on the specification of the wiring between

the neuronal network and the physics simulation, we

created an architecture independent of both the experi-

ment simulated as well as the used simulators. Further,

we designed PYTF, a Domain-Specific Language

(DSL) on top of it. This DSL concisely captures the

connection between a robot and the network in Trans-

fer Functions while the architecture underneath allows

adjusting parameters of the connection or the network

during a running simulation.

The paper extends prior work on PYTF that dis-

cussed the applicability of model-driven engineering

for the coupled simulation of robots and spiking neu-

ral networks [15]. Here, we explain the concepts of

PYTF and the software architecture underneath from

which the language abstracts.

Our approach is implemented in the Neurorobotics

Platform (NRP) [15, 31]. This simulation platform

fosters the research of neuroscientists, especially neu-

rophysiologists, by providing an integrated simulation

platform for the simulation of robots and their physical

environment coupled to biologically plausible spik-

ing neuronal networks. It is based on existing open-

source implementations of simulators for the neuronal

Fig. 1 The kinematics of

LAURON V compared to

the stick insect Carausius

morosus [28]
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network (Nest [11]) and the robot and its physical

environment (Gazebo [18] and ROS [26]). Aside the

coupling of simulations, the NRP also consists of a

library of robots such as the above mentioned LAU-

RON V, the humanoid iCub robot, a four-wheeled

Husky1 robot and a controllable model of a mouse.

We also provide editors for all artifacts of a coupled

simulation such as robots, environments, neuronal

networks and their connection. As the NRP is a web-

based application, neuroscientists can use the simula-

tion platform as well as most editors for the simulation

models conveniently without any local installation.

However, these artifacts are out of scope of this paper

and are thus not described further here.

We applied our approach in a case study where

we migrated a classical robot controller for a Husky

robot with a mounted camera to a neural implemen-

tation in two steps, demonstrating the applicability of

our approach. We selected this case study because

of its simplicity, though the NRP has been used

for more sophisticated experiments such as visual

tracking [31].

The remainder of the paper is structured as follows:

Section 2 discusses related work. Section 3 presents

and discusses the language PYTF to specify coupled

simulations of spiking neuronal networks with robots

in Python. Section 4 introduces the framework archi-

tecture underneath PYTF to implement these coupled

simulations. Section 5 presents a case study evolving

a classical controller for a simple four-wheeled robot

with a mounted camera to a neural implementation.

Finally, section 6 concludes the paper and provides an

outlook on future research.

2 Related Work

Approaches of simulating neuronal networks to con-

trol robots can be traced back at least until the early

1990ies [25]. Nevertheless, to the best of our know-

ledge, all approaches required hand-crafted solutions

to couple robot sensorimotor functions and brain sim-

ulation. There exists no dedicated approach to facil-

itate this interplay. While there are DSLs targeting

either the neuronal network simulation or robotics, our

language is the first to describe their interplay on a

high abstraction level.

1http://www.clearpathrobotics.com/husky/.

In the remainder of this section, we present the

related work in several areas in more detail.

2.1 Evolution of Classical Robot Controllers

The transition from using classic robot controllers to

spiking neuronal networks can be found in various

works. For instance, Hagras et al. [13] implemented

a spiking neural network based robot controller and

described an experiment involving a wheeled robot

which follows along the edge of a wall using ultra-

sound sensors. Nichols et al. describe a similar

experiment [22] involving a more complex scenario

including behavioral learning. The Braitenberg vehi-

cle inspired experiment we are using in the case

study is much simpler, but we see this only as a

case study to validate our framework for coupled

simulations.

2.2 Semi-automated Evaluation of Robot Controllers

Multiple approaches target the iterative evaluation of

robotic controllers through simulation approaches [2,

19]. However, these approaches do not consider the

robot controller but treat it rather as a black box.

Therefore, no coupling is in place.

2.3 DSLs for Neuroscience

In the field of neuroscience, DSLs can be found in the

NEURON simulator [7, 14], whose network models

are based on Hoc [16]. Strey [30] presents a lan-

guage to describe neuronal networks to enable code

generation for efficient simulations. More recent, cur-

rent research projects focus on describing the structure

of spiking neuronal networks [6, 12, 27] and allow

for a detailed description of neuron models [24, 27].

The languages can be regarded as complementary

to our approach as they do not describe data trans-

fer to entities outside the simulated brain, while our

approach relies on a formal representation of the brain

model.

2.4 DSLs for Robotics

Despite software playing a basic role in implementing

the functionality of robotics systems, most robotics

software systems are still hand-crafted based on

frameworks. However, in recent years a migration

http://www.clearpathrobotics.com/husky/
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from code-driven approaches towards more flexible

model-based ones started to emerge [1, 29].

Several works [4, 8, 10] have been proposed for

DSLs in robotics, covering some specific aspects of

robotic software systems. Nordmann et al. have pub-

lished a list of DSLs in robotics2 and created a survey

[23]. Most of these languages utilize the knowledge

of a particular sub-domain of robotics to create an

abstract syntax and a DSL for it. These DSLs target

the generation of entire robot controllers or at least

large parts of them. This is different to our approach

where we assume the robot controller exists as a neu-

ronal network that needs to be integrated with the

robot.

Rather focused on the implementation, the DSL by

Moghadam et al. for the ATRON self-reconfigurable

robot system also contains an internal DSL embedded

in Python [21]. However, their usage of Python is dif-

ferent to our approach. As they do not reuse semantic

of the Python language, there seems to be no reason

in favor of using their Python DSL over their external

DSL.

3 A Python DSL for Transfer Functions

In this section, we present the language and its abstrac-

tions that we use to specify the connection of robots

and spiking neural networks.

Our main metapher for connecting spiking neu-

ronal networks with robots are Transfer Functions

such as sketched in Fig. 2. Transfer Functions consist

of connections into the simulators and an executable

specification of how the data of one simulator should

be transmitted to the other. Ideally, the executable part

is trivial as the purpose of most Transfer Functions is

limited to transmission, simple arithmetic adjustments

and multiplexing the data from different parts of the

simulators.

The role of the simulators is to some extend inter-

changeable in the sense that both take information

from one simulator and put it into the other, but the

ways how this is implemented differs for spiking neu-

ronal networks and robots. As a consequence, we have

sticked to the terminology common in the disciplines

of the simulators to give users a better intuition. On

the other hand, we made the implementation flexible

2http://cor-lab.org/robotics-dsl-zoo.

Neuronal

Network

Simula on

Neuron2Robot

Transfer Func on

Robot2Neuron

Transfer Func on

Robo cs

Simula on

Spike Sink

Spike Source

Robot Publisher

Robot Subscriber

Fig. 2 A closed loop between spiking neural networks and

robots (sketched)

to allow alternatives as well. For example, the ter-

minology of Robot Publishers and Robot Subscribers

in Fig. 2 is adapted from ROS as these would typ-

ically be implemented by asynchronous ROS topics,

but the architecture is flexible enough to cope with

synchronous communication to the robot as well.

The DSL to specify Transfer Functions is intro-

duced in the following sections. First, we present the

abstract syntax of PYTF in Section 3.1, describe sup-

ported neuron access patterns in Section 3.2 before we

describe the mapping to Python in Section 3.3.

3.1 Main Concepts

The basic idea behind PYTF is that the functional

specification of a Transfer Function, that is how

the input from a Transfer Function is converted to

a robot control signal, can be specified in a regu-

lar Python function. Thus, the effect of PYTF is to

wrap Python functions into Transfer Functions, map

their parameters to parts of either neural network or

robot simulation and manage the execution of this

function.

The abstract syntax of PYTF to achieve this func-

tionality is depicted in Fig. 3. A Transfer Func-

tion consists of an underlying Python Function and

parameter mapping specifications. Multiple types of

parameter mappings exist in order to connect to

either neural simulation or robotics simulation. We

differentiate between mappings to the neural net-

work (SpikeMapping), to the robotics simulation

http://cor-lab.org/robotics-dsl-zoo
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+ Name : String

+ Func : PythonFunc on

TransferFunc on

+ CreateDevice() : Device

+ ParameterName : String

ParameterMapping

+ DeviceType

 : SpikeSinkType

MapSpikeSink

+ DeviceType

 : SpikeSourceType

MapSpikeSource

+ QueueSize : Integer = 10

MapRobotPublisher

MapRobotSubscriber

SpikeMapping

+ TopicName : String

+ TopicType : String

RobotMapping

+ VariableName : String

+ Scope : VariableScope

MapVariable

Robot2Neuron Neuron2Robot

Parameters

ReturnValue

[0..*]

[0..1]

NeuronSelector

Neurons

[0..*]

Fig. 3 The abstract syntax of PYTF

(RobotMapping) and to internal variables. These

mapping specifications each have subclasses to spec-

ify whether the parameter is an input or output to the

simulation.

As the parameter mapping specifications are con-

tained in the Transfer Functions, a Transfer Function

does not have external references. In particular, the

deployment of Transfer Functions could be distributed

to multiple nodes in case the Transfer Functions con-

tain computational expensive transmission logic such

as processing of large matrices for image processing.

All parameter mappings share an attribute specify-

ing which parameter they belong to and a method to

create an adapter component instance. This can be a

mapping to a simulation or just a reference to a local

or global variable. A reference to the surrounding TF

Manager is passed into the mapping specification that

contains references to the communication adapters for

both neural and robotics simulation, so that the map-

ping specification itself can be independent of the used

simulators.

PYTF has two subtypes of Transfer Functions,

Robot2Neuron and Neuron2Robot, represented

by the upper and lower Transfer Function in Fig. 4.

The rationale behind this decision is simply to order

Transfer Functions in the unlikely case that a con-

trol topic is both read from and written to. Thus,

Robot2Neuron Transfer Functions are executed

first. On the other hand, Neuron2Robot Trans-

fer Functions often result in sending a message to

a particular robot control topic. For this rather com-

mon case, the class contains a reference to a publisher

so that the Transfer Function may simply use the

return value of the function to publish on this topic.

Other than that, the type of Transfer Functions has

no implications to the allowed parameter mappings.

In particular, a Robot2Neuron Transfer Function

may for example also contain a publisher or a spike

sink.

3.2 Neuron Access Patterns

Whereas robot control signals or sensory inputs from

the robot can be bundled in arbitrary data structures

sent over ROS, the interface of a neuron is determined

through its underlying neuron model. In many cases,

this interface is limited to a few parameters such as the

membrane potential or a history of spikes. As a con-

sequence, a single control signal for a robot is often

multiplexed to a multitude of neurons and vice versa

sensory inputs such as a camera image are fed into

a multitude of neurons. Therefore, Transfer Functions

often require to connect multiple neurons at once.

On the other hand, spikes as the usual interface of a

neuron in a spiking neural network are discrete events

in time whereas control commands for robots usually

consist of continuous data sent to the robot in short

intervals. Likewise, sensory inputs from the robot that

shall be transmitted to the neural network need to be

discretized to spikes. To perform these conversions,
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Fig. 4 Transfer Function

components and their

communication adapters in

a running simulation of the

standard image processing

experiment

Closed

Loop

ROSTopicPublisher WheelTransmit

PyNNLeaky-

Integrator

PyNNLeaky-

Integrator

IRobotTopicPublisher

ILeakyIntegrator

ILeakyIntegrator

ROSTopicSubscriber EyeSensorTransmit

PyNNPoisson-

Generator

PyNNPoisson-

GeneratorIRobotTopicSubscriber

IPoissonGenerator

IPoissonGenerator

TransferFunc on

Transfer Func on

there are multiple approaches. This includes integra-

tion of spikes to obtain continuous data, generat-

ing a current or generating spikes either constantly

or according to some probability distribution, most

notably Poisson distributions.

In PYTF, users can choose between a set of access

patterns predefined in the language. Each connection

to a particular set of neurons and according to a given

access pattern is realized by an object we call device

(as this terminology is also partially used in the neu-

ral simulators) where the access pattern is called the

device type. Depending on whether the device is an

input into the network (spike source) or an output

(spike sink), different device types apply. Each device

can be connected to arbitrary many neurons that can

be selected by navigating through the populations of

the neural network model.

So far, we support the following spike source

device types:

1. Current Generators: The current generators for

direct current, alternating current or noisy current

do not generate spikes but inject currents of the

specified type into all of the connected neurons.

These devices receive the amplitude of the gener-

ated current as inputs. The noisy current generator

can also be used to test whether the neural net-

work currently simulated is robust with regard to

noise.

2. Poisson Generator: A Poisson generator issues

spikes according to a Poisson distribution. Here,

the inverse of the λ parameter can be set in

accordance to sensory inputs. This inverse reflects

the rate in which spikes are generated by this

device.

3. Fixed Frequency Generator: A fixed frequency

generator deterministically generates spikes at a

given frequency. Here, the frequency is set as a

parameter and can be adjusted to sensory inputs.

Unlike the other spike generators, this device type

is not directly implemented in neural simulators

but can be implemented by connecting a current

generator with an integrate-and-fire neuron.

This selection is based on the observation that

neural simulators, in particular Nest, let simulated

neurons communicate through the delivery of spikes

and currents. Based on the experiments we performed

in the NRP so far, we believe that this list suffices for

most applications. However, new device types can be

added upon request.

On the contrary, the following spike sinks are sup-

ported:

1. Non-spiking Leaky Integrators: The concept

of leaky integrators is to simply integrate spikes

coming from a neuron under observation and add

a leak term to it. The rationale behind this is
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that, in spiking neuronal networks, the membrane

potential is highly fragile. Shortly after a spike

has been issued, the membrane potential is reset

and therefore, it has a high importance whether

any measurement is taken before or after a neuron

spikes. Therefore, we augment the neural net-

work with an additional leaky integrate-and-fire

neuron with an infinite threshold potential (so

that it never spikes) and measure the membrane

potential of this neuron. The result is much less

fragile and therefore appropriate for robot control

signals.

2. Population Rate: Also a very common pattern

is to simply take the average incoming spike

rate of a neuron or a set range of neurons (such

as a set population). This is, again, stable and

can be used for translation into robot control

signals.

3. Spike Recorder: The simplest thing a spike sink

can do is to simply record all spikes issued to

a neuron under observation. However, this has

two major drawbacks. At first, the communica-

tion overhead is increased since all spikes are

transmitted between the neural simulation and

the Transfer Function but more importantly, the

Transfer Function has to interpret this spike train.

This allows great flexibility as this approach is

very extensible, but it is not suited for the common

case.

With the spike sink devices, we tried to reflect the

common information encoding of spiking neuronal

networks. Again, this list only contains the device

types we deem practical for a range of applications

and we do not claim that this list to be sufficient for

all experiments. This list is subject to change mean-

ing that poorly used device types may no longer be

supported whereas device types frequently asked for

may be added. For example, so far we did not include

a device capturing the time until the first spike in a

simulation loop. As a reason, this value is also highly

fragile and thus considered less meaningful at the

moment.

The implementation how exactly a given device

type is realized is here up to the communication

adapter that will ultimately create the appropriate

communication objects. For example, the leaky inte-

grator device can be implemented in the Nest sim-

ulator by simply inserting a new integrate-and-fire

neuron with adequately set parameters and an infinite

spiking threshold so that the result is directly avail-

able as the membrane potential of the additionally

inserted neuron. This is possible since the Nest sim-

ulator runs in main memory and therefore allows an

arbitrary communication. Other simulators such as

SpiNNaker may be based on spike-based communi-

cation, only. Here, the implementation of the leaky

integrator would rather be to record the spikes and do

the integration manually.

Each of these device types has their own additional

configuration such as weights and delays in which the

spikes are issued to spike generators or from existing

neurons into leaky integrators. On the other hand, all

devices share the connection specification towards the

neural simulator, that we call NeuronSelector (cf.

Fig. 3). This is a function that, given a model of the

neural network, selects the neurons a device should be

connected to.

While a single device merely suffices to transmit

simple sensory data to the network or to issue com-

mand control signals to the robot, the transmission

of complex sensory inputs such as camera images

requires multiple devices connected to different neu-

rons each. This is the reason that a device mapping can

specify not only a single but multiple neuron selec-

tors. In case multiple neuron selectors are present, the

framework will create not a single device but one for

each neuron selector.

The advantage of these device groups is that they

aggregate the values from individual devices to arrays,

making this a suitable choice when the according data

in the robotics simulator is also available as arrays.

This is the case e.g. for camera inputs that can then be

for example transmitted to an array of Poisson gener-

ators. Furthermore, device groups can be configured

comfortably as in such a scenario all devices usually

share large proportions of their configuration.

3.3 Mapping to Python

Applying a typical query-and-command programming

interface for managing Transfer Functions would pre-

sumably result in verbose schematic code (cf. [9]).

Thus, we use techniques from the area of Domain-

Specific Languages to raise the abstraction level of

the target platform by means of an internal DSL,

PYTF. With PYTF, we obtain a more concise rep-

resentation of Transfer Functions. Users can spec-

ify Transfer Functions as regular Python functions
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Listing 1 A minimalistic

Transfer Function in PYTF

decorated3 with their connections to neural and world

simulator. The coordination regarding data synchro-

nization and simulation orchestration is hidden in the

platform abstractions.

We chose an internal DSL and Python as a host lan-

guage mainly because Python is popular both among

robotics and neuroscience users. Given the research

results from Meyerovich et al. [20] that suggest that

developers refrain from changing their primary lan-

guage, we wanted to make the barrier for neuroscien-

tists as low as possible and therefore created a Python

API.4 Furthermore, there is an API for both for the

neural simulations and the robotics side. As a conse-

quence, large parts of the framework are implemented

in Python and this allows an easy implementation of

the DSL as a Python API.

To implement Transfer Functions in PYTF, we

have decided for a decorator syntax. A first set of

decorators turns a regular Python function into a

Transfer Function and a second set of decorators spec-

ifies parameter mappings. Everything else, especially

including the neuron access patterns and device types

is specified as parameters for these decorators.

A consequence of this design is the name of the

classes in the abstract syntax. They are adjusted

to yield an understandable syntax when used as

decorators.

In particular, the classes Neuron2Robot and

Robot2Neuron create a new Transfer Function

object with no reference yet to a regular Python func-

tion such as sketched in Listing 1. When used as a

decorator and applied to a Python function, the under-

lying Python function of the Transfer Function is set

and placeholders for the parameter mappings are cre-

ated (Python allows to retrieve the parameter names of

a method using the inspect module). The function

will then be called for each simulation loop, passing

the current simulation time as a parameter.

3Decorators in Python are syntacically similar to annotations in

Java, augmenting methods or classes with additional informa-

tion.
4Application Programming Interface.

The mapping specification classes MapSpike-
Source, MapSpikeSink, MapVariable, Map-
RobotPublisher and MapRobotSubscriber
then create a parameter mapping specification object

that, when called with a Transfer Function, replace

the according placeholder with themselves and return

the Transfer Function to allow other parameters to be

mapped. If no appropriate placeholder exists, an error

message is thrown.

The configuration for mapping specifications is

passed as arguments to the decorator representing

the parameter mapping. As an example, Listing 2

shows the definition of a parameter mapping to a

local variable. Here, the additional configuration of

the parameter mapping consists of the initial value for

that variable (that is also applied after a reset) and

optionally the variables scope, omitted in Listing 2.

The device mappings are most interesting since

they allow the most detailed configuration. In partic-

ular, they contain a specification to which neurons a

device should be connected as a function selecting the

neurons for a given model of the neural network. How-

ever, as we do not want our users to bother with the

details of lambda functions where this is not strictly

required, we created a small API to allow them to

write such functions as if they were operating on an

assumed neural network model directly.

To specify multiple neuron selectors, a list of neu-

ron selectors must be passed into the neural network

constructor. In PYTF, we support a mapping opera-

tor that construct such lists of neuron selectors based

on a lambda function and a concatenation operator to

express more complex patterns. These operators make

use of the knowledge that neuron selectors must not be

nested deeper than in one list (i.e. it is not permitted to

specify a list of a list of neuron selectors for a device)

and flatten these lists when required.

4 The Neuro-Robotics Platform (NRP)

A round-trip experimentation and validation of neu-

ronal network algorithms controlling a robot in a
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Listing 2 A minimalist

parameter mapping in

PYTF

virtual or real environment requires a solid evalua-

tion platform covering all disciplines. In the scope of

the Human Brain Project (HBP),5 we therefore devel-

oped such a platform, the NRP. In the following, we

introduce the key components of the NRP simulation

backend, describe its architecture and explain the data

synchronization between the simulations.

4.1 Overview

The NRP consists of the following key components:

4.1.1 Neural Network Simulator:

To simulate the neural networks, the neuronal simula-

tor NEST [11] is used. This simulator was designed to

run on distributed systems utilizing parallel resources.

This is especially important given the size of biologi-

cal spiking neuronal networks such as the human brain

with approximately 1011 neurons and 1015 synapses.

However, we are also working on an integration

of the neuronal network simulator SpiNNaker [17]

which runs on specialized neuromorphic hardware.

For users, the choice of the neuronal network is trans-

parent as neuronal networks can be simulated in PyNN

[6], an abstraction layer that supports both simulators.

4.1.2 World Simulator:

To simulate the physics of the robots and their environ-

ment, the Gazebo simulator [18] is used. For communi-

cation with the simulated robot, we use the Robot

Operating System (ROS) [26] as a middleware. The plat-

form uses the asynchronous event-based communication

through ROS topics. This allows identifying parts of the

robot by its topic address and type. Using ROS as mid-

dleware also yields the possibility to easily exchange

the simulated robot by its physical counterpart.

4.1.3 Closed Loop Engine:

The component connecting both simulators is the

Closed Loop Engine (CLE) developed in the scope

5http://www.humanbrainproject.eu.

of the HBP. The CLE orchestrates the brain simula-

tion, world simulation and the data transfer. The data

transfer is handled through Transfer Functions (cf.

Section 3). As Transfer Functions can take informa-

tion from a simulation or insert stimuli, a closed loop

between the simulations is established.

4.2 Architecture of a Simulation

During simulation, the code to run the simulation can

be described through components as sketched in the

UML Component Diagram of Fig. 4.

In the diagram of Fig. 4, we assume Transfer Func-

tions for a standard image processing experiment,

represented by the components WheelTransmit
to transmit the voltage from actor neurons to the

robot and EyeSensorTransmit to transmit cam-

era images to the neural network. They provide an

interface to the simulation kernel as a Transfer Func-

tion and are thus referred to in the remainder as

Transfer Function components. These components are

in the middle of the diagram and require interfaces

according to their communication needs. For exam-

ple, the ILeakyIntegrator interface specifies a

voltmeter to be injected into some neurons so that the

Transfer Function component WheelTransmit can

access their current voltages.

Since these communication needs are hidden

behind an interface, the Transfer Function compo-

nents are independent of simulator implementations

on either side. We refer to the components realizing

the communication of a Transfer Function compo-

nent with either simulator as connector components.

All these connector components have a configura-

tion such as the robot topics or the neurons that they

should be connected to and how. A Transfer Function

component may be connected to multiple connec-

tor component instances. Each connector component

instance is responsible for the connection of a cer-

tain group of neurons according to the components

configuration.

The connector components on the left side real-

ize the communication with the world simulator. The

messages are either directed towards the robot control

http://www.humanbrainproject.eu
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via ROSTopicPublisher or towards the neuronal

simulator via ROSTopicSubscriber. Internally,

these connectors forward the request via ROS to Gazebo.

On the right side of Fig. 4, the Transfer Functions

access multiple component instances to connect to the

neuronal simulator. In Fig. 4, this is realized in the connec-

tor component instances of PyNNLeakyIntegrator
and PyNNPoissonGenerator. The different

kinds of connector components to the neural network

have different interfaces since there are multiple

access patterns different to just sending or receiv-

ing messages. Whereas a leaky integrator collects

information from the neural network, the Poisson

generator inserts stimuli.

The Transfer Functions contained in Fig. 4 estab-

lished a closed loop between the neural network and

the robot. Whereas the WheelTransmit collects

information from the neural network and publishes

information to the physics simulation through the con-

nector components, EyeSensorTransmit estab-

lishes a connection in the opposite direction.

The entire architecture of a simulation instance

such as presented in Fig. 4 is specific to the exper-

iment setup. The component types of the connec-

tor components such as ROSTopicPublisher or

PyNNPoissonGenerator are fixed as they reflect

the methods to access a running simulation. The

Transfer Function components WheelTransmit
and EyeSensorTransmit on the other hand are

specific to the physiology between the neural network

and the robot. In particular, the physiology is sub-

ject to change across multiple experiments and to be

specified by the user.

4.3 Architecture at Design Time

To support the dynamic instantiation of such architec-

tures for a particular simulation, we have implemented

a framework. The architecture of this framework is

presented in this section.

Despite supporting arbitrary simulations, an impor-

tant design goal is to make the architecture as indepen-

dent as possible from the simulator implementations.

To achieve this, both of the simulators are encapsu-

lated by two different components, one to manage

the communication with the simulator (-Adapter)

and another component to control the simulation

(-Controller). We establish this separation 1) to separate

the concerns of controlling a simulation and accessing

its data and 2) because the control of the simu-

lator could be deployed on another machine then

the actual data transfer, furthermore, 3) there may be

multiple instances realizing the data transfer as opposed

to a single instance controlling the simulation.

On the other hand, the choice of an adapter com-

ponent is of course dependent on the choice of the

controller component as both have to refer to the same

simulation.

An overview of the architecture is depicted as a

UML Component Diagram in Fig. 5.

While Fig. 4 shows the components in a running

simulation instance, Fig. 5 depicts the framework

architecture at design-time. When initializing a simu-

lation, the components in Fig. 5 instantiate the com-

ponents of Fig. 4 according to the experiment setup.

The component accessed from the frontend is the

ClosedLoopController (CLC). It provides ser-

vices on a high abstraction level such as initializing,

starting, pausing or resetting the simulation and there-

fore is the control cockpit of the simulation.

The components NEST and Gazebo represent the

neural and world simulators presented in Section 4.1

that are connected to the CLC through the Python

interface PyNN or through ROS topics, via respec-

tive controller components PyNNController and

GazeboController. Depicting the simulators as

components in Fig. 5 is not entirely accurate as they

are no units of deployment. In particular, both the neu-

ronal simulator Nest and also the physics simulator

Gazebo are complex distributed systems themselves

and internally consist of many components. However, we

stick to the representation as components for simplicity.

The initialization itself is done in the Transfer-
FunctionManager (TFM) component as depicted

exemplary for the EyeSensorTransmit Trans-

fer Function in Fig. 6. When initializing the

simulation, this component gets the Transfer Func-

tion components in the simulation, yet uncon-

nected to connector components. In the simulation

sketched in Fig. 4, these are WheelTransmit
and EyeSensorTransmit. It then requests con-

nector components from the adapter components

ROSAdapter and PyNNAdapter such that each

required interface of each Transfer Function compo-

nent is connected to an appropriate connector compo-

nent. After the initialization, the TFM offers services

to the CLC to execute the Transfer Functions and

retrieve status information about them.
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Fig. 5 The components of

the simulation backend in

the NRP

ROSAdapter TransferFunc on-

Manager

PyNNAdapter
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GazeboController PyNNController
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Controller
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PyNNROS
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IRobotController IBrainController

PyNN

ITransferFunc onManager

IClosedLoopControl

Instan ates 

ROSTopicPublisher, 

ROSTopicSubscriber

Instan ates 

PyNNLeakyIntegrator,

PyNNPoissonGenerator, ...

Organizes data transfer, i.e. 

manages WheelTransmit, 

EyeSensorTransmit

Controls the
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The adapter components ROSAdapter and

PyNNAdapter serve as dependency injectors for

the communication demands of a Transfer Function.

That is, when the TFM requests a leaky integrator for

a given neuron such as in Fig. 4, the PyNNAdapter

will create an instance of a connector component

type realizing this interface, in this example the

PyNNLeakyIntegrator, and connect it to the

requested neurons. Likewise, the ROSAdapter will

create a ROSTopicPublisher instance when a

Fig. 6 Transfer Function

Initialization PyNNAdapter
TransferFunc on

Manager
ROSAdapter

EyeSensorTransmitRegister

loop

alt
Create Subscriber

Create Spike Source

Register device
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publisher to the control topic of the robot is required.

The TFM will then connect the returned connector

component to the Transfer Function component.

4.4 Data Synchronization

When the simulation is run, the CLC orchestrates the

simulation in cycles of a fixed length, currently set to

20ms simulation time.

This cycle is depicted in Fig. 7. To save space, we

have omitted any controller, adapter or communica-

tion components but show the simulations as directly

accessed. The CLC first runs both of the simula-

tions in parallel, then it calls the TFM to run the

actual data exchange. The TFM holds a list of regis-

tered Transfer Functions and thus knows the Transfer

Function EyeSensorTransmit. But before any

Transfer Function is called, the buffers of the adapters

are refreshed. This is is necessary for some devices

such as leaky integrators to prevent that the devices are

updated only once per cycle. Inside the Transfer Func-

tion, the access to the device data is very fast as the

data is already buffered. The Transfer Function creates

its outputs by assigning values to some properties of

the used device. This results in a call to the respective

simulation, in case of Fig. 7, the rates of the Poisson

generators are transmitted to the neural network.

As a consequence, it is not possible to access data

yielded in the current timestep from the respective

other simulation. The only data exchange is done

through Transfer Functions, but as they do not run

in parallel to the simulations, such data can only

be processed in future timesteps. The reason for the

sequential execution of Transfer Functions is to avoid

race conditions (asynchronously changing parameters

of the simulated models causes some simulators to

crash), but also to support reproduceability of the

experiment results.

5 Case Study: A Braitenberg Vehicle Experiment

In this section, we demonstrate and validate our

approach by applying it to a small experiment inspired

by the Braitenberg vehicles [5]. We chose this exper-

iment as it is small enough to explain the neural

networks involved and to show the code necessary

to couple this neural network to a robot. We present

the experiment in two versions where the proportions

of the neural controller are different. This resem-

bles a typical workflow when transitioning an existing

classical robot controller to a neural implementation.

As robot, we use a four-wheeled Husky6 robot

equipped with a camera. This robot is in a virtual room

equipped with two screens. The screens are either blue

or red and the user can change their color. Eventually,

one of the screens is turned red. The robot counter-

clockwisely turns around until he recognizes the red

color and moves towards it.

The implementation can be done relatively easy by

using classical image processing methods, for exam-

ple by iterating through the pixels of the camera image

and counting red pixels based on a HSV color model.

However, given the results on pattern recognition with

neural networks [3], one may want to exchange these

classic image processing steps by a neural network in

order for a fine granular perception of red colors or to

take advantage of neural networks ability to adapt to new sit-

uations, i.e. to learn. Conversely, neuroscientists may

want to validate their neuro-physiological models in

order to check whether they produce valid results.

We therefore take this example as a case study to

demonstrate the applicability of our approach. In par-

ticular, we migrate the controller for the Husky robot

in two steps. In a first step, the identification of red

colors is implemented using a standard image process-

ing library, OpenCV. The neural network thus only

navigates the robot based on the input stimuli. In a sec-

ond step, we shift the image processing part into the

neural network so that the neural network takes full

control over how to detect red pixels.

The neural networks for both steps of this exper-

iment are entirely static. In particular, we did not

implement any learning algorithm.

5.1 A Braitenberg Vehicle Controller using Standard

Image Processing

As a first step towards a fully neural implementa-

tion of a controller for our Husky robot acting as

a Braitenberg vehicle, we migrate the implementa-

tion of the velocity control into the neural network

6http://www.clearpathrobotics.com/husky/.

http://www.clearpathrobotics.com/husky/
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Fig. 7 Synchronization of

simulations CLC TFM
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but use as stimuli the camera images preprocessed

using standard image processing. In particular, we

use a simplistic spiking neuron network consist-

ing of just 8 neurons getting stimuli from prepro-

cessed images and letting the robot move towards

the red screen. The neural network is adapted from

the original network presented by Braitenberg [5].

In the remainder, we refer to this step of the case

study experiment simply as standard image processing

experiment.

We first present the neural network in Section 5.1.1,

present the Transfer Functions to transform spikes

from the neural network into robot control signals

in Section 5.1.2 and in the opposite direction from

the robot camera to stimuli for the neural network in

Section 5.1.3.

5.1.1 A Neural Network for Braitenberg Vehicles

In the neural network for the standard image process-

ing step, depicted in Fig. 8, the five neurons in orange

(numbers 0 to 4) are bundled in a population that rep-

resent the sensors of the network. As an exemplary

connection to the Husky robot, these neurons receive

the input signal through Poisson generators generat-

ing spikes according to a Poisson distribution. The rate

of this Poisson distribution depends on how many red

pixels have been detected in the camera image. We use

Poisson generators since alternative spike sources gen-

erating spikes in a fixed frequency are more affected

by time resolution. The classification whether a given

pixel is red is done through an image processing

library function categorizing the pixels according to

Fig. 8 The neural network

for the Braitenberg Vehicle

experiment with standard

image processing
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the HSV color model. This information is propagated

through the network so that the membrane poten-

tial of the actor neurons 6 and 7 (in green) can be

used to control the left and right wheel motors of

the robot.

5.1.2 Transmitting Membrane Potentials to Motor

Commands

This section describes the information flow from the

neural network to the robot. In the Braitenberg exper-

iment, the membrane potential (i.e. the voltage) of the

actor neurons encodes the movement of the robot. But

as the underlying Husky controller requires to specify

movement of the robot in terms of angular and lin-

ear progression, the voltages of the actor neurons must

be converted by means of arithmetic transformation.

In particular, the minimum of both voltages forms

the linear progression while their difference results

in the angular progression. Furthermore, the resulting

movement commands must be scaled to achieve good

results.

An implementation of this Transfer Function in

our Python DSL is shown in Listing 3. Line 1 sim-

ply imports the Transfer Functions framework into the

current script. Line 2 imports the ROS Topic types

needed for the communication with the robot. Lines 4-

12 form the Transfer Function translating the voltage

of actor neurons into robot commands.

The function wheel transmit is turned into

a Transfer Function from the neural simulator

towards the robot simulator by the decorator

@nrp.Neuron2Robot in line 8. The decorator

automatically registers this function at the TFM

which will ensure that it is connected to the nec-

essary connector components. Furthermore, the dec-

orator specifies the connector component that will

receive the functions return value. In the example,

the return value is sent to the robot using the ROS

topic /husky/cmd_{v}el. The decorators in lines

4 to 7 specify how the input parameters of the

function should be mapped to the neural network.

In this case, the parameters are connected to two

single neurons of the actors population through a

leaky integration algorithm. The first parameter t of

a Transfer Function is always the current simula-

tion time and cannot be remapped, whereas all other

parameters must be mapped to either robot topics or

neurons.

The body of the original Python function in lines

10-12 is not affected by the Python DSL and is

allowed to contain arbitrary Python code. In this

Transfer Function, we manually construct the Control

messages to control the Husky’s velocity.

Additional details of the device connection to the

neural network such as the specification of weights

or delays are not required in this case as the default

values suffice.

5.1.3 Transmitting Processed Images to the Neural

Network

We now describe the opposite direction, i.e. the pro-

cessing of camera images to stimuli for the neural

network. A camera image is taken from the world sim-

ulator, red colors are detected by a call to OpenCV and

the results are used as stimuli for the neural network

(cf. Section 5.1).

The implementation of this Transfer Function

is depicted in Listing 4 where we omitted the

import statements. Line 3 is responsible to map

the camera parameter to a subscriber to the

camera topic of the robot. In lines 4-9, the

parameters red left eye, red right eye and

green blue eye are mapped to Poisson generators

for the respective neurons. The decorator @nrp.Ro-
bot2Neuron in line 10 marks the function as a

Transfer Function from the world simulation to the

neural network.

The body of the original Python function sim-

ply then processes the camera image using stan-

dard image processing libraries such as in particular

OpenCV in line 11. The results from this process

are then used as inputs for the Poisson generators in

lines 13-15.

5.2 A Braitenberg Vehicle Controller using Neural

Image Processing

Striving to perform as many tasks as possible through

neural networks, the standard image processing ver-

sion of the experiment can be extended by shifting

the detection of red colors to the neural network. In

the standard image processing setup, the neural net-

work can only react on the processed images which

limits the applicability of any learning based on new

incoming images to the preprocessing results. How-

ever, one would rather want that the neural network
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Listing 3 Transfer

Function from neurons to

the robot in the Python DSL

can learn based on the entire image, e.g. to enhance

pattern recognition.

While in the standard image processing version of

the experiment, only the result of the image processing

is transmitted to the neural network, in the extended

step we transmit the entire camera image from the

robot to the neural network. Only the rescaling of

the image to a resolution appropriate for the neural

network is left to the transfer function.

As a consequence, subsequent steps to improve the

capabilities of the neural network in terms of pat-

tern matching can be implemented without having to

change the Transfer Function as the Transfer Func-

tion only describes the interface from the classical

controller (i.e. the camera in the robot) to the neural

network.

5.2.1 A Neural Network Extension for Image

Processing

Thus, compared to the standard image processing ver-

sion of the experiment, the neural image processing

version yields the requirement to extract stimuli from

an array such as a camera image. These stimuli are

then to be transmitted to a whole range of neurons.

The example neural network for recognizing red

colors is sketched in Fig. 9. For a 40x30 pixel image,

it contains approximately 5,000 neurons. Each pixel is

processed by a neuron P . The pixels of a half image

are all connected to the neuron populations Ri or Le

that represent how much red color can be seen on

the right or left half image, respectively. Each pixel

neuron P is connected to three Poisson generators

that spike according to the red, green and blue color

channels of the corresponding pixel.

While the neural network in this extended case is

much larger than in the standard image processing ver-

sion, it is still to be considered a very small neural

network. This is particularly because the Husky robot

that the experiment is using only contains two degrees

of freedom.

5.2.2 Transmitting Raw Images to the Neural Network

The connect this neural network to the robot con-

troller, we need to insert stimuli for the entire image

Listing 4 Transfer

Function from a camera

image to neuron spikes
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Fig. 9 Sketch of the neural

network for a Braitenberg

Vehicle experiment with

neural image processing

that needs to be transmitted. We do this by transmit-

ting each RGB color value separately to the neural

network as this network contains a node for each color

channel of each pixel through a Poisson generator

(cf. Fig. 9). However, for an image resolution of just

30 × 40 pixels, this amounts to a connection of 30 ×

40 × 3 = 3600 Poisson generators. As Python has a

limitation to 256 positional parameters, it is not possi-

ble to create a Transfer Function with 3600 parameters

and it would not be convenient, either. Thus, we use

device groups.

The code for the Transfer Function to trans-

mit the images from the camera to the neural

network using device groups is shown in Listing 5.

Similar to Listing 4 from the standard image

processing experiment, it contains a Python function

in lines 12-17 that is marked as a Transfer Func-

tion using the @nrp.Robot2Neuron decorator in

line 11.

The device group specification is contained in lines

2-10. The map neurons function is used to spec-

ify that the parameters should be used to multiple

neurons using a device group. This function takes an

index set as parameter and a lambda function how an

index is tied to a neuron. Lines 3, 6 and 9 specify

that three groups of 1200 Poisson generators should be

created, each Poisson generator connected to exactly

one neuron that has the same index inside the sensors

population. Whereas this connection is excitatory for

the red values of a pixel, the synapses for the Poisson

Listing 5 Transfer

Function from a camera

image to Poisson rates for

each pixel



J Intell Robot Syst (2017) 85:71–91 87

Fig. 10 The Braitenberg vehicle experiment using standard image processing simulated in the NRP platform

generators responsible for green and blue values are

inhibitory.

In the function body of Listing 5, the library call in

line 13 splits the image into three arrays with the pixel

values according to the given channels. The arrays

are implemented as NumPy7 arrays that support arith-

metic operations like the scaling of the resulting

vectors in lines 15-17. The rescaled vectors are then

assigned as rates to the Poisson generators. The device

group internally reconfigures the rate of each Poisson

generator device in this group.

5.3 Simulation of the Braitenberg Vehicle Experiment

in the NRP

To validate that our neural controller produces the cor-

rect outputs, we run the Husky robot in a simulated

environment, i.e. a realistic virtual room equipped

with two screens that may be turned red by the user

during the simulation. The simulation uses the Trans-

fer Functions introduced in Sections 5.1 and 5.2.

In both versions, the Husky successfully finds the

red color and moves towards it. Figure 10 shows a

7http://www.numpy.org/.

screenshot of the simulation of the standard image

processing version of the experiment and a video is

publicly available online.8

The NRP offers some tools for experimenters to

validate their experiment. In Fig. 10, one can see two

tool windows showing a plot of the spike train for

the neurons and the plot of the joint velocities. The

purpose of these tools is to enable experimenters to

retrace what is currently happening during a simu-

lation. In the moment the screenshot was taken, the

robot has already had turned towards the red screen

and moved towards it until the screen got out of

sight. It then turned again until it found the other

screen.

With the spike train, we can see that the four

neurons with indices 0-3 connected to the Poisson

generators to encode the image spike exactly when

a red screen is in the robots area of sight. Neuron 4

spikes all the time since there is a considerably large

proportion of the image that is not red. When no red

color is detected, neuron 5 creates a sparse spike train.

This combination is then added to neurons 6 and 7 that

forward their information to the respective transfer

8https://www.youtube.com/watch?v=osmkKQb5pTc.

http://www.numpy.org/
https://www.youtube.com/watch?v=osmkKQb5pTc
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Fig. 11 Editing Transfer Functions during a simulation

function which translates these spike trains in motor

commands, thus allowing the robot to move.

In the joint plot, this is reflected by graphs plot-

ted for the velocity of the front wheel joints where the

plots shows positive velocities for both front wheel

joints when the robot moves towards the screen and

opposite velocities of different signs when the robots

turns.

If a Transfer Functions turned out to produce sub-

optimal results, the platform also allows to exchange

the Transfer Functions during a running simulation.

For this, we provide a simple editor with syntax-

highlighting, shown in Fig. 11. The editor on the

left half of this screenshot lists all Transfer Functions

currently loaded in the simulation with their specifica-

tion in PYTF. When a Transfer Function is updated,

the old Transfer Function is discarded, releasing the

devices where possible and adding the new Transfer

Function on the fly.

6 Conclusion and Future Work

In this paper, we have presented an approach to

bridge the semantic gap between spiking neural net-

works and simulated robots. Coupled simulations can

be supported with a experiment-agnostic framework

architecture that eases the specification of the exper-

iments. This architecture is implemented in a web-

based integrated simulation platform that makes it

easy for neuroscientists to run experiments validating

models of a connection between neural networks and

actuators, but also gives roboticists a tool to develop

robotics controllers tightly coupled to a spiking neural

network. We have presented a textual DSL in Python

targeted for neuroscience users with a good knowl-

edge of Python to specify the connection between

spiking neural networks and robots for a particular

experiment.

However, not all users may have the necassary pro-

gramming skills and know Python as good. Thus,

a formal language equipped with a graphical edi-

tor is under development. With such an editor, we

hope to make the coupled simulation of spiking

neural networks and robots accessible for a wider

audience. Furthermore, we want to develop analy-

ses and constraint checks to ensure that Transfer

Functions reference valid input and output of the

Brain and Body. As a benefit, we hope to detect

design flaws in simulations before we need to allocate

sparse resources such as neuromorphic computing

platforms.
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