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ABSTRACT

Image Registration is a highly compute-intensive optimization pro-
cedure that determines the geometric transformation to align a
�oating image to a reference one. Generally, the registration targets
are images taken from di�erent time instances, acquisition angles,
and/or sensor types. Several methodologies are employed in the
literature to address the limiting factors of this class of algorithms,
among which hardware accelerators seem the most promising so-
lution to boost performance. However, most hardware implemen-
tations are either closed-source or tailored to a speci�c context,
limiting their application to di�erent �elds. For these reasons, we
propose an open-source hardware-software framework to generate
a con�gurable architecture for the most compute-intensive part of
registration algorithms, namely the similarity metric computation.
This metric is the Mutual Information, a well-known calculus from
the Information Theory, used in several optimization procedures.
Through di�erent design parameters con�gurations, we explore
several design choices of our highly-customizable architecture and
validate it on multiple FPGAs. We evaluated various architectures
against an optimized Matlab implementation on an Intel Xeon
Gold, reaching a speedup up to 2.86×, and remarkable performance
and power e�ciency against other state-of-the-art approaches.

CCS CONCEPTS

• Hardware → Hardware accelerators; • Computer systems

organization → Recon�gurable computing; • Applied com-

puting → Health informatics.
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1 INTRODUCTION

Image processing is pervading our day-life being the basis of many
application �elds, such as photography, navigation, and medical
practice. In the clinical domain, image analysis is signi�cantly
increasing for brain activity analysis, cancer identi�cation, and
surgery/treatment planning [1, 2, 34]. All these applications require
the processing of hundreds of images, with multiple algorithms, in
the shortest time frame. Although several improvements have been
introduced to optimize compute-intensive standard algorithms,
there is still room for improvement in the advanced ones. A clear
example is image registration.

Image registration is the process of identifying the parameters
of the geometrical transformation matrix that allows the correct
overlap of two or more images acquired in di�erent conditions or
time instants [6]. It is widely employed not only in the medical �eld
[26] but also in target recognition [37], satellite imaging [20], and
remote sensing [5]. Even though this task is divided into mono-
and multi-modal solutions (input images from one or di�erent sen-
sors), it always relies on a three-block structure: the transformation
model, the optimization method, and the similarity metric [32]. The
transformation model is clustered in rigid (rigid allowing transla-
tion and rotation, and a�ne, which adds scaling and shear factors)
and non-rigid, which allows object deformation [16]. The optimizer
searches the transformation space to �nd the optimal parameters of
the geometric transformation. Among the several optimizers, Sim-
plex and Powell’s methods are widely spread approaches, thanks
to their gradient-free feature that reduces the computational com-
plexity [28]. Speci�cally, Simplex optimizes all the parameters at
the same time, while Powell’s method optimizes one parameter
at a time [28]. Another commonly employed family of algorithms
are the evolutionary ones, which optimize the parameters in the
searching space based on a probability function [31]. Finally, the
most used similarity metric in multi-modal registration, commonly
incorporated in a cost function, is the Mutual Information (MI)
[30, 33] due to its robustness and reliability [4].

The achievement of a correct registration is strictly correlated to
multiple iterations of the three blocks, where the similarity metric
has proven to be the most compute-intensive, working directly
with all the data contained in the employed images [29]. There-
fore, researchers proposed various approaches exploiting di�erent
hardware solutions [13, 28] to accelerate either part or the entire
algorithm [8, 14]. Unfortunately, even though improvements have
been done, the majority of the available solutions are closed-source
and, generally, tailored to a speci�c scenario, highly reducing, if
not completely preventing, the users from customizing them.

Within this context, this work proposes a completely open-
source hardware-software framework for multi-modal image reg-
istration. The proposed framework automates the design and syn-
thesis of a customizable FPGA accelerator that targets the most
compute-intensive part of image registration, namely the MI calcu-
lus. Thanks to the various customization parameters the framework
exposes, the user can quickly explore the design space, tune the
features of the MI accelerator, and tailor it to multiple case stud-
ies with di�erent requirements. On the other hand, our solution
o�ers high-level APIs based on the PYNQ framework [35] to easily
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Figure 1: The relationship between joint and single his-

tograms

integrate the accelerator within Python applications. We evaluated
various versions of our accelerator on multiple FPGAs achieving
a speedup up to 2.86× against an optimized Matlab implemen-
tation, and remarkable results in terms of both performance and
power e�ciency against other state-of-the-art hardware and soft-
ware approaches. This enables our accelerator to be suitable for
both embedded and high-end FPGA-based devices.

The main contributions of this work are the following:

• A completely open-source hardware-software framework
[11] featuring the automation of both design and synthesis
of hardware design for image registration;

• A highly customizable FPGA-based accelerator for MI calcu-
lation along with Python APIs for transparent exploitation;

• A framework to support the exploration of di�erent design
parameters to tailor the proposed accelerator according to
the case-speci�c requirements of the �nal user.

The remainder of the paper is organized as follows: Section 2
provides the theoretical background, while Section 3 proposes an
overview of literature solutions. Section 4 details the proposed so-
lution, Section 5 presents the experimental setup and the validation
of the work, and, �nally, Section 6 concludes the paper.

2 BACKGROUND

This Section gives a high-level description of the registration pro-
cess and a description of the theoretical principles behind the pro-
posed accelerator for mutual information computation. With this
discussion, we aim at explaining all the properties and structures
that will be exploited in the design of the FPGA-based accelerator.

2.1 Image Registration

Image registration is a highly employed procedure in various �elds
and, therefore, di�erent implementations have been proposed dur-
ing the years. This procedure processes data ranging from satellite
images of the Earth to medical images both anatomical and func-
tional [29]. Based on the image types, we can distinguish between
mono- and multi-modal registration; the former works with images
taken from the same device, while the latter employs images taken

from di�erent sensors [6]. An additional distinction can be done be-
tween feature-based and intensity-based approaches [33]. The �rst
one requires the identi�cation of relevant features from the images,
giving a higher visual certainty of the reached correspondence,
but it is not applicable when the landmark points identi�cation
is not trivial [6], as in multi-modal applications. Intensity-based
algorithms exploit heuristic solutions that compare the intensity
distribution of the images and decide whether or not the images are
correctly aligned according to a similarity metric [33]. In this work,
we consider a multi-modal intensity-based registration solution
that can exploit either the (1+1) Evolutionary or Powell’s optimiza-
tion methods with the MI similarity metric to �nd the optimal
parameters of the a�ne transform between medical images.

2.2 Mutual Information

A wide range of algorithms employs MI quantity. In imaging, it
is an essential similarity metric for image registration [23], in the
genomics �eld it is exploited in phylogenetic [21] and relevance
networks [7], as well as in the training of Hidden Markov Models
and features selection [3, 15].

MI is a concept borrowed from the Information Theory that
relates to the concept of entropy, and it is a measure of the statistical
dependence of two random variables X and Y [12]. In the proposed
scenario, the two variables are represented by images, where we can
identify a reference and a �oating one. In particular, we want to align
the �oating image to the reference image. From a mathematical
point of view, MI describes how similar the joint entropy H (X ,Y )

is to the two single entropies H (X ) and H (Y ), as reported in eq. (1).

MI (X ,Y ) = H (X ) + H (Y ) − H (X ,Y ) (1)

Therefore, an essential step is the de�nition and computation of the
di�erent entropies, as de�ned by the Shannon’s equation eq. (2),
where P(x) and P(y) are the marginal probabilities, and P(x ,y) is
the joint probability.

H (X ) = −
∑

x ∈X

P(x) log P(x)

H (X ,Y ) = −
∑

x,y∈X ,Y

P(x ,y) log P(x ,y)
(2)

In the imaging �eld, the probabilities come from the histograms
of the images, while the joint one from the joint histogram. Starting
from the input images, we compute the joint histogram, which is a
square matrix of N × N , where N is the number of gray levels in
the images [17]. The value of each element of the joint histogram
hist(x ,y) is equal to the total number of voxels of X with intensity
x corresponding to the voxels of Y with intensity y [12].

As shown in Fig. 1, it is possible to exploit the joint histogram to
e�ciently obtain the single histograms of the input images. Indeed,
by summing the rows and the columns of the joint histogram we
obtain the reference and the �oating histograms, respectively [12].
For the entropy calculation, we need to obtain the marginal and
joint probabilities, which can be easily extracted by dividing each
value of the single and joint histograms by the image dimensions
in voxels. Referring to eq. (2), the last step is to apply the equations,
hence, to multiply each probability by its logarithmic value, and, by
accumulating them, we obtain the entropies. Finally, we combine
all the entropy values to extract the MI, as in eq. (1).



3 RELATED WORKS

This Section contains an overview of the current literature with
an in-depth focus on hardware-based solutions for multi-modal
registration, being the scope of the proposed case study. In a pure
software scenario we should mention SimpleITK [22, 36], OpenCV,
and theMatlab Image Processing Toolbox [24]. While the �rst two
are open-source, the last one is a licensed closed-source product.
On the other hand, Matlab is easy to use, while OpenCV provides
fewer functionalities for image registration compared to the others,
and SimpleITK, even though it can be easily used with Python,
provides, like all the others, little control on small details. The lit-
erature contains several works exploring FPGA- and GPU-based
solutions for multi-modal image registration to overcome the limits
of pure CPU implementations [28]. From an algorithmic point of
view, based on [14, 29], it is possible to conclude that the most
compute-intensive part is typically the calculus of the similarity
metric. For this reason, in [29], the authors develop an FPGA-based
accelerator to compute the similarity metric, namely the correla-
tion, and the transformation model, an a�ne one, to register iris
eye images through the Simplex optimizer. Besides, [14] proposes
an FPGA-based approach, based on [8], to compute the MI value
for multi-rigid registration, with a single computation of the MI
for 7-bit 256 × 256 images taking around 0.26 seconds. The authors
explored such an approach through an extensive design space ex-
ploration in [13]. On the other hand, [9] exploits GPUs to accelerate
the sole joint histogram for brain images registration, based on MI,
with a presorting strategy of the pixels. In [27], authors present a
3D MI-based image registration algorithm, using bitonic sort and
count, which they tailor for GPU to achieve the best performance
out of rigid transformation and Powell optimizer. Based on [27],
[18] develops a CUDA-based optimization strategy for deformable
registration fashion that aims at optimizing joint histogram – and
then Normalized MI – and gradient computation, though exploiting
some pre-computation mechanisms and dataset-speci�c techniques
that reduce the computational requirement.

As discussed so far, hardware-based solutions are desirable in
image registration, given the high-intensity workload. However,
FPGA-based solutions are generally closed-source and not customiz-
able by the �nal user, while GPUs are not customizable architec-
tures at all, and are known to be power hungry devices. Based on
these considerations, with this work, we propose an open-source
hardware-software framework for image registration that exploits
a customizable FPGA-based accelerator for the computation of MI,
easily reusable in several image registration algorithms or even dif-
ferent �elds of applications, such as phylogenetic [21] and features
selection [15]. Moreover, being based on the PYNQ framework, our
APIs are easily employable through Python, resulting transparent
to the end-users. Finally, the overall hardware-software system is
deployable on di�erent FPGAs from embedded to high-end.

4 PROPOSED DESIGN METHODOLOGY

The image registration procedure we consider in this work is an
intensity-based multi-modal algorithm, and its three main building
blocks are a�ne transformation, Powell’s and (1+1) Evolutionary
optimization methods, and mutual information similarity metric.
Since the similarity metric is the most compute-intensive part [14,
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Figure 2: High-level view of the work�ow and its compo-

nents

29] and multiple �elds of application bene�t from a MI accelerator
(e.g., genomics computations, telecommunication �eld), we present
a framework to produce an architecture able to perform the MI
computation. Fig. 2 shows the steps of the whole work�ow to
register two images and which part is o�oaded to the hardware
accelerator (Evaluate MI).

4.1 Framework Overview

This work proposes a framework to assist users in the generation
of di�erent versions of a hardware accelerator for MI calculation
according to their needs. It is important to note that, even though
this work focuses on image registration, the MI calculation is an es-
sential part of many �elds of application. Therefore, other contexts,
where users may have di�erent requirements, could bene�t from
MI acceleration. For instance, the �nal user might choose to sacri-
�ce performance to save resources or to target a high-end scenario
where performance is the main goal. For this reason, we devised
our framework as an open-source solution capable of guaranteeing
a high level of �exibility in the generation of the MI accelerator.

Our framework provides di�erent customization parameters to
assist the user in the exploration of the design space and to tune
the multiple features of the MI accelerator. In particular, such pa-
rameters have a direct impact on the performance the resulting
accelerator can achieve, as well as its resource consumption. Sec-
tion 4.3 accurately describes the customization parameters. After
selecting the parameters, the framework applies the requested cus-
tomizations to the base structure of our FPGA-based accelerator
(more details in Section 4.2). The result is a tailored design devised
to perform MI calculation suitable for High-Level Synthesis (HLS)
tools. Besides, the framework generates speci�c scripts to automate
both the HLS process and the synthesis �ow. In particular, given
an either embedded or high-end target device, the framework de-
termines all the required steps towards the bitstream generation.
Finally, once the synthesis process is over, the user can leverage
on the transparent Python APIs the framework supplies, and eas-
ily integrate the accelerator usage within applications based on
the Xilinx PYNQ framework [35]. Indeed, we provide Python APIs
able to handle all the accelerator con�gurations independently, e.g.,
caching or not caching (see Section 4.3), hiding the di�erences of
the embedded or high-end device, and in some cases to measure the
power directly on-board. A new image registration procedure, or an
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Figure 3: High level view of the architecture for MI computation and its latency (latency parameters de�ned in Tab. 1)

algorithm that employs MI computation, can exploit our accelerator
with four simple additional steps: prepare the bu�ers with the data,
start the MI computation, collect the results, and free the bu�ers.

4.2 Accelerator Architecture

Our accelerator adopts a data�ow computational model. Indeed, we
built a multi-stage pipeline to perform the computation e�ciently.
Fig. 3 depicts the proposed pipeline and reports the coarse grain
latency of each Stage, which we will analyze in Section 4.4. In
particular, we identi�ed two macro Stages within the pipeline. The
�rst macro Stage (Stage 1 to 3) mainly consists of the joint histogram
computation, while the second one (Stage 4 to 9) regards the entropy
computations for MI calculation. Finally, each Stage is internally
pipelined and streams the data to the following one through FIFOs.

Input fetching. At the very beginning of the execution, the ar-
chitecture fetches the two input images (reference and �oating).
This step depends on the device physical memory ports and the
available bandwidth. Since not all the FPGA-based devices o�er
multiple memory ports, to be as generic as possible, we consider
a case with a single memory port that is multiplexed (in case of
multiple ports available, accelerator can be replicated according
to the number of ports). However, this scenario may harm the ac-
celerator performance, especially in the case of memory-bound
designs, as the current one. Hence, it is paramount to properly de-
sign the accelerator according to the bitwidth of the memory ports
and the memory bandwidth. A solution to alleviate such a problem
could be to prefetch one or both images on the local memories.
This is particularly suitable for algorithms, like image registration.
Indeed, to register two images, the reference image does not change
throughout the whole optimization procedure, while the �oating
one continuously changes. Therefore, if the target FPGA has enough
on-chip memory and we apply this feature, our architecture �rst
prefetches the reference image and then reads the �oating one in a
streaming fashion; otherwise, it reads both images simultaneously.

Stage 1-3. Assuming an input image bitwidth (IBW ) of 8-bit, and
a 32-bit memory port bitwidth (MBW ) on the target device, we can
pack more data per single memory transfer, i.e., 4 pixels (8-bit wide
each) (MBW /IBW ). Thus, this Stage takes the data coming from
either the o�-chip memory or the on-chip one and splits them to
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multiple Processing Elements (PEs) performing the joint histogram.
HPE de�nes the number of parallel PEs.

Stage 2 and Stage 3 compute the joint histogram of the two
images with a map-reduce approach [19]. During Stage 2, the PEs
receive two streams of unpacked data, from both the reference
and �oating images. As shown in Fig. 4, each PE creates its local
histogram (in this case, a joint one) and stores the histogram values
in BRAM. The input streams generate the joint indices of the joint
histogram positions in which an increment by one occurs. As stated
in Section 2, the joint histogram counts howmany times a couple of
intensities i , j appears, with i , j belonging to the reference, and the
�oating images, respectively. Practically, the images �ow through
Stage 2, which increments the intensity at position i , j. To avoid
RAWhazard in the computation, each PE is optimized to accumulate
the current intensity on a register while i , j are the same, on the
contrary, if the current i , j are di�erent from the previous ones, the
PE reads the new value to accumulate from BRAM and writes back
the previous one. As soon as the joint histogram is ready, this Stage
subsequently sends it out to the following one. The output stream
contains multiple histogram values packed together. EPE indicates
the number of packed values. Stage 3 reduces the parallel computed
joint histograms by summing the values within the HPE input
streams. The adopted map-reduce approach improves parallelism
of the joint histogram computation, therefore the latency, at the
cost of storing HPE di�erent joint histograms.



Table 1: Customization Parameters of our Architecture

Parameter Description

CACHE support caching of one input image
IBW input bitwidth of the single data, e.g., pixel
MBW input port bitwidth, or memory port bitwidth
ISS maximum input stream size value
HS single histogram size
HPE number of parallel histogram PEs, depending onMBW value
EPE number of parallel entropy PEs
ET data type precision of entropy computation

NCORE number of parallel cores

Stage 4-9. As stated in Section 2, once the joint histogram is com-
puted, it is possible to derive the separate histograms of the in-
put images and their relative probabilities. This is crucial for the
entropy computations, as the Shannon’s formula of the entropy
revolves around the sum of the probability times the logarithm
of the probabilities (see eq. (2)). For this reason, Stage 4 replicates
the joint histogram stream three times, so that Stage 5 extracts the
histograms of the reference and �oating images by reducing per
rows or columns, respectively.

Stage 6 unpacks each input stream to EPE ones. Stage 7 is in
charge of computing the entropy, starting from the three histograms.
This Stage computes Shannon’s entropy for the single input (eq. (2)),
and it is the only one that requires floating-point values. To limit
the number of �oating-point operations, we defer the scaling of each
input (to retrieve the probability) to Stage 9. Thus, we only need
floating-point values for log operations. In particular, this Stage
relies on either IEEE 32-bit floating-point or custom bitwidth
fixed-point values as the required data type. Stage 8 accumulates
the partial entropy and computes the �nal ones. Finally, Stage 9
receives the three entropy values, computes the MI value for the
two input images, and writes it back to the host.

4.3 Assisted Exploration of Design
Con�guration Parameters

Our whole design is highly customizable according to the target
scenario, di�erent application requirements, and the target plat-
form. CACHE parameter indicates whether the architecture can
cache one image (like the reference) into BRAMs (or URAMs when
available). Considering the input memory port bitwidth (MBW )
and the input data type bitwidth (IBW ), the joint histogram part is
parallelizable through HPE = MBW /IBW PEs, which impacts on
the architecture memory footprint. Indeed, each PE stores a joint
histogram whose size is HS · HS , where HS = 2I BW is the size
of a single histogram. Besides, a user can deploy the architecture
con�guration that fetches a maximum input stream size (ISS) per
iterations of di�erent sizes, e.g., a 512× 512 reference and 512× 512

�oating. Likewise, the datapath is customizable to di�erent input
data types, as 8-bit pixel or 16-bit pixel. It is worth noticing that
scaling to larger images, e.g., ISS = 2048×2048, in�uences resource
usage and image transfer times from themainmemory. In particular,
ISS slightly impacts the bitwidth of joint histogram elements, while
it signi�cantly a�ects BRAM/URAM usage of caching designs.

Di�erent parameters a�ect the design of the second macro Stage.
EPE describes the number of histogram values coming from Stage 2

EPE=1

EPE=2

EPE=4

EPE=8

EPE=16

EPE=32

C
lo

c
k
 C

y
c
le

s

0

5×104

10×104

15×104

20×104

25×104

30×104

35×104

HPE

0 1 2 4 8 16 32

Figure 5: Estimation of the proposed architecture latency ac-

cording to the HPE and EPE parameters.

packed together and, consequently, the number of parallel entropy
modules per histogram. Another parameter is the data type (ET )
used for the entropy computation. The data type can be either 32-
bit IEEE floating-point or custom bitwidth fixed-point, which
may introduce errors in the entropy due to the precision loss. In
particular, the bitwidth of fixed-point values depends on ISS .

Finally, it is possible to deploy a multi-core version of the archi-
tecture to increase run-time performance. More speci�cally, we can
instantiate NCORE accelerators and connect each one to a di�erent
memory port (one per port to avoid contention). This permits us to
perform multiple image registrations in parallel.

Tab. 1 summarizes all the customization parameters, along with
their description, as proposed in this Section.

4.4 Architecture Latency

The parameters in Tab. 1 enable to tune the proposed architecture ac-
cording to the user’s requirements. Starting from these parameters,
we can analyze the latency of a given instance of our architecture
and evaluate its theoretical performance.

Fig. 3 reports the latency breakdown of each Stage of our design.
The purpose of the formulae in Fig. 3 is to model latency at a steady-
state and consequently provide a coarse grain estimation of the
clock cycles. Thus, we do not take into account either the clock
cycles required to �ll up the internal pipeline of each stage or the
o�-chip memory bandwidth. On the other hand, as stated before,
the memory port bit-width (MBW ) is a relevant parameter of our
design. Indeed, the latency of Stage 1 and 2 depends onMBW , since
it determines HPE. In particular, given HPE and ISS , each block
of Stage 1 takes ISS/HPE clock cycles to read the input from the
o�-chip memory and split it inHPE streams of data. Similarly, each
block of Stage 2 receives a stream of data and computes a partial
joint histogram in ISS/HPE clock cycles. Then, these blocks write
the partial joint histogram to the output FIFO inHS ·HS/EPE clock
cycles. Since these two computations within Stage 2 cannot overlap,
the latency of each block of Stage 2 is the one reported in Fig. 3.

Stage 3 reads the incoming HPE streams, sums the partial joint
histograms, and writes the complete joint histogram to the output
FIFO in HS · HS/EPE clock cycles. The following Stage 4 takes
the same amount of clock cycles to read the joint histogram and
replicate it three times. The computations performed in the two
blocks of Stage 5 di�er, but they share the same coarse grain latency.
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Starting from Stage 6, the latency of each block varies, even
though they are identical internally, as reported in Fig. 3. Indeed,
the blocks directly connected to Stage 5 read a smaller amount
of data than the one directly connected to Stage 4. In particular,
the blocks of Stage 6 directly connected to Stage 5 receive a single
histogram, while the one directly connected to Stage 4 the joint
one. Consequently, the same holds for the blocks in Stage 7.

The output of each block of Stage 7 is a single ET value. Thus,
the latency of the blocks of Stage 8 is almost negligible, as they only
sum the incoming values. Likewise, Stage 9 reads the three input
entropies and outputs the mutual information in few clock cycles.

The proposed architecture works in a data�ow fashion, and each
stage is internally pipelined. Hence, the coarse grain latency of a
given instance of our architecture is ISS/HPE +HS ·HS/EPE. This
value mainly depends on both the joint histogram calculation and
its entropy computation. Speci�cally, considering a speci�c ISS and
HS , both HPE and EPE provide a theoretical performance boost
that scales as 1/x . Fig. 5 shows how the coarse grain latency scales
with ISS = 512 × 512 and HS = 256. We extracted these values via
the cycle-accuracy cosimulation of Vivado HLS. Fig. 5 does not take
into account the memory bandwidth, for it does not illustrate the
e�ects of caching. The values of HPE and EPE are a power of 2 for
the sake of simplicity. In this case, HPE has a greater impact on the
estimated latency than EPE, as ISS > HS · HS .

5 EXPERIMENTAL RESULTS

This Section details the environment we used to validate our ap-
proach (Section 5.1), the results of our Design Space Exploration,
and the performance evaluation (Section 5.2).

5.1 Experimental Setup

The proposed framework generates a C++ accelerator architecture
suitable for HLS tools. In this work, we relied on the Xilinx Vi-
vado HLS 2019.2 toolchain to produce the RTL of our accelerator.
We target four boards from di�erent scenarios: A Pynq-Z2 board
based on the Xilinx Zynq SoC, an Ultra96 v2 board powered by
a Xilinx MPSoC Ultrascale+ ZUEG3, a Zynq UltraScale+ MPSoC
ZCU104, and an accelerator card, namely an Alveo u200 board with
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Figure 7: ZCU104 resource utilization. Resources: 230400

LUT, 460800 FF, 624 BRAM 18k, 1728 DSP, 96 URAM

a Xilinx Ultrascale+ XCU200. These boards range from low-power
embedded devices (Pynq-Z2) to high-end accelerator cards (Alveo
u200). Through the scripts generated by the framework, we em-
ploy the Xilinx Vitis and Vivado HLx toolchains to generate the
bitstream, both version 2019.2. The image registration application
is implemented in Python in a multi-threaded version, and the
hardware-software interfacing part is handled through our Python
APIs, which interact with the PYNQ [35] framework v2.5 for both
the embedded and the high-end devices. The host processors are
a dual-core ARM A9 (Pynq-Z2), a quad-core ARM A53 (Ultra96
and ZCU104), and a quad-core Intel i7-4770 (Alveo u200). While
the �rst three recon�gurable fabrics are on the same chip with the
host and share the DDR, the Alveo is connected through PCIe to
the host device. We evaluated the proposed solution with a stack
of 247 Computed Tomography (CT) images, with a dimension of
512× 512 pixels, and a corresponding number of Positron Emission
Tomography (PET) ones, resized from 128 × 128 pixels to a dimen-
sion of 512 × 512 pixels, from the medical �eld, each down-scaled
to 8-bit wide (Patient: C3N-00704, Study: Dec 10, 2000 NM PET 18
FDG SKULL T, CT: WB STND, PET: WB 3D AC) [10, 25].

Each image has various misalignments depending on the pa-
tientsâĂŹ movements or acquisition protocols. We compare our
solutions against both works available in the literature and an opti-
mized state-of-the-art Matlab implementation [24], i.e., the one
available in the Matlab Image Processing Toolbox, which exploits
as many cores as are available, and can be further optimized thanks
to the Parallel Computing Toolbox. The tool version is 2019b and
runs on both a dual-core Intel i5-7267U CPU and a 40 core Intel
Xeon Gold 6148 CPU. Our solution and theMatlab implementa-
tion share the transformations, the similarity metric, and the input
dataset. With respect to the optimizer, we exploit both Powell and
(1+1) Evolutionary, while Matlab the (1+1) [31]. Powell optimizes
one parameter at a time in a given range using MI, while the (1+1)
evolves genetically from a parent transformation vector to a child
using MI and a normal random generator.



5.2 Experimental Evaluation

We �rst evaluate the target hardware-software framework through
a design parameter exploration across the several customization
parameters of the proposed architecture on the Ultra96, ZCU104,
and Alveo board. Then, we compare the execution times of our
hardware designs toMatlab, with and without the Parallel Com-
puting Toolbox. Finally, we analyze the best performance of the
four boards against state-of-the-art works. Given the target case
study, the framework allows us to quickly produce several designs
adopting IBW = 8 and ISS = 512 for all the considered devices.
We considerMBW as the product of IBW and HPE, thus it is not
reported in any of the following analyses. We describe a con�gu-
ration as the concatenation of the following parameters: NCORE
(if missing, we assume 1), CACHE (if missing, no caching, other-
wise C for BRAM caching, CU for URAM caching), ET (FLT for
32-bit floating-point, FX for fixed-point), HPE, EPE. For in-
stance, FLT-2-1 describes a design with 1 core, no caching, 32-bit
floating-point, 2 HPE, and 1 EPE.

5.2.1 Resources Design Space Exploration. Fig. 6, 7, and 8 re-
port the most relevant synthesis results for Ultra96, ZCU104, and
Alveo we achieved throughout several runs. While we can see that
the amount of LUTs and FFs used generally remains reasonably low,
BRAMs and DSPs usage varies a lot based on the con�guration.

From the several single core versions, we can appreciate how
BRAMs usage mainly comes from HPE scaling or the reference
image caching, making BRAMs the critical resources of the pro-
posed accelerator. Indeed, the devised PE for the joint histogram
requires a local, though smaller, partial joint histogram memory.
Therefore, increasing the level of parallelism dramatically boosts
the performance, as we will discuss in the following Section, at
the cost of higher impact on memory footprint. On the other hand,
caching requires an on-chip memory able to �t 512 × 512 × 8 bits.
Besides, designs on Ultra96 using caching require a signi�cant
amount of BRAMs, while ZCU104 and Alveo board not only have
more BRAMs but also URAMs in the recon�gurable fabric. Thus, all
the con�gurations exploiting URAMs (the ones with theU ), drasti-
cally reduce the BRAM usage and pave the way to con�gurations
that otherwise would not �t the FPGA. On the other hand, EPE
mainly impacts on the amount of required DSPs (particularly when
using 32-bit floating-point values) due to the usage of logarithms
(we rely on the implementation available within Vivado HLS) and
floating-point multiplications. In the case of fixed-point, the
integer and decimal parts are a function of ISS , and here are 23
and 19 bits. We analyzed the impact of fixed-point precision on
the MI calculation and measured an MSE of 3.46E-10 compared to
floating-point (100 tests with random inputs).

Considering the multi-core version, we should notice how the
Ultra96 scales to few cores, while ZCU104 and Alveo fabrics can
scale to multiple cores with di�erent combinations ofHPE and EPE.
Upscaling the core design number is limited by BRAM, DSP, and
the number and wideness of physical DRAM ports. For this reason,
increasing the number of cores on Ultra96 or ZCU104, which have
a single DDR with a 32-bit port, creates contention and leads to
performance degradation, as there are no more logical resources.
On the other hand, the Alveo u200 has 4 DDR memory banks, each
of which has a capacity of 16GB and 64-bit ports. Thus, on the Alveo,
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Figure 8: Alveo u200 resource utilization. Resources:

1019968 LUT, 2128354 FF, 3532 BRAM 18k, 960 URAM, 6833
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Figure 9: Average execution time and resource usage scaling

according to the main parameters that a�ect the architec-

ture, i.e., latency HPE, EPE, ET, and CACHE. Standard devia-

tion not reported as negligible (from 2.61E − 03 to 3.12E − 02).

we exploit one core per memory bank whenever it is possible, and,
as such, theHPE value multiplied by 8 gives the resulting bit-width
the cores would require. It is worth noticing that, in this case, the
data transfer via PCIe between the host and the Alveo board may
become a bottleneck when using multi-core designs.

Finally, while, for the Alveo designs, Vitis automatically scales
all the design at the maximum frequency it can handle, and thus
does not require manual intervention, Vivado does not. Hence, we
synthesize Pynq-Z2, Ultra96, and ZCU104 designs at 100MHz, but
then we exploit the PLL of the Processing System to hand-tune at
run time the frequency and check the consistency of our results.
As a result, Alveo designs run at the frequency reported in Fig. 8,
while all the others at 200MHz.

5.2.2 Performance Analysis. We evaluate the architecture per-
formance for an image registration application on the execution
time of the single value of MI, the single image registration, and
the overall stack of images.
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Figure 10: Ultra96 execution times of the whole application

using both Powell and (1+1) Evolutionary, and their average

time per image, compared againstMatlab on both an Intel

i5 and an Intel Xeon. We scaled the execution times of Mat-

lab and our image registration applications by a 0.01 factor.

Fig. 9 shows how the single MI computations vary according
to ET , HPE, EPE, and CACHE while keeping a single core (multi-
core would not impact the single MI computation), on the Ultra96
running at 200MHz. We can notice how, by increasing either HPE

or EPE or enabling CACHE, we reduce the average execution time
for a single computation. In particular, we can notice how HPE

and EPE parameters impact the performance scaling in line with
the latency analysis of Section 4.4. Conversely, when CACHE is
available, we have to account for both the caching time and MI
computation time. Fig. 9 reports both the single MI execution time
and the aggregate one. Although this solution may be ine�cient for
a single MI computation, it helps to decrease the overall time when
one of the two images does not change for several iterations, e.g.,
during the image registration process. On the other hand, Fig. 9
shows the direct connection between HPE and BRAM usage and
between EPE and DSP usage. It is interesting to highlight that it
is possible to distribute the level of parallelism between HPE and
EPE and partially reduce performance while balancing resource
usage (con�gurations FLT-4-1 and FLT-2-2). Finally, Fig. 9 shows
that the FX data type signi�cantly reduces DSP usage, as well as
slightly improving both the average computation time and BRAM
usage. Indeed, it would be possible to instantiate con�gurations
with EPE = 8 or EPE = 16.

We also measured the average execution time per image, and the
overall registration time for the entire stack of images. Fig. 10, 11,
and 12 show how these times scale for the most signi�cant con�g-
urations on Ultra96, ZCU104, and Alveo, respectively. We sorted
the con�gurations in decreasing order according to the overall
registration times of the (1+1) Evolutionary. In general, the most
impacting factor in the execution time comes from the HPE value,
which impacts the bandwidth and the time required to process
and compute the joint histogram (one of the biggest bottlenecks).
Another relevant factor is caching. Indeed, most of the con�gura-
tions exploit caching to reduce the execution time required by the
application. The entropy data type ET a�ects the execution time
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Figure 11: ZCU104 execution times of the whole application

using both Powell and (1+1) Evolutionary, and their average

time per image, compared againstMatlab on both an Intel

i5 and an Intel Xeon. We scaled the execution times of Mat-

lab and our image registration applications by a 0.01 factor.

(1+1) Evolutionary * 0.01

Powell * 0.01

MATLAB on Intel Xeon * 0.01

(1+1) Evolutionary AVG Single Image

Powell AVG Single Image

MATLAB PAR. TOOL on Intel Xeon * 0.01

E
x
e

c
u

ti
o

n
 T

im
e

 [
s
]

0

0.5

1.0

1.5

2.0

2.5

3C
U
FLT

-8
-8

2F
X-8

-8

4C
U
FLT

-8
-8

2F
X-8

-1
6

2C
U
FX-1

6-
4

2F
LT

-8
-1

6

2C
U
FX-8

-1
6

C
U
FLT

-6
4-

4

C
U
FX-6

4-
4

C
U
FLT

-6
4-

8

C
U
FX-1

6-
4

2C
U
FLT

-1
6-

4

2C
U
FLT

-1
6-

8

C
U
FLT

-1
6-

4

C
U
FLT

-3
2-

4

C
U
FX-6

4-
8

C
U
FX-3

2-
4

C
U
FLT

-1
6-

8

C
U
FX-1

6-
8

FX-3
2-

4

2C
U
FX-1

6-
8

C
U
FLT

-3
2-

8

C
U
FX-3

2-
8

FX-3
2-

8

Figure 12: Alveo u200 execution times of the whole appli-

cation using both Powell and (1+1) Evolutionary, and their

average time per image, compared againstMatlab on an In-

tel Xeon. We scaled the execution times of Matlab and our

image registration applications by a 0.01 factor.

of the registration process as well. Finally, we can notice how the
NCORE parameter has a limited e�ect on the execution times, due
to both the unique physical port (on embedded boards) and the run-
time overhead of Python when managing multithread applications.
Thus, a careful balance of these parameters enables to optimize the
application run-time. Considering (1+1) Evolutionary, Ultra96 and
ZCU104 easily outperform theMATLAB reference on the Intel i5,
reaching speedups up to 2.66× and 3.21×, respectively. Similarly,
both boards result faster than theMATLAB on the Intel Xeon with-
out the Parallel Computing Toolbox enabled, and the best speedups
are 1.49× and 1.80×, respectively. On the other hand, the selected
designs running on the Alveo u200 outtake the Intel Xeon by a
factor up to 2.86× (Parallel Computing Toolbox enabled) and 8.62×
(Toolbox not enabled), and 15.36× against the Intel i5 (here not



Table 2: Comparison with Related Works with Perf. measured as [ms/MVoxels/iterations], as proposed by [28], and Power E�.

as [(MVoxels Âů iterations)/(ms Âů kWa�)]

Arch. Work Transform Metric Optimizer Hardware
Perf. Power E�.

(lower is better) (higher is better)

FX-4-4 A�ne MI † Powell PYNQ-Z2 (28nm) 49.90 8.02

FPGA

2FLT-2-2 A�ne MI † Powell Ultra96 (16nm) 11.02 12.52
2CFLT-2-1 A�ne MI † Powell ZCU104 (16nm) 9.34 8.56
FX-32-8 A�ne MI† Powell Alveo u200 (16nm) 1.78 18.52
FX-4-4 A�ne MI † 1+1 PYNQ-Z2 (28nm) 0.42 979.76
2FX-2-4 A�ne MI † 1+1 Ultra96 (16nm) 0.09 1534.00

3CUFX-2-8 A�ne MI † 1+1 ZCU104 (16nm) 0.08 981.60
FX-32-8 A�ne MI† 1+1 Alveo u200 (16nm) 0.02 2058.98

[8] Rigid MI† N/A 2xAltera 1K100 (n.a.) 101⋆ N/A
[14] MultiRigid MI† Simplex Altera EP2S180 (90nm) 13.4⋆ N/A
[29] A�ne† Corr.† Simplex Zybo (28nm) 9.15⊙ N/A

GPU
[9] N/A MI† N/A FX 5800 (55nm) 39.04/1.07▽• 0.13/4.94‡

[27] Rigid MI† Powell GTX 280 (65nm) 4.06⋆ 1.04‡

[18] Nonrigid NMI† Grad. Desc.† GTX 580 (40nm) 0.13▽⋄ 31.52‡

CPU

Matlab A�ne MI 1+1 Intel i5-7267U (14nm) 0.24⊗ 176.97‡

Matlab A�ne MI 1+1 Intel Xeon Gold 6148 (14nm) 0.14⊗ 48.37‡

Matlab Par. Tool A�ne MI 1+1 Intel Xeon Gold 6148 (14nm) 0.05⊗ 145.93‡

Simple ITK Rigid MI Grad. Desc. Intel Xeon Gold 6148 (14nm) 0.25⊗ 27.01‡

Simple ITK Rigid MI Powell Intel Xeon Gold 6148 (14nm) 2.51⊗ 2.65‡

Simple ITK Rigid MI 1+1 Intel Xeon Gold 6148 (14nm) 0.89⊗ 7.46‡

†Implemented in hardware ⋆Computed from [28] ‡Computed with Termal Design Power (TDP) as power ⊙ Assuming maximum iteration of 500
▽ Exploits the binning to reduce joint histogram sizes • The �rst number includes presorting time ⊗ With maximum 100 iterations

⋄ This value is the result of several dataset-speci�c approximations and preprocessing that reduce the computation to 1/6 and lead to misregistrations [18]

reported in the chart to ease the visualization). Moving to Powell’s
optimization method, we notice that this procedure is more sensi-
tive to the entropy data type. Indeed, the con�gurations employing
�xed-point data type take more iterations to converge Nonethe-
less, various designs of the Ultra96 and ZCU104 surpass MATLAB

on the Intel i5. The same holds for multiple Alveo con�gurations
againstMATLAB on the Intel Xeon. However, it is crucial to note
that we are considering two di�erent optimization methods; indeed,
Powell optimizes a parameter at a time within a given range per
iteration, while (1+1) generates a new child vector, comprehensive
of all parameters, per iteration, hence the evolutionary algorithm
requires fewer computations.

5.2.3 Accuracy Analysis. We compare the accuracy of our so-
lutions against theMatlab procedure with the Dice score metric,
which evaluates how good is the overlap between two region of
interests. In Fig. 13 we reported an example of visual comparison of
our registrations and theMatlab one along with the gold standard.
We extracted the gold standard with a supervised semi-automatic
procedure, based on the interactive Matlab Registration Appli-
cation exploiting the multi-modal registration model. To evaluate
the Dice score, and hence the accuracy, we binarize both the gold
standard and output images. As a consequence, if the border of reg-
istered structures are correctly overlapped to the gold standard, also
the internal structures will be correctly registered, as the employed

geometric transformation does not insert deformations. Based on
this analysis, our top-performing Alveo implementation reached a
mean Dice score of 94% and 78% with Powell and (1+1) respectively
in line with both the optimized Matlab implementation of 85%
and the manually extracted gold standard.

5.2.4 State-of-the-Art Comparison. In the image registration
�eld, comparing against state of the art is extremely hard given the
absence of a standard dataset, the availability of the source codes,
the broad combinations of the image registration methodologies,
and the di�erent hardware platforms. For these reasons, we open-
source our solution at this link [11]. FPGA-based approaches in
the literature [8, 14, 29] all compare against their single-thread
software implementation only. Besides, they mainly perform mono-
modal image registration on 256× 256 images, using Simplex as the
optimizer. While [8, 14] use MI as similarity metric and deformable
transformations, [29] uses correlation and a�ne ones. Conversely,
we use a 512x512 multi-modal image registration with Powell as the
optimizer, MI as the similarity metric, a�ne transformations, and
we compare against a multi-threaded Matlab optimized software.
[28] shows the struggle to provide a standard performance metric
to compare di�erent works, and proposesms/MVoxels/iterations

as a solution (the lower, the better)., where these parameters refer
to the overall registration process of N images. Tab. 2 reports the
metric proposed from [28], where we took numbers for [8, 14, 27],
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Figure 13: A visual example of image registration results. From left to right, the gold standard, the overlap between gold

standard (represented in green) and the registered image wih Powell, (1+1), andMatlab (all in yellow)

and we compute the same metric for this work and other works
reported in Section 3. For many of those works, we have computed
the performance according to the information available in [28] and
to be as much fair as possible. We exploit the performance metric to
compute the power e�ciency, last column of Tab. 2, as 1/(Per f . ×
PowerConsumption). Considering Alveo and GPUs solutions, we
account for the board power only, while the others also account for
the CPU power, especially our embedded boards.

Regarding the FPGA-based solution, this work achieves better
performance against all the selected FPGA approaches, reporting
0.02 and 1.78ms/MVoxels/iterations , with FX-32-8 as con�gura-
tion for the Alveo u200, respectively for (1+1) and Powell.

By looking at the GPU-based approaches reported in Tab. 2,
most of them rely on both precomputation techniques and binning
strategies to reduce the computational load of the algorithm. While
the former is mainly algorithmic and dataset dependent, exploiting
binning levels makes the joint histogram computation, and the
following ones, less time consuming, by sacri�cing the accuracy.
In this context, [18] reports encouraging numbers, though it seems
they apply many precomputation and dataset-speci�c techniques
without which the computation would be way more expensive. The
authors also report various cases where the registration process fails
to align the images. Indeed, our best performance result with the
(1+1) on all the boards but PYNQ-Z2 are better than [18], without
computation reduction techniques. Moreover, we outtake all the
considered GPU implementation in terms of power e�ciency, with
maximum of 65× (Alveo (1+1) versus [18]).

Finally, we have compared our implementations against two
software applications that we deployed exploiting two well-known
image processing tools, namely Matlab Image Processing Toolbox
and SimpleITK. As we can see from Tab. 2,Matlab achieves better
results compared to SimpleITK, and in particular it reaches results
in line with our (1+1) top implementations, when the Parallel Com-
puting Toolbox is enabled on the Xeon Gold. However, considering
the power e�ciency, all theMatlab implementations prove to be
less e�cient than our solutions with similar performance.

6 CONCLUSIONS AND FUTUREWORK

In this paper, we presented an open-source hardware-software
framework to automate the design and synthesis of a con�gurable

architecture for mutual information calculus oriented to the possi-
ble constraints for the end use case. We evaluated our framework
in both the embedded and high-end scenarios through the given
transparent APIs, showing how our designs scale according to the
parameters and how it provides remarkable performance. Indeed,
we compared our accelerators against an optimizedMatlab ver-
sion on an Intel Xeon Gold reaching a speedup of up to 2.86× for
the registration of 247 images and a Dice score of 94% and 78%

with Powell and (1+1) respectively. We compared our performance
with state-of-the-art approaches employing di�erent techniques,
overwhelming FPGA-based solutions, with the metric proposed in
[28], and achieving remarkable power e�ciency results.

Our architecture can be easily customized and deployed in other
application �elds such as genomics computations, �nancial com-
putations for high-frequency trading, and telecommunication �eld.
As future work, we will validate the architecture onto these other
use cases and explore di�erent customization parameters, such as
the binning scheme. Finally, we plan to provide our APIs also in
C++ to enable a more performing software infrastructure.
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