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Abstract. We consider deflation and augmentation techniques for accelerating the convergence
of Krylov subspace methods for the solution of nonsingular linear algebraic systems. Despite some
formal similarity, the two techniques are conceptually different from preconditioning. Deflation (in
the sense the term is used here) “removes” certain parts from the operator making it singular, while
augmentation adds a subspace to the Krylov subspace (often the one that is generated by the singu-
lar operator); in contrast, preconditioning changes the spectrum of the operator without making it
singular. Deflation and augmentation have been used in a variety of methods and settings. Typically,
deflation is combined with augmentation to compensate for the singularity of the operator, but both
techniques can be applied separately. We introduce a framework of Krylov subspace methods that
satisfy a Galerkin condition. It includes the families of orthogonal residual and minimal residual
methods. We show that in this framework augmentation can be achieved either explicitly or, equiva-
lently, implicitly by projecting the residuals appropriately and correcting the approximate solutions
in a final step. We study conditions for a breakdown of the deflated methods, and we show several
possibilities to avoid such breakdowns for the deflated minimum residual (MinRes) method. Numer-
ical experiments illustrate properties of different variants of deflated MinRes analyzed in this paper.
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1. Introduction. There are numerous techniques to accelerate the speed of con-
vergence of Krylov subspace methods for solving large linear algebraic systems

(1.1) Ax = b,

where A ∈ CN×N is nonsingular and b ∈ CN . The most widely used technique is
preconditioning. Here the system (1.1) is modified using left- or right-multiplications
with a nonsingular matrix (called the preconditioner). A typical goal of precondition-
ing is to obtain a modified matrix that is in some sense close to the identity matrix.
For surveys of preconditioning techniques we refer to the books by Greenbaum [26,
Part II] and Saad [46, Chapters 9–14] and the survey of Benzi [3].

Here we consider two approaches for convergence acceleration that are called de-
flation and augmentation. Let us briefly describe the main ideas of the two techniques.
In deflation the system (1.1) is multiplied (at least implicitly) with a suitably cho-
sen projection, and the general goal is to “eliminate” components that supposedly
slow down convergence. Typically these are components that correspond to small
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eigenvalues. Multiplication by the projection turns the system (1.1) into a consistent
singular one, which is then solved by a Krylov subspace method. We need to men-
tion, however, that techniques have been proposed that move small eigenvalues of A
to some large common value, say, to the value 1; see [1, 17, 31]. Some authors refer
to these techniques as “deflation” too. In augmentation techniques the search space
of the Krylov subspace method, which is at the same time the Galerkin test space, is
“enlarged” by a suitably chosen subspace. A typical goal is to add information about
the problem to the search space that is slowly revealed in the Krylov subspace itself,
e.g., eigenvectors corresponding to small eigenvalues.

Deflation and augmentation techniques can be combined with conventional pre-
conditioning techniques. Then the projection and augmentation parameters have to
be adapted to the preconditioned matrix. In this paper, we assume that (1.1) is
already in preconditioned form, i.e., A is the preconditioned matrix and b the pre-
conditioned right-hand side. Details of preconditioning techniques will thus not be
addressed here.

We will now give a brief overview of existing deflation and augmentation strate-
gies. For a more comprehensive presentation we refer to section 9 of the survey article
by Simoncini and Szyld [49]. The first deflation and augmentation techniques in the
context of Krylov subspace methods appeared in the papers of Nicolaides [41] and
Dostál [12]. Both proposed deflated variants of the CG method [29] to accelerate the
speed of convergence for symmetric positive definite (spd) matrices A arising from
discretized elliptic partial differential equations. Since these early works deflation and
augmentation have become widely used tools. Several authors working in different
fields of numerical analysis applied them to many Krylov subspace methods, and they
use a variety of techniques to determine a deflation subspace. A review of all applica-
tions is well beyond this introduction. We concentrate in the following on some—but
not all—key contributions.

For nonsymmetric systems Morgan [36] and also Chapman and Saad [6] extracted
approximate eigenvectors of A from the Krylov subspace generated by the GMRes

method [47], and then they augmented the Krylov subspace with these vectors; for
related references we refer to [22]. A comparable approach in the context of the
CG method for spd matrices A was described by Saad, Yeung, Erhel, and Guy-
omarc’h [48]. De Sturler [10] introduced the GCRO method, which involves an outer
GCR iteration [15, 16] and an inner deflated GMRes method where the space used
for deflation depends on the outer iteration. This method has been extended to
GCROT in [11] to incorporate truncation strategies when restarts are necessary.
In [33] Kolotilina used a twofold deflation technique for simultaneously deflating the r
largest and the r smallest eigenvalues by an appropriate deflating subspace of dimen-
sion r. An analysis of acceleration strategies (including augmentation) for minimal
residual methods was given by Saad [45] and for restarted methods by Eiermann,
Ernst, and Schneider [14]. The latter work analyzes minimal residual (MR) and or-
thogonal residual (OR) methods in a general framework that allows approximations
from arbitrary correction spaces. By using multiple correction spaces forming a di-
rect sum, several cases of augmentation and deflation are discussed. The analysis
concentrates on (nearly) A-invariant augmentation spaces.

In [37] Morgan proposed a block-GMRes method for multiple right-hand sides
that deflates approximated eigenvectors when GMRes is restarted. A similar method
for solving systems with multiple shifts and multiple right-hand sides has been intro-
duced by Darnell, Morgan, and Wilcox [9]. Giraud et al. [25] recently developed a
flexible GMRes variant with deflated restarting where the preconditioner may vary
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from one iteration to the next. In [42] Olshanskii and Simoncini studied spectral prop-
erties of saddle point matrices preconditioned with a block-diagonal preconditioner
and applied a deflated minimum residual (MinRes) method to the resulting symmet-
ric and indefinite matrix in order to alleviate the influence of a few small outlying
eigenvalues. Theoretical results for deflated GMRes based on an exactly A-invariant
subspace have been presented in [61].

In addition to deflation/augmentation spaces based on approximative eigenvec-
tors, other choices have been studied. Mansfield [34] showed how Schur complement-
type domain decomposition methods can be seen as a series of deflations. Nico-
laides [41] constructed a deflation technique based on piecewise constant interpolation
from a set of r subdomains, and he pointed out that deflation might be effectively used
with a conventional preconditioner. In [35] Mansfield used the same “subdomain de-
flation” in combination with damped Jacobi smoothing and obtained a preconditioner
that is related to the two-grid method. Baker, Jessup, and Manteuffel [2] proposed a
GMRes method that is augmented upon restarts by approximations to the error.

In [38, 39, 40] Nabben and Vuik described similarities between the deflation ap-
proach and domain decomposition methods for arbitrary deflation spaces. This com-
parison was extended to multigrid methods in [54, 53].

This brief survey indicates that in principle deflation or augmentation can be
incorporated into every Krylov subspace method. However, some methods may suf-
fer from mathematical shortcomings like breakdowns or numerical problems due to
round-off errors. The main goal of this paper is not to add further examples to the
existing collection but to introduce first a suitable framework for a whole family of
such augmented and deflated methods (section 2) and then to prove some results
just assuming this framework (section 3). The framework focuses on Krylov subspace
methods whose residuals satisfy a certain Galerkin condition with respect to a true
or formal inner product. In section 3, we mathematically characterize the equivalence
of two approaches for realizing such methods and discuss them along with poten-
tial pitfalls. We then discuss known approaches to deflate CG (section 4), GMRes

(section 5), and MinRes (section 6) in the light of our general equivalence theorem.
Among other results, this will show that a recent version of deflated MinRes, which is
part of the “recycling” MinRes (RMinRes) method suggested by Wang, de Sturler,
and Paulino [57], can break down and will show how these breakdowns can be avoided
by either adapting the right-hand side or the initial guess. We do not focus on spe-
cific implementations or algorithmic details but on the mathematical theory of these
methods. For the numerical application in section 6.3 we draw on the most robust
MinRes implementation that is available.

2. A framework for deflated and augmented Krylov methods. In this
section we describe a general framework for deflation and augmentation, which simul-
taneously covers several Krylov subspace methods whose residuals satisfy a Galerkin
condition. Given an initial guess x0 ∈ CN , a positive integer n, an n-dimensional
subspace Sn of CN , and a nonsingular matrix B ∈ CN×N , let us first consider an
approximation xn to the solution x of the form

xn ∈ x0 + Sn,(2.1)

so that the corresponding residual

rn := b−Axn ∈ r0 +ASn
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satisfies

(2.2) rn ⊥ BSn.

If BHA is Hermitian positive definite (Hpd), then BHA induces an inner product
〈·, ·〉BHA, a corresponding norm ‖ · ‖BHA, and an orthogonality ⊥BHA. Imposing (2.1)
and (2.2) can then be seen to be equivalent to solving the following minimization
problem:

(2.3) find xn ∈ x0 + Sn s.t. ‖x− xn‖BHA = min
y∈x0+Sn

‖x− y‖BHA.

Note that due to rn = A(x− xn) the condition (2.2) can be written as orthogonality
condition for the error x− xn:

(2.4) (x − xn) ⊥BHA Sn.

The following two cases where BHA is Hpd are of particular interest:
(1) B = I if A itself is Hpd;
(2) B = A for general nonsingular A.
The case (1) is the one where (2.2) is a typical Galerkin condition: A is Hpd and

the residual rn is orthogonal to the linear search space Sn for xn − x0. In (2.3) we
then have

(2.5) ‖x− xn‖A = ‖rn‖A−1 ,

so while the error is minimal in the A–norm, the residual is minimal in the A−1–norm.
In this paper we will refer to (2.2) also in case (2) as a Galerkin condition, because

the search space and the test space are still essentially the same. However, in this
case

(2.6) ‖x− xn‖AHA = ‖rn‖2,
so (2.2) implies that the 2–norm of the residual is minimized. Consequently, in both
cases a minimization property holds.

If the search space Sn is the nth Krylov subspace generated by A and the initial
residual r0 := b−Ax0, i.e., if

(2.7) Sn = Kn (A, r0) := span {r0,Ar0, . . . ,A
n−1r0},

then, in case (1), conditions (2.1)–(2.2) mathematically characterize the CG method
[29]. It is the prototype of an OR method characterized by (2.1) and (2.2) with B = I.

In case (2), conditions (2.1)–(2.2) with Sn = Kn (A, r0) mathematically charac-
terize theGCR [15] andGMRes [47] methods and, for HermitianA, theMinRes [43]
method. If A is even Hpd, we can resort to Stiefel’s conjugate residual (CR) method
[52]. All these are prototype MR methods characterized by (2.1) and (2.2) with
B = A.

OR and MR methods often come in pairs defined by the properties of A, the
Krylov search space, and, to some extent, the fundamental structure of the algo-
rithms. Examples of such pairs are CG/CR, GCG/GCR, full orthogonalization
method (FOM)/GMRES, and CGNE/CGNR. It has been pointed out many times,
see, e.g., [4, 8, 13, 14, 27], that the residuals of these pairs of OR/OM methods and
in particular the residual norms are related in a simple fashion.
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A fact related to the OR/MR residual connection is that the iterates and residuals
of an MR method can be found from those of the corresponding OR method by a
smoothing process introduced by Schönauer; see [58, 60, 27, 28]. The reverse process
also exists [27]. Again these processes hold for the residuals of the deflated system
and, since they are identical, for those of the explicit augmentation approach.

If BHA is not Hpd, the minimization property (2.3) no longer makes sense, but
we may still request that the orthogonality condition (2.2), or, equivalently, (2.4),
hold. Resulting algorithms may then break down since an approximate solution xn

satisfying the conditions may not exist for some n. Nevertheless, such methods are
occasionally applied in practice. In particular, the choice

(3) B = I and A nonsingular
covers the FOM of Saad [44, 46], which is sometimes also referred to as Arnoldi
method for linear algebraic systems.

For minimizing the error xn − x in the 2-norm one has to choose
(4) B = A−H and A nonsingular.
Since multiplication byA−H is not feasible, these methods only work for particular

search spaces; the simplest choice is

(2.8) Sn = AHKn

(
AH, r0

)
.

Unlike the normal Krylov search space of (2.7), this one has the drawback that the
(exact) solution of the system need not be in one of these spaces, i.e., even in ex-
act arithmetic convergence is not guaranteed. One interesting example based on this
choice is the generalized minimum error (GMErr) method of Weiss [59]. Earlier, for
spd matrices, such a method was proposed by Fridman [24], and an alternative algo-
rithm was mentioned by Fletcher [21]. Symmetric indefinite systems can be treated in
this way with the SymmLQ algorithm of Paige and Saunders [43]; see also Freund [23]
for a review of methods featuring this optimality criterion and yet another algorithm
called ME to achieve it.

Finally, we can easily incorporate the CGNR method [29] for solving overdeter-
mined linear systems in the setting of (2.1) and (2.2) by choosing the appropriate
Krylov search space. Given such a system

(2.9) Ex = f

with a full-rankM×N–matrixE (whereM ≥ N), the corresponding normal equations
are EHEx = EHf , i.e., Ax = b with A := EHE and b := EHf . Since A is Hpd, we
can apply the CG method which corresponds to case (1) and

(2.10) Sn = Kn

(
EHE,EHs0

)
with s0 := f − Ex0. In this situation we have to distinguish between the residuals
rn := b−Axn = EHf−EHExn of the normal equations and the residuals sn := f−Exn

of the given system (2.9). The CGNR method allows one to keep track of both. The
latter residuals satisfy

(2.11) sn ∈ s0 +EKn(E
HE,EHf), sn ⊥ EKn(E

HE,EHf),

and they can be seen to minimize the 2-norm of sn. Note that it can be viewed as an
MR method with a possibly nonsquare B = E; see [27].

A method that also fits into our framework, though with some modifications, is
the CGNE method, also called Craig’s method [7], which can also be used for solving
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underdetermined linear algebraic systems (2.9) with a full-rank M × N–matrix E.
The search space for xn in this case is (2.10), but the Galerkin condition becomes
sn ⊥ Kn(EEH, s0).

Since we are aiming at a general framework, let us for the moment consider an
arbitrary, possibly singular matrix Â ∈ C

N×N and an arbitrary vector v̂ ∈ C
N , such

that the Krylov subspace Kn(Â, v̂) has dimension n.
Instead of a search space of the form Sn = Kn (A, r0) we focus from now on

augmented Krylov subspaces of the form

Sn := Kn(Â, v̂) + U .(2.12)

We suppose that U has dimension k, 0 < k < N , and denote by U ∈ CN×k a matrix
whose columns form a basis of U , and by Vn ∈ CN×n one whose columns form a basis
of Kn(Â, v̂), so that (2.1) can be written as

(2.13) xn = x0 +Vnyn +Uun

for some vectors yn ∈ Cn and un ∈ Ck. Of course, U may be redefined when an
algorithm like GMRes is restarted, but we will not account for that in our notation.

Assuming the general structure of the search space Sn in (2.12) we will now
investigate augmented Galerkin-type methods that still satisfy (2.1) and (2.2).

3. A general equivalence theorem. Our goal in this section is to show that
augmentation can be achieved either explicitly as in (2.12), or implicitly, namely, by
projecting the residuals appropriately and correcting the approximate solutions in a
final step. Our main result is stated in Theorem 3.2 below.

In order to satisfy (2.2), the residual rn = b −Ax0 must be orthogonal to both

BKn(Â, v̂) and BU , hence it must satisfy the pair of orthogonality conditions

(3.1) rn ⊥ BKn(Â, v̂) and rn ⊥ BU .
Let us concentrate on the second condition of (3.1), which can be written as

0 = UHBHrn = UHBH (r0 −AVnyn −AUun) = UHBH (r0 −AVnyn)−EBun,

where

(3.2) EB := UHBHAU ∈ C
k×k.

Clearly, if BHA is Hpd, then EB is Hpd too—though in a smaller space—and thus
nonsingular. In the following derivation, BHA need not be Hpd, but we must then
assume that EB is nonsingular. Then the second orthogonality condition is equivalent
to

(3.3) un = E−1
B UHBH (r0 −AVnyn) .

Substituting this into (2.13) gives

xn = x0 +Vnyn +U
(
E−1

B UHBH (r0 −AVnyn)
)

=
(
I−UE−1

B UHBHA
)
(x0 +Vnyn) +UE−1

B UHBHb,(3.4)

rn = r0 −AVnyn −AU
(
E−1

B UHBH (r0 −AVnyn)
)

=
(
I−AUE−1

B UHBH
)
(r0 −AVnyn) .(3.5)
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To simplify the notation we define the (N ×N)–matrices

MB := UE−1
B UH = U

(
UHBHAU

)−1
UH,

PB := I−AMBB
H,(3.6)

QB := I−MBB
HA.

Using these matrices (3.4) and (3.5) take the form

xn = QB (x0 +Vnyn) +MBB
Hb,(3.7)

rn = PB (r0 −AVnyn) .(3.8)

Note that imposing the second orthogonality condition in (3.1) on the residual rn has
determined the vector un, which has therefore “disappeared” in (3.7)–(3.8). We next
state some basic properties of the matrices PB and QB. The proof of these properties
is straightforward and is therefore omitted.

Lemma 3.1. Let A,B ∈ C
N×N and U ∈ C

N×k be such that EB := UHBHAU
is nonsingular (which implies that rankU = k). Then the matrices in (3.6) are well
defined and the following statements hold:

1. P2
B = PB, PBAU = 0, and UHBHPB = 0, i.e., PB is the projection onto

(BU)⊥ along AU .
2. Q2

B = QB, QBU = 0, and UHBHAQB = 0, i.e., QB is the projection onto
(AHBU)⊥ along U .

3. PBA = PBAQB = AQB.
4. PA = PH

A, i.e., PA is an orthogonal projection.
It remains to impose the first orthogonality condition in (3.1), which will deter-

mine the vector yn. To this end, let

x̂n := x0 +Vnyn ∈ x0 +Kn(Â, v̂),

so that by (3.7) xn = QBx̂n + MBB
Hb. Using the definition of PB in (3.6) and

statement 3 of Lemma 3.1, this orthogonality condition reads

rn = b−Axn = b−AQBx̂n −AMBB
Hb = PB(b−Ax̂n) ⊥ BKn(Â, v̂).

We summarize these considerations in the following theorem.
Theorem 3.2. Let the assumptions of Lemma 3.1 hold and let Â ∈ CN×N ,

v̂ ∈ C
N , and n ∈ N be such that the Krylov subspace Kn(Â, v̂) has dimension n.

Furthermore, let b,x0 ∈ CN be arbitrary.
Then, with U := im (U) and the definitions from (3.6) the two pairs of conditions,

xn ∈ x0 +Kn(Â, v̂) + U ,
rn := b−Axn ⊥ BKn(Â, v̂) +BU

(3.9)

and

x̂n ∈ x0 +Kn(Â, v̂),

r̂n := PB(b−Ax̂n) ⊥ BKn(Â, v̂)
(3.10)

are equivalent for n ≥ 1 in the sense that

(3.11) xn = QBx̂n +MBB
Hb and rn = r̂n.
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We call (3.9) the explicit deflation and augmentation approach because the aug-
mentation space U is explicitly included in the search space. The equivalent conditions
(3.10) show that the explicit inclusion of U can be omitted when instead we first con-

struct the iterate x̂n ∈ x0+Kn(Â, v̂) so that the projected residual r̂n = PB(b−Ax̂n)
satisfies the given orthogonality condition and then apply the affine correction (3.11)
to x̂n, whose projected residual equals the one of xn. We call this second option the
implicit deflation and augmentation approach.

Note that the theorem makes no assumption on relations between Â, v̂, and U .
The only assumption on the augmentation space U is that the matrix UHBHAU is
nonsingular. (Clearly, if this holds for one basis of U it holds for all.) Moreover,
in the theorem Â and v̂ are arbitrary except for the assumption that Kn(Â, v̂) has
dimension n.

In practice, Â and v̂ should be somehow related to A, however. One specific
choice is suggested by Theorem 3.2, in particular (3.10). If

Â := PBA, v̂ := r̂0 := PBr0 = PB(b−Ax0), and b̂ := PBb,

then (3.10) becomes

x̂n ∈ x0 +Kn(Â, r̂0),

r̂n := b̂− Âx̂n ⊥ BKn(Â, r̂0),
(3.12)

which is a formal Galerkin condition for the (consistent and singular) deflated system

Âx̂ = b̂. Based on the Jordan form of A we show in the following theorem what the
Jordan form of Â = PBA looks like when (1) U is a right invariant subspace or (2)
BU is a left invariant subspace of A.

Theorem 3.3. Suppose that the matrix A ∈ CN×N has a partitioned Jordan
decomposition of the form

(3.13) A = SJS−1 =
[
S1 S2

] [ J1 0
0 J2

] [
ŜH
1

ŜH
2

]
,

where S1, Ŝ1 ∈ CN×k, S2, Ŝ2 ∈ CN×(N−k), J1 ∈ Ck×k, and J2 ∈ C(N−k)×(N−k).
Then the following assertions hold:

(1) If U = im (S1), U ∈ CN×k is any matrix satisfying im (U) = U , and UHBHAU
is nonsingular, then

Â = PBA =
[
U PBS2

] [ 0 0
0 J2

] [
U PBS2

]−1
(3.14)

with
[
U PBS2

]−1
=

[
BU(UHBU)−1 Ŝ2

]H
.

(2) If BU = im (Ŝ1), U ∈ CN×k is any matrix satisfying im (U) = U , and
UHBHAU is nonsingular, then

Â = PBA =
[
U S2

] [ 0 0
0 J2

] [
U S2

]−1
(3.15)

with
[
U S2

]−1
=

[
BU(UHBU)−1 QH

BŜ2

]H
.

In particular, in both cases the spectrum Λ(Â) of Â is given by Λ(Â) = {0} ∪ Λ(J2).
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Proof. (1) From Lemma 3.1 we can see that

PBAU = 0 and
(
BU(UHBU)−1

)H
PBA = 0.

By construction, there exists a nonsingular matrix R ∈ Ck×k with AU = UR. Hence
PB = I −U(UHBHU)−1UHBH and from ŜH

2S1 = 0 we conclude that ŜH
2U = 0 and

thus

ŜH
2PBA = ŜH

2A = J2Ŝ
H
2 .

Furthermore,

PBA(PBS2) = PBAS2 −PBAU(UHBHU)−1UHBHS2 = (PBS2)J2

and the proof of (1) is complete after recognizing that[
(UHBHU)−1UHBH

ŜH
2

] [
U PBS2

]
=

[
I 0
0 I

]
.

The proof of (2) is analogous to (1).
Results like the previous theorem motivate the term deflation, which means “mak-

ing something smaller,” since the multiplication with the operator PB “removes” cer-
tain eigenvalues from the operator A by “moving them to zero.” Special cases of
the results shown in Theorem 3.3 have appeared in the literature: in particular, for
spd matrices A and B = I in the works of Frank and Vuik [22] and Nabben and
Vuik [38, 39], and for nonsymmetric A and B = I in the articles by Erlangga and
Nabben [19, 20] and Yeung, Tang, and Vuik [61].

4. Hpd matrices and CG. This section presents some well-known results for
deflation and augmentation techniques within the framework described in section 2
in the case where A is Hpd. The first proposed deflated Krylov subspace methods for
Hpd matrices are the deflated CG variants of Nicolaides [41] and Dostál [12]. With
a full-rank matrix U ∈ C

N×k, U = im (U) and B = I both essentially apply the CG

method to the deflated system

(4.1) Âx̂ = b̂, where Â := PIA, b̂ := PIb.

Here, PI = I − AU(UHAU)−1UH is the projection onto U⊥ along AU as defined
in (3.6) when B = I. Moreover, QI = PH

I is then the projection onto (AU)⊥ along
U . Note that all the matrices in (3.6) are well defined because EI = UHAU is Hpd

if A is Hpd. Clearly, the deflated matrix Â is Hermitian but singular, since PI is a
nontrivial projection if 0 < k < N . In fact, this matrix Â is positive semidefinite,
since

vHÂv = vHPIAv = vHP2
IAv = vHPI(PIA)v = vHPI(PIA)Hv = vHPIAPH

I v ≥ 0

holds for any v ∈ C
N . The system (4.1) is consistent since it results from a left-

multiplication of the nonsingular system Ax = b by PI. (We note that in [41, 12] the
application of the projection PI to b is carried out implicitly by adapting the initial
guess such that the initial residual is orthogonal to U = im (U).) The solution x of

Ax = b thus also solves Âx = b̂, but in (4.1) we replaced x by x̂ to indicate the
nonuniqueness of the solution. In fact, the general solution is x̂ = x+ h with h ∈ U
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since PIAh = AQIh = 0 if and only if QIh = 0, that is, h ∈ U ; see statement 2
of Lemma 3.1. The application of QI in the final correction (3.11) will annihilate h.
Note that a deflation version including the final correction (3.11) is used by Frank
and Vuik [22] and Nabben and Vuik [38, 39].

In the context of Hpd matrices the application of the CG method to a deflated
system like (4.1) is a commonly used technique; see, e.g., [54] for a survey of results.

Finally, we point out that Â as defined in (4.1) is completely determined by A and
the choice of the space U .

According to Nicolaides [41, section 3] and Kaasschieter [30, section 2], the CG

method is well defined (in exact arithmetic) for each step n until it terminates with
an exact solution when it is applied to a consistent linear algebraic system with a real
and symmetric positive semidefinite matrix. This result easily generalizes to complex
and Hermitian positive semidefinite matrices.

Mathematically, the nth step of the CG method applied to the deflated system
(4.1) with the initial guess x0 and the corresponding initial residual r̂0 = b̂− Âx0 is
characterized by the two conditions

x̂n ∈ x0 +Kn(Â, r̂0),

r̂n = b̂− Âx̂n = PI(b−Ax̂n) ⊥ Kn(Â, r̂0).

This is nothing but the set of conditions (3.10) in Theorem 3.2 with B = I. In the
sense of relation (3.11) these conditions have been shown to be equivalent to (3.9),
namely,

xn ∈ x0 +Kn(Â, r̂0) + U ,
rn = b−Axn ⊥ Kn(Â, r̂0) + U ,

which is the starting point of the theory for the deflated CG method developed
in [48], where the authors also showed the equivalence between CG with explicit
augmentation and CG applied to the deflated system (4.1); see section 4 in [48], in
particular Theorem 4.6. In a partly similar treatment, Erhel and Guyomarc’h [18]
considered an augmented and deflated CG method where the augmentation space U is
itself a Krylov space. It is worth mentioning that both Saad et al. [48, equation (3.12)]
and Erhel and Guyomarc’h [18, equation (3.2)] use the initial correction

x0 := x−1 +MIr−1 with r−1 := b−Ax−1

to replace a given initial approximation x−1 by one with r0 ⊥ U ; in fact, it is easily
seen that r0 = PIr−1.

The goal of deflation is to obtain a deflated matrix Â whose effective condition
number is smaller than the one of A, for example, by “eliminating” the smallest eigen-
values of A. A detailed analysis of spectral properties of PIA and other projection-
type preconditioners arising from domain decomposition and multigrid methods was
carried out in [39] and [54]. In particular, it was shown in these papers that the

effective condition number of Â is less than or equal to the condition number of A
for any augmentation space U . Moreover, if Λ = Λ(A) is the spectrum of A and U is
an A-invariant subspace associated with the eigenvalues Θ = {θ1, . . . , θk} ⊂ Λ, then
the effective 2-norm condition number is

κ2(Â) =
maxλ∈Λ\Θ λ

minλ∈Λ\Θ λ
.
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In summary, for any augmentation space U , the CG method applied to the (sin-
gular) deflated system (4.1) is well defined for any iteration step n, and it terminates
with an exact solution x̂ (in exact arithmetic). Once CG has terminated with a so-
lution x̂ of the deflated system, we can obtain the uniquely defined solution of the
original system using the final correction step

x = QIx̂+MIb

(cf. (3.11)), which indeed gives

Ax = AQIx̂+AMIb = PIAx̂+AMIb = (PI +AMI)b = b.

This computation is mathematically equivalent to an explicit use of augmentation. Of
course, in practice we stop the CG iteration for the deflated system once the solution
is approximated sufficiently accurately. We then use the computed approximation x̂n

and (3.11) from Theorem 3.2 to obtain an approximation xn of the solution of the
given system Ax = b. Note that, according to (3.11), the residual r̂n = b̂ − Âx̂n

of the projected system (4.1) is equal to the residual rn = b − Axn of the original
system (1.1).

5. Non-Hermitian matrices and GMRES. In this section we present mostly
known results on applying versions of deflatedGMRes to a general nonsingular matrix
A. We set B = A in the framework of section 2 and discuss some choices for Â, v̂,
and U .

Morgan [36] and also Chapman and Saad [6] presented variations of GMRes that

can be mathematically described by (3.9) with Â = A and v̂ = b−Ax0. Hence they
augmented the search space with an augmentation space U but neither deflated the
matrix nor projected the linear system onto a subspace of CN .

Erlangga and Nabben [19] used two matrices Y,Z ∈ CN×k to define the abstract
deflation operator PYZ := I −AZ(YHAZ)−1YH for non-Hermitian matrices A. Of
course, this choice needs the assumption of nonsingularity of YHAZ. Requiring Y
and Z to have full rank obviously is not sufficient. They then applied GMRes to the
deflated linear system PYZAx̂ = PYZb.

De Sturler [10] introduced the GCRO method, which is a nested Krylov subspace
method involving an outer and an inner iteration. The outer method is the GCR

method [15, 16], while the inner iteration uses the projection

PA = I−AMAAH = I−AU(UHAHAU)−1UHAH

to apply several steps of GMRes to the projected (or deflated) linear system

(5.1) Âx̂ = b̂, where Â := PAA, b̂ := PAb.

In GCRO the matrix U is determined from the corrections of the outer iteration.
Clearly, the matrix EA = UHAHAU is nonsingular for any matrix U ∈ CN×k with
rankU = k > 0, so that all matrices in (3.6) are well defined. Note that the projection
PA is equal to the abstract deflation operator PYZ of Erlangga and Nabben with the
choice Z = U and Y = AU. For the application of PA only the matrix W := AU is
needed because PA = I−W(WHW)−1WH. De Sturler further simplified this in [10,
section 2] to PA = I−CCH by choosing a matrix C ∈ CN×k whose columns form an
orthonormal basis of im (AU).
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Here we concentrate on the GMRes method applied to the deflated system (5.1),
and we first discuss some known results within the framework presented in section 2.
Analogously to the approach for CG described in the previous section, the deflated
system (5.1) results from the given system Ax = b by a left-multiplication with PA

which projects onto (AU)⊥ along AU . Note that PA is an orthogonal projection,
since PA is Hermitian.

If we start GMRes with an initial guess x0 and the corresponding initial residual
r̂0 = b̂−Âx0 = PA(b−Ax0), then the iterate x̂n and the residual r̂n are characterized
by the two conditions

x̂n ∈ x0 +Kn(Â, r̂0) and r̂n = b̂− Âx̂n ⊥ ÂKn(Â, r̂0).

If the columns of Vn form a basis of Kn(Â, r̂0), then the second condition means that

0 = VH
nÂ

Hr̂n = VH
nA

HPH
Ar̂n = VH

nA
HPAPA (b−Ax̂n) = VH

nA
HPA (b−Ax̂n)

= VH
nA

Hr̂n,

or, equivalently,

r̂n ⊥ AKn(Â, r̂0).

Note that here the Krylov subspace is multiplied with A instead of Â and that this
condition has precisely the form of the second condition in (3.10). Theorem 3.2 now
implies that the mathematical characterization of GMRes applied to the deflated
system Âx̂ = b̂ is equivalent to the explicit use of augmentation, i.e., the conditions

xn ∈ x0 +Kn(Â, r̂0) + U ,(5.2)

rn = b−Axn ⊥ AKn(Â, r̂0) +AU ,(5.3)

in the sense that

(5.4) xn = QAx̂n +MAAHb and rn = b−Axn = b̂− Âx̂n = r̂n.

As mentioned in the beginning of section 2, conditions (5.2)–(5.3) are equivalent to
the minimization problem

find xn ∈ x0 + Sn s.t. ‖b−Axn‖2 = min
y∈x0+Sn

‖b−Ay‖2

with the search space Sn = Kn(Â, r̂0) + U . In the setting of GCRO, where U is
determined from the GCR iteration, the equivalence between GMRes applied to
Âx̂ = b̂ and the minimization problem with an explicitly augmented search space has
already been pointed out by de Sturler [10, Theorem 2.2]. The GCRO method was
extended to an arbitrary rank-k matrix U in [32, section 2]. In the case where U is
an A-invariant subspace the equivalence is straightforward and has been pointed out
by Eiermann, Ernst, and Schneider [14, Lemma 4.3].

Again the deflated matrix Â is singular, and we have to discuss whether the
application of GMRes to the deflated system yields (in exact arithmetic) a well-
defined sequence of iterates that terminates with a solution. This turns out to be
significantly more difficult than in the case of the CG method. Properties of GMRes

applied to singular systems have been analyzed by de Sturler [10] and by Brown and
Walker [5]. The following result is an extension of [5, Theorem 2.6].
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Theorem 5.1. Consider an arbitrary matrix Â ∈ CN×N and a vector b̂ ∈ im (Â)

(i.e., the linear algebraic system Âx̂ = b̂ is consistent). Then the following two
conditions are equivalent:

1. For every initial guess x0 ∈ CN the GMRes method applied to the system
Âx̂ = b̂ is well defined at each iteration step n and it terminates with a
solution of the system.

2. ker (Â) ∩ im (Â) = {0}.
Proof. It has been shown in [5, Theorem 2.6] that condition 2 implies condition 1.

We prove the reverse by contradiction. We assume that ker (Â)∩im (Â) �= {0}, and we
will construct an initial guess for which GMRes does not terminate with the solution.
For a nonzero vector y ∈ ker (Â)∩ im (Â) there exists a nonzero vector ŷ ∈ CN , such

that y = Âŷ, and since Âx̂ = b̂ is consistent, there exists a vector x̂ ∈ CN with
b̂ = Âx̂. Then the initial guess x0 := x̂− ŷ gives r0 = b̂− Âx0 = b̂− Âx̂+ Âŷ = y.
But since y ∈ ker (Â), we obtain Âr0 = 0, so that the GMRes method terminates
at the first iteration with the approximation x0, for which r0 = y �= 0. Thus, for
this particular initial guess x0 the GMRes method cannot determine the solution of
Âx̂ = b̂.

The situation that the GMRes method terminates without finding the exact
solution is often called a breakdown ofGMRes. The above proof leads to the following
characterization of all initial guesses that lead to a breakdown of GMRes at the first
iteration.

Corollary 5.2. Let Â ∈ CN×N and x̂, b̂ ∈ CN×N such that Âx̂ = b̂. Then the
GMRes method breaks down at the first iteration for all initial guesses

x0 ∈ X0 :=
{
x̂− ŷ

∣∣ Âŷ ∈ ker (Â) \ {0}}.
We next have a closer look at condition 2 in Theorem 5.1. If we had ker (Â) =

ker (ÂH), then im (Â)⊥ = ker (ÂH) would imply

{0} = im (Â)⊥ ∩ im (Â) = ker (ÂH) ∩ im (Â) = ker (Â) ∩ im (Â),

so that condition 2 would hold. Thus condition 2 in Theorem 5.1 is fulfilled for any
Hermitian matrix Â. For a general non-Hermitian matrix, however, it seems difficult
to determine a deflated matrix with ker (Â) = ker (ÂH). However, for the deflated
system (5.1) we can derive another condition that is equivalent with condition 2 (and
hence condition 1) in Theorem 5.1.

Corollary 5.3. For the deflated system (5.1), condition 2 in Theorem 5.1 is
satisfied if and only if U ∩(AU)⊥ = {0}. In particular, the latter condition is satisfied
when U is an exactly A-invariant subspace, i.e., when AU = U .

Proof. Using the properties of the projection PA from Lemma 3.1 and the fact
that A is nonsingular, we obtain

ker (Â) = ker (PAA) = A−1ker (PA) = U ,
im (Â) = im (PAA) = im (PA) = (AU)⊥.

If AU = U , then U ∩ (AU)⊥ = {0} holds trivially.
For a nonsingular matrix, condition 2 in Theorem 5.1 always holds trivially, and

hence a breakdown of GMRes can only occur if the method is applied to a linear
algebraic system with a singular matrix. (This fact has been known since the method’s
introduction in 1986 [47].) Breakdowns have also been analyzed by de Sturler [10]
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in the context of the GCRO method. (See the end of section 6.1 below for further
comments.) We want to point out that it is unlikely that a random initial guess lies
in the subspace X0 specified in Corollary 5.2 for which the GMRes method breaks
down in the first step. However, a general U may lead to a breakdown. To illustrate
the problem of breakdowns in our context, we give an example that is adapted from
[5, Example 1.1].

Example 5.4. Consider a linear algebraic system with

A =

[
0 1
1 0

]
, b =

[
1
0

]
,

so that the unique solution is given by the vector [0, 1]T. Let the augmentation space
be defined by U1 = [1, 0]T, and then

PA =

[
1 0
0 0

]
, Â = PAA =

[
0 1
0 0

]
, b̂ = PAb =

[
1
0

]
.

If x0 is the zero vector, then r̂0 = b̂ and Âr̂0 = 0, and thus GMRes applied to
the deflated system terminates at the very first iteration with the approximation x0.
Since Âx0 �= b̂, this is a breakdown of GMRes. Furthermore, applying the correction
(3.7) to x̂0 = x0 does not yield the solution of the original system Ax = b because

QAx0 +MAAHb = MAAHb = U1U
H
1A

Hb = 0 �=
[

0
1

]
.

Corollary 5.3 states that the GMRes method applied to the deflated system (5.1)
cannot break down if U is an A-invariant subspace. The following example shows that
care has also to be taken with approximate A-invariant subspaces.

Example 5.5. Let α > 0 be a small positive number. Then v := [0, 1, α]T is an
eigenvector of the matrix

A :=

⎡⎣ 0 1 −α−1

1 0 α−1

0 0 1

⎤⎦
corresponding to the eigenvalue 1. Instead of v we use the perturbed vector U2 :=
[0, 1, 0]T as a basis for the deflation space U = im (U2) and obtain

AU2 =

⎡⎣ 1
0
0

⎤⎦ , PA =

⎡⎣ 0 0 0
0 1 0
0 0 1

⎤⎦ , PAA =

⎡⎣ 0 0 0
1 0 α−1

0 0 1

⎤⎦ .

For x,b ∈ C3 with Ax = b the GMRes method then breaks down in the first step for
all x0 ∈ {x+ β[1, 0, 0]T | β �= 0}. Note that ‖U2 − v‖2 = α can be chosen arbitrarily
small. A better measure for the quality of an approximate invariant subspace would
be the largest principal angle between U and AU .

6. Hermitian matrices and variants of MINRES. We will now apply the
results presented in sections 2 and 5 to the case where A is Hermitian, nonsingular,
and possibly indefinite. For a Hermitian matrix the GMRes method considered in
section 5 is mathematically equivalent to the MinRes method, which is based on the
Hermitian Lanczos algorithm and thus uses efficient three-term recurrences.
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6.1. The RMINRES method. This subsection discusses theRMinResmethod
developed by Wang, de Sturler, and Paulino [57]. This method fits into the frame-
work of section 2, and the results presented in section 5 apply. Wang, de Sturler,
and Paulino were interested in solving sequences of linear algebraic systems that ex-
hibit only small changes from one matrix in the sequence to the next one, and they
suggested to reuse information from previous solves. The RMinRes method consists
of two main parts that can basically be analyzed separately: an augmented and de-
flated MinRes solver which is based on GCRO and an extraction procedure for the
augmentation and deflation data. In the second part Wang, de Sturler, and Paulino
determined harmonic Ritz vectors that correspond to harmonic Ritz values close to
zero and used these approximate eigenspaces for augmenting the Krylov subspace.
Here, we omit the extraction of the augmentation and deflation space and concen-
trate on the method for solving the systems. We refer to this as the solver part of the
RMinRes method. We point out that the extracted spaces can be arbitrary if there
are no restrictions on the changes of the matrices in the sequence of linear algebraic
systems. However, the RMinRes method has been presented in [57] with an applica-
tion in topology optimization where the extracted approximated eigenvectors of one
matrix are still good approximations to eigenvectors of the next matrix. Furthermore,
we will not address the preconditioning technique outlined in [57] and assume that
the given linear algebraic system is already in the preconditioned form.

As in section 5, we set B = A and consider first the resulting deflated system of
the form (5.1),

Âx̂ = b̂, where Â := PAA, b̂ := PAb.

If we apply MinRes to this linear algebraic system with an initial guess x0 and the
corresponding initial residual r̂0 = b̂− Âx0 = PA(b−Ax0), then the iterate x̂n and
the residual r̂n are characterized by the two conditions

x̂n ∈ x0 +Kn(Â, r̂0) and r̂n = b̂− Âx̂n ⊥ ÂKn(Â, r̂0).(6.1)

This is essentially the approach of Kilmer and de Sturler [32, section 2]. Olshanskii
and Simoncini [42] recently used a different approach where the MinRes method
is applied to the deflated system PIAx̂ = PIb with the special initial guess x0 =
U(UHAU)−1UHb. We note that the presentation in [42] is slightly different but the
above can be seen with minor algebraic modifications to the relations in and preceding
Proposition 3.1 in [42].

An attentive reader has certainly noticed that the deflated matrix Â = PAA =
A − AMAA2 is in general not Hermitian, even when A is Hermitian. However, as
pointed out in [32, footnote on p. 2153] and [57, footnote on p. 2446], a straightforward
computation shows that

(6.2) Kn(PAA,PAv) = Kn(PAAPA,PAv)

holds for every vector v ∈ CN because PA is a projection. The matrix PAAPA is
obviously Hermitian (sinceA and PA are Hermitian), and hence the Krylov subspaces
we work with are also generated by a Hermitian matrix. It is therefore possible to
implement a MinRes-like method for the deflated system, which is based on three-
term recurrences and which is characterized by the conditions (6.1). As presented in
section 5, these conditions combined with the correction step (5.4) are equivalent to
the explicit use of augmentation, i.e., conditions (5.2)–(5.3).
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The latter conditions are the basis of the solver part of the RMinRes method by
Wang, de Sturler, and Paulino in [57, section 3]. We summarize the above and give
two mathematically equivalent characterizations of the RMinRes solver applied to
the system Ax = b with an initial guess x0:

1. The original approach used in [57] incorporates explicit augmentation, which
means to construct iterates xn satisfying the two conditions

xn ∈ x0 +Kn(PAA,PAr0) + U ,
rn = b−Axn ⊥ AKn(PAA,PAr0) +AU .(6.3)

2. A mathematically equivalent approach is to apply MinRes to the deflated
system

PAAx̂ = PAb(6.4)

and correct the resulting iterates x̂n according to xn = QAx̂n +MAAb.
Note that on an algorithmic level the second approach exhibits lower computa-

tional cost since the correction in the space U is only carried out once at the end,
while the RMinRes solver requires one update per iteration.

Since the solver part of RMinRes is mathematically equivalent to MinRes (and
GMRes) applied to the deflated system, Corollary 5.3 also applies to RMinRes. In
particular, the method can break down for specific initial guesses if (and only if)
U ∩ (AU)⊥ �= {0}. Breakdowns cannot occur if U is an exact A-invariant subspace,
but this is an unrealistic assumption in practical applications. Note that the matrix
A in Example 5.4 is Hermitian, thus it also serves as an example for a breakdown
of the RMinRes solver. That the RMinRes method can break down may already
be guessed from the fact that this method is based on the GCRO method and thus
potentially suffers from the breakdown conditions forGCRO derived in [10]. However,
the possibility of breakdowns has not been mentioned in [57], and in the example
of a GCRO breakdown given in [10] the matrix A is not Hermitian. Hence this
example cannot be used in the context of the RMinRes method, which is intended
for Hermitian matrices.

In the next subsection we show how to suitably modify the RMinRes approach
to avoid breakdowns.

6.2. Avoiding breakdowns in deflated MINRES. We have seen in section 5
that if ker (Â) = ker (ÂH), then condition 1 in Theorem 5.1 is satisfied. Consequently,

if we can determine a Hermitian deflated matrix Â and a corresponding consistent
deflated system, MinRes applied to this system cannot break down for any initial
guess.

Using the projections PA and QA from (3.6) we decompose the solution x of
Ax = b as

x = PAx+ (I−PA)x = PAx+AMAAx = PAx+AMAb,(6.5)

x = QAx+ (I−QA)x = QAx+MAA2x = QAx+MAAb.(6.6)

Using (6.6), the system Ax = b becomes A(QAx+MAAb) = b. With the definition
of PA and AQA = PAA (cf. Lemma 3.1) we see that this is equivalent to

PAAx = PAb.
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We now substitute for x from (6.5) and obtain PAA(PAx+AMAb) = PAb which
is equivalent to

PAAPAx = PAQH
Ab.(6.7)

We can show the following result for the MinRes method applied to this sym-
metric system.

Theorem 6.1. For each initial guess x0 ∈ CN the MinRes method applied to
the system (6.7) yields (in exact arithmetic) a well-defined iterate xn at every step
n ≥ 1 until it terminates with a solution. Moreover, the sequence of iterates

xn := QA (PAxn +AMAb) +MAAb(6.8)

is well defined. It terminates (in exact arithmetic) with the exact solution x of the
original linear system Ax = b, and its residuals are given by rn = b − Axn =
PAQH

Ab−PAAPAxn.
Proof. The first part follows from the fact that the system (6.7) is a consistent

system with a Hermitian matrix PAAPA, so that we can apply Theorem 5.1. It
remains to show the second part. The nth residual of the original system Ax = b is
given by

rn = b−Axn = b−A (QA (PAxn +AMAb) +MAAb)

= b−AQA (PAxn +AMAb)−AMAAb

= (I−AMAA)b−PAA (PAxn +AMAb)

= PAb−PAAPAxn −PAA2MAb

= PA

(
I−A2MA

)
b−PAAPAxn

= PAQH
Ab−PAAPAxn.

We see that rn is equal to the nth MinRes residual for the system (6.7). In particular,
this implies that the exact solution of (1.1) is given by (6.8) once an exact solution
xn of (6.7) has been determined by MinRes.

When MinRes is applied to the deflated system (6.7), the Hermitian iteration
matrix PAAPA can again be replaced by the non-Hermitian matrix PAA (cf. sec-
tion 6.1).

The following theorem shows that a modification of the initial guess suffices to
make the solver part of the RMinRes method mathematically equivalent to MinRes

applied to the system (6.7).
Theorem 6.2. We consider the following two approaches:
1. The solver part of the RMinRes method applied to Ax = b with the initial

guess x̂0 := PAx0 + AMAb and resulting iterates xn and residuals rn =
b−Axn.

2. The MinRes method applied to (6.7) with the initial guess x0 and resulting
iterates xn and residuals rn := PAQH

Ab−PAAPAxn.
Both approaches are equivalent in the sense that xn = QA(PAxn+AMAb)+MAAb
and rn = rn.

Proof. Let us start with the MinRes method applied to (6.7), which constructs
iterates xn = x0 + Vnyn, where Vn ∈ CN×n is of full rank n such that im (Vn) =
Kn(PAAPA,PQHr0). Then PAVn = Vn and the corrected iterates are

xn = QA(PA(x0 +Vnyn) +AMAb) +MAAb = QA(x̂0 +Vnyn) +MAAb

= QAx̂n +MAAb(6.9)
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with x̂n := x̂0 +Vnyn. For n > 0 the nth residual of xn with respect to the system
(6.7) is

rn = PAQH
Ab−PAAPAxn = PA(QH

Ab−APAx0 −AVnyn)

= PA(b−A(PAx0 +AMAb+Vnyn)) = PAb−PAAx̂n =: r̂n.

This is the residual of x̂n with respect to the system (6.4). We also have

r̂0 = PAb−PAAx̂0 = PAQH
Ab−PAAPAx0 = r0,

and thus the starting vectors of the Krylov subspace for both methods are equal.
Because of (6.2) the Krylov subspaces are also equal. From the definition of the
Krylov subspaces we immediately obtain

rn ⊥ PAAPAKn(PAAPA, r0) ⇐⇒ r̂n ⊥ PAAKn(PAA, r̂0).

We can now see that the iterates x̂n are the iterates of MinRes applied to (6.4)
with the initial guess x̂0. Along with the correction (6.9) this was shown to be
equivalent to the RMinRes solver applied to Ax = b with the initial guess x̂0 (cf. sec-
tion 6.1).

This means that (in exact arithmetic) breakdowns in the solver part of the RMin-

Res method can be prevented by either adapting the right-hand side to QHb and
correcting the approximate solution at the end according to Theorem 6.1 or by choos-
ing the adapted initial guess x̂0 defined in Theorem 6.2. Both choices do not increase
the computational cost significantly since these computations only need to be carried
out once. A similar special initial guess has also been used in [54] to obtain a robust
deflation-based preconditioner for the CG method; compare the A-DEF2 method
in [54, Table 2].

6.3. Numerical experiments. In this subsection, we will show the numerical
behavior of selected Krylov subspace methods discussed above. Detailed numerical ex-
periments with the deflated CGmethod (cf. section 4) and equivalent approaches have
been presented in [54]. Here, we will focus on the solver part of the RMinRes method
and the deflated MinRes method in order to numerically illustrate the phenomenon
of breakdowns that have only been described theoretically so far (cf. sections 6.1 and
6.2). Both methods are implemented in MATLAB with three-term Lanczos recur-
rences and Givens rotations for solving the least squares problem. All residuals have
been computed explicitly in each iteration.

Example 6.3. In this example we use a matrix A = WHDW ∈ R
2m×2m, m =

50, where D = diag(λ1, . . . , λ2m) with λj =
√
j, λm+j = −√

j for j = 1, . . . ,m
and W = [w1, . . . ,w2m] is a randomly generated orthogonal matrix. We consider a
matrix U = [u1, . . . , uk] whose columns are pairwise orthogonal eigenvectors of A,
i.e., AU = UDU and UHU = Ik with a diagonal matrix DU = diag(λj1 , . . . , λjk )
for 0 < j1 < · · · < jk < 2m. This means that U = im (U) is an exact A-invariant
subspace. Then a straightforward computation reveals that PA = QA = I −UUH,
which is obviously Hermitian, and

PAAPA = PAAQA = P2
AA = PAA, PAQH

A = P2
A = PA.

By comparing the correction steps of RMinRes and deflated MinRes (cf. sections 6.1
and 6.2) and using PAAMA = 0, we can see that both methods are mathematically
equivalent if U is an exact invariant subspace.

We solve the system Ax = b with a random right-hand side b and the initial
guess x0 = 0. In Figure 6.1 we show the relative residual norms of the solvers
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Fig. 6.1. Convergence history for Example 6.3. The convergence curves of both RMinRes

solver implementations and the deflated MinRes method coincide.

• MinRes (solid line),
• RMinRes with explicit augmentation and deflation (dotted line) according
to Wang, de Sturler, and Paulino [57]; cf. (6.3),

• RMinRes with deflation only (dash-dotted line), i.e., the residual norms of
MinRes applied to the system PAAx = PAb; cf. (6.4),

• deflated MinRes (dashed line), i.e., the residual norms of MinRes applied
to the system PAAPAx = PAQH

Ab; cf. section 6.2.
For the last three methods we used the matrix U = [w1, . . . ,w5,w51, . . . ,w55] which
contains the eigenvectors associated with the 10 eigenvalues of A of smallest absolute
value. Thus the deflation space U has dimension 10. We have shown above that the
two implementations of RMinRes and the deflated MinRes method are mathemat-
ically equivalent, and in this example the three convergence curves corresponding to
these methods indeed coincide; see Figure 6.1.

Example 6.4. We now investigate breakdowns and near-breakdowns of the
RMinRes method using a set of artificially constructed examples. Of course, the
occurrence of an exact breakdown as in the following examples will be rare in practi-
cal applications.

For our construction we use the same matrix A as in Example 6.3, and we con-
struct a subspace U for which U ∩ (AU)⊥ �= {0}. Thus, the condition that guarantees
a breakdown-free RMinRes computation is violated; cf. section 6.1. To construct the
subspace U we choose an integer k, 0 < k < m, and we define W1 = [wi1 , . . . ,wik ]
and W2 = [wm+i1 , . . . ,wm+ik ] for indices 0 < i1 < · · · < ik < m. With DU =
diag(λi1 , . . . , λik) we obtain AW1 = W1DU and AW2 = −W2DU because of the
symmetry of the spectrum of A. We now choose the matrix U = W1 +W2. Apply-
ing A yields AU = (W1 −W2)DU and using the fact that W is unitary shows that
UHAU = 0, or, equivalently, U ⊂ (AU)⊥. The proof of Theorem 5.1 gives us a way
to construct an initial guess which leads to an immediate breakdown of RMinRes.
For an arbitrary 0 �= u ∈ U we choose x0 = A−1(b − u). Because of U ⊥ AU we
have PAu = u and the initial residual of RMinRes is r0 = PAb − PAAx0 = u.
The breakdown then occurs in the first iteration because PAAr0 = PAAu = 0 since
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(a) Unperturbed deflation space U(1)
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(b) Perturbed deflation space U(2) = U(1) +E

Fig. 6.2. Convergence history for Example 6.4. The convergence curves of both RMinRes

solver implementations coincide.

Au ∈ AU = ker (PA). For these constructed initial guesses the RMinRes method
indeed breaks down immediately in numerical experiments, whereas the deflated
MinRes method finds the solution after one step. There is no need to plot these
results.

Of greater interest are situations with perturbed data. Interestingly, randomly
perturbed initial guesses lead to a breakdown of RMinRes with the previously con-
structed deflation space as well. In Figure 6.2(a) we show the relative residual norms
of the solvers listed above applied to the same A and b as in the previous example
and with the matrix U(1) = [w1 +w51, . . . ,w10 +w60].

Furthermore, breakdowns also occur when we perturb the deflation space. Fig-
ure 6.2(b) shows the results for a perturbed matrix U(2) = U(1) + E with a random
E ∈ C100×10 and ||E||2 = 10−10. The used initial guess is the same perturbed initial
guess as in the experiment conducted for Figure 6.2(a).
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Note that both RMinRes implementations suffer from a breakdown after a few
steps with both matrices U(1) and U(2). With the unperturbed matrix U(1) the
deflated MinRes method converges to the solution with a relative residual smaller
than 10−12, while in the case of the perturbed matrix U(2) the method stagnates with
a relative residual of order 10−11. This stagnation of deflated MinRes seems to be
related to an unfavorable spectrum of PAAPA for these specifically constructed and
perturbed matrices like U(2). It is unlikely that the stagnation is caused by roundoff
errors because the stagnation also occurs (up to iteration 100) when full recurrences
(GMRes) are used instead of short recurrences (MinRes). Perturbing the matrix
U from Example 6.3, whose columns are exact eigenvectors of A, does not cause
stagnation. This behavior is still subject to further research.

Note that the construction of U = im (U) in Example 6.4 is such that AU ⊥ U
which cannot be achieved with a (nearly) A-invariant subspace if A is Hermitian.
In [57] an approximation to an invariant subspace of a previous matrix in a sequence
of linear algebraic systems is used. In this situation care has to be taken that the
extracted space is still a good approximation to an invariant subspace of the current
matrix. However, in the experiments of [57, section 7] this seems to be fulfilled since
stagnation has not been observed.

7. Conclusions. In this paper we first analyzed theoretically the link between
basic theoretical properties of deflated and augmented Krylov subspace methods
whose residuals satisfy a Galerkin condition, including the minimum residual methods
whose inclusion into the class of Galerkin methods requires a replacement of the stan-
dard inner product. We proved that augmentation can be achieved without explicitly
augmenting the Krylov subspace but instead projecting the residuals appropriately
and using a correction formula for the approximate solutions. We discussed this result
in detail for the CG method and GMRes/MinRes methods, the main representa-
tives of our class. It turned out that for these methods some of our results had been
mentioned before in the literature.

The projections which arise from the augmentation can also be used to obtain a
deflated system. We have seen that a left-multiplication of the original system with
the corresponding projection yields a deflated system for which the CG method and
GMRes/MinRes methods implicitly achieve augmentation. We proved that for non-
singular Hermitian matrices the MinRes method for the deflated system is equivalent
to the solver part of the RMinRes method introduced in [57]. While CG never breaks
down, GMRes, MinRes, and thus RMinRes may suffer from breakdowns when used
with the deflated systems. We stated necessary and sufficient conditions to charac-
terize breakdowns of these minimal residual methods. For Hermitian matrices, we
introduced the deflated MinRes method which also uses a Hermitian deflated matrix
and proved that it cannot break down. These results were illustrated numerically.

Our framework covers methods based on a specific type of Galerkin condition;
see (2.1)–(2.2). It does not include methods based on other conditions, in particular
those that in practical methods are realized using the non-Hermitian Lanczos algo-
rithms. Examples for such methods areBiCG [21] and its variants including CGS [50],
Bi-CGStab [55], and IDR(s) [51]. Extending our framework to such methods re-
mains a subject of further work.

Moreover, in this paper we did not discuss or recommend practical choices of
deflation or augmentation spaces. Finding spaces that lead to an improved conver-
gence behavior of the deflated or augmented method is a highly challenging task that
should be attacked with a specific application in mind. Similar to preconditioning,
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there exists no single best strategy for choosing deflation or augmentation spaces
in practice. Often one deflates (approximations of) eigenvectors corresponding to the
smallest eigenvalues of the given matrix. For symmetric or Hermitian positive definite
matrices, this strategy can be shown to reduce the effective condition number, which
in turn leads to improved convergence bounds and actually faster convergence of the
iterative solver; see, e.g., [56]. For nonsymmetric or non-Hermitian matrices, however,
the question of effective choices of deflation or augmentation spaces is largely open.

Acknowledgments. The authors wish to thank the anonymous referees for their
comments which helped to improve the presentation.
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41 (2002), pp. 7–22.

[29] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems,
J. Research Nat. Bur. Standards, 49 (1952), pp. 409–436.

[30] E. F. Kaasschieter, Preconditioned conjugate gradients for solving singular systems, J. Com-
put. Appl. Math., 24 (1988), pp. 265–275.

[31] S. A. Kharchenko and A. Y. Yeremin, Eigenvalue translation based preconditioners for the
GMRES(k) method, Numer. Linear Algebra Appl., 2 (1995), pp. 51–77.

[32] M. E. Kilmer and E. de Sturler, Recycling subspace information for diffuse optical tomog-
raphy, SIAM J. Sci. Comput., 27 (2006), pp. 2140–2166.

[33] L. Y. Kolotilina, Twofold deflation preconditioning of linear algebraic systems. I. Theory, J.
Math. Sci., 89 (1998), pp. 1652–1689.

[34] L. Mansfield, On the conjugate gradient solution of the Schur complement system obtained
from domain decomposition, SIAM J. Numer. Anal., 27 (1990), pp. 1612–1620.

[35] L. Mansfield, Damped Jacobi preconditioning and coarse grid deflation for conjugate gradient
iteration on parallel computers, SIAM J. Sci. Statist. Comput., 12 (1991), pp. 1314–1323.

[36] R. B. Morgan, A restarted GMRES method augmented with eigenvectors, SIAM J. Matrix
Anal. Appl., 16 (1995), pp. 1154–1171.

[37] R. B. Morgan, Restarted block-GMRES with deflation of eigenvalues, Appl. Numer. Math.,
54 (2005), pp. 222–236.

[38] R. Nabben and C. Vuik, A comparison of deflation and coarse grid correction applied to
porous media flow, SIAM J. Numer. Anal., 42 (2004), pp. 1631–1647.

[39] R. Nabben and C. Vuik, A comparison of deflation and the balancing preconditioner, SIAM
J. Sci. Comput., 27 (2006), pp. 1742–1759.

[40] R. Nabben and C. Vuik, A comparison of abstract versions of deflation, balancing and additive
coarse grid correction preconditioners, Numer. Linear Algebra Appl., 15 (2008), pp. 355–
372.

[41] R. A. Nicolaides, Deflation of conjugate gradients with applications to boundary value prob-
lems, SIAM J. Numer. Anal., 24 (1987), pp. 355–365.

[42] M. A. Olshanskii and V. Simoncini, Acquired clustering properties and solution of certain
saddle point systems, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 2754–2768.

[43] C. C. Paige and M. A. Saunders, Solutions of sparse indefinite systems of linear equations,
SIAM J. Numer. Anal., 12 (1975), pp. 617–629.

[44] Y. Saad, Krylov subspace methods for solving large unsymmetric systems, Math. Comp., 37
(1981), pp. 105–126.

[45] Y. Saad, Analysis of augmented Krylov subspace methods, SIAM J. Matrix Anal. Appl., 18
(1997), pp. 435–449.

[46] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, Philadelphia, 2003.
[47] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving

nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869.
[48] Y. Saad, M. Yeung, J. Erhel, and F. Guyomarc’h, A deflated version of the conjugate

gradient algorithm, SIAM J. Sci. Comput., 21 (2000), pp. 1909–1926.
[49] V. Simoncini and D. B. Szyld, Recent computational developments in Krylov subspace meth-

ods for linear systems, Numer. Linear Algebra Appl., 14 (2007), pp. 1–59.
[50] P. Sonneveld, CGS, a fast Lanczos-type solver for nonsymmetric linear systems, SIAM J.

Sci. Statist. Comput., 10 (1989), pp. 36–52.
[51] P. Sonneveld and M. B. van Gijzen, IDR(s): A family of simple and fast algorithms for

solving large nonsymmetric systems of linear equations, SIAM J. Sci. Comput., 31 (2008),
pp. 1035–1062.

[52] E. Stiefel, Relaxationsmethoden bester Strategie zur Lösung linearer Gleichungssysteme,
Comm. Math. Helv., 29 (1955), pp. 157–179.

D
ow

nl
oa

de
d 

12
/1

4/
17

 to
 1

30
.1

49
.1

76
.1

72
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

518 A. GAUL, M. H. GUTKNECHT, J. LIESEN, AND R. NABBEN

[53] J. M. Tang, S. P. MacLachlan, R. Nabben, and C. Vuik, A comparison of two-level pre-
conditioners based on multigrid and deflation, SIAM J. Matrix Anal. Appl., 31 (2010),
pp. 1715–1739.

[54] J. M. Tang, R. Nabben, C. Vuik, and Y. A. Erlangga, Comparison of two-level precon-
ditioners derived from deflation, domain decomposition and multigrid methods, J. Sci.
Comput., 39 (2009), pp. 340–370.

[55] H. A. van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for
the solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 13 (1992),
pp. 631–644.

[56] C. Vuik, R. Nabben, and J. Tang, Deflation acceleration for domain decomposition precon-
ditioners, in Proceedings of the 8th European Multigrid Conference, TU Delft, Delft, The
Netherlands, P. Wesseling, C. Oosterlee, and P. Hemker, eds., 2006.

[57] S. Wang, E. de Sturler, and G. H. Paulino, Large-scale topology optimization using pre-
conditioned Krylov subspace methods with recycling, Internat. J. Numer. Methods Engrg.,
69 (2007), pp. 2441–2468.

[58] R. Weiss, Convergence Behavior of Generalized Conjugate Gradient Methods, Ph.D. thesis,
University of Karlsruhe, Karlsruhe, Germany, 1990.

[59] R. Weiss, Error-minimizing Krylov subspace methods, SIAM J. Sci. Comput., 15 (1994),
pp. 511–527.

[60] R. Weiss, Properties of generalized conjugate gradient methods, Numer. Linear Algebra Appl.,
1 (1994), pp. 45–63.

[61] M. Yeung, J. Tang, and C. Vuik, On the convergence of GMRES with invariant-subspace
deflation, Report 10-14, Delft University of Technology, Delft, The Netherlands, 2010.

D
ow

nl
oa

de
d 

12
/1

4/
17

 to
 1

30
.1

49
.1

76
.1

72
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p


