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Abstract—Block ciphers provide confidentiality by encrypting confidential messages into unintelligible form, which are irreversible

without knowledge of the secret key used. During the design of a block cipher, its security against cryptanalysis must be considered.

History has shown that a cipher designed without an adequate treatment of this will often lead to flaws and attacks by other

researchers, sometimes devastatingly so. The problem for an aspiring cipher designer is that there are no standard texts on block

cipher cryptanalysis because it is a fast changing field. The commonly available references are academic journals and conference

proceedings, which may not be easy to grasp for researchers new to cryptanalysis. This paper presents the Xi framework, which is

designed to compactly describe the block cipher cryptanalysis techniques regardless of their individual differences. This provides the

cryptanalyst with a general framework to describe attacks on block ciphers, with the additional capabilities of allowing specification of

the technical details of each different type of attack and of comparison of their respective strengths. Comparing different distinguishers

in this framework also allows us to see natural generalizations and trigger nice open problems. We then show how to apply this

Xi framework to the description of various attacks on popular and recent block ciphers.

Index Terms—Encryption, cryptanalysis, block ciphers, framework, generalization, distinguishers.

Ç

1 INTRODUCTION

BLOCK ciphers [25] are secret-key encryption algorithms
that encrypt plaintext messages n bits at a time into

unintelligible ciphertext, under the control of a secret
key K. Examples of block ciphers include the Data
Encryption Standard (DES) and the Advanced Encryption
Standard (AES) [12] adopted by the US National Institute of
Standards and Technology (NIST) in 2001 as a Federal
Information Processing Standard (FIPS) [27] for protection
of nonclassified sensitive information.

During the design of a block cipher, its security against
cryptanalysis needs to be considered. Cryptanalysis typi-
cally involves studying how resistant a cipher is against
distinguishing attacks and key-recovery attacks. Distin-
guishing attacks are those that show that a cipher’s structure
exibits some identifiable nonrandomness that allows some-
one to differentiate between a black box containing the
cipher EK and a black box containing a random permuta-
tion � : f0; 1gn ! f0; 1gn. Key-recovery attacks are those
where a cryptanalyst strives to obtain the secret key K;
thus any ciphertext can be decrypted back to the plaintext.

The most naive key-recovery attack is the exhaustive key
search, which involves guessing all possible values of K by
brute force and, for each guess, verifying via trial decryp-
tion of the ciphertext if the guessed value is correct. Hence,
the overall effort is 2jKj trial decryptions, where jKj denotes
the length of K in bits. This attack applies to any cipher,

regardless of its internal structure, and is only dependent
on the size of the key K. Because of this, the exhaustive key
search is generally used as a benchmark. If other cryptana-
lytic attacks exist on a cipher that require less effort than
exhaustive key search, the cipher is considered broken
because it would then be better to use any other unbroken
jKj-bit key cipher.

Cryptanalysis is important during the design of a cipher
to show how secure a cipher is, how sound the design
principles are, and whether there are any observable flaws
in the structure. Results in cryptanalysis thus serve as
certificational strengths of a cipher. Users like to be assured
of this for any security system that they are using.

To date, modern cryptanalysis methods for block ciphers
are numerous as compared to the early 1990s when the
differential cryptanalysis [6], the first generic cryptanalysis
technique to apply to a large class of ciphers, was
introduced. For an aspiring cryptanalyst, understanding
the concepts of block cipher cryptanalysis is a hard task
since there is no defined textbook on the subject. The sole
references are the journal papers and proceedings of
conferences, which are technical and suitable mostly for
advanced cryptanalysis researchers.

In this paper, we take the first step toward bridging the
gap between these two extreme sides of the cryptanalytic
research community by generalizing the concepts behind
various cryptanalytic techniques and defining the
Xi ð�Þ framework as a general framework for compactly
describing cryptanalytic attacks on block ciphers. Indepen-
dently, in [33], a commutative diagram framework was
proposed to include some block cipher cryptanalysis
techniques. We shall briefly discuss the similarities and
differences between both frameworks in Section 5.

Currently, there exists no uniform method or notation for
describing cryptanalytic attacks. Attacks are described in
paragraph upon paragraph of text and, hence, do not
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provide a concise view for the interested reader. The

Xi framework permits compact representation of these

attacks and can easily be translated to pseudocode and later

to source code for test implementations, which further

enhances the reader’s understanding of the concepts. This

framework also allows for highlighting the similar abstract

structure of various cryptanalytic techniques and, so, may

enable the fusion of ideas used in a certain technique to

other techniques and trigger some interesting open pro-

blems as a natural consequence. We highlight some of these

fusions in Section 3.
Section 2 first outlines the basic notations to be used

throughout this paper and then describes a general

cryptanalytic attack in algorithmic form. Section 3 next

discusses various block cipher cryptanalysis techniques by

viewing them as exploiting unique distinguishers. Section 4

then presents two examples of how the proposed ð�Þ
framework can be used to describe attacks on the DES and

AES. In Section 5, we also relate between our framework

and that proposed in [33]. We finally conclude in Section 6

and motivate some open problems.

2 THE XI (�) FRAMEWORK

In this section, we present the basic notations used in the

Xi framework for representing cryptanalytic attacks on

block ciphers. Concrete application examples will be

presented in the later sections.

2.1 Basic Notations

The preliminary notations include symbols used to denote

the various parts of a block cipher:

. P ¼ f0; 1gn ¼� set of all possible n-bit texts.

. K ¼ f0; 1gk ¼� set of all possible k-bit secret keys.

. P 2 P ¼� n-bit plaintext.

. C 2 P ¼� n-bit ciphertext.

. K 2 K ¼� k-bit secret key.

. P � ¼ ðP1; P2; . . .Þ ¼� a sequence of distinct plaintexts.

. C� ¼ ðC1; C2; . . .Þ ¼� a sequence of distinct ciphertexts.

. n ¼ jP j ¼ jCj ¼� block length of plaintext/ciphertext
in bits.

. k ¼ jKj ¼� block length of secret key in bits.

. EKðP Þ ¼ P �!
EK#r

C ¼� encryption of P to C under K,
where EK is an r-round iterated block cipher.

. r ¼� total number of rounds of block cipher EK .

. E�1
K ð:Þ ¼

�
inverse of EKð:Þ.

. I ¼� identity permutation.

. � ¼� null set.

. const ¼ fc1; c2; . . .g ¼� set of arbitrary constants.

. ? ¼� any arbitrary value.

. ð0t1u?vÞ ¼� a consecutive sequence of t “0”s, followed
by u “1”s and then v arbitrary bits.

. x y ¼� assignment of value y to x.

A block cipher, EKð�Þ, commonly consists of r iterations of a

so-called round function, F ð�; RKiÞ, that is keyed by a

different round key, RKi; i ¼ 1 . . . r in each round:

EKð�Þ ¼ F ð�; RKrÞ � F ð�; RKr�1Þ . . . � F ð�; RK2Þ � F ð�; RK1Þ:
ð1Þ

These round keys are derived from the secret key K via a
so-called key schedule. Oftentimes, recovering bits of some
round keys immediately means the cryptanalyst has
recovered some bits of K.

It is assumed [31] that the cryptanalyst has access to
some plaintexts and corresponding ciphertexts. Then,
during cryptanalysis, we are often interested in searching
for properties of some middle rounds of a cipher because
the outer rounds not covered by these middle rounds can be
peeled off by guessing the round keys in these outer rounds
and working inward from both the plaintext and ciphertext
ends toward those middle rounds. These middle rounds,
i.e., the original block cipher with some outer rounds
removed from either end, are called the reduced cipher, G. To
the best of our knowledge, this term was first defined in
[15]. For this purpose, we further define:

. G#s ¼� reduced cipher comprising the first, last, or
middle s consecutive rounds, s � r.

. x ¼ f0; 1gn ¼� input of reduced cipher, G.

. y ¼ f0; 1gn ¼� output of reduced cipher, G.

. x� ¼ ðx1; x2; . . .Þ ¼� a sequence of distinct inputs toG.

. y� ¼ ðy1; y2; . . .Þ ¼� a sequence of distinct outputs ofG.

. ha#t ¼� arbitrary t outer rounds of EK prior to G.

. hb#t ¼� t arbitrary t outer rounds of EK after G.

Example 1. P �!ha#1
x �!G#5

y �!hb#2
C denotes that EK consists of

eight rounds in total, which can be further said to consist
of a five-round reduced cipher, G, in the middle, while
ha (one-round) and hb (two-round) denote the outer
rounds not covered by the reduced cipher.

2.2 General Description of Cryptanalytic Attacks

A cryptanalytic attack basically involves first searching for
an identifiable nonrandomness property within some
middle s rounds (a.k.a. the reduced cipher) of the cipher
structure that allows us to differentiate between a black box
containing that reduced cipher and a black box containing a
random permutation � : f0; 1gn ! f0; 1gn. This is known as
the distinguishing property (or, simply, distinguisher) and
further allows us to recover keys in the outer rounds not
covered by the distinguisher. Therefore, the phases in
cryptanalysis are to first search for such a distinguisher
(distinguisher search) and then collect enough text informa-
tion (text collection) to further mount a key-recovery attack
to obtain some round keys in the outer rounds. The general
description of cryptanalytic attacks is based on the follow-
ing algorithm:

Algorithm 1. A General Cryptanalytic Attack

1. Distinguisher Search Phase.

Recall that x �!G#s
y. Then, by exploiting the

structure of EK , find a distinguisher � for G of the
form:

�ðx�; y�Þ#s) ðx�  !p
�

y�Þ: ð2Þ
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This simply means that our distinguisher, �, takes as
input the sequences x� and y� and outputs a
correlation between them that occurs with a non-
random probability, p�. This nonrandom distin-
guisher for G will be used later to compare with a
random permutation, �, where

�ðx�; y�Þ#s) ðx�  !p y�Þ ð3Þ

occurs with probability, p. If the difference ðp� � pÞ
in these two probabilities is nonnegligible, i.e., jp� �
pj > � for some negligible �, then �ðx�; y�Þ is useful.
The first step and often the hardest part in
cryptanalysis is to search for distinguishers that
maximize this jp� � pj. A successful discovery of
such distinguishers easily translates to a successful
key-recovery attack, i.e., Steps 2 and 3 below would
then follow naturally.

2. Text Collection Phase.
Define:

Pi ¼ p1 k p2 k . . . jpl 2 P for i 2 f0; 1; . . . ;mg
where pj 2 f0; const; ?g for j 2 f0; 1; . . . ; lg
and jpjj ¼ n=l:

Then, for all i 2 f0; 1; . . . ;mg, obtain Pi and the
corresponding Ci ¼ EKðPiÞ.

This phase assumes the cryptanalyst has access
to a black box oracle that performs either encryp-
tion or decryption using the unknown secret
key K on plaintexts or ciphertexts supplied by
the cryptanalysts. This is a common assumption in
cryptanalysis and examples of these scenarios in
practical applications may be found in [31].

How flexible the cryptanalyst needs to be when
supplying the inputs to the oracle determines what
type of attack he is to mount. For instance, if a cipher
can be attacked only by the fact that he knows some
plaintexts corresponding to some ciphertexts, he is
mounting known-plaintext attacks [31]. If, in order
to attack, he needs to choose what plaintexts to input
to the encryption oracle to obtain the ciphertexts, he
is mounting chosen-plaintext attacks [31]. The
purpose of classifying attacks in this way is so that
it is clear what classes of attacks are applicable when
certain text information is accessible to an attacker.

In general, chosen-plaintext attacks give the
cryptanalyst more restrictions since the plaintexts
have to follow certain relationships among them,
e.g., they must be equal in the least significant bit,
etc. Differential cryptanalysis [6] and its variants,
Square attacks [11] and boomerang attacks [32], are
typically chosen-plaintext attacks, while linear cryp-
tanalysis [24], interpolation attacks [15], and slide
attacks [9] are typically known-plaintext attacks.
Chosen-plaintext attacks can be made [31] to work
with only known plaintexts, but at the cost of an
increase in the number of texts obtained and, thus,
are often not desirable. On the other hand, known-
plaintext attacks will often require much fewer texts
and complexity if chosen plaintext queries are

available to the cryptanalyst, but this means he
would have to work in the chosen-plaintext attack
model, which is very restricted and more difficult to
realize in practical scenarios.

3. Key-Recovery Phase.
Define:

. fRKag ¼� set of all possible guesses of round
key in ha.

. fRKbg ¼� set of all possible guesses of round
key in hb.

. RKj
a 2 fRKag ¼� a current guess of RKa.

. RKj
b 2 fRKbg ¼

�
a current guess of RKb.

Also note that ¼¼ denotes equality check, while 
denotes assignment. Then, the key-recovery phase is
given by the steps below:

Guess 8ðRKa;RKbÞ and do

(i) 8ðPi; CiÞ, compute
~xi  haðPi; RKj

aÞ and
~yi  h�1

b ðCi;RK
j
bÞ.

(ii) Compute A ¼ Dð�; ~xi; ~yiÞ defined by:-

If Dð�; ~xi; ~yiÞ ¼¼ �ðx�; y�Þ#s) ðx�  !p
�

y�Þ,
return A ¼ 1.

Otherwise if Dð�; ~xi; ~yiÞ ¼¼ �ðx�; y�Þ#s) ðx�  !
p

y�Þ,
return A ¼ 0.

(iii) Compute FðA;RKj
a; RK

j
b; fRKag; fRKbgÞ defined by:-

Case of jfRKagj ¼ 2jRKaj, AND jfRKbgj ¼ 2jRKbj (Sieving)

If A 6¼ 1,

fRKag  fRKag �RKj
a

and fRKbg  fRKbg �RKj
b .

OR

Case of fRKag ¼ �, AND fRKbg ¼ � (Counting)
If A ¼¼ 1,

fRKag  fRKag þRKj
a

and fRKbg  fRKbg þRKj
b .

The key-recovery phase is commonly known as the
actual analysis phase because it is during this time that the
cryptanalyst uses the distinguisher (from Phase 1) and the
texts (from Phase 2) to recover some bits of the secret key K.
The overall computational effort of cryptanalysis is mostly
due to this phase because it is required to guess all possible
round key values in the outer rounds (i.e., RKa;RKb) and,
for each guess, process all collected texts (i.e., Pi; Ci) by
working inward through the outer rounds toward the
middle s rounds, see Step (i). Then, with these results, we
proceed to Step (ii), which performs a distinguishing
process D to determine whether it is the reduced cipher G
or a random permutation that is detected. Key guesses that
cause the reduced cipher to be detected will be put in the
list of possibly correct keys, while the wrong guesses are
discarded from the list, see Step (iii). Sometimes this is called
the filtering process, F . Depending on the type of distin-
guisher used, this key list is built by either sieving or counting.
Sieving means to start from a list of all possible outer round
key values, gradually discarding the wrong keys until the list
is small enough to include only a few possibly correct keys.
Counting means to start from an empty list and then
gradually add possibly correct outer round keys to it. Except
for impossible differential attack, which uses sieving because
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key guesses that cause an impossible property are discarded
from the list and the list therefore slowly dwindles, the other
attacks use counting because the distinguisher property has a
much higher probability than for a random case, thus starting
from an empty list, then keying guesses that induce this
property are quite likely to be correct keys, so they are added
to the list.

Since distinguishers vary from one cryptanalytic techni-
que to another, in the next section, we will describe each
type in turn for a better understanding of what is being
exploited in each.

3 DISTINGUISHERS

In this section, we will describe the distinguishers for the
various cryptanalytic techniques and highlight the common
structures between them. In some cases where specific
notations are required, they will be defined as necessary.

3.1 Differential Cryptanalysis

Differential cryptanalysis [6] considers how a pair of inputs
ðx; x0Þ with a specific difference �x propagates with some
probability p� through some s rounds of a cipher to result in
a corresponding output pair ðy; y0Þ with a specific difference
�y. For this attack to work, sets of plaintext pairs with the
desired input difference �x need to be obtained, thus this is
a type of chosen-plaintext attack [31].

Let:

�x ¼ x � ðx0Þ�1 ¼� input difference to G

�y ¼ y � ðy0Þ�1 ¼� output difference of G:

Here, ðx; x0Þ and ðy; y0Þ are a distinct pair of inputs and
outputs of G, respectively, while � denotes the group
operation on the elements in the cipher, usually taken to be
the exclusive-OR, �. In such a case, every element is its own
inverse and, so, we have �x ¼ x� x0 and �y ¼ y� y0.

With this in place, then the differential distinguisher [6] is
defined as:

�Differentialðx�; y�Þ#s ¼ �ðx; x0; y; y0Þ#s) ð�x �!p
�

�yÞ;

where jp� � ðp ¼ 2�nÞj > �. The distinguisher, �, uses both
the input and output pairs, ðx; x0Þ and ðy; y0Þ, and states that
the difference between the input pairs, �x, would result in
an output pair with difference �y, with a probability, p�,
after going through the s-round reduced cipher. Note that,
in order for this distinguisher to be useful in an attack, p�

must be significantly different from the probability, p, that
the output difference �y equals a specific n-bit string. Here,
p ¼ 2�n since the probability1 of an output pair, ðy; y0Þ
having a specific difference, �y, between them is 2�n.

With this differential distinguisher, key-recovery (see
Algorithm 1) then proceeds by guessing the round keys of
outer rounds, working from both the plaintext and
ciphertext ends to peel off the outer rounds until the

middle s rounds are reached, and then checking if this
differential distinguisher exists. A key guess that causes this
is added to the list of possible key values, and this process is
repeated for all plaintext-ciphertext pairs. At the end, the

key value that has been added to the list the greatest
number of times is likely to be the correct key.

3.2 Linear Cryptanalysis

Linear cryptanalysis [24] does not require plaintexts to have
any specific difference or any other relationship between

them and, thus, has fewer practical restrictions for the
cryptanalyst. It is a type of known-plaintext attack [31] since
the cryptanalyst requires some plaintexts with correspond-
ing ciphertexts, but the plaintexts do not have to be chosen
to satisfy any particular relationships.

Let:

a; b ¼� f0; 1gn

� ¼� dot product

}ð:Þ ¼� parity function:

The a and b are often known as the input and output bit
masks, respectively, and are used in dot products with the

input and output of G to select only certain bits while
masking off the other bits. Meanwhile, the parity function,
}, simply exclusive-ORs all the bits of a binary string. A
linear distinguisher [24] is then defined as:

�Linearðx�; y�Þ#s ¼ �ðx; a; y; bÞ#s) ð}ðx � aÞ ¼p
�
}ðy � bÞÞ;

where jp� � ðp ¼ 1=2Þj > �. This distinguisher states that the

parity of certain bits of the input of G are equal to the parity
of some other bits of the output of G, with nonrandom
probability p�. Again, a similar requirement exists that p� be
as different from p as possible. Note here that p is the
probability that the parity of a random binary string has a

certain 1-bit value, thus p ¼ 1=2 since there are only two
possible values, “1” or “0.”

3.3 Higher-Order Differential Cryptanalysis

The conventional dth-order differential distinguisher [17] is

defined as:

�d�Differentialðx�; y�Þ#s ¼ �ðx1; x2; . . . ; x2d ; y1; y2 ; . . . ; y2dÞ#s

)
M
x2x�

GðxÞ ¼
M
y2y�

y ¼p
�
c

 !
;

where jp� � ðp ¼ 2�nÞj > � and c 2 const. Of course, there

are other variants of the higher-order differential attack,
such as the one using rational expressions [26], in which
case the distinguisher above would differ.

A dth-order or higher-order differential distinguisher is
an extension of the conventional first-order differential
distinguisher described in Section 3.1, by making use of

more than one difference between any pair (e.g.,
xi; xj; i 6¼ j). The outputs of G are then all summed and
checked if a constant c results. Notice that the probability, p,
is the same as for the case of the first-order differential
distinguisher because, for any random n-bit constant c, the

probability that it equals a certain n-bit value is 2�n.
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3.4 Truncated Differential Cryptanalysis

Let:

. �� ¼ x � ðx0Þ�1 ¼ ð�1k�2k . . . k�lÞ ¼� truncated input
difference to G,

. �� ¼ y � ðy0Þ�1 ¼ ð�1k�2k . . . k�lÞ ¼� truncated out-
put difference of G,

where �i; �i 2 f0; const; ?g.
Here, we are interested in looking at wordwise (trun-

cated) differences whose values could be 0, constant, or
arbitrary, where the wordsize is less than blocksize n. Since
some bit differences are arbitrary, there are no restrictions
on what these bits of the plaintexts should be, thus the
cryptanalyst can form more pairs with a given amount of
texts. This is the advantage of truncated over conventional
differences. The truncated differential distinguisher [17] is
defined as:

�Truncatedðx�; y�Þ#s ¼ �ðx; x0; y; y0Þ#s) ð�� �!p
�

��Þ;

where jp� � ðp ¼ 2�t�n=lÞj > � and t ¼
P
i when

�i 2 f0; constg:

Notice that this distinguisher is very similar to the
differential distinguisher in Section 3.1 because a pair of
inputs and outputs are used and the difference between
them is observed. Thus, this distinguisher is used in a key-
recovery attack in basically the same way as described in
Section 3.1. What differs is that, in this case, the truncated
difference can be specified more flexibly. The probability, p,
here that a random output difference �� has a certain value
depends on the number of fixed (0 or constant) word
differences, �i in ��.

3.5 Impossible Differential Cryptanalysis

The impossible differential distinguisher [18], [3] is defined as:

�Impossibleðx�; y�Þ#s ¼ �ðx; x0; y; y0Þ#s) ð�x �!p
� ¼ 0

�yÞ;

where jp� � ðp ¼ 2�nÞj > �. The impossible differential
distinguisher is a special case of the differential distin-
guisher in Section 3.1, the only difference being that the
nonrandom probability, p�, is 0, which is now much smaller
than the probability, p ¼ 2�n, that a random difference �y
equals a certain fixed n-bit string.

To use this distinguisher in a key-recovery attack, the
basic idea here is to use this impossible property to do
sieving [13]. We start with a list of all possible keys of the
outer rounds and, for each such guess, we work inward
toward the middle s rounds that make up the distinguisher
and check for this property. A random key guess would
cause this property with probability p ¼ 2�n, while the
correct key will never cause this; thus key guesses that
cause this impossible property are definitely wrong and
therefore removed (hence sieving) from the list of possible
keys. This is repeated until only a few possible keys remain
in the list.

3.6 Boomerang Attack

The boomerang attack [32] uses a boomerang distinguisher
that resembles a second-order differential distinguisher in

that four inputs and outputs of G are used, with the special

property that their exclusive-OR sum in the middle of the

cipher results in the constant 0. First, let the reduced cipher,

G, consist of two halves, ga and gb, respectively.
Let:

x1; . . . ; x4 ¼� inputs to ga ðand therefore of GÞ
w1; . . . ; w4 ¼� outputs of ga ðand therefore inputs to gbÞ
y1; . . . ; y4 ¼� outputs of gb ðand therefore of GÞ:

The boomerang distinguisher is defined as:

�Boomerangðx�; y�Þ#s ¼ �ðx1; x2; x3; x4; y1; y2; y3; y4Þ#s)

ð�x ¼ x1 � x2;�y ¼ y1 � y3 ¼ y2 � y4 ! �x ¼p
�
x3 � x4Þ;

where jp� � ðp ¼ 2�nÞj > �. Note that the probability, p, is

the same as for the case of the first-order differential

distinguisher because we expect the difference x3 � x4 to

equal the fixed n-bit difference value �x, which happens

with probability 2�n.
The boomerang attack is an adaptively-chosen-plaintext

attack [31] because, after obtaining the ciphertexts corre-

sponding to plaintext pairs with a desired difference, new

ciphertext pairs are generated with a specific difference and

then their corresponding plaintext pairs need to be

obtained. Some improvements in [16], [4] convert this to

the less restricted chosen-plaintext attack at the expense of

more texts to be obtained.

3.6.1 Fusion of Ideas from Different Distinguishers

Using our framework allows us to compare between the

different distinguishers, not only highlighting the similar

structures, but also considering why differences exist and

if such differences could be fused together. In fact, the

natural consequences of considering a fusion of ideas

from higher-order, truncated, impossible differential and

boomerang-style distinguishers result in many interesting

generalizations.
For example, borrowing from ideas of higher-order

distinguishers, boomerang-style distinguishers can be en-

hanced by considering that, instead of just a pair (x1; x2) of

inputs and outputs (y1; y2), we take a set of them at a time.

This was used to form boomerang amplifiers with n-tuples in

[16]. Such distinguishers can be viewed as higher-order

boomerang distinguishers.
Further, we could consider higher-order truncated differ-

ential or higher-order truncated boomerang distinguishers that

could either occur with probability p� much greater than p

for the random case or with probability p� ¼ 0. For example,

recently, [5] presented a related-key impossible boomerang-

style distinguisher for the COCONUT98 cipher that fused

ideas from truncated, impossible differential and boomer-

ang-style distinguishers.

3.7 Interpolation Attack

The interpolation distinguisher as originally proposed in [15] is

based on the Lagrange interpolation formula and defined as:
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�Interpolationðx�; y�Þ#s ¼ �ðx1; x2; . . . ; xd ; y1; y2; . . . ; ydÞ#s

) y ¼ fðxÞ ¼
Xd
i¼1

yi
Y

i�j�d;j 6¼i

x� xj
xi � xj

 !
:

Specifically, the output, y, of the reduced cipher, G, is
expressed as a polynomial, fðxÞ, constructed by using
d other inputs, xi, and corresponding outputs, yi, of the
reduced cipher, G. For this distinguisher to be effective, the
time to construct such polynomials should be much smaller
than the time to perform trial encryptions later on during
the actual analysis phase. To apply this distinguisher to
key-recovery, round keys RKb of the outer rounds after G
are guessed and, for each guess, the d ciphertexts are
partially decrypted to the point right after G (denote these
as yi; i 2 f1; 2; . . . ; dg). Use these d outputs, yi, of the
reduced cipher and their corresponding inputs, xi, to form
the polynomial fðxÞ. Then, use an extra xi; yi pair (not
already used) to verify the correctness of the constructed
fðxÞ. If this is verified, the current key guess is possibly
correct; otherwise, it is wrong. Interpolation attacks are
typically known-plaintext attacks, though chosen-plaintext
variants are also possible.

Some other variants of this attack are found in [26], [1],
[22] that use rational (instead of polynomial) expressions,
Gaussian elimination instead of polynomial interpolation,
and Rabin’s [30] root finding algorithm, respectively.

3.8 Square Attack

Let:

g : f0; 1gw ! f0; 1gw ¼� an internal component of G;

where w � n. Then, the Square distinguisher [11] is defined as:

�Squareðx�; y�Þ#s ¼ �ðx1; x2; . . . ; x2w ; y1; y2; . . . ; y2w Þ#s)M
x2x�

GðxÞ ¼
M
y2y�

y ¼p
�

0

 !
;

where jp� � ðp ¼ 2�nÞj > � or, if each w-bit sum of the output
of G is independent, then we have jp� � ðp ¼ 2�wÞj > �. This
distinguisher checks a collection of 2w texts at a time such
that, after going through the reduced cipher, G, the
exclusive-OR sum of all texts is 0. Again, the probability,
p, is the same as in differential cryptanalysis because the
probability for a random n-bit (respectively, w-bit) sum
equaling 0 is 2�n (respectively, 2�w).

This is a chosen-plaintext attack because the collection of
2w texts must satisfy the strict requirement that, at the input
to G, they are all unique values in at least one w-bit word.

3.8.1 Fusion of Ideas from Different Distinguishers

Note that this distinguisher is especially similar to the
higher-order differential distinguisher in that a collection of
texts is used and the corresponding outputs of G are
summed and checked if equal to a constant (which is 0 in
this case). From this observation, we can view the Square
attack as a special case of the higher-order differential
attack, particularly a wth order differential attack where the
constant c ¼ 0. As a natural consequence, we could now
consider more general cases of c, e.g., where only some bits
of c are fixed (to either 0 or 1) while other bits are left
arbitrary, resulting in what can be called a truncated Square

distinguisher (for instance, see [21]). Further note that
existing Square distinguishers in the literature are all
deterministic. Comparing the higher-order and Square
distinguisher suggests considering probabilistic Square dis-
tinguishers (for which p� < 1Þ instead of deterministic
Square distinguishers (for which p� ¼ 1). In fact, the
existence of probabilistic Square distinguishers was raised
as an open problem in [21] and is shown here to be a natural
consequence of comparing different distinguishers in our
framework.

The ability to relate the similar structure (e.g., using
exclusive-OR sum) of different distinguishers (in this case,
higher-order and Square) to consider natural generaliza-
tions of previous work and to trigger fresh open problems is
one of the features of this framework.

3.9 Slide Attack

The slide distinguisher [9], [10] is defined as:

�Slideðx�; y�Þ#s ¼ �ðx; x0; y; y0Þ#s ¼ �ðP; P 0; C ; C0Þ#r)

x ¼ haðP Þ ¼
p�
x0 ¼ P 0

y0 ¼ h�1
b ðC0Þ ¼p

��¼1
y ¼ C;

8<
:

where jp� � ðp ¼ 2�n � 2�nÞj > �. A slide distinguisher is
slightly involved in that a cryptanalyst needs to consider
not only a pair of inputs and outputs of the reduced cipher,
G, but also the corresponding pair of plaintexts and
ciphertexts of the whole block cipher EK . The two equations
to the right of the brace in the distinguisher above are
known as slid equations and are such that, when the upper
equation is satisfied with some probability p�, then the
lower equation is automatically satisfied (probability
p�� ¼ 1). This gives an overall nonrandom probability, p�

of both equations being satisfied. For this to be satisfied
randomly, the probability, p is 2�n � 2�n since there are two
equations, each involving n-bit binary strings.

The slide attack is typically a known-plaintext attack
because, from a collection of plaintexts, the cryptanalyst
could search for one or more useful pairs that satisfy the
slid equations. This can be converted into a chosen-plaintext
attack too, provided the outer rounds are weak enough that
they do not require much effort to pass through. For
example, three rounds of DES is weak [9], [10].

3.9.1 Fusion of Ideas from Different Distinguishers

Techniques from conventional differential and linear
distinguishers have been applied to enhance the slide
attack in [10], [14]. When viewed in our framework, this
means, in the particular case of using differential techniques
[10], to consider a set of Ps such that some plaintext
difference propagates through ha probabilistically through
to the input of G, while, in the case of using linear
techniques [14], this means to consider a set of Ps such that
the parity of some bits of P is equal with some probability
to the parity of some other bits of the input of G.

A further generalization of this is to consider using
techniques from higher-order differential or Square distin-
guishers to enhance ideas in [10], i.e., to consider a set of
plaintexts Ps with some desired difference between them.

An open problem is to consider if p�� could be less than
one, in which case, we would have probabilistic slide
distinguishers.
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4 EXAMPLE APPLICATIONS OF THE XI FRAMEWORK

In this section, we will show how the Xi framework can be

used to describe the cryptanalysis of popular block ciphers

in a compact form.

4.1 Differential Cryptanalysis of DES

We consider describing a differential cryptanalysis of four-

round DES by using the Xi framework. We first let the four-

round DES encryption of plaintext, P , under key K be

denoted by:

DESKðP Þ ¼ �4ð�3ð�2ð�1ðP;KÞÞÞÞ: ð4Þ

Let �x ¼ ð0211029k032Þ.

1. The distinguisher is

�Differential
DES ðx�; y�Þ ¼ �Differential

DES ðx; x0; y; y0Þ#2

) ðx� x0 ¼ �x �!p
�¼1

y� y0 ¼ �y ¼ ð?4028j0211029ÞÞ:

For a random permutation,

�ðx�; y�Þ ) ðx� x0 ¼ �x �!p¼2�28

y� y0 ¼ �yÞ:

Since jðp� ¼ 1Þ � ðp ¼ 2�28Þj > �, �Differential
DES is useful.

2. Get Pi; P
0
i s.t. Pi � P 0i ¼ �x for i 2 f0; 1; . . . ; 15g and

corresponding Ci ¼ DESKðPiÞ.
3. Set ha ¼ I, hb ¼ �4 (�3ð:Þ), RKb = round key of �4,
fRKbg ¼ �.

Guess 8RKj
b for j 2 f0; 1; . . . ; 228g, and do

(i) 8Ci, compute
~yi  h�1

b ðCi;RK
j
bÞ.

(ii) Compute A ¼ Dð�; ~yiÞ defined by:

If �ð~yiÞ ) �y, return A ¼ 1.
Otherwise, return A ¼ 0.

(iii) Compute FðA;RKj
b; fRKbgÞ defined by:

If A ¼¼ 1,

fRKbg  fRKbg þRKj
b .

4.2 Square Attack on Four-Round AES

We next consider describing Square attack on four-round

AES. First, we let the four-round AES encryption of

plaintext, P , under key K be denoted by:

AESKðP Þ ¼ �4ð�3ð�2ð�1ðP;KÞÞÞÞ: ð5Þ

1. The distinguisher is

�Square
AES ðx

�; y�Þ ¼
�Square
AES ðx1; x2; . . . ; x256; y1; y2; . . . ; y256Þ#3

)
M
x2x�

�3ð�2ð�1ðx;KÞÞÞ ¼
M
y2y�

y ¼p� ¼ 1
0

 !
:

For a random permutation,

�ðx�; y�Þ#3)
M
y2y�

y ¼p ¼ 2�128

0

 !
:

Since jðp� ¼ 1Þ � ðp ¼ 2�128Þj > �, �Square
AES is useful.

2. Get Pi ¼ xi ¼ a1ka2k . . . ka16 for i 2 f0; 1; . . . ; 256g
and corresponding Ci ¼ AESKðPiÞ, such that ac1

¼
i for c1 2 const and that aj6¼c1

¼ c2 2 const.
3. Set ha ¼ I; hb ¼ �4, RKb ¼ round key of �4.

Guess 8RKj
b for j 2 f0; 1; . . . ; 2kg where k ¼ jRKbj and do

(i) 8Ci, compute
~yi  h�1

b ðCi;RK
j
bÞ.

(ii) Compute A ¼ Dð�; ~yiÞ defined by:

If �ð~yiÞ ¼¼ 0, return A ¼ 1.

Otherwise, return A ¼ 0.

(iii) Compute FðA;RKj
b; fRKbgÞ defined by:

If A 6¼ 1,

fRKbg  fRKbg �RKj
b .

5 COMPARISONS TO RELATED WORK

The commutative diagram cryptanalysis [33]—for compact-
ness of description, we shall denote this as CDC—is a
“framework for expressing certain kinds of attacks on
product ciphers,” of which most block ciphers are. Our
Xi framework also shares this same purpose. Further, both
our frameworks attempt to unify the common features
among different block cipher cryptanalysis techniques in
order to obtain a general view of these attacks while
comparing the power or uniqueness of each individual one.
Both frameworks also exploit the nonrandomness within
cipher components in order to mount distinguishing attacks
on them. However, while CDC focuses on distinguishing
attacks, our framework allows for both this and also
extension to key-recovery attacks that exploit such distin-
guishers. In fact, our framework expresses the relationship
between the two in an independent way, i.e., a key-recovery
attack is viewed as working regardless of the distinguisher
exploited and any specific details.

Another seemingly different but actually very similar
(i.e., both use the bottom-up approach) property between
our two frameworks is that the CDC identifies local
properties of round functions and then pieces them together
to obtain a global (distinguishing) property of the whole
cipher, while our framework identifies a distinguishing
property of some middle rounds (the reduced cipher) of the
cipher and then covers the remaining outer rounds by
guessing round keys in those latter rounds. Another similar
property between the two frameworks is that the CDC
considers projections of the cipher’s input space and how it
relates to projections of the output space, while our
framework considers a subset of the reduced cipher’s input
space and how it relates to a subset of the reduced cipher’s
output space.

The CDC is mainly different from our framework in that it
employs commutative diagrams from abstract algebra to
concisely express the functional compositions of product
ciphers, while our framework uses descriptions that are more
algorithmic in nature and, hence, can easily be translated to
source code implementations. Further, our framework is
more general and can be used to express any cryptanalysis
technique with only a change in the description of the
exploited distinguisher. Our framework also allows for
expressing the slide, amplified boomerang/rectangle, and
Square attacks, the tasks of which were left as open
problems in the CDC framework [33].
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In fact, viewing the distinguishers exploited by these
three attacks in our Xi framework context has allowed us to
extend the CDC framework such that it is able to
successfully express all three attacks. This has been written
up separately [28] and further communicated to the author
of CDC. We view this as an extremely useful application of
our Xi framework.

6 CONCLUSION AND OPEN PROBLEMS

We have presented a general framework that allows for
compact description of block cipher cryptanalysis. This
allows one to concentrate on the general structure and
essence of cryptanalysis, while also making it possible to
emphasize specific details of each individual technique.
Using this framework, we can also easily compare different
distinguishers used and consider fusions of ideas from each
to cause natural generalizations. Viewing them in this light
also allows highlighting some interesting future work. It
remains an open problem to include more attacks under
this framework and also to expand this framework to cater
to more features.
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