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Abstract

The advent of online social networks (OSNs) paired with the ubiquitous proliferation of smartphones have
enabled social sensing systems. In the last few years, the aptitude of humans to spontaneously collect and
timely share context information has been exploited for emergency detection and crisis management. Apart
from event-specific features, these systems share technical approaches and architectural solutions to address
the issues with capturing, filtering and extracting meaningful information from data posted to OSNs by
networks of human sensors. This paper proposes a conceptual and architectural framework for the design of
emergency detection systems based on the “human as a sensor” (HaaS) paradigm. An ontology for the HaaS
paradigm in the context of emergency detection is defined. Then, a modular architecture, independent of a
specific emergency type, is designed. The proposed architecture is demonstrated by an implemented
application for detecting earthquakes via Twitter. Validation and experimental results based on messages
posted during earthquakes occurred in Italy are reported.

Keywords: Twitter; Social sensing; Social media mining; Event detection; Crisis informatics; Emergency
management

Introduction
Established public safety systems are based on cen-
tralized emergency detection approaches, often relying
on expensive infrastructures of physical sensors which
may not be available everywhere. The proliferation of
handheld devices, equipped with a large number of sen-
sors and communication capabilities, can significantly
extend, or possibly substitute, conventional sensing by
enabling the collection of data through networks of
humans. Novel paradigms such as crowd-, urban- or
citizen-sensing have been coined to describe how in-
formation can be sourced from the average individual
in a coordinated way. Data gathering can be either par-
ticipatory or opportunistic, depending on whether the
user intentionally contributes to the acquisition cam-
paign (possibly receiving an incentive), or she simply
acts as the bearer of a sensing device from which data
is transparently collected by some situation-aware sys-
tem [1, 2, 3].
In this scenario, the advent of online social network

(OSN) platforms, such as Twitter, Weibo and Insta-
gram, that have grown bigger becoming a primary hub
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for public expression and interaction, has added fa-
cilities for ubiquitous and real-time data-sharing [4].
These unprecedented sensing and sharing opportuni-
ties have enabled situations where individuals not only
play the role of sensor operators, but also act as data
sources themselves. In fact, humans have a great ap-
titude in processing and filtering observations from
their surroundings and, with communication facilities
at hand, in readily sharing the information they col-
lect [5]. This spontaneous behavior has driven a new
challenging research field, called “social sensing” [6],
investigating how human-sourced data, modeled by
the “human as a sensor” (HaaS) paradigm [7], can
be gathered and used to gain situational awareness
and to nowcast events [8] in different domains such
as health, transportation, energy, social and political
crisis, and even warfare. Among the advantages of so-
cial sensing is the natural tendency of OSN users to
promptly convey information about the context [9, 10]
and that those proactively posted messages, especially
when witnessing emergency situations, are likely to be
free of pressure or influence [11]. The utmost case is
Twitter, where users are encouraged to make their
messages (tweets) publicly available by default and
where, due to the 140 characters length limitation,
they are forced to share more topic-specific content.
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Given this picture, it is not surprising that OSNs,
and Twitter in particular, have drawn the attention
of designers of decision support systems for emergency
management, and that during recent disasters, such as
the Tōhoku earthquake and tsunami (Japan – 2011),
the Hurricane Sandy (Central and North America –
2012) and the Himalayan earthquake (Nepal – 2015),
civil protection agencies turned to the Web and to
OSN data to help tracking stricken locations, assess-
ing the damage and coordinating the rescue efforts.
Based on the observation that an unfolding emergency
is likely to give rise to a burst of alerting messages,
which may be used to early detect the event, followed
by more reflective messages, whose content may be
used to understand its consequences, several systems
have focused on the collection and analysis of messages
shared in areas affected by disasters [12, 13, 14, 15, 16].
However, such information is often unstructured, het-
erogeneous and fragmented over a large number of
messages in such a way that it cannot be directly
used. It is therefore mandatory to turn that messy data
into a number of clear and concise messages for emer-
gency responders [17]. Challenging issues highlighted
and faced by pioneer systems include the real-time ac-
quisition of unstructured data not specifically targeted
to the system (data is often free text without structure
or codified semantics) [18], the extraction of critical
data overwhelmed by high flood of meaningless bab-
bles, the identification of the most stricken areas in
the aftermath of an emergency [17, 19], security and
privacy issues including the lack of guarantee that hu-
man sensors correctly deliver information about spe-
cific facts at specific times [20].
Despite these common findings, an analysis of the

state-of-the-art in the field of social sensing-based
emergency management systems highlights a multi-
tude of domain-specific, unstructured and heteroge-
neous solutions. In fact, in the literature the design of
monolithic and vertical ad-hoc solutions still prevails
over architectural approaches addressing modularity,
generality and flexibility [21]. This paper presents a
framework for detecting emergent crisis events using
humans as sensors. According to the framework, differ-
ent emergency types (e.g., seismic, hydrological, mete-
orological) can be detected by configuring a software
architecture, where re-usable components can adapt
to different contents and patterns of messages posted
to the OSN while the event unfolds. The contribu-
tion of the paper is both conceptual and practical. To
the purpose of deepening and sharing the understand-
ing of the properties and relationships of data pro-
vided by human sensors, we have defined a terminol-
ogy and an ontology for the HaaS paradigm in the con-
text of emergency detection. From the practical point

of view, we have designed a domain-independent, ar-
chitectural and modular framework that encompasses
the vast majority of systems proposed to date. The
effectiveness of the proposed architecture in solving
common problems, such as data capturing, data filter-
ing and emergency event detection, has been demon-
strated by a proof-of-concept implementation involv-
ing earthquake detection via Twitter. The application
has been validated using datasets of tweets collected
during earthquakes occurred in Italy.

Related work
In this section, we outline the most relevant works in
the field, discussing the main differences with our ap-
proach as well as the main similarities, in order to point
out the works that inspired our architectural model.
Thus, this section corroborates our approach under the
more general umbrella of the HaaS paradigm for emer-
gency management.
Several initiatives, both in scientific and in applica-

tion environments, have been developed in the last few
years with the aim of exploiting information available
on social media during emergencies. Works proposed in
the literature either describe working systems employ-
ing solutions for some of the fundamental challenges of
emergency management, or focus on a single specific
challenge and thoroughly study it. The systems sur-
veyed in this section present different degrees of ma-
turity. Some have been deployed and tested in real-life
scenarios, while others remain under development [21].
The vast majority of these systems share goals or func-
tionalities with the framework we are proposing and
can be mapped, totally or in part, on the architecture
subsequently defined. Among the proposed systems
some approaches are tailored to suit requirements of a
specific kind of emergency and are therefore domain-
specific. Overall, many of the surveyed works present
shortcomings regarding their reusability.
The works presented in [22] and [23] describe novel

emergency management platforms for smart public
safety and situational awareness. The proposed solu-
tions exploit both wireless sensor networks and social
media to support decision-makers during crises. In [22]
a high-level framework is proposed which includes sub-
systems designed for the acquisition and the analy-
sis of heterogeneous data. The subsystems working on
social media data perform the data acquisition and
data analysis tasks and can be directly mapped to the
corresponding components of our architecture. In this
framework data acquisition from social media has a
marginal impact since it is activated only after the
detection of an emergency. Thus [22] only marginally
deals with the challenges related to the acquisition and
handling of a big stream of social media data. An ex-
ample of an application scenario for the system is also
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proposed for hydrological risks such as floods and land-
slides. The ASyEM system [23] focuses on data acqui-
sition and data fusion. Authors introduce an offline
methodology for the extraction of emergency-specific
terms which are subsequently used by the online sys-
tem to gather relevant messages from social media
sources. The detection of an emergency is performed
by means of a neural tree network previously trained
during the offline phase. Both [22] and [23] lack a data
filtering component. Similarly to [23], the work dis-
cussed in [24] employs data fusion techniques in a sys-
tem designed to increase situational awareness during
emergencies. Authors propose a high-level architecture
for an adaptive framework exploiting both tradition-
ally sensed data as well as social media data.
Among the various kinds of emergencies, seismic

events are those which have been investigated the most
in the last few years. Earthquake emergency manage-
ment is a topic worth studying not only for the big
threat seismic events pose on communities and infras-
tructures. The detailed earthquake characterization
obtainable from seismographic networks can be ex-
ploited as a baseline for novel social media-based emer-
gency management systems and leveraged to achieve
better results in terms of responsiveness and situa-
tional awareness. The opportunities granted by the
application of the HaaS paradigm to earthquake de-
tection and response have been firstly envisioned in
works such as [25], [26], and [27].
The study described in [28, 29] is one among the

first works proposing techniques for emergency man-
agement based on social media data. Authors investi-
gate the design and development of a monitoring and
alerting system for the real-time detection of earth-
quakes and tornadoes in Japan. The detection of an
event is performed by means of a bayesian statisti-
cal model. Authors carried out experiments to assess
the quality of the detections and their responsiveness.
Detection results are evaluated only by means of the
Recall metric (ratio of correctly detected earthquakes
among the total occurred earthquakes) and the system
was able to timely detect 67.9% (53 out of 78) of the
earthquakes with JMA (Japan Meteorological Agency)
scale 2 or more which occurred over two months. It is
worth noting that the JMA scale can not be directly
mapped into the worldwide-adopted Richter magni-
tude scale used in Table 1 to evaluate our system[1].
The approach proposed in [28, 29] is tested on both
earthquakes and tornadoes and the achieved results
seem convincing towards the employment of this so-
lution for other large-scale emergencies as well. How-
ever, the work only focuses on the event detection task,
without dealing with the definition of a full working

[1]http://earthquake.usgs.gov/ learn/ topics/mag vs int.php

system. Moreover, data acquisition is performed by
means of the Twitter Search API[2] which accesses to
only a portion of the amount of tweets produced. While
this limitation can be negligible for large scale events,
it can impair the system’s ability to detect events felt
by a small number of social sensors, thus limiting the
reusability of this system for small-scale emergencies
such as landslips, traffic jams, car accidents, etc.
U.S. Geological Survey (USGS) efforts towards the

development of an earthquake detection system based
solely on Twitter data are described in [30]. The so-
lution is evaluated with different settings according to
the sensitivity of the event detection module. How-
ever, even in its best configuration, the system could
only detect 48 globally distributed earthquakes out of
the 5,175 earthquakes occurred during the same time
window. Also this system acquires data via the Twit-
ter Search API, thus suffering from the same limita-
tions described above. Basic data filtering concerns
are taken into account and relevant messages are se-
lected with a heuristic approach. Event detection is
performed by a STA/LTA (short-term average/long-
term average) algorithm. Although representing an in-
teresting demonstration of the possibility to perform
emergency event detection via social media, this sys-
tem has a few shortcomings which severely limit its
performances. The deeper level of analysis supported
in our proposed architecture and performed in our im-
plementation allow us to outperform USGS’s system.
Overall, we believe the main reasons for our better
performances lie in the adoption of more sophisticated
filtering techniques (i.e. machine learning classifiers
instead of heuristics) and a more powerful event de-
tection algorithm (i.e. a burst detection algorithm in-
stead of a STA/LTA). USGS kept on working on the
project and recently announced the official employ-
ment of a Twitter earthquake detection system named
TED (Tweet Earthquake Dispatch). As claimed by
USGS, such detection system proved more responsive
than those based on seismographs in regions where the
number of seismographic stations is low[3][4].
In [16, 31, 32] is described the development of the

Earthquake Alert and Report System (EARS). EARS
is a real-time platform designed for the detection and
the assessment of the consequences of earthquakes
from social media data. The proposed solution em-
ploys data mining and natural language processing
techniques to enhance situational awareness after seis-
mic events. Although the proposed system is domain-
specific and employed only in the field of earthquake

[2]https://dev.twitter.com/rest/ reference/get/ search/ tweets
[3]http://www.livescience.com/
45385-earthquake-alerts-from-twitter.html
[4]https://blog.twitter.com/2015/
usgs-twitter-data-earthquake-detection
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emergency management, the discussion in [31] ad-
dresses issues common to all social media emergency
management systems. Preliminary results of the works
proposed in [28, 29], [30] and [16, 31, 32] are overall
encouraging, especially in relation to the responsive-
ness of the detections. In the present work we built on
the key features of these systems in order to design a
solution applicable to a broad range of emergencies.
Situational awareness during emergencies is the goal

of the work described in [33]. The Emergency Situation
Awareness (ESA) platform operates over the Twitter
stream by comparing terms used in recent tweets with
those of a baseline. The baseline has been generated
in an offline phase and represents a statistical model
of the terms used during a fixed time window of sev-
eral months. ESA raises alerts for every term which
appears in recent tweets significantly more than in
the baseline. The drawback of this approach is that
the baseline does not account for topic seasonality.
Moreover ESA does not perform data filtering neither
employs keywords for the data acquisition and there-
fore many of the generated alerts are of little inter-
est. ESA represents however one of the first domain-
independent approaches to the problem of emergency
management from social media. The core of the gen-
eral ESA platform has been later expanded with ad-
hoc filters and tailored to perform event detection in
the earthquakes [34] and wildfires [35] domains. Other
works have instead investigated the exploitation of so-
cial sensors for the detection of traffic jams [36].
Crowdsourced crisis mapping from Twitter data is

the goal of the systems proposed in [37, 17]. Cri-
sis mapping concerns with the capturing, processing
and display of data during a crisis with the goal
of increasing situational awareness. Following an ap-
proach adopted in other previously reviewed works,
these systems are composed of both offline and real-
time (online) subsystems. The offline subsystems cal-
culate baseline statistics during a historical period
when no disasters occurred. Among the real-time sub-
systems [37] also includes a data filtering component
which, similarly to [30], applies heuristic rules to se-
lect relevant tweets. On the contrary, [17] uses machine
learning techniques to filter and analyze data.
Lastly, the study in [21] presents a survey on com-

putational techniques for social media data processing
during emergencies and can be considered as a fur-
ther reference for works in the fields of social media
emergency management, crisis informatics and crisis
mapping.

Core concepts and functionalities
Our conceptual framework is intended to operate in

a broad class of domains. For this reason it should

evolve from an explicit formal specification of terms
and of relationships among them. This way, experts
are supported with shared understanding of their do-
mains of interest. A good specification serves as a basis
to communicate in development, to guarantee consis-
tency, to minimize misunderstanding and missed in-
formation, to overcome barriers to the acquisition of
specifications, to reuse and analyze domain knowledge,
and to separate it from operational knowledge. Among
the suitable formalisms, ontologies are structured vo-
cabularies with definitions of basic concepts and rela-
tions among them. Ontologies have interesting proper-
ties that can be formally verified, such as completeness,
correctness, consistency, and unambiguity [38].
In this section we introduce the terminology of the

“human as a sensor” (HaaS) paradigm via an ontol-
ogy diagram. In Figure 1 base concepts are enclosed
in gray ovals and connected by properties, represented
by black directed edges. The fundamental property is
on the right: Decision System detects Emergency. This
property cannot be directly sensed (i.e., instantiated)
by the system, and is therefore represented as an ab-
stract property, shown by a dotted edge. Indeed the
overall decision system is aimed at indirectly detect-
ing emergencies by means of a series of information
provided by sensors. As the system should be scalable
in terms of types of emergency, different specific emer-
gencies have been considered. In figure, Seismic, Hy-
drological, Meteorological, and Terrorist are examples
of specialized concepts, shown with white ovals and
connected by white directed edges to the base concept.
A Decision System is owned by a Public Safety

Agency, and exploits both Artificial and Social De-
tection Systems. The former is a conventional system
based on physical sensors: an Artificial Detection Sys-
tem analyzes Observations, which are provided by Ar-
tificial Sensors, i.e., a type of specialized Sensor. An-
other type of specialized sensor is human Sense, which
is interpreted by Humans. Here, the concept Human
acts as a Sensor can then be derived as a specialized
human. Indeed, both Human and Sensor are in the
Territory, where Emergency occurs and Effects of it
are measured by Sensors. Differently from an artifi-
cial sensor, a Human as a Sensor is able to directly
perceive an emergency and owns a Terminal to deliver
Messages in an Online Social Network. For this reason,
he can alert via an Online Social Network. Location is
a structural property of a terminal. Specialized exam-
ples of Online Social Networks are Twitter, Weibo, and
Instagram.
In the context of online detection, a structural prop-

erty of a message is the timestamp. Other properties
are content-based and must be recognized as special-
ized types: a Trusted Message, i.e., a message which
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Figure 1 An ontological view of the HaaS paradigm for emergency management.

is not sent for malicious, disruptive or abusive pur-
poses [39][40]; a Primary Message, i.e., a message sent
by a user who is actually present at the referred event
and can directly describe it [41][42]; an Emergency
Message, i.e., a message reporting an actual social
emergency and not, for instance, reporting a personal
problem via an idiom made of emergency words [16].
If all these properties are available in a single message,
that message can be considered an instance of a further
specialized concept, the Ongoing Emergency Message,
which is a message reporting an ongoing emergency. In
addition, an Ongoing Emergency Message must have
another property: being temporally close to another
message of the same typology. This way, the Social
Detection System recognizes a number of temporally
close messages. Thus, the detection of an actual social
emergency encompasses many messages, differently ar-
ranged in time depending on the type of emergency.
Managing a Social Detection System requires inter-

action between different external agents (people or sys-
tems), represented in Figure 2 as UML use cases. Here,
interacting agents are called actors and are represented
by the “stick man” icon, whereas functionalities avail-
able to actors are represented by an oval shape. An
actor can communicate with the system through an as-
sociation to a functionality, represented as a link. Use

cases have been related to other use cases by the extend
and include relationships, allowing to increment a use
case and to specify a piece of the use case in a modu-
lar way, respectively. A relationship is represented as
a dashed directed arrow, whose direction denotes de-
pendency.

More specifically, for a given emergency type (e.g.,
earthquake, flooding, or their subtypes) the Decision
System asks the Social Detection System (hereafter
called System for the sake of brevity) to be prepared
to get alerts of that emergency type. This functionality
includes the activation of the content-based filtering of
messages, which is in charge of providing, among the
messages captured from the Online Social Network ac-
tor (e.g., Twitter), only those containing information
related to the unfolding emergency situation. We call
this use case the online process.

Emergency-specific knowledge of the content of mes-
sages is thus necessary to extend the System’s capa-
bility in recognising multiple emergency types. Such
a knowledge can be extracted from a message corpus,
a large and structured set of messages (electronically
stored and processed), used for statistical analysis and
hypothesis testing, checking occurrences or validating
filtering within a specific emergency type. Extracted
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Figure 2 Use cases of the HaaS paradigm for emergency management.

knowledge can be encoded as: (i) terms that are fre-
quently contained in the target messages, established
via statistical methods; (ii) features extracted from a
training set of target messages, established via ma-
chine learning methods; (iii) parameters of collections
of messages related to the same emergency event, es-
tablished via statistical methods.

Thus, when a new emergency type has to be man-
aged, the content-based filtering of messages function-
ality must be previously extended with emergency-
specific knowledge provided by the configure filters
functionality. This process is managed by the actor re-
sponsible for the System’s maintenance and configura-
tion, the Social Network Analyst. Configuring filters in-
cludes creating training sets and extracting terms from
corpus. To build a corpus includes to annotate corpus,
in collaboration with a number of Annotators. We call
the configure filters use case the offline process.

Architectural design
The “human as a sensor” (HaaS) paradigm for emer-
gency management so far determined has been used
as a reference for designing an efficient, flexible and
scalable software architecture. The analysis conducted
in the previous section, as well as the findings re-
ported in previous works, highlighted the fundamental
challenges related to processing social media data for
the detection of unfolding emergency situations [21].
Such challenges comprehend: (i) data capturing, (ii)
data filtering and (iii) emergency event detection. The
challenge related to data capturing lies in gathering,
among the sheer amount of social media messages, the
most complete and specific set of messages for the de-
tection of a given type of emergency. However, not all

collected messages are actually related to an unfold-
ing emergency, hence the need of a data filtering step
to further reduce the noise among collected messages
and retain only the relevant ones. Finally, techniques
are needed in order to analyze relevant messages and
infer the occurrence of an emergency event. The gen-
eral framework for emergency management that we are
proposing efficiently deals with all these aspects.
In this section the system logic is represented by a

number of components and actors. A component rep-
resents a modular piece of logic whose external be-
havior can be concisely described to offer a platform-
independent view. Each component may be developed
in any programming language and by using one or
more classes or procedures, since its internal algorith-
mic implementation is not detailed. Indeed, each com-
ponent in the model can be replaced by another com-
ponent supporting the same interfaces, thus providing
modularity. Each actor represents a role played by a
user interacting with the system components. Subse-
quently, a behavioral description of the system within
its life cycle is also provided by means of a sequence of
exchange messages between actors and components.

Static view of the logical architecture
Figure 3 shows a UML static view of the system, made
by components and their interfaces. Here, a component
is represented by a box, with provided and required
interfaces represented by the “lollipop” and “socket”
icons, respectively. Actors are represented by the “stick
man” icon. Components that are external to the de-
sign are colored in dark gray. Some specific types of
components or subsystems, such as repository, stor-
age, knowledge base, web, are characterized by a spe-
cial icon or shape. The usage of a component by an
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Figure 3 The logical architecture of a decision support system for emergency management based on social sensing.

actor or by another component is represented by the
socket icon or by the dashed arrow, respectively. The
architecture is focused on the social detection system,
i.e., on the HaaS input channel. The Human as a Sen-
sor actor is represented on the bottom left as an ac-
tor using the Terminal subsystem to deliver messages
to the Online Social Network subsystem. The Online
Social Network subsystem feeds the main data flow
carried out in the online mode of operation, i.e., the
detection process. In figure, the components involved
in the online process are arranged in a stack of com-
ponents, enclosed in a dotted box, where the Online
Social Network is a the bottom.
More specifically, the Emergency Message Captur-

ing component accesses the Online Social Network ’s
global stream of data, via a streaming API, to collect
emergency messages. The messages are captured ac-
cording to the Emergency-specific Terms provided by
the knowledge base, and then pushed to the Emergency
Messages repository, which acts as a buffer with re-

spect to the large data stream provided by the Online
Social Network. The Primary Messages Selection com-
ponent takes data from this buffer and provides only
primary messages to the Trusted Messages Selection
component, which, in turn, provides only trusted mes-
sages to the next component. The semantics of both
primary and trusted is compliant with the HaaS ontol-
ogy. The latter component employs a statically defined
Trusted Message Model, which is the same for all types
of emergencies. Both components implement fast and
coarse-grained filtering to avoid congestion due to the
large number of messages.
The next filtering component is the Ongoing Emer-

gency Messages Selection, which is fed by the Trusted
Message Selection component and implements the
namesake concept of the HaaS ontology. This compo-
nent carries out a fine-grained filtering, employing an
Ongoing Emergency Message Model knowledge base.
The outgoing messages are subsequently sent to the
Emergency Event Detection component, which is able
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Figure 4 Communication diagram of the online process in a decision support system for emergency management based on social
sensing.

to detect an actual collective emergency. Since each
type of emergency needs a different parameterization,
this component is based on the Emergency-specific Pa-
rameters knowledge base configured by the Social Net-
work Analyst. The detected event is then gelolocated
by the Emergency Geolocation component. Finally, the
geolocated emergency is provided to the Analysis Sys-
tem, which is able to interoperate with a Decision Sys-
tem of a Public Safety Agency.

In the offline mode of operation, the setting of para-
metric models and knowledge bases for each type of
emergency is covered. This offline process is managed
by the Social Network Analyst (on the bottom right)
with the help of some Annotators.

More specifically, given a new type of emergency the
web is first accessed to find, via Emergency Manage-
ment Agency and News Archives, some historical ex-
amples of the same type of emergency. Subsequently,
an Emergency-specific corpus of messages is created
via the Corpus Building component, accessing to the
Online Social Network via a historical search API
managed by the Historical Messages Capturing com-
ponent.

Emergency-specific terms are then created by means
of the Offline Terms Building component, which uses

both the corpus and a Static Message Baseline com-
ponent. A baseline represents common terms in on-
line social networks, which hampers filtering and does
not provide relevant information. For this reason, such
terms are removed from messages.
Subsequently, an Emergency-specific Training Set is

created by selecting and annotating messages in the
corpus, via an Annotation Tool. The training set is fi-
nally used to train the Ongoing Emergency Message
Model via the Machine Learning Classifier that ex-
ploits a set of features defined on the message corpus
itself.
The next subsection provides a dynamic view of the

above logical architecture.

Dynamic view of the logical architecture
In this subsection we focus on the sequence of steps
performed by the diverse components in both on-
line and offline processes. Figure 4 shows the online
process, via a UML communication diagram. Here,
interacting components are connected by temporary
links. Messages among components are shown as la-
beled arrows attached to links. Each message has a se-
quence number, name and arguments. A message may
be asynchronous or synchronous. On an asynchronous
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Figure 5 Communication diagram of the offline process in a decision support system for emergency management based on social
sensing.

call, the execution of the sender continues immediately
after the call is issued, and the processing of the mes-
sage is made by the receiver concurrently with the
execution of the sender. On a synchronous call, the
execution of the sender is blocked during the execu-
tion of the invoked procedure. When the receiver has
carried out the procedure, it returns the generated val-
ues to the sender, which is awakened and allowed to
continue execution. In a communication diagram, syn-
chronous messages are shown with filled arrow head,
whereas asynchronous messages have an open arrow
head. A return message is denoted by a dashed open
arrow head.
Let us suppose that the offline process (as described

later in Figure 5) was previously performed so that
the system is ready-to-use for a given type of emer-
gency. The online process evolves as in the following:
(1) the Decision System makes the getAlerts call to the
Analysis System component, providing the emergency-
Type as a parameter (e.g., “earthquake”, “flooding”);
(2-4) the Analysis System makes the beginDetection,
beginSelection and beginCapturing calls to the Emer-
gency Event Detection, Ongoing Emergency Messages
Selection, and Emergency Messages Capturing com-
ponents, respectively, providing the emergencyType as
a parameter; (5) the Emergency Messages Capturing
component makes the beginStreaming call to the On-
line Social Network component, providing the emer-
gengyTerms as a parameter. The latter call is syn-
chronous, so as to avoid losing data from the Online
Social Network ’s stream. The sixth step is made of
a number of substeps iteratively carried out for each
message delivered by the Online Social Network ; for
this purpose, the whole step for a given message is re-

ferred to as 6.*, whereas the single substep is referred
to as 6.*.1, 6.*.2, and so on.
Each emergency message delivered by the Online

Social Network to the Emergency Messages Captur-
ing component (6.*.1), is then delivered to the Pri-
mary Messages Selection component (6.*.2), which
checks whether the message is primary or not (6.*.3).
If the message is primary, it is delivered to the Trusted
Messages Selection component (6.*.4), which checks
whether the message is trusted or not (6.*.5). If the
message is trusted, it is delivered to theOngoing Emer-
gency Messages Selection component (6.*.6), which, in
turn, checks whether the message refers to an ongoing
emergency or not (6.*.7). If the message refers to an
ongoing emergency, it is delivered to the Emergency
Event Detection component (6.*.8), which according
to an arbitrary detection algorithm (i.e., a message-
burst detection algorithm), checks whether to trigger
the detection of an event or not (6.*.9). When an event
occurs, it is received (7) and geolocated (8) by the
Emergency Geolocation component, and the Analysis
System is finally notified with an alert (9) by the Emer-
gency Geolocation component itself.
The offline process, described in Figure 5, is aimed at

providing the Emergency Messages Capturing compo-
nent with Emergency-specific Terms, as well as train-
ing the Machine Learning Classifier component for a
new type of emergency. At the beginning, the Social
Network Analyst is provided with some occurrences of
the new type of emergency via historical archives. He
needs to build some collection of messages related to
such occurrences.
In the first step the Social Network Analyst config-

ures the Corpus Building component (1) with some
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parameters derived from the archives and purposely
targeted on each specific occurrence (e.g., date and lo-
cation of the emergency). Then, the Social Network
Analyst asks the Corpus Building component to build
the corpus (2). This is made through two substeps: the
Corpus Building component asks the Historical Mes-
sages Capturing component to capture messages with
the above parameters (2.1), and the Historical Mes-
sages Capturing component gets message blocks from
the Online Social Network component (2.2), by using
a historical search API. Message blocks are then re-
turned and collected to build the corpus (2.3-2.4).

The Social Network Analyst, by using the returned
corpus and a baseline of messages from the OSN,
asks the Offline Terms Building component to extract
Emergency-specific Terms (3) which are then deployed
on a knowledge base (3.1). He also enables the anno-
tation campaign of the corpus (4) by enrolling a num-
ber of annotators (4.*). At the end of the annotation
campaign (4.2) the Social Network Analyst creates the
training set of messages (4.3). The training set is then
used by the Social Network Analyst to train the Ma-
chine Learning Classifier component (5) by exploiting
the annotated corpus and a set of features defined on
the corpus itself. At the end of the training, an Ongo-
ing Emergency Message Model is created (5.1).

The model so far created will be used by the On-
going Emergency Messages Selection component dur-
ing the online process. The Trusted Messages Selec-
tion and the Primary Messages Selection components
are ready-to-use for any type of emergencies, and then
they do not require training nor setting procedures.

Finally, the Emergency Messages Capturing compo-
nent will employ the Emergency-specific Terms cre-
ated at the third step of the offline process to extract
emergency messages from the Online Social Network
during the online process.

System implementation
This section describes an implementation of the log-
ical architecture proposed in the previous section, by
means of a prototypical application in the domain of
Seismic emergencies. Such application implements the
components involved in the online process (i.e., with
reference to Figure 3, those arranged in a stack on top
of Online Social Network and enclosed in a dotted,
light grey box) to act as a Twitter-based earthquake
detector.

Emergency Messages Capturing

The Emergency Messages Capturing component is in
charge of gathering messages potentially related to an
emergency. As the overall online process relies on data

collected at this stage, this component plays a cru-
cial role within the framework. As shown in Figure 3,
Emergency Messages Capturing interfaces directly to
the Online Social Networking platform, provided by
Twitter, and exploits the Emergency-specific Terms
knowledge base, which is generated and updated by
the offline process. This knowledge base contains the
keywords used by the Emergency Messages Capturing
component to query the Twitter platform in order to
capture earthquake-related messages (e.g., for Seismic
emergencies in Italy, it contains the two italian terms
“terremoto” (earthquake) and “scossa” (tremor)).
Among the methods provided by Twitter for data

capturing, the implemented system exploits the Stream-
ing API[5] to open a persistent connection with a
stream of tweets. The Streaming API gives access to a
global stream of messages, optionally filtered by search
keywords. In contrast with the Search API used in the
systems described in [28, 29][30][33, 34], which gives
access only to a subset of all the tweets produced, the
Streaming API potentially makes it possible to capture
all the tweets matching the search criteria. To guaran-
tee the robustness and the reliability of the system we
also implemented additional mechanisms that manage
rate-limit and generic connection problems in the use
of the Streaming API. Such mechanisms include the
adoption of a backup streaming connection to avoid
loss of data in case of a sudden disconnection from
the primary stream, and mechanisms to perform auto-
matic reconnection upon disconnecting from a stream.
Twitter rate-limits for the Streaming API[6] are set so
as to deliver, at any given time, at most 1% of the
total worldwide Twitter traffic, per streaming connec-
tion. However, our system never suffered from such a
limitation over a two months long experiment, dur-
ing which the collected tweets never generated a traf-
fic exceeding the 1% threshold. Applications exploit-
ing Twitter’s Streaming API should also guarantee a
rapid processing of delivered messages. Clients which
are unable to process messages fast enough will be
automatically disconnected by Twitter. This situation
is commonly refered to as Falling Behind. Following
Twitter’s guidelines, in our implementation we decou-
pled the data capturing and analysis phases by rapidly
storing messages in a NoSQL MongoDB[7] database.
Such messages are later properly formatted and copied
in a relational MySQL database for further processing.
It should be noted that not all the messages gath-

ered in this first step are actually related to an un-
folding seismic event. In fact, some messages can be

[5]https://dev.twitter.com/streaming/overview
[6]https://dev.twitter.com/streaming/overview/
messages-types#limit notices
[7]http://www.mongodb.org/



Avvenuti et al. Page 11 of 16

misleading for the event detection task and must be
filtered out as noise [30]. For example, their contents
could be maliciously fictitious, convey reported news
or talk about past of future events. This motivates the
filtering components required by the architecture and
described in the following.

Primary Messages Selection

The Primary Messages Selection component is the
first filtering module in the proposed architecture and
is therefore fed with the whole stream of messages
gathered by the Emergency Messages Capturing com-
ponent. Due to the potentially large volume of mes-
sages to be processed at this stage, this component
performs a fast coarse-grained filtering of incoming
messages by applying heuristic rules to select first-
hand tweets sent by eyewitness users who are actually
present at the referred event and can directly describe
it [41][42].

Studying the characteristics of the messages shared
on Twitter in the aftermath of seismic events led us
to the observation that genuine reports of earthquakes
do not follow any information diffusion model and are
not influenced by other reports. However, this scenario
rapidly evolves over time as the news of the earth-
quake spreads over the different medias, so that subse-
quent reports are in growing percentage influenced by
other news. Thus, we concluded that the best results
for the event detection task could be achieved by con-
sidering only spontaneous and independent messages.
The Primary Messages Selection component therefore
discards retweet messages, reply messages and mes-
sages shared by accounts belonging to a blacklist of 345
Twitter profiles that publish official information about
recent emergencies. We are aware that the heuristics
exploited by the Primary Messages Selection compo-
nent might not be enough to discard all derivative mes-
sages. Nonetheless, they represent a computationally
efficient way of filtering out the vast majority of useless
messages. Furthermore, the modular and architectural
solution we propose is particularly suitable for being
expanded with alternative approaches and algorithmic
solutions to this task.

Trusted Messages Selection

Another possible flaw for all social mining systems lies
in the vulnerability to intentional attacks performed
by malicious users [39] [40]. In our application, secu-
rity concerns can arise if groups of people collude to
generate fictitious tweets referring to an earthquake.
The online Trusted Messages Selection component ex-
ploits the Trusted Message Model to select trusted,
reliable messages. Many already developed classifiers

can be exploited for this task, such as the ones pro-
posed in [43] and [44]. In our implementation we em-
ploy a domain-independent machine learning classifier
trained to distinguish between “fake” and “real” ac-
counts [45, 46]. The classifier has been trained on a
set of 3900 equally distributed fake and real accounts
and was able to correctly classify more than 95% of
the accounts of the training set. In the online mode of
operation, the Trusted Messages Selection component
exploits the trained model and the Weka tool [47] to
infer the class (fake, real) a user who posted a mes-
sage belongs to. The Trusted Messages Selection com-
ponent performs this operation for every message it
receives from the Primary Messages Selection com-
ponent. Messages posted by fake users are automat-
ically discarded by the system. In addition, users re-
peatedly triggering false detections are added to the
same account blacklist exploited by the Primary Mes-
sages Selection component. To further protect the sys-
tem from harmful attacks, we consider only a single
message per user, and messages from different users
but with the same contents are considered only once.
While we understand that these solutions do not fully
address the problem of malicious attacks, we are con-
fident that our efforts represent a first response to se-
curity concerns in social mining systems. In fact, the
adopted solutions require potential attackers to put
considerably much effort into the creation of plausible
accounts. The employment of the solutions proposed
in [43] and [44] for the classification of “automated”
versus “non-automated” accounts, might represent an-
other possible way to tackling this problem and stands
as promising ground for future work.

Ongoing Emergency Messages Selection
To further enforce the Primary, Trusted and Emer-
gency message properties, the Ongoing Emergency
Messages Selection component performs a fine-grained
filtering by means of the Ongoing Emergency Message
Model, a machine learning classifier which has been
trained in the offline process. Again, we exploitedWeka
to train and generate the classifier. The Emergency-
specific Training Set for earthquakes is composed of
more than 1400 tweets divided into two balanced sets
of messages: tweets related and tweets not related to
a seismic event in progress. During the offline phase,
tweets of the training set were manually classified by
the Annotators using the ad-hoc Annotation Tool web
interface[8]. Our analysis of the messages reporting
earthquakes has highlighted a few interesting charac-
teristics that help distinguish between tweets related
and tweets not related to an unfolding seismic event.
Tweets referring to an earthquake are generally very

[8]http://wafi.iit.cnr.it/ sosnlp/ sosnlp/annotation tool
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Figure 6 A burst of messages registered after a moderate earthquake.

short, they present fewer punctuation than normal
tweets and often contain slang or offensive words. This
is because people reporting an earthquake are usually
scared about the event and the content of the messages
they write tend to reflect this emotion. Instead, tweets
referring to official news of an earthquake or talking
about a past earthquake present a longer, more struc-
tured message. Tweets not related to a recent earth-
quake also include a higher number of mentions and
URLs than spontaneous earthquake reports. Thus, we
defined the following set of features that takes into
account the results of the previous analysis: (i) char-
acter count; (ii) word count; (iii) punctuation count;
(iv) URL count; (v) mention count; (vi) slang/offensive
word count. Notably, some of the features that we de-
fined for this task are also supported by the findings
of recent related works [48] [49].
Training the classifier with this set of features pro-

duced correct classifications in more than 90% of the
tweets of the Emergency-specific Training Set. The
classifier was obtained using the decision tree J48, cor-
responding to the Java implementation of the C4.5 al-
gorithm [50] with a 10-fold cross validation. In the on-
line mode of operation, the prediction is performed by
invoking the classifier every time a message is delivered
to the Ongoing Emergency Messages Selection compo-
nent. As Weka generally needs less than a second to
predict the class of a new tweet by means of our de-
cision tree model, it is feasible to use the fine-grained
classifier filter at this stage of the system since most of
the noisy messages have already been filtered out by
previous components.

Emergency Event Detection
The detection of a seismic event is triggered by an
exceptional growth in the frequency of messages that
have passed the filtering phases. In our system, we

adopt a novel event detection approach which is based
on a burst detection algorithm. A burst is defined as a
large number of occurrences of a phenomenon within
a short time window [51]. Burst detection techniques
are commonly applied to various fields such as the de-
tection of topics in data streams. Our system triggers
the detection of a seismic event when it identifies a
burst of Ongoing Emergency Messages. Figure 6 dis-
plays a rug plot of the arrival times of Ongoing Emer-
gency Messages, as well as a histogram plot showing
their frequency per minute, during a 3.4 magnitude
earthquake occurred at 15:47:49, August 9 2014, in
Tuscany regional district. After the occurrence time
of the earthquake, denoted by the red vertical dashed
line, a big burst of tweets was recorded by our sys-
tem. Works in [52][53] discuss various burst detection
algorithms. Our Emergency Event Detection compo-
nent implements the hierarchical algorithm proposed
in [53] since it is computationally light and can adapt
well to both big and small bursts. An efficient algo-
rithm is necessary because of the real-time nature of
our system, and the ability to detect both big and
small bursts fits well with the need of a flexible, scal-
able and reusable system.

Experimental studies
The validation of the proposed Social Detection Sys-
tem has been carried out exploiting official data re-
leased by the National Institute of Geophysics and
Volcanology[9] (INGV), the authority responsible for
monitoring seismic events in Italy. INGV uses different
channels, including a dedicated Twitter account[10], to
distribute detailed information about seismic events
having magnitude 2 or more, which have been detected

[9]http://www.ingv.it/ en/
[10]https:// twitter.com/ ingvterremoti
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detection results validation metrics

magnitude earthquakes TP FP FN Precision Recall F-Measure

System validation against all the earthquakes registered by INGV

> 2.0 404 17 30 387 36.17% 4.21% 7.54%
> 2.5 102 16 30 86 34.78% 15.69% 21.62%
> 3.0 26 13 17 13 43.33% 50.00% 46.43%
> 3.5 11 9 3 2 75.00% 81.82% 78.26%
> 4.0 7 5 0 2 100% 71.43% 83.33%
> 4.5 2 2 0 0 100% 100% 100%

System validation against earthquakes that generated at least one report on Twitter

> 2.0 128 17 30 111 36.17% 13.28% 19.43%
> 2.5 55 16 30 39 34.78% 29.09% 31.68%
> 3.0 21 13 17 8 43.33% 61.90% 50.98%
> 3.5 9 9 3 0 75.00% 100% 85.71%
> 4.0 5 5 0 0 100% 100% 100%
> 4.5 2 2 0 0 100% 100% 100%

Table 1 Earthquake detection validation.

by their seismographic network. To validate the pro-
posed architecture, we cross-checked all the events de-
tected by the prototypical application described in the
previous section, against the official reports released by
INGV. This approach allowed us to validate our sys-
tem with stronger metrics than the ones used in similar
works, such as [28, 29], [30] and [33, 34]. Specifically,
the majority of social media emergency management
systems have been validated with a focus on correct
detections. However, the problem of false detections
is often understated, despite being a critical factor in
emergency management [37]. Therefore, we classified
earthquake detection results as in the following:
• True Positives (TP): events detected by our sys-
tem and confirmed by INGV;

• False Positives (FP): events detected by our sys-
tem, but not confirmed by INGV;

• False Negatives (FN): events reported by INGV
but not detected by our system.

True Negatives (TN) are widely used in information
retrieval and classification tasks together with TP, FP
and FN. However, in our scenario TN are not applica-
ble, as it would mean counting the number of earth-
quakes that did not happen and that our system did
not detect. In addition, we also computed the following
standard metrics:
• Precision, ratio of correctly detected events among
the total number of detected events:

Precision =
TP

TP + FP

• Recall (a.k.a. Sensitivity), ratio of correctly de-
tected events among the total number of occurred
events:

Recall =
TP

TP + FN

• F-Measure, harmonic mean of Precision and Re-
call:

F-Measure = 2 ∗
Precision ∗Recall

Precision+Recall

We were not able to compute other well-known met-
rics such as Specificity, Accuracy and Mathews Corre-
lation Coefficient since they rely on the True Negatives
(TN) count. Employed metrics are anyway exhaustive
and allow a thorough validation of detection results.
Table 1 summarizes event detection validation against
earthquakes registered by INGV over a 66 days time
window starting from 2013-07-19 to 2013-09-23. The
number of earthquakes reported in Table 1 refers only
to real earthquakes detected by INGV and therefore
corresponds to the sum of TP and FN. FP instead
represent false detections by our system.
We first evaluated the Social Detection System

against all the earthquakes having a magnitude greater
than 2.0, registered by INGV within the given time
window. Results show that the detection of earth-
quakes with magnitude lower than 3 is a very chal-
lenging task. This is because the majority of these
earthquakes are only detected by seismographic sta-
tions and not by people. For events with a magnitude
equal to or greater than 3.5, results show a good per-
formance of the system, as demonstrated by the en-
couraging values of F-Measure: 78.26% for magnitude
> 3.5, 83.33% for magnitude > 4 and 100% for mag-
nitude > 4.5. This is especially significant given that
seismic events of a magnitude around 3 are considered
“light” earthquakes and are generally perceived only
by a very small number of social sensors.
The majority (68%) of the earthquakes occurred dur-

ing the 66 days validation time window were extremely
light and did not generate any report on Twitter. A
detection system based solely on tweets is obviously
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incapable of detecting such events and this is reflected
by the high number of False Negatives (FN) and by
the low Recall for earthquakes with magnitude lower
than 3.
In the emergency management scenario, light seismic

events only detected by seismographic stations clearly
do not pose any threat to communities and infrastruc-
tures and earthquakes of interest are those actually felt
by the population at large. Therefore we re-validated
the system against those earthquakes that generated
at least one report on Twitter. Results for this ex-
periment are displayed in the bottom half of Table 1
and show an overall improvement in the system per-
formances. It is worth noting that the proposed So-
cial Detection System achieves flawless results (Preci-
sion, Recall and F-Measure = 100%) for earthquakes
of magnitude 4.0 or more and still performs very well
on earthquakes which have a magnitude in the region
of 3.5 (Precision = 75%, Recall = 100% and F-Measure
= 85.71%).

Figure 7 System responsiveness validation. Distribution of
detection delays versus INGV notification delays.

Figure 7 characterizes the system’s responsiveness by
means of boxplot and scatterplot distributions of the
detection delays of our system compared to the noti-
fication delays of INGV official reports. The detection
delays of our Social Detection System are computed
as the difference between the occurrence timestamp of
an earthquake and the timestamp of the corresponding
detection triggered by the Emergency Event Detection
component. INGV notification delays are computed as

the difference between the occurrence timestamp of an
earthquake and the timestamp of the corresponding of-
ficial report released by INGV. The detection delays
reported in Figure 7 have been computed considering
only True Positive detections.
INGV official reports are the timeliest publicly avail-

able source of information about earthquakes in Italy.
Anyway, INGV notification delays are considerably
higher than the detection delays of our system. In Fig-
ure 7 this is evident from the massive gap between
the spreads (or boxes) of the two distributions. Earth-
quake detection responsiveness of our system is even
more valuable since early reports of severe earthquakes
might be of interest not only to emergency responders,
but also to all breaking news agencies looking for fresh
information to publish as well as to insurance compa-
nies and financial advisors.
Among all the detections performed by our sys-

tem, 87% occurred within 5 minutes of the earthquake
and 43% occurred within 2 minutes. These results are
promising, especially considering that the proposed
framework is adaptable to other emergency scenarios
where automatic detection equipment, playing the role
of seismographs for seismic events, might not be avail-
able. Being able to automatically detect a considerable
percentage of emergency situations within minutes of
the event would surely benefit emergency responders.

Conclusions and future work
In this paper we have discussed how the HaaS
paradigm can be exploited for emergency detection.
Core concepts, major roles and functionalities have
been specified to operate in a broad class of emergen-
cies. The design of architectural components reusable
for many types of events, and possibly adaptive with
respect to the different characteristics of each type, has
been detailed. Related works have been discussed via
the proposed architectural model, to systematize the
available solutions under our modular and platform-
independent conceptual framework. The implementa-
tion of an actual Twitter-based earthquake detector
has been then presented, to show the effectiveness of
our approach. Furthermore, a real-world case of ap-
plication has been discussed and analyzed, discovering
the most interesting properties of our approach. In ad-
dition, the architecture has been validated under more
comprehensive metrics with respect to the existing lit-
erature.
As a future work, to better assess the system over its

whole life cycle, it should be cross-validated on other
real-world scenarios, involving emergencies of different
types and sizes. Afterwards, the next key investigation
activities along this line of research should be to em-
ploy real-time data provided by bursts of messages as
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a mine of information for situational awareness and
damage assessment. Specifically, qualitative analyses
of relevant messages can be performed to increase the
overall situational awareness in the aftermath of an
emergency. Qualitative analyses of the textual content
of messages can be performed via natural language
processing techniques and might lead to time-evolving
term-clouds, highlighting those textual bits which con-
vey critical and actionable information. In parallel,
analyses of the multimedia content of messages can
be carried out by means of image filtering and image
clustering techniques. However, despite providing valu-
able insights into the unfolding scenario, the output
of qualitative analyses still requires to be interpreted
by domain-experts. In contrast, quantitative analyses
could provide unambiguous outputs which might prove
even more valuable to decision-makers and emergency
responders. Specifically, for seismic events, a quanti-
tative approach to the estimation of the impact of an
earthquake can be performed by training statistical re-
gression models to estimate earthquake intensity from
the characteristics of social media reports.
In the future we look forward to addressing these

issues by extending our modular framework to include
components performing analyses aimed at increasing
situational awareness and capable of providing early
damage assessments.
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