
A Framework for Developing Mobile, Context-aware Applications

Gregory Biegel and Vinny Cahill
Distributed Systems Group

Department of Computer Science
Trinity College Dublin

{Greg.Biegel, Vinny.Cahill}@cs.tcd.ie

Abstract

The emergence of truly ubiquitous computing, enabled
by the availability of mobile, heterogeneous devices that
supply context information, is currently hampered by the
lack of programming support for the design and develop-
ment of context-aware applications.

We have developed a framework which significantly
eases the development of mobile, context-aware ap-
plications. The framework allows developers to fuse
data from disparate sensors, represent application con-
text, and reason efficiently about context, without the
need to write complex code. An event based communica-
tion paradigm designed specifically for ad-hoc wireless
environments is incorporated, which supports loose cou-
pling between sensors, actuators and application compo-
nents. 1

1. Introduction

Context awareness and mobility are core concepts in the
vision of ubiquitous computing where networks of small
computing devices are dispersed in the physical environ-
ment, operating autonomously and independently of cen-
tralised control. Context-aware applications are a large and
important subset of the overall set of ubiquitous computing
applications, and have already demonstrated the advantages
gained from the ability to perceive the surrounding environ-
ment [1], [2], [3]. Such applications however remain dif-
ficult to develop and deploy, with no widely accepted pro-
gramming model available. Programmers are often required
to write large amounts of code and interact with sensor and

1 The work described in this paper was partly supported by the Future
and Emerging Technologies programme of the Commission of the Eu-
ropean Union under research contract IST-2000-26031 (CORTEX).
The authors are grateful to the anonymous reviewers and our shep-
herd, Roy Want, for their valuable contribution to improving this pa-
per.

actuator devices at a low level in order to develop relatively
simple applications.

The mobility of devices in the ubiquitous computing en-
vironment also raises challenges in the areas of communi-
cation and interaction due to factors such as dynamically
changing network addresses and system configurations, sus-
ceptibility to disconnection and low bandwidth [4].

The main components of a context-aware application are
a set of sensors for capture of context data, a set of rules
governing behaviour according to context and a set of actu-
ators for generating responses. We have developed the sen-
tient object model for the development of context-aware ap-
plications in an ad-hoc mobile environment, which defines
software abstractions for sensors and actuators, and pro-
vides a framework for the specification of production rule
driven behaviour. Sentient objects have a number of char-
acteristics that are important in ubiquitous computing envi-
ronments:

• Sentience - the ability to perceive the state of the envi-
ronment via sensors

• Autonomy - the ability to operate independently of hu-
man control in a decentralised manner

• Proactiveness - the ability to act in anticipation of fu-
ture goals or problems

The challenges introduced by mobile computing envi-
ronments are addressed by an event-based communication
mechanism, which does not rely on centralised control and
provides loose coupling between objects, supporting object
mobility and application evolution. The event-based com-
munication model allows sentient objects to treat all input
data, whether from sensors or other objects, in the same
manner, providing a decoupled approach to interaction. The
sentient object model incorporates the STEAM event ser-
vice [5] to provide communication among components of
the model.

Our model provides a systematic approach to the devel-
opment of context-aware applications in mobile ad-hoc en-
vironments, supporting the important aspects of sensor fu-



sion, context extraction and reasoning. We provide a frame-
work that supports the application developer in the follow-
ing key ways:

• It provides abstractions for sensors and actuators, thus
relieving the developer of the burden of low level in-
teraction with various hardware devices

• It provides a probabilistic mechanism for fusing multi-
modal fragments of sensor data together in order to de-
rive higher-level context information

• It provides an efficient approach to intelligent reason-
ing based on a hierarchy of contexts

• It provides an event-based communication mechanism
for interaction between sensors, objects and actuators

• It provides an easily accessible visual programming
tool for developing applications reducing the need to
write code

The framework fulfills the two major goals identified
by Dey and Sohn [6] which are necessary for the success-
ful development of ubiquitous, context-aware applications,
namely:

1. Applications are easier to design, prototype and test,
supporting a faster iterative development process

2. Designers and end-users are empowered to build their
own applications

A number of other middleware proposals address the
challenges of effectively developing context-aware applica-
tions. Seminal work by Dey [7] provided a toolkit which en-
abled the integration of context data into applications, but
did not provide mechanisms for performing sensor fusion,
reasoning about context, or dealing with mobility. Context
acquisition and use was often tightly integrated into a sin-
gle application [2], and could not easily be incorporated
into other applications. Other work provided mechanisms
for reasoning about context [1], [8], but still did not pro-
vide a well defined programming model and did not address
the challenges of mobility. Recent and ongoing work [6],
[9] provides programmer support for the development of
context-aware applications, but does not provide the ability
to systematically specify and manage event filtering, sensor-
fusion and rule-based inference in a mobile ad-hoc environ-
ment, as our framework does.

2. The sentient object model

Essentially, a sentient object is an encapsulated entity,
with its interfaces being sensors and actuators. Actuation is
controlled based on sensor input according to internal con-
trol logic, consisting of event filtering, sensor fusion and

Sensory
Capture

Context
Hierarchy

Inference
Engine

Consume Produce

Sentient Object

Event

Actuator

Sensor

Sensor

Actuator

Figure 1. Sentient object model

intelligent inference, as illustrated in Figure 1. In the sen-
tient object model, sensors are defined as entities that pro-
duce software events in reaction to a real world stimulus,
whilst actuators are defined as entities which consume soft-
ware events and react by attempting to change the state of
the real world in some way via some hardware device.

2.1. Sentient object internals

The sentient object model is based on the notion of
context-awareness, where context is defined as any infor-
mation sensed from the environment which may be used to
describe the situation of a sentient object. Context aware-
ness depends on the accurate extraction, combination and
interpretation of information from a variety of unreliable,
multi-modal sensors and sentient objects are composed of 3
major internal components which provide these functions:

2.1.1. Sensory capture and context fusion The sensory
capture component of a sentient object performs sensor fu-
sion in order to manage uncertainty of sensor data and de-
rive higher level context information from multi-modal data
sources.

A probabilistic sensor fusion scheme is employed, based
upon Bayesian networks [10], which provides a power-
ful mechanism for measuring the effectiveness of deriva-
tions of context from noisy sensor data. A Bayesian net-
work graph allows us to manage the exponential increase in
the size of a joint probability distribution over a set of ran-
dom variables, by exploiting conditional independence. Us-
ing Bayesian networks to model the uncertainty of sensor
data and the dependencies between a set of sensors, gives
us the ability to efficiently reason about the truth of a hy-
pothesis, given evidence from a set of sensors.

2.1.2. Context hierarchy The overall context of a sen-
tient object is made up of a set of discrete environmen-
tal facts and data. These multi-modal context fragments are
fused by the sensory capture component to determine higher
level contexts. The set of contexts in which an object may



Drive
to point x

Cruise Avoid Obstacle Obey traffic
 light

Evasive 
maneuver AccelerateDecelerate

Major Context

Mission Context

Sub Context

Figure 2. Subset of the context hierarchy for
a simple sentient car

exist is represented as a hierarchy, based upon the Context-
Based Reasoning (CxBR) paradigm [11].

This paradigm derives its name from the idea that the ac-
tions taken by an entity are highly dependent on the entity’s
current context, i.e., a recognized situation defines a set of
appropriate actions and the identification of a future situa-
tion is simplified if all possible actions are limited by the
current situation itself. CxBR is based on the following hy-
potheses [11]:

1. Small, but important portions of all available environ-
mental inputs are used to recognise and treat the key
features of a situation

2. There are a limited number of things that can realisti-
cally take place in any situation

3. The presence of a new situation will generally require
alteration of the present course of action to some de-
gree

The context hierarchy encapsulates knowledge about ac-
tions to be taken and possible future situations into contexts.
By defining a hierarchy of contexts in which a sentient ob-
ject may exist and by associating specific actions to be un-
dertaken in each context, a sentient object’s behaviour is in-
fluenced by its context.

An example context hierarchy for a simple sentient
model car is illustrated in Figure 2. The mission con-
text captures actions common to all contexts whilst a major
context captures actions common to a set of sub con-
texts which in turn are usually actions with a short
lifetime which change rapidly. Only one mission, ma-
jor and sub context is active at any point in time which
limits the actions possible and therefore the rules applica-
ble and in need of evaluation. For example, in the sentient
car when the major context Avoid Obstacle, and sub con-
text Decelerate are active, rules and actions associated
with other major and sub contexts do not need to be eval-
uated, which increases the efficiency of the inference pro-
cess.

Treating context as a hierarchy helps to manage the com-
plexity of development by reducing the problem to devel-
oping a set of ’contexts’. Within each context only a sub-
set of the overall rule-base of the system needs to be spec-

ified which in turn reduces the complexity of rule develop-
ment.

2.1.3. Inference engine Sentient objects are made
context-aware by using conditional rules to specify ap-
plication behaviour in different contexts, in other words
the objects follow an Event-Condition-Action execu-
tion model [8].

The inference engine component is responsible for
changing application behaviour according to context and
leverages the existing capabilities of the CLIPS (C Lan-
guage Integrated Production System) production sys-
tem language [12]. CLIPS contains an inference engine
built into the language which given a set of facts, and pre-
defined rules, is able to decide which rule to fire. Intelli-
gence and the ability to react to changing contexts is added
to the object through the specification of a set of produc-
tion rules.

CLIPS’ suitability for integration into reactive sentient
applications is explained by [8] as: (1) the expressive power
of CLIPS permits specification of complex relations of
event patterns; (2) its built-in inference engine implements
the RETE [13] algorithm, a very efficient mechanism to
solve the many-to-many matching problem; (3) CLIPS is
designed for full integration and extensibility with procedu-
ral languages such as C++ and Java.

The context hierarchy increases the efficiency of the in-
ference engine by introducing the notion of an active con-
text. Within the context hierarchy, only one context is active
at any point in time and within this context, only a subset of
the overall rules governing the objects behaviour are active.
This derives from the hypothesis that there are only a lim-
ited number of things that can realistically take place in any
situation, and by limiting the number of actions permitted
in specific contexts, the efficiency of production-rule based
inference is increased substantially. Rule based inference is
typically O(n), where n is the number of rules in the sys-
tem but the introduction of the context hierarchy improves
this to O(k) where k is the average number of rules in an
active context and k < n [11]. Experiments [14] demon-
strated that the introduction of a context hierarchy reduces
the overall number of rules needed for inference, as well as
speeding up the process.

2.1.4. Sensor fusion and the context hierarchy The fact
that only a small portion of sensory input is relevant at any
point in time is used to enhance the effectiveness of the
probabilistic sensor fusion scheme by limiting the number
of nodes in the sensor fusion network in each context.

Sensors in the sentient object model are highly dis-
tributed, with changing configurations due to the mobility
of sentient objects. In addition, which of a set of sensors
are consulted at a particular point in time is highly depen-
dent on the active context at that time. We perform sensor



Bayesian Network Mission Context

Major Context

Sub Context

Sensor 1 Sensor n

Physical Environment

Raw Data

Context Fragments

Figure 3. Sensor fusion in the context hierar-
chy

fusion at the level of a context within the context hierar-
chy. A context defines which sensors are relevant to that
context as well as those which must be monitored in order
to detect when transition to another context is indicated. A
Bayesian network is constructed within each context in or-
der to fuse the fragments of context information obtained
from the sensors. The integration of Bayesian network frag-
ments into the context hierarchy is illustrated in Figure 3.
This figure shows how each context in the hierarchy is only
interested in a subset of the sensor input, and Bayesian net-
work fragments within each context act to fuse the context
fragments obtained from the relevant sensors.

2.2. Event based communication

Event-based communication is well-suited for mobile
applications where communication relationships amongst
application components are established dynamically during
the lifetime of the application [5]. STEAM (Scalable Timed
Events And Mobility) is a location-aware event-based mid-
dleware service designed specifically for ad-hoc wireless
networking environments. STEAM differs from other dis-
tributed event middleware in that it does not depend on any
fixed communication infrastructure and event notifications
may be bounded based on geographical location.

STEAM contains no centralized components and pro-
vides a number of types of filter to control propagation of
events through the system. In addition to subject and con-
tent filters, STEAM provides proximity filters which define
the geographical validity of an event.

3. The sentient object programming model

We provide a programming model, based on the sentient
object model and incorporating the STEAM event service,

which provides abstractions for the development of mobile,
context-aware applications.

3.1. Programming sensors and actuators

Sensors are developed as software abstractions that pro-
duce STEAM events, whilst actuators are developed as soft-
ware abstractions that consume STEAM events. These soft-
ware components encapsulate and act as wrappers for hard-
ware and software sensors and provide mappings between
specific sensor protocols and proprietary data formats, and
STEAM events. Sensors provide a uniform interface to sen-
sory information through STEAM events, and hide details
of the underlying sensing technologies.

Actuators extend from STEAM consumer entities which
export an API for subscription management. Actuators con-
sume STEAM events according to active subscriptions and
filters, and transform the information contained within these
events, to specific hardware or software commands. Actua-
tors subscribe to event types of interest based on a set of
event filters.

In addition to the class file, each sensor and actuator
also contains an XML description file, which contains infor-
mation about the events produced or consumed, as well as
probabilistic information regarding the uncertainty of each
event.

3.2. Programming sentient objects

Sentient objects are developed using a graphical devel-
opment tool which allows developers to specify relevant
sensors and actuators, define fusion networks, specify con-
text hierarchies and production rules, without the need to
write any code.

3.2.1. Specifying inputs and outputs Specification of in-
puts to the object is done simply through ’drag and drop’
from libraries which contain XML descriptions of sensors
and sentient objects. Each descriptor describes the name and
type of each STEAM event produced by the sensor or ob-
ject. Outputs are specified in the same way, with descrip-
tors available describing the events consumed by the actu-
ator or object. Much of the programming effort is concen-
trated in the specification of the logic of the object.

3.2.2. Specifying contexts Specification of the context hi-
erarchy is the next step in the development of an object. The
hierarchy is built up by specifying the attributes of each in-
dividual context. The most important attributes of a context
are: (1) The set of events which are of interest in this con-
text; (2) The set of rules which are active in the context; (3)
The set of other contexts to which this context is related (i.e.
child contexts) and may transition to; (4) The conditions un-
der which transition to another active context occurs.



In effect, a context acts as a composite event filter -
whilst it is active, only those events which are defined as
being of interest in that context are delivered to the object.

A context defines the behaviours which are appropriate
within the context by specifying the set of production rules
which are active, and consequently evaluated, in each con-
text. The fact that only a subset of sensor inputs and produc-
tion rules needs to be considered for each individual con-
text aids in reducing the complexity of developing context-
aware applications.

3.2.3. Specifying fusion services Fusion services within
sentient objects are defined at the level of a context, using
Bayesian networks. The tool allows the user to specify a
Bayesian network for fusing fragments of context data on a
per-context basis, via an intuitive graphical network builder.

The network is constructed by defining the events of in-
terest and their relationships by adding nodes and arcs in
an interactive manner. The probabilities of all root nodes
are then specified and a conditional probability table (CPT)
is constructed for each non root node. These tables capture
prior probabilities of events and rely on the a priori avail-
ability of probability data. This may be determined through
experimental evidence as was done for ultrasonic sensors
in the development of our sentient model car, where the
probability distribution that an arbitrary sensor reading was
within a specified threshold was calculated based on exper-
imental observation.

3.2.4. Specifying rules The complexity of specifying ef-
fective rules and knowledge bases is one of the greatest
challenges in context-aware application development. Sen-
tient objects make use of an embedded CLIPS inference en-
gine, but CLIPS syntax is complex and not easily assim-
ilated by the majority of developers. We attempt to make
knowledge capture more accessible to domain experts by
providing a high level, graphical rule builder, allowing the
definition of application behaviour at the level of a context,
and hiding the complexities of CLIPS syntax from the user.

4. Conclusion

In this paper we have presented a framework, based on
the sentient object model, for developing context-aware ap-
plications in a mobile, ad-hoc environment. Our framework
provides a systematic approach to context-aware applica-
tion development, including the ability to fuse context frag-
ments and deal with uncertainty in a probabilistic man-
ner, the ability to represent context within the application,
and the ability to easily compose rules to reason efficiently
about context. This functionality is offered in a tool which is
easily accessible to a wide range of developers, permitting
the rapid design and development of applications, based on
sentient objects, for ubiquitous computing environments.

We have successfully applied our framework to the develop-
ment of a number of proof-of-concept applications, includ-
ing a simple sentient model car application which drives and
obeys traffic signals autonomously.

References

[1] Albrecht Schmidt, Kofi Asante Aidoo, Antti Takaluoma, Urpo
Tuomela, Kristof Van Laerhoven, and Walter Van de Velde.
Advanced Interaction in Context in Handheld and Ubiquitous
Computing Springer-Verlag, pp. 89-101, 1999.

[2] Mike Addlesee, Rupert Curwen, Steve Hodges, Joe Newman,
Pete Steggles, Andy Ward, Andy Hopper Implementing a Sen-
tient Computing System IEEE Computer Magazine, Vol. 34,
No. 8, pp. 50-56, August 2001.

[3] Diego López de Ipiña, Paulo Mendona and Andy Hopper
TRIP: a Low-Cost Vision-Based Location System for Ubiq-
uitous Computing Personal and Ubiquitous Computing jour-
nal, Springer, vol. 6, no. 3, pp. 206-219, May 2002.

[4] George H. Forman, John Zahorjan The Challenges of Mobile
Computing IEEE Computer, 27(6), April 1994.

[5] René Meier and Vinny Cahill Exploiting Proximity in Event-
Based Middleware for Collaborative Mobile Applications in
Proceedings of the 4

th IFIP International Conference on Dis-
tributed Applications and Interoperable Systems (DAIS’03).
Paris, France: Springer-Verlag Heidelberg, Germany, 2003.

[6] Anind K. Dey and Tim Sohn Supporting End User Program-
ming of Context-Aware Applications Conference on Human
Factors in Computing Systems (CHI) Workshop on Perspec-
tives in End User Development, Fort Lauderdale, FL, April
5-10, 2003.

[7] Anind K. Dey, Daniel Salber and Gregory D. Abowd A Con-
ceptual Framework and a Toolkit for Supporting the Rapid
Prototyping of Context-Aware Applications Human-Computer
Interaction (HCI) Journal, Volume 16 (2-4), pp. 97-166, 2001.

[8] Diego López de Ipiña An ECA Rule-Matching Service for
Simpler Development of Reactive Applications in Proceed-
ings, Middleware 2001 Vol. 2, No. 7, November 2001.

[9] Manuel Román, Christopher K. Hess, Renato Cerqueira,
Anand Ranganathan, Roy H. Campbell, and Klara Nahrstedt
Gaia: A Middleware Infrastructure to Enable Active Spaces
in IEEE Pervasive Computing, pp. 74-83, Oct-Dec 2002.

[10] Judea Pearl Bayesian Networks Handbook of Brain Theory
and Neural Networks, MIT Press, 2001.

[11] Avelino J. Gonzalez, Robert Ahlers Context-Based Rep-
resentation of Intelligent Behaviour in Training Simulations
Transactions of the Society for Computer Simulation Interna-
tional, Vol. 15, No. 4, March 1999.

[12] NASA CLIPS: A Tool for Building Expert Systems
http://www.ghg.net/clips/CLIPS.html

[13] Forgy, C.L Rete: A Fast Algorithm for the Many Pattern/
Many Object Pattern Match Problem Artificial Intelligence
19, pp. 17-37, 1982.

[14] Gonzalez, A. J. and Ahlers, R. H. Context-Based Represen-
tation of Intelligent Behavior in Simulated Opponents Com-
puter Generated Forces and Behavior Representation Confer-
ence, 1996.


