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Abstract
Many existing hydrological modelling procedures do not make best use of available information, resulting in non-minimal uncertainties in
model structure and parameters, and a lack of detailed information regarding model behaviour. A framework is required that balances the
level of model complexity supported by the available data with the level of performance suitable for the desired application. Tools are needed
that make optimal use of the information available in the data to identify model structure and parameters, and that allow a detailed analysis
of model behaviour. This should result in appropriate levels of model complexity as a function of available data, hydrological system
characteristics and modelling purpose. This paper introduces an analytical framework to achieve this, and tools to use within it, based on a
multi-objective approach to model calibration and analysis. The utility of the framework is demonstrated with an example from the field of
rainfall-runoff modelling.
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Introduction
Increasingly, hydrological models are being embedded in
modelling systems that represent a broad range of
environmental processes at a wide range of time and space
scales. This has been associated generally with an increase
in model complexity, a lack of appropriate observational data
to constrain model states and outputs, and an increasing
number of model outputs. On the other hand, there is an
increasing awareness that the information content in the data
to identify model structure and parameters is limited. An
analytical framework is needed to guide model development
and application in a way that quantifies the uncertainty
associated with model parameters and outputs, maximises
the use of prior information, and matches model form and
complexity to the data available.

The applicability of ‘physics-based’ approaches to rainfall-
runoff modelling, which in theory would enable the
parameters to be derived from field measurements, has been

restrained by the heterogeneity of process responses and
unknown scale-dependence of parameters (Beven, 1989).
Prior information is thus limited and it is generally recognised
that models and/or parameters must be identified through
inverse modelling. Conceptual model structures, with an a
priori  specified structure based on the hydrologist’s
perception of the relevant processes and with parameters
calibrated against observed time-series, are therefore most
commonly used (Wheater et al., 1993).

This paper presents a framework to assess an appropriate
conceptual model structure, parameters and behaviour, whilst
taking into consideration the aforementioned model
limitations. Specific tools to perform the different stages of
the modelling process within this framework, i.e. model
development–calibration–evaluation, are introduced. Their
application is demonstrated using a simple example from
the field of rainfall-runoff modelling. The proposed
framework, however, is readily extendable to a wide variety
of hydrological modelling applications including model
structures producing multiple-outputs. The paper concludes
with a short discussion of the benefits of the proposed
framework.

* Some of the material on which this paper is based was presented at the 7th
National Hydrology Symposium of the British Hydrological Society, September
2000, and published in abbreviated form in the Proceedings. Thereafter, the
paper has been revised and extended substantially in a form more suited to the
international literature.
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Analytical Framework
The proposed framework has been developed to investigate
the appropriate balance between required levels of
complexity in model structures and those which can be
supported by the available data (see Fig. 1).

A hydrologist’s perception of a given hydrological system
strongly influences the level of conceptualisation that must
be translated into the model structure. The importance of
different system response modes (i.e. key processes that need
to be simulated by the model), however, depends on the
modelling purpose intended. Therefore, the level of model
structural complexity required must be determined through
careful consideration of the key processes included in the
model structure and the level of prediction accuracy
necessary.

The level of structural complexity actually supported by
the information contained within the observations is defined
here simply as the number of parameters that can be
identified. Other aspects of complexity like the number of
model states or interactions between the state variables, or
the use of non-linear components instead of linear ones, are
not considered (see, e.g. Kleissen et al., 1990). Results from
previous research suggest that, in the case of rainfall-runoff
modelling, up to five or six parameters only can be identified
from time-series of external system variables (i.e. streamflow
and rainfall) using traditional single-objective calibration
schemes (e.g. Wheater et al., 1986; Beven, 1989; Jakeman
and Hornberger, 1993; Ye et al., 1997). Uncertainty in model
parameters due to a lack of identifiability may limit
significantly the use of models for purposes such as parameter
regionalisation or the investigation of land-use or climate

change scenarios. This problem led to the investigation of
less complicated, parsimonious model structures (e.g.
Wagener et al., 2001) that represent only those response
modes that are identifiable from the available data (e.g.
Hornberger et al., 1985; Jakeman and Hornberger, 1993;
Young et al., 1996). When using these models, careful
consideration must be given to ensure that the model does
not omit one or more hydrological processes important for a
particular problem. A model structure that is too simple in
terms of the number of processes reproduced can be
unreliable outside the range of catchment conditions (i.e.
climate and land use) on which it was calibrated (Kuczera
and Mroczkowski, 1998). It is therefore vital to use data
with a high information content to ensure that the main
response modes can be observed from the data used for
calibration (Gupta and Sorooshian, 1985).

Another approach to reducing parameter uncertainty, apart
from a decrease in model complexity, is to increase the
amount of information available to identify the model
parameters. One way to achieve this is through the use of
additional output variables. Examples are Kuczera and
Mroczkowski (1998), who use time series of stream salinity
measurements, and Seibert (1999), who uses groundwater
measurements to constrain the parameter space. However,
the usefulness of additional data can depend on the adequacy
of the model structure investigated. Lamb et al. (1998) found
that the use of one or only a few groundwater measurement
points as additional output variable(s) helped to reduce the
parameter uncertainty of TOPMODEL (Beven and Kirkby,
1979). The use of many (>100) points however, leads to an
increase in uncertainty indicating structural problems of the
model. A second approach is the improved use of the
information already available; thus, Wheater et al. (1986)
use different data periods to identify different parameters.
The inherent multi-objective nature of this approach led to
the development of a multi-objective calibration framework
introduced by Gupta et al. (1998b) for estimating model
parameter values and evaluating model structural
insufficiencies. In this way, different characteristics of an
output time series can be used to provide additional
information. In certain applications, time-series system
identification techniques can also be used to improve the
identifiability of model parameters and to guide the model
structure identification procedure (Young, 1984; Young et
al., 1996).

The task is, therefore, to balance the performance of the
model and the identifiability of its parameters. The analytical
framework proposed here to address this problem can be
divided into three major stages: model development, model
calibration and model evaluation. Within each stage, tools
are developed and applied to meet specific goals aimed at
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Fig. 1. The proposed framework for development and application of
hydrological models.
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achieving an overall balance. The stages and their
corresponding requirements, objectives and possible tools
are shown in Fig. 2 and described in more detail below.

Model development
The first major stage is the development of a model structure
of appropriate complexity with respect to performance and
associated uncertainty. This structure should be a function
of (Wagener, 1998):

l the modelling purpose,
l the characteristics of the hydrological system,
l the data available.

The recognition of the need for flexible model structures
has led to the development of generic modelling frameworks
(e.g. Woods and Ibbitt, 1993; Overland and Kleeberg, 1993;
Leavsley, 1998). These systems allow the user to test the
suitability of different model components and to combine
them in a modular fashion. This suitability can be measured
in terms of model performance (usually the achieved
objective function values) and in terms of the uncertainty of
the model parameters (resulting from a lack of identifiability)
using different techniques as described later. New
components can be added easily if none of the available
components fulfils the requirements.

A Rainfall-Runoff Modelling Toolbox (RRMT, see Fig. 3)
has been developed within the scope of a model
regionalisation project to produce parsimonious, lumped

model structures with a high level of parameter identifiability
(Wagener et al., 1999, 2001). Such identifiability is crucial
if relationships between the model parameters representing
the system and catchment characteristics (e.g. dominant soil
types, land use, etc.) are to be established. RRMT is a modular
framework that allows its user to implement different model
structures to find a suitable balance between model
performance and parameter identifiability. Model structures
that can be implemented are lumped, relatively simple (in
terms of number of parameters), and of conceptual or hybrid
metric-conceptual type (Wheater et al., 1993). All structures
consist of a moisture accounting and a routing module.

Model calibration
Most hydrological model structures currently used can be
classified as conceptual (Wheater et al., 1993) as described
earlier in the text. The algorithms used in these structures
contain parameter values that often do not have a direct
physical interpretation and therefore cannot be measured in
the field. Instead, they must be estimated using a calibration
procedure whereby the model parameters are adjusted until
the system output and the model output show an acceptable
level of agreement. Typically, the agreement is measured
using an objective function (i.e. some aggregation function
of the model residuals), usually supported by visual
inspection of the calculated time series. The model (a model
structure and parameter set combination) producing the best
performance is commonly assumed to be representative of
the natural system under investigation.

Automatic search algorithms are applied for calibration
to overcome the time-consuming procedure of manual
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Fig. 2. The different stages, requirements and objectives for these
stages and proposed tools to use within them are shown. The
following tools are suggested: the Rainfall-Runoff Modelling
Toolbox (RRMT), the Multi-Objective COMplex evolution (MOCOM)
algorithm of the University of Arizona (UA), the Monte-Carlo
Analysis Toolbox (MCAT, and the Generalised Likelihood

Uncertainty Estimation (GLUE) method.
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Fig. 3. The system architecture of the Rainfall-Runoff Modelling
Toolbox (RRMT). The input and output variables shown in the figure
are: the precipitation P, the temperature T, the potential
evapotranspiration PET, the actual evapotranspiration AET, the
effective rainfall ER, and the simulated streamflow Q. The user can

 access the model via a Graphical User Interface (GUI).
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calibration. However, single-criterion algorithms have the
disadvantage that their result is fully dependent on one
objective function. This can lead to solutions fitting one
aspect of the observed hydrograph at the expense of another.
To address this problem, a multi-criteria calibration approach
is proposed by Gupta et al. (1998b). In this approach, an
automatic search of the feasible parameter space is used to
find the set of solutions (the so-called “Pareto optimal”
region) which simultaneously optimises several user-selected
criteria that measure different aspects of the closeness of
model output and data. This results quickly in several viable
solutions, reflecting the range of different ways in which the
hydrograph can be simulated with different kinds of
“minimal” error (Yapo et al., 1998; Gupta et al., 1998b; Boyle
et al., 2000). The Multi-Objective COMplex evolution
(MOCOM-UA) algorithm (Yapo et al., 1998) is a general-
purpose global optimisation algorithm capable of optimising
a model population simultaneously with respect to different
objective functions in a single optimisation run. It is based
on an extension of the SCE-UA population evolution method
(Duan et al., 1992, 1993, 1994). A detailed description and
explanation of the method are given in Yapo et al. (1998)
and so will not be repeated at length here.

In brief, the MOCOM-UA method involves the initial
selection of a population of p points distributed randomly
throughout the s-dimensional feasible parameter space. In
the absence of prior information about the location of the
(Pareto) optimum, a uniform sampling distribution is used.
For each point the multi-objective vector F is computed, and
the population is ranked and sorted using a Pareto-ranking
procedure suggested by Goldberg (1989), i.e. within the
population of a certain rank it is not possible to find a
parameter set which is better than another with respect to all
objective functions. Simplexes of s + 1 points are then
selected from the population according to a robust rank-based
selection method (Whitley, 1989). A multi-objective
extension of the downhill simplex method (Nelder and Mead,
1965) is used to evolve each simplex in a multi-objective
improvement direction. Iterative application of the ranking
and evolution procedures causes the entire population to
converge towards the Pareto optimum. The procedure
terminates automatically when all points in the population
become non-dominated, i.e. of rank one. Experiments
conducted using standard synthetic multi-objective test
problems have shown that the final population provides a
fairly uniform approximation of the Pareto solution space
(Yapo et al., 1998; Bastidas, 1998).

Model evaluation
The model evaluation stage requires the detailed investigation

of model performance, parameter identifiability, model
structure suitability and prediction uncertainty. A variety of
methods is necessary to address the different evaluation
aspects. The understanding of model behaviour and
performance gained from this stage increases the
transparency of the model’s behaviour and helps to assess
the reliability of the modelling results.

The Monte-Carlo Analysis Toolbox (MCAT; Wagener et
al., 1999, 2001) is a collection of MATLAB (Mathworks,
1996) analysis and visualisation functions integrated through
a graphical user interface. The toolbox can be used to analyse
the results from Monte-Carlo parameter sampling
experiments or from model optimisation methods that are
based on population evolution techniques, for example, the
SCE-UA or the MOCOM-UA algorithms. Although this
toolbox has been developed within the context of ongoing
hydrological research, all functions can be used to investigate
any dynamic mathematical model.

Functions contained in MCAT include an extension of the
Regional Sensitivity Analysis (RSA, Spear and Hornberger,
1980) by Freer et al. (1996), various components of the
Generalised Likelihood Uncertainty Estimation (GLUE)
method (Beven and Binley, 1992; Freer et al., 1996), options
for the use of multiple-objectives for model assessment
(Gupta et al., 1998b; Boyle et al., 2000), and plots to analyse
parameter identifiability and interaction.

Rainfall-runoff modelling example
An example from the field of rainfall-runoff modelling is
used to demonstrate how the proposed framework can be
applied. The data and model structure selected for the case
study are described briefly and examples of possible
applications of the tools for model calibration and evaluation
are shown.

DATA AND MODEL STRUCTURE

The Leaf River catchment (1950 km2) located north of
Collins, Mississippi, USA, which has been investigated
extensively (e.g. Brazil and Hudlow, 1981; Sorooshian et
al., 1983) is selected for this study. Forty consecutive years
(WY 1948-88) of data (daily precipitation, streamflow, and
potential evapotranspiration estimates) are available for this
catchment, representing a wide variety of hydrological
conditions. An 11-year period (WY 1952-1962 inclusive) is
used here.
A simple model structure with typical conceptual components
is selected for an example application of the framework. This
model consists of a simple two-parameter rainfall excess
model connected with two series of linear reservoirs (three,
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identical, for the quick and a single reservoir for the slow
response) in parallel as a routing component (Fig. 4). The
rainfall excess model is described in detail by Moore (1985,
1999). The model assumes that the soil moisture storage
capacity, c, varies across the catchment and, therefore, that
the proportion of the catchment with saturated soils varies
over time. The spatial variability of soil moisture capacity is
described by the following distribution function

F(c) = 1 –(1–c(t)/CMAX) BEXP  0<c(t)<  CMAX           (1)

The structure requires the optimisation of five parameters:
the maximum storage capacity in the catchment, CMAX [L],
the degree of spatial variability of the soil moisture capacity
within the catchment, BEXP [-], the factor distributing the
flow between the two series of reservoirs, ALPHA [-], and
the residence times of the linear reservoirs, Kq [T] and Ks
[T]. The actual evapotranspiration is equal to the potential
value if sufficient soil moisture is available; otherwise it is
equal to the available soil moisture content.

CALIBRATION SCHEME AND PERFORMANCE

CRITERIA

Traditional automatic calibration schemes use single value
objective functions such as the Root Mean Square Error
(RMSE),

(2)

where q
t
sim is the simulated streamflow at time step t, q

t
obs is

the corresponding observed streamflow, and N is the number
of flow values available.

In this example, however, a partitioning scheme suggested
by Boyle et al. (2000) to define objective functions based
on the different response modes of the hydrological system
is utilised. The approach is based on the reasonable
assumption that the behaviour of the catchment is inherently
different during periods “driven” by rainfall and periods
without rain. Further, the periods immediately following the
cessation of rainfall and dominated by interflow can be
distinguished from the later periods that are dominated by
baseflow. The streamflow hydrograph can, therefore, be
partitioned into three components (Fig. 5), “driven” (Q

D
),

ER1(t)

Kq Kq Kq
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Fig. 4. The model structure used in the rainfall-runoff modelling example. Effective rainfall (ER1(t) and ER2(t)) is produced
depending on the current catchment moisture state described by the storage capacity distribution function F(c). The parameter
CMAX describes the maximum storage capacity in the catchment. The effective rainfall is distributed with respect to parameter
ALPHA and either routed through three linear reservoirs with residence time Kq in series, or a single reservoir with residence time
Ks. Variable Q(t) is the resulting streamflow at time step t. The remaining variables are the storage S(t), the precipitation input P(t),

 and the actual evapotranspiration AET(t).
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“non-driven quick” (Q
Q
), and “non-driven slow” (Q

S
).

The time steps corresponding to each of these components
are identified through an analysis of the precipitation data
and the time of concentration for the catchment. The time
steps with non-zero rainfalls, lagged by the time of
concentration for the catchment, are classified as driven. Of
the remaining (non-driven) time steps, those with streamflow
lower than a certain threshold value (e.g., mean of the
logarithms of the flows) are classified as non-driven-slow,
and the rest are classified as non-driven-quick. The model
performance during these three periods (Q

D
, Q

Q
, and Q

S
) is

estimated by calculating the RMSE (FD, FQ, FS) separately
over each period.

The primary motivation for partitioning the non-driven
flows into a quick and a slow component is to identify the
periods of hydrograph recession or “baseflow” behaviour
from the rest of the non-driven flow. For the purposes of this
study, a simple systematic approach (threshold flow value)
is chosen to identify these periods. The sensitivity of the
threshold values to the identification of the recession periods
is investigated prior to the multi-criteria optimisation. Several
different threshold values are tested (median of flows, mean
of flows, mean of log of flows, etc.) to determine which value
provided the best representation of the recession flows as
determined through visual inspection of the observed
hydrograph (results not shown here). The mean of the log of
the flows provided the “best” estimate of the recession
periods for this data set. There are certainly other, possibly
more accurate, methods (e.g., visual inspection, water
balance and ground water recharge methods) to identify these
recession periods; however, these have to be the subject of
future studies. Presumably, the more accurately the
characteristic features of the catchment are identified, the
more informative the analysis.

Two calibration methods, Uniform Random Search (URS)
and MOCOM-UA, are used to explore the parameter space
of the model. The URS method consists of 5000 parameter
sets randomly sampled from the feasible parameter ranges
based on a uniform distribution. The Pareto optimal solution
space for the three criteria is estimated with 500 solutions
using the MOCOM-UA multi-criteria optimisation algorithm
(Yapo et al., 1998).

SENSITIVITY AND IDENTIFIABILITY ANALYSIS

A modification of the RSA approach introduced by Freer et
al. (1996) is used to inspect visually the sensitivity of the
different parameters with respect to the response mode of
the system. This methodology was introduced originally to
identify insensitive parameters which subsequently would
be fixed or eliminated. However, it can also be used to
visualise the link between parameter sensitivity and system

response modes (Dunne, 1999; Wagener et al., 1999). Freer
et al. (1996) split the parameter population, derived from a
URS procedure and ranked with respect to their objective
function values, into ten groups of equal size and plotted the
cumulative distribution of the parameters in each group with
respect to the transformed measure of performance. The
measures are transformed so that higher values indicate better
models and they are divided by their sum so that they add up
to unity. An insensitive parameter would produce a straight
line, while differences in form and separation of the resulting
curves indicate parameter sensitivity. Splitting the population
into ten groups, instead of just two as in the original method,
avoids the selection of a threshold value between behavioural
and non-behavioural parameter sets, and increases the
information gained by the analysis. Figure 6 visualises the
results derived for this study with the shading ranging from
light grey (best performing group) to black (worst performing
group). The figure shows the sensitivity of the model
parameters based on the RMSE, first used as an overall
measure for the whole calibration period (first row), and
subsequently for the three measures of the different response
modes (FD, FQ, FS).

The overall RMSE and the FD measures show very similar
behaviour, indicating that they retrieve similar information
from the observed data. The curves produced using these
two measures are markedly different from those resulting
from the FS measure. The sensitivity of the BEXP parameter
is considerably higher during periods of non-driven slow
response, i.e. FS. The sensitivity of Kq is relatively high for
all measures. However, the shape of the cumulative curves
of this parameter for the FS measure is different. This
indicates that the parameter population conditioned on this
measure results in a different distribution than when the other
measures are used. The sensitivity plots for the parameter
ALPHA are similar for all objective functions, suggesting
that this parameter is equally important for the correct
reproduction of the system behaviour during all response
modes. The same is observed for parameter CMAX.

However, parameter sensitivity is only a necessary, but
not a sufficient requirement for identifiability, since values
of a sensitive parameter that produce good model
performance can still be distributed over a relatively wide
range of the feasible parameter space. A simple way to show
how the parameter identifiability is increased through the
use of different measures is demonstrated in Fig. 7. The
parameter populations (derived from the URS) are
transformed as before so that again the objective function
value of the best performing parameter is assigned the highest
value and all measures sum to unity. The range of each
parameter is then split into M bins and the sum of all measures
in each is calculated. The results are the densities of the, in
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Fig. 6. Regional Sensitivity Analysis plots showing the varying sensitivity of the model
parameters depending on the response mode of the hydrological system: (1st row) Single
overall measure (RMSE), (2nd row) measure for “driven” period (FD), (3rd row) measure
for “non-driven quick” period (FQ), and (4th row) measure for “non-driven slow” period
(FS). Lighter colours indicate groups of better performing parameters, while darker

colours indicate less well performing parameters.

Fig. 7. The objective functions are rescaled so that the best performing parameter assumes the highest
value and the sum of all values equals one. Splitting each parameter range subsequently into 20 bins
of equal width and calculating the sum of all measures in each bin leads to the parameter

density (D) distributions shown.
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this case initially uniform, parameter populations conditioned
on the different objective functions.

Some variation in the distributions derived through the
use of the different measures can be seen. The parameter
BEXP shows relatively uniform distributions except when
being conditioned on FS, where small values show better
performance. The parameter population of Kq on the other
hand shows a very distinct peak for the FQ objective function.
However, higher values of this parameter are favoured when
the FS objective function is used to obtain a better fit at the
beginning of the recession periods of the hydrograph.
ALPHA shows relatively similar distributions for all
measures, which is in line with the result of the sensitivity
analysis (Fig. 6) in which the parameter is sensitive for all
objective functions.

Figure 7 shows that the use of different measures can lead
to an improvement in judging the performance of a parameter
over its range. A parameter showing little variation using

one measure may reveal a distinct peak in its distribution
when using an objective function based on residuals from a
different response period. This is caused by the often varying
importance of model components, and therefore parameters,
to reproduce the system behaviour during different response
modes.

A different measure of the identifiability of a parameter,
and therefore the uncertainty related to this parameter, is
defined in Fig. 8. A synthetic example is used whose
parameters are not related to the model structures used here.
The top row of this figure shows two scatter plots of two
different parameter populations derived from a URS
procedure. Parameter q

1
 is unidentifiable, i.e. good

performing parameters appear at very different locations in
the feasible parameter space. Parameter q

2
 on the other hand

is very identifiable with a distinct peak. Plotting the
cumulative distribution of the 100 best performing  parameter
sets used in the example application (since only the top of

Fig. 8. The top row shows scatter plots of two parameter populations derived from a uniform random search.
The performance is measured by the root mean square error, transformed so that better performing models are
indicated by higher values and the measures sum to unity. Parameter q

1
 is unidentifiable, while parameter q

2
 is

very identifiable. The top population (e.g. best performing 100 models) can be used to derive a cumulative
distribution with respect to their performance. Splitting the parameter range into ten bins and calculating the
gradient of the cumulative distribution within each results in the (rescaled) gradient distribution shown as bars
in the middle row. The bottom row shows the (rescaled) gradient distribution as a line with the marker

indicating the largest value.
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the population is interesting for an analysis of the
identifiability), leads to the plots shown in the middle row
of Fig. 8. The unidentifiable parameter q

1
 produces a straight

line between the bottom left and the top right corner of the
plot. The other parameter produces a much steeper line over
only part of the parameter space. Splitting each parameter
range into a number of equally spaced bins (e.g. 10) and
calculating the gradient of the cumulative distribution within
each bin gives a measure of identifiability of the parameter.
The gradients are plotted as bars. Additionally, a colour
coding is used, with darker colours indicating higher
gradients. The middle left plot shows that the resulting
gradients of parameter q

1
 are low and almost equal over the

whole parameter range. The gradients of parameter q
2
 are

much larger and indicate where a peak is occurring on the
response surface and how pronounced it is. The gradient of
the cumulative distribution of each parameter can therefore
be used as a measure of its identifiability. The bottom row of
Fig. 8 shows the gradient distributions of the two parameters
as lines, with the top value indicated by a marker.

This measure is used to analyse the identifiability of the
model parameters. The results are given in Fig. 9. The first
plot shows that the level of identifiability of CMAX is
relatively similar for all objective functions. Parameter BEXP
is more identifiable when using FS. The identifiability values,
i.e. the gradients, are higher during the non-driven slow
periods and small values of this parameter perform better.
Parameter ALPHA shows a reasonable consistency in the
level of identifiability through all measures. The
identifiability of Ks is slightly higher during the non-driven

slow periods (FS). Parameter Kq shows very high levels of
identifiability for all objective functions. The locations of
the peaks are almost identical apart from the conditioning
on FS, which favours higher values of the parameter.

Figure 9 shows again that the main difference can be found
between FS and the remaining measures. The measures FD,
FQ, and RMSE seem to contain similar information for this
data set. However, the use of different measures can be
beneficial for the identifiability of parameters as is
demonstrated in the cases of BEXP and Ks.

A two-dimensional projection of the three-dimensional
objective function space (FD, FQ, FS) gives further insights
(Fig. 10, 1st and 2nd row). The light grey dots indicate the
500 Pareto solutions determined with the MOCOM-UA
algorithm whereas the black dots show the 5000 URS results.
The 2nd row shows the region of the Pareto solution in greater
detail with the best solutions highlighted (A for FD, B for
FQ, C for FS, D for overall RMSE). These plots illustrate
clearly the inability of the model to match all three aspects
of the hydrograph simultaneously, and reveal that the trade-
offs in fitting the three hydrograph components are quite
significant. However, the trade-off between FD (A) and FQ
(B) is relatively small, which is also indicated by the relatively
high degree of correlation of the Monte-Carlo results (top
left plot). In addition the best FD and overall RMSE solutions
are very similar with respect to the three criteria indicating
that these two measures contain very similar information
about the parameters of this model. The normalised (over
the initial parameter uncertainty range) parameter plot,
presented in the bottom row of Fig. 10, shows the variability

Fig. 9. The distribution of gradients for the different parameters and the different
objective functions is shown. The markers indicate the highest gradient values for FD
(rectangle), FQ (circle), FS (diamond) and RMSE (star), also ranging from dark (FD)

 to light (RMSE) grey shading.
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in the parameter values for the 500 Pareto optimal solutions
(indicated by the light grey lines). Each line on the graph
represents one of the parameter sets. Notice that the parameter
uncertainty has been reduced significantly by the multi-
criteria optimisation compared to the initial feasible range,
particularly for Kq. Also notice that the parameter values
for the best FD, FQ, and RMSE solutions are, in general, in
a different region of the parameter space than the best solution
for the FS criteria (indicated by the dashed line).

Figure 11 presents the model output results for a 100-day
portion of the calibration period derived using the results of
the calibration with the MOCOM-UA algorithm. The
minimal FD and FQ solutions tend to fit the peaks better at
the expense of over- and underestimating the recessions
respectively. The minimal FQ solution also captures the shape
of the falling limb, corresponding with time steps classified
as “non-driven quick”, better than the other two solutions.
The minimal FS solution on the other hand fits the long
recession limbs of the hydrograph better (see log-scale plot
at bottom), while it often seriously over- or underestimates

the peaks. The model does generally have some trouble
matching the flows for days 250 through 270. This could be
due to model structural error, i.e. the model’s inability to
track the soil moisture in the long dry period preceding these
rainfall events. Another possibility is that the precipitation
data during this time period is erroneous, i.e. it may not be
representative of the precipitation rates throughout the
catchment.

This simple example demonstrates how the aggregation
of the residuals over the whole calibration period results in a
loss of information relating to parameter sensitivity and
identifiability, model performance, and model structural
insufficiencies. Additional insight is gained from the
hydrograph split performed here.

The advantages of a multi-objective framework based on
system response modes make it especially suitable for
comparison studies since it allows us to attribute the model
performance during different system response modes to
different model components, i.e. in this case the moisture
accounting and the routing components. A certain model

Fig. 10. Two-dimensional projections of the three dimensional objective function space (1st and 2nd row
show 500 Pareto solutions and 5000 parameter sets randomly sampled from a uniform distribution). The
markers correspond to the best points with respect to FD (A), FQ (B), FS (C), and overall RMSE (D).
The 3rd row shows the normalised parameter space. The grey lines show the 500 Pareto solutions, the
three black lines are solutions A (FD, solid), B (FQ, dotted), and C (FS, dashed). The squares indicate

the best overall RMSE solution (D).
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structure might perform better during “driven” periods
because of a superior moisture accounting component, while
another model structure containing a more appropriate slow
flow routing component could result in higher performance
during “non-driven slow” periods. A single-objective
framework does not allow the comparison of model
components and consequently important information relevant
to identifying the most suitable model structure is lost. Boyle
et al. (2001) use this advantage of multi-objective comparison
studies in their research evaluating the benefit of “spatial
distribution” of model input (precipitation), structural
components (soil moisture and streamflow routing
computations) and surface characteristics (parameters) with
respect to the reproduction of different response modes of
the catchment system.

MODEL STRUCTURE COMPARISON

A second model structure is introduced to demonstrate the
advantages of multi-objective comparisons. This structure
is a simplified version of the model described before. A single
store with a rainfall excess mechanism is used as moisture
accounting component, instead of a distribution of stores as
in the first structure. The store is described by its size, CMAX
[L]. The evapotranspiration losses of the store are again equal
to the potential rate as long as soil moisture is available. The

remaining structural components are identical to the ones of
the earlier model structure shown in Fig. 4 and are defined
by three parameters, ALPHA [-], Kq [T], and Ks [T]. This
structure is referred to as the simple model, while the initial
structure is referred to as the complex model in the remaining
text.

The results of the comparison are shown in Fig. 12. The
left graph shows a comparison in performance between the
two structures as derived from the calibration with the
MOCOM-UA algorithm. The objective functions used are
identical to the ones applied when analysing the individual
model structure earlier in the text. The traditional, overall
measure of performance RMSE, indicates that the complex
model structure is superior to the simple one. However, when
analysing the performance in more detail, one can see that
both structures are almost equally good during the non-driven
slow periods (FS). The complex model structure is able to
fit the driven and non-driven quick periods better, with the
largest difference occurring during the driven period. This
result shows the initial insight gained by a more detailed
analysis. The model structures have identical components
to fit the slow catchment drainage (Q

S
) and therefore produce

similar results. The fact that this is not the case during the
quick catchment drainage (Q

Q
) can be attributed to the larger

importance of the moisture accounting component in fitting

Fig. 11. Hydrograph range produced by the 500 Pareto solutions (grey region), and the
output from the best parameter sets for the different measures on normal (1st row) and on

 logarithmic scale (2nd row). The observed time-series is shown as circles.



24

T. Wagener, D.P. Boyle, M.J. Lees, H.S. Wheater, H.V. Gupta and S. Sorooshian

this part of the hydrograph, and that it is easier to separate
out the slow recession periods.

The evaluation of the model performance should, if
possible, also include objective functions tailored to fit the
specific purpose of the model. An example is the use of the
model to investigate available water quantities for abstraction
purposes. Assuming that abstraction can only take place
during periods when the water level is above minimum
environmentally acceptable flow and below a maximum
water supply abstraction rate allows the definition of a
specific objective function (Lees and Wagener, 2001). This
measure would only aggregate the residuals of the selected
period and can give important information about how a model
performs with respect to the anticipated task. However, it is
important to mention that this should never be the only
evaluation criterion.

The right-hand graph of Fig. 12 shows the uncertainty in
estimating the parameters of the two models, i.e. in terms of
their identifiability. The highest identifiability values for each
of the parameters of the complex model are taken from Fig. 9.
The identifiability values for the simple model parameters
are derived in an identical way. It can be seen that the simple
model structure shows overall a higher degree of parameter
identifiability. Introducing an additional parameter, BEXP,
generally reduces the identifiability through its interaction
with the other parameters. The increase in model performance
is therefore obtained at the cost of decreasing identifiability,
and therefore increasing parameter uncertainty.

The trade-off between improvement in performance and

reduction in identifiability should be considered, amongst
other things, when selecting a model structure for a specific
purpose. A simpler model structure, representing a smaller
number of processes, might for example be more suitable
for regionalisation purposes. The type of analysis shown
supports the model selection process.

Conclusions
A rigorous approach to the development and evaluation of
hydrological models is required, balancing prior information,
model complexity, and parameter and output uncertainty. The
framework presented here incorporates those aspects.

The simple example shows that accepting the multi-
objective nature of model calibration and integrating it into
the modelling process increases the amount of information
retrieved from the model residuals to (1) find the parameter
population necessary to fit all aspects of the observed output
time-series (albeit separately), (2) increase the identifiability
of the model parameters, and (3) assess the suitability of the
model structure to represent the natural system (i.e. identify
model structural insufficiencies). The methodology has
general applicability. The global and multi-objective
optimisation algorithm MOCOM-UA, in this respect, has
already been applied successfully to rainfall-runoff (Gupta
et al., 1998b; Yapo et al., 1998; Boyle et al., 2000), to more
complex, coupled Soil-Vegetation-Atmosphere-Transport
(SVAT, Bastidas et al., 1998; Gupta et al., 1998a), and to
water-quality (Meixner et al., 2000) models.

Fig. 12. The two model structures compared in terms of performance and uncertainty in
(identifiability of) their parameters. The left plot shows the root mean square error values
of the two structures with respect to the different objective functions used. A smaller value
therefore indicates a higher performance. The plot on the right shows the identifiability of
the parameters of the two structures. A higher value indicates a higher degree of
identifiability and therefore reduced uncertainty. The identifiability value for each
parameter is the highest derived from the different objective functions as shown in Fig. 9

for the complex model structure.
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The methods and tools described here complement each
other allowing for improved development and application
of hydrological models in a multi-objective framework,
which makes optimal use of available information. This
framework is easily extendable to more complex hydrological
models including coupled models with multiple outputs.

The two Matlab toolboxes, RRMT and MCAT, are
available from the Imperial College web-site at http://
ewre.cv.ic.ac.uk/, while the code for the MOCOM-UA
algorithm is available from Hoshin V. Gupta (via
hoshin@hwr.arizona.edu).
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