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Abstract

Many existing hydrological modelling procedures do not make best use of available information, resulting in non-minimanhtiesénta
model structure and parameters, and a lack of detailed information regarding model behaviour. A framework is requiredctstlala
level of model complexity supported by the available data with the level of performance suitable for the desired apptictgiare ieeded
that make optimal use of the information available in the data to identify model structure and parameters, and that alled anddysis
of model behaviour. This should result in appropriate levels of model complexity as a function of available data, hydsyistgival
characteristics and modelling purpose. This paper introduces an analytical framework to achieve this, and tools to uséasédron a
multi-objective approach to model calibration and analysis. The utility of the framework is demonstrated with an example fiedchaf
rainfall-runoff modelling.
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Introduction

Increasingly, hydrological models are being embedded irrestrained by the heterogeneity of process responses and
modelling systems that represent a broad range ofinknown scale-dependence of parameters (Beven, 1989).
environmental processes at a wide range of time and spad¥ior information is thus limited and it is generally recognised
scales. This has been associated generally with an increadgat models and/or parameters must be identified through
in model complexity, a lack of appropriate observational datanverse modelling. Conceptual model structures, witl an
to constrain model states and outputs, and an increasiryiori specified structure based on the hydrologist’s
number of model outputs. On the other hand, there is aperception of the relevant processes and with parameters
increasing awareness that the information content in the datalibrated against observed time-series, are therefore most
to identify model structure and parameters is limited. Ancommonly used (Wheatet al, 1993).
analytical framework is needed to guide model development This paper presents a framework to assess an appropriate
and application in a way that quantifies the uncertaintyconceptual model structure, parameters and behaviour, whilst
associated with model parameters and outputs, maximisdgking into consideration the aforementioned model
the use of prior information, and matches model form andimitations. Specific tools to perform the different stages of
complexity to the data available. the modelling process within this framework, i.e. model
The applicability of ‘physics-based’ approaches to rainfall-development—calibration—evaluation, are introduced. Their
runoff modelling, which in theory would enable the application is demonstrated using a simple example from
parameters to be derived from field measurements, has beéne field of rainfall-runoff modelling. The proposed
framework, however, is readily extendable to a wide variety
of hydrological modelling applications including model
* Some of the material on which this paper is based was presented at the 7th

National Hydrology Symposium of the British Hydrological Society, September structures producmg muItlpIe—outputs. The paper concludes

2000, and published in abbreviated form in the Proceedings. Thereafter, the ~ With a short discussion of the benefits of the proposed

paper has been revised and extended substantially in a form more suited to the f K
international literature. ramework.
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Ana|ytica| Framework change scenarios. This problem led to the investigation of
less complicated, parsimonious model structures (e.qg.
ylageneret al, 2001) that represent only those response
modes that are identifiable from the available data (e.g.
ornbergeret al, 1985; Jakeman and Hornberger, 1993;

The proposed framework has been developed to investiga
the appropriate balance between required levels o
complexity in model structures and those which can b

Su:aogfg:obgps E:avrilzlaaltailoend(?ftz (?\?gn':r:garlgl.o ical svstem Young et al, 1996). When using these models, careful
Y g P P g Y 9 Y consideration must be given to ensure that the model does

strongly influences the level of conceptualisation that must . . .
. . not omit one or more hydrological processes important for a
be translated into the model structure. The importance of . . . .
%rtlcular problem. A model structure that is too simple in

ifferent mr nsem i.e.k r hat n
different system response modes (i.e. key processes tha efeerms of the number of processes reproduced can be

to be simulated by the model), however, depends on thenreliable outside the range of catchment conditions (i.e.

modelling purpose intended. Therefore, the level of model .. S .
: . . climate and land use) on which it was calibrated (Kuczera
structural complexity required must be determined through : : :
. . : . and Mroczkowski, 1998). It is therefore vital to use data
careful consideration of the key processes included in the . o . .
with a high information content to ensure that the main

model structure and the level of prediction accurac
necessar P yresponse modes can be observed from the data used for
Y- calibration (Gupta and Sorooshian, 1985).

The level of structural complexity actually supported by . .

: . : o . . i Another approach to reducing parameter uncertainty, apart
the information contained within the observations is defined . oo .
i from a decrease in model complexity, is to increase the
here simply as the number of parameters that can be

. - - amount of information available to identify the model
identified. Other aspects of complexity like the number of . o

. . . Barameters. One way to achieve this is through the use of
model states or interactions between the state variables, or, ... .

. . ) additional output variables. Examples are Kuczera and
the use of non-linear components instead of linear ones, ar,

. . Iﬁroc kowski (1998), who use time series of stream salinit
not considered (see, e.g. Kleisgtal, 1990). Results from zkowski ( ), who use i ! ity

. i . Fpeasurements, and Seibert (1999), who uses groundwater
previous research suggest that, in the case of rainfall-runo .
. . ) . ... _measurements to constrain the parameter space. However,
modelling, up to five or six parameters only can be identified

. . . : the usefulness of additional data can depend on the adequacy
from time-series of external system variables (i.e. streamflow

. . " . . ... ofthe model structure investigated. Laatlal (1998) found
and rainfall) using traditional single-objective calibration that the use of one or only a few aroundwater measurement
schemes (e.g. Wheatetrr al, 1986; Beven, 1989; Jakeman Y N

and Hornberger, 1993: & al, 1997). Uncertainty in model points as addltlongl output variable(s) helped to redqce the
. e .. parameter uncertainty of TOPMODEL (Beven and Kirkby,
parameters due to a lack of identifiability may limit

N 1979). The use of many (>100) points however, leads to an
significantly the use of models for purposes such as parameter

. . . L : INcrease in uncertainty indicating structural problems of the
regionalisation or the investigation of land-use or climate . .
model. A second approach is the improved use of the

information already available; thus, Wheagtral. (1986)
use different data periods to identify different parameters.

PURPOSE SYSTEM The inherent multi-objective nature of this approach led to
the development of a multi-objective calibration framework

v introduced by Gupta&t al. (1998b) for estimating model
CONCEPTUALISATION DATA parameter values and evaluating model structural

insufficiencies. In this way, different characteristics of an
output time series can be used to provide additional
information. In certain applications, time-series system
identification techniques can also be used to improve the
identifiability of model parameters and to guide the model
structure identification procedure (Young, 1984; Yoenhg
al., 1996).

The task is, therefore, to balance the performance of the
model and the identifiability of its parameters. The analytical
framework proposed here to address this problem can be
divided into three major stages: model development, model
calibration and model evaluation. Within each stage, tools
are developed and applied to meet specific goals aimed at

MODEL COMPLEXITY

REQUIRED SUPPORTED

UNCERTAINTY

PERFORMANCE

SUFFICIENT ACCEPTABLE

Fig. 1.The proposed framework for development and application of
hydrological models.
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REQUIREMENTS

STAGE & POT%SC')?_LE
OBJECTIVES HYBRID MODEL ARCHITECTURE
OPTIMIZATION
MODULE
MODEL GENERIC SHELL TO IMPLEMENT
DEVELOPMENT (COMPETING) SYSTEM RRMT
CONCEPTUALIZATIONS VISUAL
ANALYSIS
MODULE
MODEL "OPTIMUM" USE OF
CALIBRATION AVAILABLE INFORMATION MOCOM-UA OFF-LINE DATA
PROCESSING
VEPULE MOISTURE STATUS

DETAILED INVESTIGATION OF
PERFORMANCE & UNCERTAINTY MCAT, GLUE
(INCLUDING IDENTIFIABILITY)

MODEL
EVALUATION

Fig. 3. The system architecture of the Rainfall-Runoff Modelling
Toolbox (RRMT). The input and output variables shown in the figure

Fig. 2. The different stages, requirements and objectives for these 2'€: the precipitation P, the temperature T, the potential

stages and proposed tools to use within them are shown. The evapotranspiration PET, the actual evapotranspiration AET, the
following tools are suggested: the Rainfall-Runoff Modelling effective rainfall ER, and the simulated streamflow Q. The user can
Toolbox (RRMT), the Multi-Objective COMplex evolution (MOCOM) access the model via a Graphical User Interface (GUI).

algorithm of the University of Arizona (UA), the Monte-Carlo
Analysis Toolbox (MCAT, and the Generalised Likelihood

Uncertainty Estimation (GLUE) method. model structures with a high level of parameter identifiability
(Wagenetet al, 1999, 2001). Such identifiability is crucial
o [if relationships between the model parameters representing
achieving an overall balance. The stages and theif,q oy gtem and catchment characteristics (e.g. dominant soil
corresponding requirements, objectives and possible tOOIE/pes, land use, etc.) are to be established. RRMT is a modular
are shown in Fig. 2 and described in more detail below. . evyork that allows its user to implement different model
structures to find a suitable balance between model
Model development performance and parameter identifiability. Model structures

, , . that can be implemented are lumped, relatively simple (in
The first major stage is the development of a model Structure, < of number of parameters), and of conceptual or hybrid

of appropriate complexity with respect to performance anq’netric-conceptual type (Wheattral, 1993). All structures
associated uncertainty. This structure should be a funCtiogonsist of a moisture accounting and a routing module

of (Wagener, 1998):

e the modelling purpose, . .
e the characteristics of the hydrological system, Model calibration

e the data available. Most hydrological model structures currently used can be
classified as conceptual (Wheagtral, 1993) as described

The recognition of the need for flexible model structuresearlier in the text. The algorithms used in these structures
has led to the development of generic modelling frameworkgontain parameter values that often do not have a direct
(e.g. Woods and Ibbitt, 1993; Overland and Kleeberg, 1993hysical interpretation and therefore cannot be measured in
Leavsley, 1998). These systems allow the user to test th@e field. Instead, they must be estimated using a calibration
suitability of different model components and to combineprocedure whereby the model parameters are adjusted until
them in a modular fashion. This suitability can be measureghe system output and the model output show an acceptable
in terms of model performance (usually the achievedevel of agreement. Typically, the agreement is measured
objective function values) and in terms of the uncertainty Ofusing an objective function (i.e. some aggregation function
the model parameters (resulting from a lack of identifiability) of the model residuals), usually supported by visual
using different techniques as described later. Newnspection of the calculated time series. The model (a model
components can be added easily if none of the availablgtructure and parameter set combination) producing the best
components fulfils the requirements. performance is commonly assumed to be representative of

A Rainfall-Runoff Modelling Toolbox (RRMT, see Fig. 3) the natural system under investigation.
has been developed within the scope of a model Automatic search algorithms are applied for calibration
regionalisation project to produce parsimonious, lumpedo overcome the time-consuming procedure of manual
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calibration. However, single-criterion algorithms have theof model performance, parameter identifiability, model
disadvantage that their result is fully dependent on onestructure suitability and prediction uncertainty. A variety of
objective function. This can lead to solutions fitting one methods is necessary to address the different evaluation
aspect of the observed hydrograph at the expense of anothaspects. The understanding of model behaviour and
To address this problem, a multi-criteria calibration approactperformance gained from this stage increases the
is proposed by Guptat al. (1998b). In this approach, an transparency of the model's behaviour and helps to assess
automatic search of the feasible parameter space is usedttee reliability of the modelling results.
find the set of solutions (the so-called “Pareto optimal” The Monte-Carlo Analysis Toolbox (MCAT; Wageretr
region) which simultaneously optimises several user-selectedl., 1999, 2001) is a collection of MATLAB (Mathworks,
criteria that measure different aspects of the closeness df96) analysis and visualisation functions integrated through
model output and data. This results quickly in several viablea graphical user interface. The toolbox can be used to analyse
solutions, reflecting the range of different ways in which thethe results from Monte-Carlo parameter sampling
hydrograph can be simulated with different kinds of experiments or from model optimisation methods that are
“minimal” error (Yapoet al, 1998; Gupta&t al, 1998b; Boyle  based on population evolution technigues, for example, the
et al, 2000). The Multi-Objective COMplex evolution SCE-UA or the MOCOM-UA algorithms. Although this
(MOCOM-UA) algorithm (Yapcet al, 1998) is a general- toolbox has been developed within the context of ongoing
purpose global optimisation algorithm capable of optimisinghydrological research, all functions can be used to investigate
a model population simultaneously with respect to differentany dynamic mathematical model.
objective functions in a single optimisation run. It is based Functions contained in MCAT include an extension of the
on an extension of the SCE-UA population evolution methodRegional Sensitivity Analysis (RSA, Spear and Hornberger,
(Duanet al, 1992, 1993, 1994). A detailed description and1980) by Freeet al. (1996), various components of the
explanation of the method are given in Yagiaal. (1998) Generalised Likelihood Uncertainty Estimation (GLUE)
and so will not be repeated at length here. method (Beven and Binley, 1992; Freeal, 1996), options
In brief, the MOCOM-UA method involves the initial for the use of multiple-objectives for model assessment
selection of a population of p points distributed randomly(Guptaet al, 1998b; Boylest al, 2000), and plots to analyse
throughout the s-dimensional feasible parameter space. Iparameter identifiability and interaction.
the absence of prior information about the location of the
(Pareto) optimum, a uniform sampling distribution is used.
For each point the multi-objective vector F is computed, a”‘FZalnfaII-runoff modelling examp|e
the population is ranked and sorted using a Pareto-ranking
procedure suggested by Goldberg (1989), i.e. within theAn example from the field of rainfall-runoff modelling is
population of a certain rank it is not possible to find gused to demonstrate how the proposed framework can be
parameter set which is better than another with respect to ZPPlied. The data and model structure selected for the case
objective functions. Simplexes of s + 1 points are therStudy are described briefly and examples of possible
selected from the population according to a robust rank-basedpplications of the tools for model calibration and evaluation
selection method (Whitley, 1989). A multi-objective are¢ shown.
extension of the downhill simplex method (Nelder and Mead,
1965) is used to evolve each simplex in a multi-objectivePATA AND MODEL STRUCTURE
improvement direction. Iterative application of the ranking The Leaf River catchment (1950 Rymocated north of
and evolution procedures causes the entire population t6ollins, Mississippi, USA, which has been investigated
converge towards the Pareto optimum. The procedurextensively (e.g. Brazil and Hudlow, 1981; Soroostéan
terminates automatically when all points in the populational., 1983) is selected for this study. Forty consecutive years
become non-dominated, i.e. of rank one. Experiment§WY 1948-88) of data (daily precipitation, streamflow, and
conducted using standard synthetic multi-objective tespotential evapotranspiration estimates) are available for this
problems have shown that the final population provides a&atchment, representing a wide variety of hydrological
fairly uniform approximation of the Pareto solution spaceconditions. An 11-year period (WY 1952-1962 inclusive) is
(Yapoet al, 1998; Bastidas, 1998). used here.
A simple model structure with typical conceptual components
. is selected for an example application of the framework. This
Model evaluation model consists of a simple two-parameter rainfall excess
The model evaluation stage requires the detailed investigatiomodel connected with two series of linear reservoirs (three,
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Fig. 4. The model structure used in the rainfall-runoff modelling example. Effective rainfall (ER1(t) and ER2(t)) is produced
depending on the current catchment moisture state described by the storage capacity distribution function F(c). The parameter
CMAX describes the maximum storage capacity in the catchment. The effective rainfall is distributed with respect to parameter
ALPHA and either routed through three linear reservoirs with residence time Kq in series, or a single reservoir with résigence
Ks. Variable Q(t) is the resulting streamflow at time step t. The remaining variables are the storage S(t), the precigptatti®(t)i

and the actual evapotranspiration AET(t).

identical, for the quick and a single reservoir for the slowwhere ¢™is the simulated streamflow at time steg°>*is
response) in parallel as a routing component (Fig. 4). Theéhe corresponding observed streamflow, idiiglithe number
rainfall excess model is described in detail by Moore (1985pf flow values available.

1999). The model assumes that the soil moisture storage In this example, however, a partitioning scheme suggested
capacity,c, varies across the catchment and, therefore, thaty Boyle et al. (2000) to define objective functions based
the proportion of the catchment with saturated soils variesn the different response modes of the hydrological system
over time. The spatial variability of soil moisture capacity isis utilised. The approach is based on the reasonable

described by the following distribution function assumption that the behaviour of the catchment is inherently
different during periods “driven” by rainfall and periods
F(c) = 1 —(1<(t)/CMAX) BEXP O<c(t)< CMAX (1) without rain. Further, the periods immediately following the

cessation of rainfall and dominated by interflow can be

The structure requires the optimisation of five parametersdistinguished from the later periods that are dominated by
the maximum storage capacity in the catchment, CMAX [L],baseflow. The streamflow hydrograph can, therefore, be
the degree of spatial variability of the soil moisture capacitypartitioned into three components (Fig. 5), “driven’ XQ
within the catchment, BEXP [-], the factor distributing the
flow between the two series of reservoirs, ALPHA [-], and
the residence times of the linear reservoirs, Kqg [T] and Ks
[T]. The actual evapotranspiration is equal to the potential
value if sufficient soil moisture is available; otherwise it is
equal to the available soil moisture content.

NON-DRIVEN

ZzZ—-—2>2

CALIBRATION SCHEME AND PERFORMANCE

CRITERIA

Traditional automatic calibration schemes use single value
objective functions such as the Root Mean Square Error TIME
(RMSE),

1 N . Fig. 5.Hydrograph segmentation into three components based on
RMSE = ——Z(qf““ —q;’bs)z 2 different response modes of the catchment system, i.e. “driven” (Q
N - dark grey), “non-driven quick” ((3 - light grey) and “non-driven

t=1
slow” (Qg - white) flow.
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“non-driven quick” (Q), and “non-driven slow” (Q. response modes (Dunne, 1999; Wagenai, 1999). Freer

The time steps corresponding to each of these components al. (1996) split the parameter population, derived from a
are identified through an analysis of the precipitation datdJRS procedure and ranked with respect to their objective
and the time of concentration for the catchment. The timdunction values, into ten groups of equal size and plotted the
steps with non-zero rainfalls, lagged by the time ofcumulative distribution of the parameters in each group with
concentration for the catchment, are classified as driven. Ofespect to the transformed measure of performance. The
the remaining (non-driven) time steps, those with streamflonmeasures are transformed so that higher values indicate better
lower than a certain threshold value (e.g., mean of thenodels and they are divided by their sum so that they add up
logarithms of the flows) are classified as non-driven-slow,to unity. An insensitive parameter would produce a straight
and the rest are classified as non-driven-quick. The moddine, while differences in form and separation of the resulting
performance during these three periods, (Q, and Q) is curves indicate parameter sensitivity. Splitting the population
estimated by calculating the RMSE (FD, FQ, FS) separatelynto ten groups, instead of just two as in the original method,
over each period. avoids the selection of a threshold value between behavioural

The primary motivation for partitioning the non-driven and non-behavioural parameter sets, and increases the
flows into a quick and a slow component is to identify theinformation gained by the analysis. Figure 6 visualises the
periods of hydrograph recession or “baseflow” behaviourresults derived for this study with the shading ranging from
from the rest of the non-driven flow. For the purposes of thidight grey (best performing group) to black (worst performing
study, a simple systematic approach (threshold flow valueyroup). The figure shows the sensitivity of the model
is chosen to identify these periods. The sensitivity of theparameters based on the RMSE, first used as an overall
threshold values to the identification of the recession periodseasure for the whole calibration period (first row), and
is investigated prior to the multi-criteria optimisation. Severalsubsequently for the three measures of the different response
different threshold values are tested (median of flows, meamodes (FD, FQ, FS).
of flows, mean of log of flows, etc.) to determine which value The overall RMSE and the FD measures show very similar
provided the best representation of the recession flows dsehaviour, indicating that they retrieve similar information
determined through visual inspection of the observedrom the observed data. The curves produced using these
hydrograph (results not shown here). The mean of the log divo measures are markedly different from those resulting
the flows provided the “best” estimate of the recessionfrom the FS measure. The sensitivity of the BEXP parameter
periods for this data set. There are certainly other, possiblis considerably higher during periods of non-driven slow
more accurate, methods (e.g., visual inspection, wateresponse, i.e. FS. The sensitivity of Kq is relatively high for
balance and ground water recharge methods) to identify thesdl measures. However, the shape of the cumulative curves
recession periods; however, these have to be the subject of this parameter for the FS measure is different. This
future studies. Presumably, the more accurately théndicates that the parameter population conditioned on this
characteristic features of the catchment are identified, theneasure results in a different distribution than when the other
more informative the analysis. measures are used. The sensitivity plots for the parameter

Two calibration methods, Uniform Random Search (URS)ALPHA are similar for all objective functions, suggesting
and MOCOM-UA, are used to explore the parameter spacthat this parameter is equally important for the correct
of the model. The URS method consists of 5000 parametaeproduction of the system behaviour during all response
sets randomly sampled from the feasible parameter rangesodes. The same is observed for parameter CMAX.
based on a uniform distribution. The Pareto optimal solution However, parameter sensitivity is only a necessary, but
space for the three criteria is estimated with 500 solutionsiot a sufficient requirement for identifiability, since values
using the MOCOM-UA multi-criteria optimisation algorithm of a sensitive parameter that produce good model

(Yapoet al, 1998). performance can still be distributed over a relatively wide
range of the feasible parameter space. A simple way to show
SENSITIVITY AND IDENTIFIABILITY ANALYSIS how the parameter identifiability is increased through the

A modification of the RSA approach introduced by Feger use of different measures is demonstrated in Fig. 7. The
al. (1996) is used to inspect visually the sensitivity of theparameter populations (derived from the URS) are

different parameters with respect to the response mode dfansformed as before so that again the objective function

the system. This methodology was introduced originally tovalue of the best performing parameter is assigned the highest
identify insensitive parameters which subsequently wouldvalue and all measures sum to unity. The range of each
be fixed or eliminated. However, it can also be used togparameter is then split into M bins and the sum of all measures
visualise the link between parameter sensitivity and systenn each is calculated. The results are the densities of the, in
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Fig. 6. Regional Sensitivity Analysis plots showing the varying sensitivity of the model
parameters depending on the response mode of the hydrological systenw)Bingle
overall measure (RMSE), ®ow) measure for “driven” period (FD), (3 row) measure
for “non-driven quick” period (FQ), and (4row) measure for “non-driven slow” period
(FS). Lighter colours indicate groups of better performing parameters, while darker
colours indicate less well performing parameters.
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Fig. 7. The objective functions are rescaled so that the best performing parameter assumes the highest
value and the sum of all values equals one. Splitting each parameter range subsequently into 20 bins
of equal width and calculating the sum of all measures in each bin leads to the parameter

density (D) distributions shown.
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this case initially uniform, parameter populations conditionedone measure may reveal a distinct peak in its distribution
on the different objective functions. when using an objective function based on residuals from a
Some variation in the distributions derived through thedifferent response period. This is caused by the often varying
use of the different measures can be seen. The parameierportance of model components, and therefore parameters,
BEXP shows relatively uniform distributions except when to reproduce the system behaviour during different response
being conditioned on FS, where small values show bettemodes.
performance. The parameter population of Kg on the other A different measure of the identifiability of a parameter,
hand shows a very distinct peak for the FQ objective functionand therefore the uncertainty related to this parameter, is
However, higher values of this parameter are favoured whedefined in Fig. 8. A synthetic example is used whose
the FS objective function is used to obtain a better fit at thparameters are not related to the model structures used here.
beginning of the recession periods of the hydrographThe top row of this figure shows two scatter plots of two
ALPHA shows relatively similar distributions for all different parameter populations derived from a URS
measures, which is in line with the result of the sensitivityprocedure. Parametey, is unidentifiable, i.e. good
analysis (Fig. 6) in which the parameter is sensitive for alperforming parameters appear at very different locations in
objective functions. the feasible parameter space. Parantgten the other hand
Figure 7 shows that the use of different measures can lead very identifiable with a distinct peak. Plotting the
to an improvement in judging the performance of a parametecumulative distribution of the 100 best performing parameter
over its range. A parameter showing little variation usingsets used in the example application (since only the top of
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Fig. 8. The top row shows scatter plots of two parameter populations derived from a uniform random search.
The performance is measured by the root mean square error, transformed so that better performing models are
indicated by higher values and the measures sum to unity. Paragjéteunidentifiable, while parametey, is
very identifiable. The top population (e.g. best performing 100 models) can be used to derive a cumulative
distribution with respect to their performance. Splitting the parameter range into ten bins and calculating the
gradient of the cumulative distribution within each results in the (rescaled) gradient distribution shown as bars
in the middle row. The bottom row shows the (rescaled) gradient distribution as a line with the marker
indicating the largest value.
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the population is interesting for an analysis of theslow periods (FS). Parameter Kg shows very high levels of
identifiability), leads to the plots shown in the middle row identifiability for all objective functions. The locations of
of Fig. 8. The unidentifiable parametgproduces a straight  the peaks are almost identical apart from the conditioning
line between the bottom left and the top right corner of theon FS, which favours higher values of the parameter.
plot. The other parameter produces a much steeper line overFigure 9 shows again that the main difference can be found
only part of the parameter space. Splitting each parametdretween FS and the remaining measures. The measures FD,
range into a humber of equally spaced bins (e.g. 10) anBQ, and RMSE seem to contain similar information for this
calculating the gradient of the cumulative distribution within data set. However, the use of different measures can be
each bin gives a measure of identifiability of the parameterbeneficial for the identifiability of parameters as is
The gradients are plotted as bars. Additionally, a colourdemonstrated in the cases of BEXP and Ks.
coding is used, with darker colours indicating higher A two-dimensional projection of the three-dimensional
gradients. The middle left plot shows that the resultingobjective function space (FD, FQ, FS) gives further insights
gradients of parametey are low and almost equal over the (Fig. 10,  and 29 row). The light grey dots indicate the
whole parameter range. The gradients of paranggtare 500 Pareto solutions determined with the MOCOM-UA
much larger and indicate where a peak is occurring on thalgorithm whereas the black dots show the 5000 URS results.
response surface and how pronounced it is. The gradient dthe 2°row shows the region of the Pareto solution in greater
the cumulative distribution of each parameter can thereforeletail with the best solutions highlighted (A for FD, B for
be used as a measure of its identifiability. The bottom row ofQ, C for FS, D for overall RMSE). These plots illustrate
Fig. 8 shows the gradient distributions of the two parameterslearly the inability of the model to match all three aspects
as lines, with the top value indicated by a marker. of the hydrograph simultaneously, and reveal that the trade-
This measure is used to analyse the identifiability of theoffs in fitting the three hydrograph components are quite
model parameters. The results are given in Fig. 9. The firssignificant. However, the trade-off between FD (A) and FQ
plot shows that the level of identifiability of CMAX is (B)is relatively small, which is also indicated by the relatively
relatively similar for all objective functions. Parameter BEXP high degree of correlation of the Monte-Carlo results (top
is more identifiable when using FS. The identifiability values, left plot). In addition the best FD and overall RMSE solutions
i.e. the gradients, are higher during the non-driven sloware very similar with respect to the three criteria indicating
periods and small values of this parameter perform bettethat these two measures contain very similar information
Parameter ALPHA shows a reasonable consistency in thabout the parameters of this model. The normalised (over
level of identifiability through all measures. The the initial parameter uncertainty range) parameter plot,
identifiability of Ks is slightly higher during the non-driven presented in the bottom row of Fig. 10, shows the variability
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Fig. 9. The distribution of gradients for the different parameters and the different

objective functions is shown. The markers indicate the highest gradient values for FD

(rectangle), FQ (circle), FS (diamond) and RMSE (star), also ranging from dark (FD)
to light (RMSE) grey shading.
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Fig. 10.Two-dimensional projections of the three dimensional objective function spdeaed12¢ row

show 500 Pareto solutions and 5000 parameter sets randomly sampled from a uniform distribution). The

markers correspond to the best points with respect to FD (A), FQ (B), FS (C), and overall RMSE (D).

The 3! row shows the normalised parameter space. The grey lines show the 500 Pareto solutions, the

three black lines are solutions A (FD, solid), B (FQ, dotted), and C (FS, dashed). The squares indicate
the best overall RMSE solution (D).

in the parameter values for the 500 Pareto optimal solutionthe peaks. The model does generally have some trouble
(indicated by the light grey lines). Each line on the graphmatching the flows for days 250 through 270. This could be
represents one of the parameter sets. Notice that the parametiele to model structural error, i.e. the model's inability to
uncertainty has been reduced significantly by the multi-track the soil moisture in the long dry period preceding these
criteria optimisation compared to the initial feasible range rainfall events. Another possibility is that the precipitation
particularly for Kg. Also notice that the parameter valuesdata during this time period is erroneous, i.e. it may not be
for the best FD, FQ, and RMSE solutions are, in general, imepresentative of the precipitation rates throughout the
a different region of the parameter space than the best solutimatchment.
for the FS criteria (indicated by the dashed line). This simple example demonstrates how the aggregation
Figure 11 presents the model output results for a 100-dagf the residuals over the whole calibration period results in a
portion of the calibration period derived using the results ofoss of information relating to parameter sensitivity and
the calibration with the MOCOM-UA algorithm. The identifiability, model performance, and model structural
minimal FD and FQ solutions tend to fit the peaks better atnsufficiencies. Additional insight is gained from the
the expense of over- and underestimating the recessiorydrograph split performed here.
respectively. The minimal FQ solution also captures the shape The advantages of a multi-objective framework based on
of the falling limb, corresponding with time steps classified system response modes make it especially suitable for
as “non-driven quick”, better than the other two solutions.comparison studies since it allows us to attribute the model
The minimal FS solution on the other hand fits the longperformance during different system response modes to
recession limbs of the hydrograph better (see log-scale platifferent model components, i.m this case the moisture
at bottom), while it often seriously over- or underestimatesaccounting and the routing components. A certain model
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Fig. 11.Hydrograph range produced by the 500 Pareto solutions (grey region), and the
output from the best parameter sets for the different measures on noffmaiv)land on
logarithmic scale (2 row). The observed time-series is shown as circles.

structure might perform better during “driven” periods remaining structural components are identical to the ones of
because of a superior moisture accounting component, whiléde earlier model structure shown in Fig. 4 and are defined
another model structure containing a more appropriate slowy three parameters, ALPHA [-], Kq [T], and Ks [T]. This
flow routing component could result in higher performancestructure is referred to as the simple model, while the initial
during “non-driven slow” periods. A single-objective structure is referred to as the complex model in the remaining
framework does not allow the comparison of modeltext.

components and consequently important information relevant The results of the comparison are shown in Fig. 12. The
to identifying the most suitable model structure is lost. Boyleleft graph shows a comparison in performance between the
et al (2001) use this advantage of multi-objective comparisortwo structures as derived from the calibration with the
studies in their research evaluating the benefit of “spatiaMOCOM-UA algorithm. The objective functions used are
distribution” of model input (precipitation), structural identical to the ones applied when analysing the individual
components (soil moisture and streamflow routingmodel structure earlier in the text. The traditional, overall
computations) and surface characteristics (parameters) witmeasure of performance RMSE, indicates that the complex
respect to the reproduction of different response modes ahodel structure is superior to the simple one. However, when

the catchment system. analysing the performance in more detail, one can see that
both structures are almost equally good during the non-driven
MODEL STRUCTURE COMPARISON slow periods (FS). The complex model structure is able to

A second model structure is introduced to demonstrate thét the driven and non-driven quick periods better, with the

advantages of multi-objective comparisons. This structurdargest difference occurring during the driven period. This

is a simplified version of the model described before. A singleresult shows the initial insight gained by a more detailed

store with a rainfall excess mechanism is used as moistur@nalysis. The model structures have identical components
accounting component, instead of a distribution of stores a® fit the slow catchment drainageJ@nd therefore produce

in the first structure. The store is described by its size, CMAXsimilar results. The fact that this is not the case during the
[L]. The evapotranspiration losses of the store are again equguick catchment drainage (Jan be attributed to the larger

to the potential rate as long as soil moisture is available. Thenportance of the moisture accounting component in fitting
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Fig. 12.The two model structures compared in terms of performance and uncertainty in
(identifiability of) their parameters. The left plot shows the root mean square error values
of the two structures with respect to the different objective functions used. A smaller value
therefore indicates a higher performance. The plot on the right shows the identifiability of
the parameters of the two structures. A higher value indicates a higher degree of
identifiability and therefore reduced uncertainty. The identifiability value for each
parameter is the highest derived from the different objective functions as shown in Fig. 9
for the complex model structure.

this part of the hydrograph, and that it is easier to separateduction in identifiability should be considered, amongst
out the slow recession periods. other things, when selecting a model structure for a specific
The evaluation of the model performance should, ifpurpose. A simpler model structure, representing a smaller
possible, also include objective functions tailored to fit thenumber of processes, might for example be more suitable
specific purpose of the model. An example is the use of théor regionalisation purposes. The type of analysis shown
model to investigate available water quantities for abstractiosupports the model selection process.
purposes. Assuming that abstraction can only take place
during periods when the water level is above minimum ;
environmentally acceptable flow and below a maximumcondusIonS
water supply abstraction rate allows the definition of aA rigorous approach to the development and evaluation of
specific objective function (Lees and Wagener, 2001). Thidwydrological models is required, balancing prior information,
measure would only aggregate the residuals of the selectedodel complexity, and parameter and output uncertainty. The
period and can give important information about how a modeframework presented here incorporates those aspects.
performs with respect to the anticipated task. However, itis The simple example shows that accepting the multi-
important to mention that this should never be the onlyobjective nature of model calibration and integrating it into
evaluation criterion. the modelling process increases the amount of information
The right-hand graph of Fig. 12 shows the uncertainty irretrieved from the model residuals to (1) find the parameter
estimating the parameters of the two models, i.e. in terms giopulation necessary to fit all aspects of the observed output
their identifiability. The highest identifiability values for each time-series (albeit separately), (2) increase the identifiability
of the parameters of the complex model are taken from Fig. @f the model parameters, and (3) assess the suitability of the
The identifiability values for the simple model parametersmodel structure to represent the natural system (i.e. identify
are derived in an identical way. It can be seen that the simplaodel structural insufficiencies). The methodology has
model structure shows overall a higher degree of parametgyeneral applicability. The global and multi-objective
identifiability. Introducing an additional parameter, BEXP, optimisation algorithm MOCOM-UA, in this respect, has
generally reduces the identifiability through its interaction already been applied successfully to rainfall-runoff (Gupta
with the other parameters. The increase in model performancgt al, 1998b; Yapet al, 1998; Boyleet al, 2000), to more
is therefore obtained at the cost of decreasing identifiabilitycomplex, coupled Soil-Vegetation-Atmosphere-Transport
and therefore increasing parameter uncertainty. (SVAT, Bastidaset al, 1998; Gupteet al, 1998a), and to
The trade-off between improvement in performance andvater-quality (Meixneet al, 2000) models.
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