

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. SCI. COMPUT. c© 2008 Society for Industrial and Applied Mathematics
Vol. 30, No. 2, pp. 764–784

A FRAMEWORK FOR DISCRETE INTEGRAL
TRANSFORMATIONS I—THE PSEUDOPOLAR

FOURIER TRANSFORM∗

A. AVERBUCH† , R. R. COIFMAN‡ , D. L. DONOHO§ , M. ISRAELI¶, AND

Y. SHKOLNISKY‡

In memory of Moshe Israeli 1940–2007

Abstract. The Fourier transform of a continuous function, evaluated at frequencies expressed in
polar coordinates, is an important conceptual tool for understanding physical continuum phenomena.
An analogous tool, suitable for computations on discrete grids, could be very useful; however, no
exact analogue exists in the discrete case. In this paper we present the notion of pseudopolar grid (pp
grid) and the pseudopolar Fourier transform (ppFT), which evaluates the discrete Fourier transform
at points of the pp grid. The pp grid is a type of concentric-squares grid in which the radial density
of squares is twice as high as usual. The pp grid consists of equally spaced samples along rays,
where different rays are equally spaced in slope rather than angle. We develop a fast algorithm for
the ppFT, with the same complexity order as the Cartesian fast Fourier transform; the algorithm is
stable, invertible, requires only one-dimensional operations, and uses no approximate interpolations.
We prove that the ppFT is invertible and develop two algorithms for its inversion: iterative and direct,
both with complexity O(n2 logn), where n× n is the size of the reconstructed image. The iterative
algorithm applies conjugate gradients to the Gram operator of the ppFT. Since the transform is
ill-conditioned, we introduce a preconditioner, which significantly accelerates the convergence. The
direct inversion algorithm utilizes the special frequency domain structure of the transform in two
steps. First, it resamples the pp grid to a Cartesian frequency grid and then recovers the image from
the Cartesian frequency grid.

Key words. unequally spaced FFT, pseudopolar Fourier transform, polar Fourier transform,
fractional Fourier transform, concentric-squares grid, linogram

AMS subject classification. 65T50

DOI. 10.1137/060650283

1. Introduction. Given a function f(x, y) of a continuous argument (x, y) ∈ R
2,

its two-dimensional (2D) Fourier transform, denoted f̂(ωx, ωy), is given by the integral

(1) f̂(ωx, ωy) =

∫
R2

f(x, y)e−2πi(xωx+yωy) dx dy, ωx, ωy ∈ R.

For discrete images I(u, v), −n/2 ≤ u, v < n/2, the corresponding concept is the sum

(2) Î(ωx, ωy) =

n/2−1∑
u,v=−n/2

I(u, v)e−
2πi
m (uωx+vωy), ωx, ωy ∈ R,

where we depart from tradition by letting m ≥ n be an arbitrary integer. We assume
for simplicity that the image I has equal extent in the x and y directions and that n

∗Received by the editors January 18, 2006; accepted for publication (in revised form) July 2, 2007;
published electronically February 14, 2008.

http://www.siam.org/journals/sisc/30-2/65028.html
†School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel (amir@math.tau.ac.il).
‡Department of Mathematics, Yale University, New Haven, CT 06520 (coifman@math.yale.edu,

yoel.shkolnisky@yale.edu). The fifth author was supported in part by a grant from the Ministry of
Science, Israel.

§Statistics Department, Stanford University, Stanford, CA 94305 (donoho@stat.stanford.edu).
¶Formerly, Faculty of Computer Science, Technion, Haifa 32000, Israel (israeli@cs.technion.ac.il).

764

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PSEUDOPOLAR FOURIER TRANSFORM 765

is even. For practical applications, we need to evaluate Î for (ωx, ωy) in some discrete
set.

The algorithm presented in this paper precisely evaluates Î on a special nonuni-
form point set, the pseudopolar grid (pp grid). It has the same order of complexity
as the traditional 2D fast Fourier transform (FFT) for the Cartesian grid and re-
quires only vector operations taking one-dimensional (1D) arrays to 1D arrays, being
thereby extremely efficient in today’s commercially predominant hierarchical mem-
ory machines. At its core, the algorithm reduces to a large number of 1D FFTs
and is especially fast in environments where such FFTs are specially optimized. The
algorithm does not require an accuracy parameter, and the resulting samples have
machine accuracy. This is in contrast to approaches such as [14, 19] that require
an accuracy parameter, which controls both the relative accuracy and the processor
timing. Because it offers closed-form evaluation on a particular choice of point set,
our algorithm is a counterpart of [7, 5, 33], addressing the 2D setting of the pp grid.
Those related algorithms work in one dimension, exploiting algebraic properties of
the trigonometric polynomial

Î1(ω) =

n/2−1∑
u=−n/2

I1(u)e−2πiuω/m

to evaluate it in closed form on particular 1D grids: [7] samples Î1 on points that
are equally spaced on the unit circle from 0 to 2π, [5] samples Î1 on points that

are equally spaced on an arbitrary arc of the unit circle, and [33] samples Î1 on spirals
of the form AW k, where A,W ∈ C. Like those algorithms, the algorithm we discuss
exploits special algebraic properties of the underlying trigonometric polynomial; in
those algorithms the polynomial was Î1, while in this paper it is Î of (2). Our approach
differs from generic nonuniform FFT algorithms, which can work with arbitrary point
sets and exploit approximations and expansions to obtain approximate values of Î on
such point sets. For a survey of such nonuniform FFT algorithms, see [35].

The specific point set we use is closely related to the so-called concentric-squares
grid from computed tomography [29, 31, 11, 12, 25], as we explain later, but with
a higher density of sampling. The extra density gives the resulting transform better
properties, for example, with regard to invertibility and geometric fidelity. These
properties are crucial for our intended applications.

Indeed numerous tasks in discrete image processing pose problems that seem
simple in the continuous setting but which seem awkward using existing tools in the
discrete setting. Thus, in the continuous setting several very important operations
can be expressed simply and transparently in terms of operations on the Fourier trans-
form in polar coordinates. Examples include image rotation—a shift of the transform
in polar coordinates—and Radon transform—the inverse transform of a radial slice.
These transparent representations in the continuous setting inspire us to seek corre-
spondingly simple and natural representations in the discrete image processing setting.
However, in the discrete domain, polar coordinates and rotations are not intrinsic. We
argue below, and have elsewhere shown in several concrete projects, that the pp grid
developed here and the corresponding fast algorithms provide an engine to build such
transparent representations. For example, our transform obeys the projection-slice
theorem connecting Fourier analysis to Radon transform, and it behaves naturally
under shearing, which is a natural affine transform of a discrete grid and in some
sense the correct substitute for rotation in the discrete setting.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

766 AVERBUCH, COIFMAN, DONOHO, ISRAELI, AND SHKOLNISKY

(a) Pseudopolar sector Ω1
pp (b) Pseudopolar sector Ω2

pp (c) Pseudopolar grid Ωpp =

Ω1
pp ∪ Ω2

pp

Fig. 1. Pseudopolar grid.

Contents. In section 2 we present the 2D pp grid and the 2D pseudopolar
Fourier transform (ppFT). Relationships to previous work and our contribution are
considered in section 3. In section 4 we present a fast O(n2 log n) algorithm for
computing the ppFT. In section 5 we prove the ppFT is invertible, and in sections
6 and 7 we present two efficient algorithms that compute the inverse transform to
within an arbitrary prescribed accuracy ε. Section 6 presents an iterative inversion
algorithm based on conjugate gradients, while section 7 presents a direct algorithm
that is based on fast resampling of the frequency domain.

2. Pseudopolar grid. The 2D pp grid, denoted Ωpp, is given by

(3) Ωpp
Δ
= Ω1

pp ∪ Ω2
pp,

where

Ω1
pp

Δ
=

{(
−2l

n
k, k

) ∣∣∣∣ −n/2 ≤ l ≤ n/2, −n ≤ k ≤ n

}
,(4)

Ω2
pp

Δ
=

{(
k,−2l

n
k

) ∣∣∣∣ −n/2 ≤ l ≤ n/2, −n ≤ k ≤ n

}
.(5)

See Figures 1(a), 1(b), and 1(c) for an illustration of Ω1
pp, Ω2

pp, and Ωpp, respectively.
As can be seen from the figures, k serves as a “pseudo radius” and l serves as a
“pseudo angle.” We denote a specific point in Ω1

pp and Ω2
pp by Ω1

pp(k, l) and Ω2
pp(k, l),

respectively.

The resolution of the pp grid, given by (3)–(5), is n+1 in the angular direction and
m = 2n+1 in the radial direction. The presented construction uses these angular and
radial resolutions to support the future derivation of the discrete Radon transform [3].
However, the construction can be repeated with arbitrary resolutions in the angular
and radial directions.

In polar coordinates, the pp grid is given by

(6) Ω1
pp(k, l) = (r1

k, θ
1
l), Ω2

pp(k, l) = (r2
k, θ

2
l),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PSEUDOPOLAR FOURIER TRANSFORM 767

where

r1
k = k

√
4

(
l

n

)2

+ 1, r2
k = k

√
4

(
l

n

)2

+ 1,(7)

θ1
l = π/2 − arctan

(
2l

n

)
, θ2

l = arctan

(
2l

n

)
,(8)

k = −n, . . . , n, and l = −n/2, . . . , n/2. As we can see in Figure 1(c), for each fixed
angle l, the samples of the pp grid are equally spaced along the radial direction. How-
ever, this spacing is different for different angles. Also, the grid is not equally spaced
in the angle coordinate; it is instead equally spaced in a transformed coordinate: the
slope. Formally,

(9) Δr1
k

Δ
= r1

k+1 − r1
k =

√
4

(
l

n

)2

+ 1, Δr2
k

Δ
= r2

k+1 − r2
k =

√
4

(
l

n

)2

+ 1

and

Δθ1
pp(l)

Δ
= cot θ1

l+1 − cot θ1
l =

2

n
, Δθ2

pp(l)
Δ
= tan θ2

l+1 − tan θ2
l =

2

n
,(10)

with r1
k, r

2
k, θ

1
l , and θ2

l given by (7) and (8).

The ppFT is defined as the samples of Î, given by (2), on the pp grid Ωpp,
given by (3)–(5). Formally, the ppFT is a linear transformation from n× n arrays to
2 × 2n + 1 × n + 1 arrays. Its value ÎΩj

pp
(k, l) is defined for j = 1, 2, k = −n, . . . , n,

and l = −n/2, . . . , n/2 by

ÎΩ1
pp

(k, l) = Î

(
−2l

n
k, k

)
,(11)

ÎΩ2
pp

(k, l) = Î

(
k,−2l

n
k

)
,(12)

where Î is given by (2). We also use operator notation FppI, meaning

(13) (FppI)(j, k, l)
Δ
= ÎΩj

pp
(k, l),

where j = 1, 2, k = −n, . . . , n, and l = −n/2, . . . , n/2.

3. Relation to previous work. A grid much like the pp grid, but coarser,
has been proposed several times in the literature under various names. This general
type of grid was seemingly first introduced by Mersereau and Oppenheim [29] under
the name “concentric-squares grid.” Mersereau and Oppenheim worked from the
viewpoint of computerized tomography. They assumed that data on a continuum
object were gathered in unequally spaced projections chosen so that the 1D Fourier
transform corresponded to the concentric-squares grid. They considered the problem
of reconstructing a discrete array of n2 pixels from such Fourier domain data and
developed an algorithm based on interpolating from the data given in the concentric-
squares grid to the Cartesian grid to approximately reconstruct the values at the
Cartesian grid points, followed by standard inverse 2D FFT. In the concentric-squares-
to-Cartesian conversion step, Mersereau and Oppenheim used simple 1D interpolation
based on linear interpolation in rows/columns.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

768 AVERBUCH, COIFMAN, DONOHO, ISRAELI, AND SHKOLNISKY

The difference between [29] and our work is threefold: (i) Mersereau and Oppen-
heim’s grid samples half as frequently as ours in the radial direction. Their concentric-
squares grid would result in our framework from making the “expected” choice m = n
in (3) in place of our “unconventional” choice m = 2n+1. Using m = 2n+1 is perhaps
not important in the original setting of approximate tomographic reconstruction from
coarse noisy data, but it is of crucial importance for our intended applications and
interpretation of the transform. Indeed, with the choice m = 2n + 1 the transform
is related to integration along lines, whereas for m = n it is not. As shown in [3],
the original concentric-squares grid does not honor line geometry of the continuous
Radon transform, as it involves wraparound of the underlying lines; (ii) Mersereau
and Oppenheim’s methodology addresses reconstruction (inversion) using data gath-
ered by a medical scanner or other physical integration device; they do not attempt to
define a forward transform for digital image data or establish exact invertibility and
fast inversion algorithms associated to digital arrays; and (iii) their methodology is
approximate; they do not obtain precise evaluation of the transform at points in the
concentric-squares grid. Because of the extremely oscillatory nature of the underlying
trigonometric polynomial, it is unfortunately not the case that crude interpolations
can form the basis of a foundational tool. Closed-form solutions with machine preci-
sion ought to be used if they can be found.

Several important later papers in journals devoted to computerized tomography
improved on Mersereau and Oppenheim—in both medical tomography [31, 11, 12]
and synthetic aperture radar imaging [25]. Like Mersereau and Oppenheim, these
authors are concerned with image reconstruction from tomographic data; effectively
they assume that one is given data in the Fourier domain on a concentric-squares
grid, and the problem is to reconstruct the underlying continuum object.

Pasciak’s unpublished work [31], which is known among tomography experts
through a citation in Natterer’s book [30], showed in 1980 that, given data on a
pp grid in Fourier space, one could calculate a collection of n2 sums which, using the
notation of this paper, we can write as

(14)
∑

csk,le
iξsk,l(u,v)′ , −n/2 ≤ u, v < n/2,

where the ξsk,l are points in the concentric-squares grid. (Pasciak makes no reference
to Mersereau and Oppenheim.) In other words, Pasciak showed the way to rapidly
and precisely compute the formal adjoint of a ppFT-like transform, which is based
on the concentric-squares grid m = n rather than the pp grid m = 2n+ 1. His paper
used the chirp-Z transform to do this in closed form, a clever and fundamental idea
which has later been rediscovered or applied several times in this general domain.

Edholm and Herman [11] develop the linogram, which from this paper’s viewpoint
may be described as follows. Data on a continuum object is gathered at a continuous
and complete set of projections, indexed by slope tan(θ) rather than angle θ. The
mathematical foundations of this continuum transform are developed. In a followup
paper with Roberts [12] they consider implementation, and assume a discrete set of
projections equispaced in tan(θ). By digitally sampling each constant θ projection and
taking a 1D DFT of the resulting samples, they argue that they are essentially given
data on a concentric-squares grid in Fourier space (making no reference to Mersereau
and Oppenheim or to Pasciak). They are concerned with reconstruction, consider the
sums of (14), and derive a fast algorithm which is the same as Pasciak’s, using again
the chirp-Z transform. In their implementation paper [12], Edholm and Herman did
in fact suggest the use of m = 2n+1 in their discussion of the linogram. However, this

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PSEUDOPOLAR FOURIER TRANSFORM 769

arose in discussing the appropriate discretization of the in-principle continuous slope
coordinate. The ideas which drive our choice concern the discrete projection-slice
theorem and the design of forward and inverse discrete transforms which invert each
other. Such issues did not arise in Edholm and Herman’s setting. Clearly, Edholm and
Herman contributed the fundamental insight that there was a continuum transform
that could be discretized compatibly, provided one thinks in terms of slopes rather
than angles.

Contemporaneously with Edholm and Herman, Lawton [25] develops a so-called
polar Fourier transform for synthetic aperture radar (SAR) imagery. He introduces
a concentric-squares grid, assumes that SAR data are essentially given on such a
concentric-squares grid in Fourier space, and considers the problem of rapidly recon-
structing an image from such data. He considers the sums of (14) and derives a fast
algorithm using again the chirp-Z transform. He refers to Mersereau and Oppenheim.

In comparison to our work (i) these works are about reconstruction only, assuming
that data are gathered about a continuum object by a physical device, and (ii) the
algorithmic problem they consider is equivalent to rapidly computing (14).

The viewpoint in our paper is rather different. We seek to develop a general
framework for processing of digital images and solving tasks of representing and ma-
nipulating such images; it is most important to us that true lines in image space are
faithfully represented by the tools we use.

The tools we have developed for image processing rely on the ppFT as an engine
for rapid and precise calculations with digital images; for example, we develop trans-
forms with exact reconstruction properties with this framework [8, 6, 9]. Older ideas
would either not give exactness or not correspond to faithful representation of linear
features.

In fact, the viewpoint we are developing in this paper has by now proven fruitful
in diverse work by several groups [34, 1, 26, 23, 24]. An earlier version of this paper
[4] was written in 2000 and was under review for a considerable length of time while
groups at Tel Aviv, Yale, Stanford, CalTech, the Technion, CEA Saclay, and Georgia
Tech were using these tools to develop image processing applications [8, 6, 9, 2]. This
paper extracts content from [4] specifically related to ppFT, refines the earlier content
further, and extends it. A significant improvement of this work over [4] is the use of
m = 2n + 1 ([4] used instead m = 2n). The choice m = 2n + 1 makes the pp grid
centrosymmetric and offers full Hermitian symmetry of the transform.

Software implementations of these ideas are available, for example, at [21]; appli-
cations are available at BeamLab [21], as well as [20].

Further differences, related to the discrete Radon transform, are discussed in [3].

4. Fast forward transform. In this section we present a fast algorithm that
efficiently computes the ppFT of an image I. The idea is to evaluate the traditional
Fourier transform Î (see (2)) on a Cartesian grid using the 2D FFT algorithm and use
an exact interpolation formula to evaluate it on the pp grid. This exact interpolation
is efficiently implemented using the fractional Fourier transform (frFT).

Consider a vector c ∈ C
n+1 representing a series of equispaced samples along a

1D line. Denote the frFT of c by

(15) (Fα
n+1c)(k) =

n/2∑
u=−n/2

c(u)e−2πiαku/(n+1), k = −n/2, . . . , n/2, α ∈ R.

An important property of the frFT is that, given a vector c of length n + 1, the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

770 AVERBUCH, COIFMAN, DONOHO, ISRAELI, AND SHKOLNISKY

sequence (Fα
n+1c)(k), k = −n/2, . . . , n/2, can be computed using O(n log n) operations

for any α ∈ R (see [5]). Equation (15) is usually referred to as the unaliased frFT,
and it differs from the usual definition of the frFT given in [5]. The algorithm that
computes the unaliased frFT (15) is very similar to the algorithm in [5] and is therefore
omitted. MATLAB and C implementations are freely available [21].

Our ppFT algorithm pipelines several operators:
• Em,n: Padding operator. Em,nI symmetrically zero pads an image I of size
n× n to size m× n.

• F−1
1 : 1D inverse discrete Fourier transform (DFT).

• F̃α
m: frFT with factor α. The operator takes a sequence of length n, symmet-

rically zero pads it to length m = 2n+1, applies to it the frFT Fα
m with scale

factor α, and returns the n + 1 central elements.
• F2: 2D DFT.
• Gk,n: Resampling operator given by

(16) Gk,n = F̃α
m ◦ F−1

1 , α = 2k/n.

Using this notation, Algorithm 1 displayed below computes the Ω1
pp sector of the

ppFT ÎΩ1
pp

(k, l) (see (11)). To compute the Ω2
pp sector ÎΩ2

pp
(k, l) (see (12)) simply

switch the roles of the x and y axes in Algorithm 1.

Algorithm 1. Computing the ppFT ÎΩ1
pp

Input: Image I of size n× n
Output: Array Res1 with n + 1 rows and m = 2n + 1 columns that contains the

samples of ÎΩ1
pp

1: m ← 2n + 1
2: Îd ← F2 ◦ Em,nI
3: for k = −n, . . . , n do
4: q ← Îd(·, k)
5: wk ← Gk,n(q), wk ∈ C

n+1

6: Res1(k, l) ← wk(−l)
7: end for

We now show that Algorithm 1 computes the ppFT.
Theorem 4.1 (correctness of Algorithm 1). Upon termination of Algorithm 1

we have

(17) Res1(k, l) = ÎΩ1
pp

(k, l),

where k = −n, . . . , n, l = −n/2, . . . , n/2, and ÎΩ1
pp

is given by (11).

Proof. After completion of step 2 in Algorithm 1, the (l, k) element of Îd is given
by

(18) Îd(l, k) =

n/2−1∑
u=−n/2

n/2−1∑
v=−n/2

I(u, v)e−2πilu/ne−2πikv/m,

where l = −n/2, . . . , n/2 − 1, k = −n, . . . , n, and m = 2n + 1. Turn to calculation of
Res1(k0, j) for some fixed k0. Take row k0 from Îd, and denote the resulting vector
of length n by q

(19) q(l) = Îd(l, k0), l = −n/2, . . . , n/2 − 1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PSEUDOPOLAR FOURIER TRANSFORM 771

Step 5 in Algorithm 1 defines wk(j) = (Gk0,n(q))j , where, according to (16), Gk0,n(q) =

F̃
2k0/n
m (F−1

1 (q)). We begin by evaluating F−1
1 (q). By expanding (19) using (18) we

get

q(l) =

n/2−1∑
u=−n/2

n/2−1∑
v=−n/2

I(u, v)e−2πilu/ne−2πik0v/m =

n/2−1∑
u=−n/2

ck0
(u)e−2πilu/n,(20)

where

(21) ck0
(u) =

n/2−1∑
v=−n/2

I(u, v)e−2πik0v/m, u = −n/2, . . . , n/2 − 1.

Equation (20) states that the vector q is the DFT of {ck0
(u)}. Therefore, F−1

1 (q) =

{ck0(u)}. Finally, taking the frFT F̃
2k0/n
m of the array {ck0(u)} using (15) and (21)

gives wk0(j) = (F̃
2k0/n
m ({ck0(u)}))j = Î(2jk0/n, k0), from which we conclude that

upon completion of step 6 in Algorithm 1

Res1(k0, j) = wk0
(−j) = Î(−2jk0/n, k0) = ÎΩ1

pp
(k0, j), j = −n/2, . . . , n/2.

Next, we analyze the complexity of Algorithm 1. Step 2 can be implemented
in O(n2 log n) operations by using successive applications of 1D FFT. Each call to
Gk,n in step 5 involves the application of a 1D inverse Fourier transform (O(n log n)
operations) followed by the computation of an frFT (O(n log n) operations) and thus
requires O(n log n) operations. Step 5 computes Gk,n for each row k (2n + 1 rows),
which requires a total of O(n2 log n) operations. Step 6 involves flipping 2n+1 vectors
of length n+1, which requires a total of O(n2) operations. Thus, the total complexity
of Algorithm 1 is O(n2 log n) operations.

With an optimized implementation, the complexity of computing the ppFT of an
n×n image is 100n2 log2 n operations. Note that the number of frequency samples in
the output array is roughly 4n2. Computing 4n2 Cartesian frequency samples using
the 2D FFT requires 20n2 log2 n operations. Thus, computing the ppFT is only 5
times slower than the 2D FFT. This complexity analysis assumes that the 1D FFT
of a vector of length n requires 5n log2 n operations, and that the frFT of a vector of
length n can be computed in 20n log2 n operations (independent of α) [5].

Algorithm 1 suggests a way to rapidly compute the adjoint ppFT in O(n2 log n).
In effect, the algorithm represents the output as a result of pipelining several linear
operators. Since the adjoint of a composition is the composition of adjoints in re-
versed order, we can compute the adjoint ppFT by reversing the order of execution
in Algorithm 1 and replacing each line by its adjoint. The resulting algorithm, given
in Algorithm 2, uses the following operators:

• Un: Truncation operator. The operator UnI takes an image I and returns its
n× n central elements.

• F−1
2 : 2D inverse DFT.

• adj Gk,n: Adjoint of the operator Gk,n (see (16)); formally

(22) adj Gk,n =
1

n
F1 ◦ adj F̃α

m, α = 2k/n,

where F1 is the 1D DFT and adj F̃α
m is an operator that takes a vector of

length n + 1, symmetrically zero pads it to length m = 2n + 1, applies the
frFT with factor −α, and returns the n central elements.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

772 AVERBUCH, COIFMAN, DONOHO, ISRAELI, AND SHKOLNISKY

Algorithm 2. Fast adjoint ppFT

1: for k = −n, . . . , n do
2: q(l) ← ÎΩ1

pp
(k,−l), l = −n/2, . . . , n/2

3: Ĩ1(k, ·) ← (adj Gk,n)q
4: end for
5: Ĩ1 ← Un(mnF−1

2 (Ĩ1))
6: for k = −n, . . . , n do
7: q(l) ← ÎΩ2

pp
(k,−l), l = −n/2, . . . , n/2

8: Ĩ2(·, k) ← (adj Gk,n)q
9: end for

10: Ĩ2 ← Un(mnF−1
2 (Ĩ2))

11: Ĩ ← Ĩ1 + Ĩ2

5. Invertibility. Suppose we are given the values of the ppFT FppI. It is pos-

sible to recover I, as we now show. Consider a vector of samples from ÎΩ1
pp

that

corresponds to some k0 �= 0. From (11)

ÎΩ1
pp

(k0, j) = Î(−2jk0/n, k0), j = −n/2, . . . , n/2.

From (2)

(23) Î(−2jk0/n, k0) =

n/2−1∑
u=−n/2

n/2−1∑
v=−n/2

I(u, v)e−2πi(−2k0/n)ju/me−2πik0v/m,

which we write as

(24) Î(−2jk0/n, k0) =

n/2−1∑
u=−n/2

ck0
(u)e−2πi(−2jk0/n)u/m,

where

ck0(u) =

n/2−1∑
v=−n/2

I(u, v)e−2πik0v/m, u = −n/2, . . . , n/2 − 1.

Denote Tk0(−2jk0/n)
Δ
= Î(−2jk0/n, k0). Tk0(−2jk0/n) are the values of the trigono-

metric polynomial

(25) Tk0(x) =

n/2−1∑
u=−n/2

ck0(u)e−2πixu/m

at the points {−2jk0/n}, j = −n/2, . . . , n/2. Since k0 �= 0 we have the values of
Tk0(x) at n + 1 distinct points {−2jk0/n}. Therefore, we can uniquely determine
{ck0(u)} and Tk0(x). By evaluating Tk0(x) at integer points using (25), (24), and (2),
we get Tk0(j) = Î(j, k0), which means that we can recover the DFT of I for all k0 �= 0.
Therefore, it remains to recover Î(j, 0), j = −n/2, . . . , n/2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PSEUDOPOLAR FOURIER TRANSFORM 773

By taking a sequence of samples from ÎΩ2
pp

(see (12)), which corresponds to some

k0 �= 0, we get ÎΩ2
pp

(k0, j) = Î(k0,−2jk0/n), and using (2) we write

T ′
k0

(−2jk0/n)
Δ
= Î(k0,−2jk0/n) =

n/2−1∑
v=−n/2

c′k0
(v)e−2πi(−2jk0/n)v/m,

where

(26) c′k0
(v) =

n/2−1∑
u=−n/2

I(u, v)e−2πik0u/m, v = −n/2, . . . , n/2 − 1.

{T ′
k0

(−2jk0/n)} are the values of the trigonometric polynomial

T ′
k0

(x) =

n/2−1∑
v=−n/2

c′k0
(v)e−2πixv/m

at n + 1 distinct points {−2jk0/n}, j = −n/2, . . . , n/2, and thus uniquely determine
{c′k0

(v)} and T ′
k0

(x). By evaluating T ′
k0

(x) at integer points and using (26) and (2),

we get T ′
k0

(j) = Î(k0, j) for j = −n/2, . . . , n/2. Specifically, we can evaluate Î(k0, 0)

for k0 �= 0, which means that we can recover Î at all Cartesian grid points except the
origin. Since at the origin ÎΩ1

pp
(0, 0) = Î(0, 0), we have the values of Î(ξ1, ξ2) on the

entire discrete Cartesian grid; that is, we can recover the DFT of I from ÎΩpp . Finally,
we can recover I by using the 2D inverse DFT. Hence, the 2D ppFT is invertible.

6. Iterative inverse algorithm. We are given a vector y which purports to
be the transform Fppx of a vector x, and we are asked to recover x. Since y is not
necessarily in the range of the ppFT, e.g., because of noise or measurement errors, we
actually solve

(27) min
x∈D(Fpp)

‖Fppx− y‖2

instead, where D(Fpp) is the domain of the ppFT. Solving (27) is equivalent to solving
the normal equations

(28) F∗
ppFppx = F∗

ppy,

where F∗
pp is the adjoint ppFT. Since F∗

ppFpp is symmetric and positive definite, we
can use the conjugate-gradient method [17] to solve (28). When using the conjugate-
gradient method, we never explicitly form the matrices that correspond to Fpp and
F∗

pp (which are huge), since only their applications to a vector are required. As shown
in section 4, both the ppFT and its adjoint can be applied in O(n2 log n) operations.
Moreover, very little extra storage is required by the conjugate-gradient algorithm (as
opposed to other iterative schemes such as, for example, GMRES), so that the method
can be used to solve very large problems. The initial guess used for the conjugate-
gradient method is zero. As we see below, we get excellent convergence even with this
trivial initial guess.

The number of iterations required by the conjugate-gradient method depends
on the condition number of the transform. To accelerate convergence, we apply the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

774 AVERBUCH, COIFMAN, DONOHO, ISRAELI, AND SHKOLNISKY

method of preconditioners [18], replacing the normal equations (28) by the rescaled
system

(29) F∗
ppMFppx = F∗

ppMy.

Here M is a diagonal scaling matrix chosen, so the condition number of F∗
ppMFpp is

much smaller than the condition number of F∗
ppFpp or such that the eigenvalues of

F∗
ppMFpp are well clustered.

In our case, we use the diagonal preconditioner M defined by (see (13))

(30) (My)(s, k, l) = wk,l y(s, k, l), wk,l =

{
1

m2 , k = 0,
2(n+1)|k|

nm otherwise,

where s = 1, 2, k = −n, . . . , n, l = −n/2, . . . , n/2, and m = 2n + 1. This weighting
can be understood as an example of the principle of density compensation. Roughly
speaking, each square of size 1/n by 1/n is responsible for an equal part of the overall
�2 norm. However the pp grid samples certain squares much more finely than others.
By applying the weighting just described, we make sure that the weighted samples
falling inside a given cell account for the correct fraction of the �2 norm. We mention
that the paper [13] proposes a method for designing effective preconditioners (weights)
in the 1D case. The performance of these preconditioners can be guaranteed in terms
of the properties of the sampling points. Unfortunately, the arguments in [13] apply
only to the 1D case, and the construction therein cannot be applied to our case.

The efficiency of our preconditioner M (see (30)) is demonstrated in Figure 2.
Each graph presents the residual error of the conjugate-gradient iteration as a function
of the iteration number. In Figure 2(a), the original image is a 2D Gaussian bump
of size 512 × 512 with μx = μy = 0 and σx = σy = 512

6 . In Figure 2(b), the original
image is a random image of size 512 × 512, whose entries are uniformly distributed
between 0 and 1. In Figure 2(d), the original image is Barbara of size 512×512, shown
in Figure 2(c). As we can see from Figures 2(a)–(d), our preconditioner significantly
accelerates convergence. With the preconditioner, only a few iterations are required,
and the number of iterations is nearly independent of the content of the reconstructed
image.

Tables 1 and 2 quantify the performance of the iterative inversion algorithm for
images of various sizes. Table 1 presents the inversion of the ppFT of a Gaussian
bump. Table 2 presents the inversion of the ppFT of a random image, whose entries
are uniformly distributed between 0 and 1. In both tables, the error tolerance of the
conjugate-gradient method is set to ε = 10−12. The tables were generated as follows.
Given an image I (random or Gaussian bump), its ppFT is computed. Then the
iterative inversion algorithm is applied to recover the image. We denote by Ĩ the
reconstructed image. We evaluate reconstruction quality with these error measures:

(31) E2 =

√∑
u,v

∣∣∣Ĩ(u, v) − I(u, v)
∣∣∣2√∑

u,v |I(u, v)|
2

, E∞ =
maxu,v

∣∣∣Ĩ(u, v) − I(u, v)
∣∣∣

maxu,v |I(u, v)|
,

where I is the original image.
Tables 1 and 2 show that very few iterations are required to invert the ppFT

with high accuracy. The total complexity of the iterative inversion of the ppFT is

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PSEUDOPOLAR FOURIER TRANSFORM 775

1.0e-15

1.0e-10

1.0e-05

1.0e+00

1.0e+05

1.0e+10

 5 10 15 20 25 30 35 40

with preconditioner
no preconditioner

1.0e-15

1.0e-10

1.0e-05

1.0e+00

1.0e+05

1.0e+10

1.0e+15

 5 10 15 20 25 30 35 40 45 50

with preconditioner
no preconditioner

(a) Reconstruction of a Gaussian bump

512 × 512

(b) Reconstruction of a random image 512×
512

1.0e-15

1.0e-10

1.0e-05

1.0e+00

1.0e+05

1.0e+10

1.0e+15

1.0e+20

1.0e+25

1.0e+30

 5 10 15 20 25 30 35 40 45 50

with preconditioner
no preconditioner

(c) Barbara 512 × 512 (d) Reconstruction of Barbara 512 × 512

Fig. 2. The effect of using the preconditioner given in (30).

Table 1

Iterative inversion of the ppFT of a Gaussian bump. Column 1: n, size of the original n × n
image. Column 2: r, residual error of the conjugate-gradient algorithm. Column 3: E2, relative �2
reconstruction error. Column 4: E∞, relative maximum reconstruction error. Column 5: iter, the
number of iterations until termination condition. Column 6: t, running time in seconds.

n r E2 E∞ iter t (sec)
8 2.80682e-014 2.47277e-007 1.60617e-007 9 0.359
16 1.14334e-013 4.92517e-007 3.86542e-007 8 0.563
32 5.99921e-014 3.44244e-007 2.92515e-007 8 1.202
64 1.05319e-013 4.67737e-007 5.92969e-007 7 2.625
128 6.05610e-013 1.16930e-006 2.56236e-006 6 7.295
256 1.09915e-013 4.94793e-007 1.60205e-006 6 26.789
512 4.30207e-013 9.87174e-007 5.05849e-006 5 83.525
1024 7.02642e-014 4.16717e-007 3.00086e-006 5 373.172

O(ι(ε)n2 log n), where ι(ε) is the number of iterations required to achieve accuracy ε.
As we can see from Table 2, the value of ι(ε) depends very weakly on the size of the
reconstructed image, and in any case ι(10−12) ≤ 10.

7. Direct inverse algorithm. A charming feature of the iterative inversion al-
gorithm is the elegant deployment of general principles; but charm and elegance come
at a price. First, since the iterative inversion is based on a generic linear algebra

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

776 AVERBUCH, COIFMAN, DONOHO, ISRAELI, AND SHKOLNISKY

Table 2

Iterative inversion of the ppFT of a random image. For the legend, see Table 1.

n r E2 E∞ iter t (sec)
8 4.56049e-014 3.33796e-007 5.21815e-007 9 0.391
16 2.21072e-013 7.13164e-007 1.06025e-006 9 0.672
32 6.30229e-013 1.27807e-006 3.81621e-006 9 1.359
64 3.72178e-013 9.30674e-007 4.31200e-006 9 3.250
128 1.40414e-013 5.43102e-007 2.27508e-006 10 11.562
256 1.69596e-013 5.82115e-007 1.95609e-006 10 43.484
512 1.25562e-013 5.05263e-007 2.47555e-006 10 158.641
1024 8.84166e-014 4.49097e-007 3.73745e-006 10 688.937

approach, it does not utilize the special frequency domain structure of the transform.
Second, while the iterative inversion algorithm is shown to have an acceptable empiri-
cal convergence rate, the exact number of iterations and thus its running time depend
on the specific image to invert. See, for example, the different number of iterations
required for a Gaussian bump and a random image in Tables 1 and 2. Third, the
conjugate-gradient method enables one to estimate the reconstruction error in terms
of the residual error. This error is related to the actual reconstruction error through
the norm of the operator, which is difficult to estimate.

We now develop a direct inversion algorithm overcoming these limitations. It is
tailored to the specific structure of the given transform. Its running time is indepen-
dent of the specific image to invert. Also, its accuracy can be estimated in terms of
the actual reconstruction error.

Our direct inversion algorithm consists of two phases. The first phase resamples
the ppFT into a Cartesian frequency grid; the second phase recovers the image from
these Cartesian frequency samples. Resampling from the pseudo-polar to a Cartesian
frequency grid is based on an “onion-peeling” procedure, which recovers a single
row/column of the Cartesian grid in each iteration, from the outermost row/column
to the origin. Recovering each row/column is based on a fast algorithm that resamples
trigonometric polynomials from one set of frequencies to another set of frequencies.
This algorithm is approximate but arbitrarily accurate; its running time depends
logarithmically on the required accuracy ε.

For a different approach to the inversion of the concentric-squares grid, which is
based on 1D nonequally spaced FFTs; see [32]. The approach therein is based on a
grid with m = n and not m = 2n + 1 as in our case. The fundamental nature of this
difference was discussed in section 3 above.

This section is organized as follows. In section 7.1 we present the mathematical
tools used by the algorithm. Specifically, we present a fast algorithm that, for a given
Toeplitz matrix An of size n × n, applies A−1

n to an arbitrary vector in O(n log n)
operations. In section 7.2 we present the outline of the algorithm that inverts the
ppFT. Section 7.3 describes the operators that resample from the pseudo-polar to a
Cartesian frequency grid. Section 7.4 describes the procedure that recovers the image
from this Cartesian frequency grid. Finally, section 7.5 provides numerical examples
that demonstrate the accuracy and efficiency of the proposed algorithm.

7.1. Solving Toeplitz systems. Let An be a Toeplitz matrix of size n × n,
and let y be an arbitrary vector of length n. We now describe a fast algorithm to
compute A−1

n y. The algorithm consists of fast factorization of the inverse Toeplitz
matrix, followed by a fast algorithm that applies the inverse matrix on a vector. The
approach—circulant embedding—is well known [15, 22]; we include it for the sake of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PSEUDOPOLAR FOURIER TRANSFORM 777

completeness. Let Tn(c, r) denote an n × n Toeplitz matrix whose first column and
row are c and r, respectively.

Circulant matrices are diagonalized by the Fourier matrix; hence the circulant
matrix Cn can be written Cn = W ∗

nDnWn, where Dn is a diagonal matrix con-
taining the eigenvalues λ1, . . . , λn of Cn and Wn is the Fourier matrix, given by
Wn(j, k) = 1√

n
e2πijk/n. Moreover, if c = [c0, c1, . . . , cn−1]

T is the first column of Cn,

then Wnc = [λ1, . . . , λn]T . Obviously, the matrices Wn and W ∗
n can be applied in

O(n log n) operations; this is simply the FFT. The multiplication of Cn with an arbi-
trary vector x of length n can be implemented in O(n log n) operations by applying a
FFT to x, multiplying the result by Dn, and taking the inverse FFT.

To compute Anx for an arbitrary Toeplitz matrix An = Tn(c, r) and an arbitrary
vector x, we first embed An in a circulant matrix C2n of size 2n× 2n

C2n =

(
An Bn

Bn An

)
,

where Bn is a n× n Toeplitz matrix given by

Bn = Tn([0, rn−1, . . . , r2, r1], [0, cn−1, . . . , c2, c1]).

Then Anx is computed in O(n log n) operations by zero padding x to length 2n,
applying C2n to the padded vector, and discarding the last n elements of the result
vector.

Next, assume that An is invertible. The Gohberg–Semencul formula [15, 16]
provides a representation of A−1

n as

(32) A−1
n =

1

x0
(M1M2 −M3M4) ,

where

M1 = Tn([x0, x1, . . . , xn−1], [x0, 0, . . . , 0]),

M2 = Tn([yn−1, 0, . . . , 0], [yn−1, yn−2, . . . , y0]),

M3 = Tn([0, y0, . . . , yn−2], [0, . . . , 0]),

M4 = Tn([0, . . . , 0], [0, xn−1, . . . , x1]),

x = [x0, . . . , xn−1] is the solution of Anx = e0, y = [y0, . . . , yn−1] is the solution of
Any = en−1, e0 = [1, 0, . . . , 0]T , and en−1 = [0, . . . , 0, 1]T . The matrices M1, M2, M3,
and M4 have Toeplitz structure and are represented implicitly using the vectors x and
y. Hence, the total storage required to store M1, M2, M3, and M4 is 2n elements.
If the matrix An is fixed, then the vectors x and y can be precomputed. Once the
triangular Toeplitz matrices M1, M2, M3, M4 are computed, the application of A−1

n

is reduced to the application of four Toeplitz matrices, and thus the application of
A−1

n to a vector requires O(n log n) operations.

7.2. Outline of the direct inversion algorithm. For an image I of size n×n,
we define the array ÎD to be

(33) ÎD(k, l) =

n/2−1∑
u,v=−n/2

I(u, v)e−2πi(2ku+2lv)/m, k, l = −n/2, . . . , n/2,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

778 AVERBUCH, COIFMAN, DONOHO, ISRAELI, AND SHKOLNISKY

where m = 2n + 1. ÎD(k, l) is obtained from the image I by symmetrically zero
padding it to size (2n + 1) × (2n + 1), applying the 2D FFT on the padded image,
and discarding every other sample along each dimension.

Our algorithm for inverting the ppFT has two phases. The first computes the
array ÎD from the samples of the ppFT. The second recovers the image I from the
array ÎD. The first phase processes each row/column of the pp grid, from the out-
ermost rows/columns to the origin, where at step i of this phase (i = 0, . . . , n/2), it
recovers rows/columns i − n/2 and −(i − n/2) of ÎD from rows/columns 2(i − n/2)
and −2(i− n/2) of the pp grid. This is depicted in Figure 3. Light circles represent
samples of the pp grid. Dark circles represent samples of ÎD. The outermost rows
and columns of ÎD are simply the outermost rows/columns of ÎΩ1

pp
and ÎΩ2

pp
((11)

and (12)), respectively (Figures 3(a) and 3(b)). Rows −n/2+1 and n/2−1 of ÎD are

recovered from rows −n + 2 and n− 2 of ÎΩ1
pp

and from the columns of ÎD recovered

in step 1 (Figure 3(c)). Similarly, columns −n/2 + 1 and n/2− 1 of ÎD are recovered
from columns −n + 2 and n − 2 of ÎΩ2

pp
and from the rows of ÎD recovered in step

1 (Figure 3(d)). Rows −n/2 + 2 and n/2 − 2 of ÎD are recovered from rows −n + 4

and n − 4 of ÎΩ1
pp

and from the columns of ÎD recovered in steps 1 and 2. Columns

−n/2 + 2 and n/2 − 2 of ÎD are recovered from columns −n + 4 and n − 4 of ÎΩ2
pp

and from the rows of ÎD recovered in steps 1 and 2. These steps continue until all of
the samples of ÎD are recovered. As we see from Figure 3, the Cartesian grid samples
ÎD are recovered from the outside to the origin row by row and column by column.
For this reason we refer to this procedure as onion-peeling inversion. At each step,
we recover the next row/column of the Cartesian grid by using the samples of the
corresponding row/column in the pp grid and the columns/rows of ÎD recovered in
previous steps. Since the radial resolution of the pp grid is 2n + 1, only half of the
rows/columns of the pp grid are used to recover ÎD.

Let Hh
n,k denote the operator recovering row k (k = −n/2, . . . , n/2) of ÎD from

row 2k of ÎΩ1
pp

and from columns |j| > |k| of ÎD. Similarly, let Hv
n,k denote the

operator recovering column k of ÎD from column 2k of ÎΩ2
pp

and from rows |j| > |k|
of ÎD. As depicted in Figure 3, Hh

n,k and Hv
n,k operate on vectors of even length and

return vectors of even length (it is easier to implement them for even lengths). Also,
Hh

n,k and Hv
n,k always return vectors of length n, although some of the returned values

were already computed in previous steps. This simplifies implementation while not
worsening the order of computational complexity of the scheme. In section 7.3 we give
a formal description of Hh

n,k and Hv
n,k and describe a fast algorithm that implements

them to any prescribed accuracy ε. Then in section 7.4 we present an algorithm that
recovers I from ÎD (see (33)).

Algorithm 3 provides the pseudocode for the direct inversion algorithm. Each
application of the operators Hh

n,k and Hv
n,k requires O(n log n+n log (1/ε)) operations,

where ε is the prescribed accuracy of the reconstruction. Hence, the loop in lines 2–7
of Algorithm 3 recovers ÎD to accuracy ε using O(n2 log n + n2 log (1/ε)) operations.
Recovering I from ÎD requires O(n2 log n) operations. Hence, the total complexity of
the direct inversion algorithm is O(n2 log n + n2 log (1/ε)) operations, where ε is the
required accuracy.

7.3. Operators Hh
n,k and Hv

n,k. In this section we provide a detailed descrip-

tion of the operator Hh
n,k, as well as an efficient algorithm to apply it. This algorithm

is approximate and has computational complexity O(n log n + n log (1/ε)), with ε

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PSEUDOPOLAR FOURIER TRANSFORM 779

(a) (b)

(c) (d)

(e) (f)

Fig. 3. Outline of the onion-peeling algorithm for inverting the ppFT.

Algorithm 3. Inversion of ppFT by onion-peeling

Input: ppFT ÎΩ1
pp

and ÎΩ2
pp

(see (11) and (12))

Output: Image I of size n× n
1: ÎD ← zeros(n + 1, n + 1)
2: for k = −n/2, . . . , 0 do
3: ÎD(k, :) ← Hh

n,k(ÎΩ1
pp
, ÎD)

4: ÎD(−k, :) ← Hh
n,−k(ÎΩ1

pp
, ÎD)

5: ÎD(:, k) ← Hv
n,k(ÎΩ2

pp
, ÎD)

6: ÎD(:,−k) ← Hv
n,−k(ÎΩ2

pp
, ÎD)

7: end for
8: Recover I from ÎD

being the accuracy of the computation. The construction of Hv
n,k is similar.

Let Ωn,k denote samples of the pp grid Ω1
pp (see (4)) belonging to row k:

Ωn,k
Δ
=

{(
−2l

n
k, k

)
, l = −n/2, . . . , n/2

}
.

Let

(34) Λn,k
Δ
= Ωn,2k ∪ Cn,k,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

780 AVERBUCH, COIFMAN, DONOHO, ISRAELI, AND SHKOLNISKY

where

Cn,k
Δ
=

{
C1

n,k, k = −n/2, . . . , 0,

C2
n,k, k = 1, . . . , n/2,

(35)

C1
n,k =

{
(2j, 2k) | j = −n

2
, . . . ,− |k| − 1, |k| + 1, . . . ,

n

2
− 1

}
,(36)

C2
n,k =

{
(2j, 2k) | j = −n

2
+ 1, . . . ,− |k| − 1, |k| + 1, . . . ,

n

2

}
.(37)

For k = −n/2 or k = n/2 we have Cn,k = ∅. The set Λn,k, given by (34), contains
samples of two densities: n− 2 |k| − 1 samples with spacing 2 and n+ 1 samples with
spacing −2k/n.

Define the set C̃n,k as

(38) C̃n,k
Δ
=

{
C̃1

n,k, k = −n/2, . . . , 0,

C̃2
n,k, k = 1, . . . , n/2,

where

C̃1
n,k =

{
(2j, 2k) | j = −n

2
, . . . ,

n

2
− 1

}
,(39)

C̃2
n,k =

{
(2j, 2k) | j = −n

2
+ 1, . . . ,

n

2

}
.(40)

The operator Hh
n,k takes the values ÎΛn,k

, which are the values of Î (see (2)) on the

set Λn,k (from (34)), and evaluates the values of Î on the set C̃n,k. In other words,

the operator Hh
n,k resamples the trigonometric polynomial Î from the set Λn,k to the

set C̃n,k. For a fixed k, the samples of Î on the set Λn,k can be written as the samples
of some univariate trigonometric polynomial. Hence, for a fixed k, if we consider Λn,k

and C̃n,k as 1D sets, then the operator Hh
n,k resamples a univariate trigonometric

polynomial from the set Λn,k to the set C̃n,k. Thus, we implement the operator Hh
n,k

as follows. Let k be a fixed integer in the range −n/2, . . . , 0 (the construction for
k = 1, . . . , n/2 is similar). We choose for each point pj ∈ C̃n,k, j = −n/2, . . . , n/2−1,

its closest point in the set Λn,k. Denote this subset of Λn,k by Λ̃n,k. Then we use the

algorithm presented in [10] to resample a trigonometric polynomial from the set Λ̃n,k

to the set C̃n,k with an arbitrary prescribed accuracy ε. An important property of

the set Λ̃n,k is that its points are “not too far” from the points of C̃n,k. Specifically,
if j = −n

2 , . . . ,− |k| − 1, |k| + 1, . . . , n
2 − 1, then pj ∈ Cn,k, and hence the distance

between pj and its closest point in Λ̃n,k is zero. If pj �∈ Cn,k, then we can find a point
in Λn,k whose distance to pj is less than −2k/n, which goes to zero as k goes to zero
(approaches the origin).

A simple induction shows that, at the beginning of the k+n/2 step of Algorithm 3
(k = −n/2, . . . , 0), we have already recovered the values of Î on Cn,k by using the

operators Hv
n,q, with |q| > |k|. By combining the values of Î on Cn,k with the values

of Î on Ωn,k, which are the values of the ppFT that correspond to row k, we obtain

the values of Î on the set Λn,k. Hence, at step k +n/2 we apply Hh
n,k on the set Λn,k

and recover the values of Î on the set C̃n,k. In other words, we recover row k of ÎD
(see (33)). A similar argument applies to Hv

n,k. So with the operators Hh
n,k and Hv

n,k

we may recover ÎD to accuracy ε in O(n2 log n + n2 log (1/ε)) operations.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PSEUDOPOLAR FOURIER TRANSFORM 781

7.4. Recovering I from ÎD. Next, we present a fast algorithm that recovers
the image I from the values of ÎD(k, l), k, l = −n/2, . . . , n/2 (given by (33)). We
define FD : C

n → C
n+1 as

(41) (FDx)(k) =

n/2−1∑
u=−n/2

x(u)e−2πiu(2k)/m, k = −n/2, . . . n/2, m = 2n + 1.

Given a vector x of length n, the operator FD is implemented by symmetrically zero
padding x to length m, applying the FFT on the padded vector, and discarding every
other sample. The complexity of applying FD on a vector of length n is O(n log n)
operations.

From (33) we see that ÎD can be computed by a separable application of the 1D
operator FD along the rows and columns of I. Since each application of FD requires
O(n log n) operations, the total complexity of computing ÎD is O(n2 log n) operations.
To recover I from ÎD we need to apply F−1

D along the rows and columns of ÎD. In
the remainder of the section we show that each application of F−1

D to a row/column

of ÎD requires O(n log n) operations. Hence, recovering I from ÎD, that is, applying
F−1

D to all rows and columns of ÎD, requires O(n2 log n) operations.
We start with the adjoint operator F∗

D. Let y be a vector of length n + 1. The
operator F∗

D is defined by

(42) (F∗
Dy)(u) =

n/2∑
k=−n/2

y(k)e2πiu(2k)/m, u = −n/2, . . . , n/2 − 1, m = 2n + 1.

It is easy to verify that F∗
D is indeed the adjoint of FD.

The application of F∗
D to y is computed by inserting a zero between every two

elements of y, resulting in a vector of length m, applying the adjoint Fourier transform,
which is the inverse FFT multiplied by m, and retaining the n central elements.
Clearly, the application of F∗

D to y requires O(n log n) operations. The operator FD

is not unitary, so the adjoint operator F∗
D is not the inverse of FD.

Applying the operator F−1
D on a vector y is equivalent to solving the linear system

FDx = y. We apply F∗
D on both sides and obtain the normal equations F∗

DFDx =
F∗

Dy or, equivalently, x = (F∗
DFD)−1F∗

Dy. Solving the normal equations gives the
solution to minx ‖FDx− y‖2. Hence, if y is not in the range of FD, the inversion
algorithm finds the vector x such that FDx is closest to y.

Note that F∗
DFD is invertible. To see this, first note that x(u), u = −n/2, . . . , n/2−

1, in (41) is uniquely determined by the samples (FDx)(k), k = −n/2, . . . n/2. There-
fore, KerFD = {0}. Next, F∗

DFD is positive definite. Indeed, for an arbitrary vector x

〈F∗
DFDx, x〉 = 〈FDx,FDx〉 = ‖FDx‖2 ≥ 0,

but, since KerFD = {0}, the last equation is strictly positive and F∗
DFD is positive

definite and invertible.
The matrix F∗

DFD is a Toeplitz matrix, whose entries are given by

(F∗
DFD)k,l =

n/2∑
u=−n/2

e
4πiu
2n+1 (k−l), k, l = −n/2, . . . , n/2 − 1.

Moreover, since F∗
DFD is symmetric and positive definite, x0 in the Gohberg–Semencul

decomposition (32) is positive [27]. Therefore, as shown in section 7.1, applying

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

782 AVERBUCH, COIFMAN, DONOHO, ISRAELI, AND SHKOLNISKY

Table 3

Inverting the ppFT of a Gaussian bump with ε = 10−7. Column 1: n, size of n × n image.
Column 2: E2, relative �2 reconstruction error. Column 3: E∞, relative �∞ reconstruction error.
Column 4: tFwd, time in seconds to compute forward ppFT. Column 5: tInv, time in seconds to
compute inverse ppFT using Algorithm 3.

n E2 E∞ tFwd tInv

8 1.54826e-013 1.42780e-013 0.062 0.281
16 8.46571e-013 5.40734e-013 0.031 0.047
32 2.30805e-012 2.17171e-012 0.062 0.203
64 1.25906e-012 1.49238e-012 0.156 0.703
128 7.24066e-013 7.32485e-013 0.484 3.702
256 4.32719e-013 4.99887e-013 1.906 18.462
512 2.49692e-013 2.92489e-013 7.435 89.174

Table 4

Inverting the ppFT of a noise image with ε = 10−5. Legend as in Table 3.

n E2 E∞ tFwd tInv

8 2.94094e-009 4.31691e-009 0.016 0.016
16 7.40180e-009 1.11551e-008 0.016 0.031
32 3.00908e-008 5.76409e-008 0.062 0.110
64 2.28288e-008 3.79261e-008 0.141 0.578
128 1.47706e-008 3.01046e-008 0.515 3.000
256 1.06168e-008 2.58128e-008 1.860 15.390
512 8.40374e-009 1.98289e-008 7.328 73.938

(F∗
DFD)

−1
on an arbitrary vector requires O(n log n) operations. Since application

of F∗
D requires also O(n log n) operations, computing x = (F∗

DFD)−1F∗
Dy for an ar-

bitrary y requires O(n log n) operations.
We recover the image I by applying (F∗

DFD)−1F∗
D on all rows and columns of

ÎD. Since each application requires O(n log n) operations, the total complexity of
recovering I from ÎD is O(n2 log n) operations.

7.5. Numerical results. Algorithm 3 was implemented in MATLAB and ap-
plied to two types of test images of various sizes. The first image is a Gaussian bump
of size n × n with mean μx = μy = 0 and standard deviation σx = σy = n

6 . The
second is a noise image whose entries are uniformly distributed in [0, 1]. For each
test image we compute its ppFT followed by inverse ppFT (Algorithm 3). The recon-
structed image is then compared to the original image. We use the error measures
given by (31).

Results are summarized in Tables 3–6. Table 3 presents the results of inverting
the ppFT of a Gaussian bump. Tables 4–6 present the results of inverting the ppFT
of a noise image, whose entries are uniformly distributed in [0, 1], for various values of
ε. All tests were implemented in MATLAB on a Pentium 2.8 GHz running Linux. As
we see from Tables 3–6, the actual accuracy is higher than the prescribed one. The
reason for this is that the error bounds in [10] hold for any sampling geometry. In
the special sampling geometry involved in the inversion of the ppFT, these estimates
are too pessimistic; note that for the noise image the actual accuracy is consistently
three digits more accurate than the prescribed accuracy.

8. Conclusions. We described the pp grid in frequency space and the associated
ppFT, a fast algorithm to evaluate the Fourier transform on the pp grid in closed form.
We proved correctness of the algorithm, showed that the transform is invertible, and
presented two inversion algorithms.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PSEUDOPOLAR FOURIER TRANSFORM 783

Table 5

Inverting the ppFT of a noise image with ε = 10−7. Legend as in Table 3.

n E2 E∞ tFwd tInv

8 1.52637e-011 2.30025e-011 0.015 0.016
16 5.16820e-011 6.90594e-011 0.031 0.031
32 1.85304e-010 2.67004e-010 0.047 0.125
64 1.16524e-010 1.66030e-010 0.141 0.656
128 6.71729e-011 1.25607e-010 0.500 3.297
256 5.53006e-011 1.16686e-010 1.844 16.875
512 3.94900e-011 9.00832e-011 7.313 81.468

Table 6

Inverting the ppFT of a noise image with ε = 10−11. Legend as in Table 3.

n E2 E∞ tFwd tInv

8 1.30958e-015 1.34194e-015 0.000 0.016
16 1.67241e-015 2.24504e-015 0.032 0.031
32 6.50428e-015 1.10842e-014 0.047 0.125
64 1.59849e-014 2.29404e-014 0.156 0.735
128 3.70890e-014 6.79917e-014 0.500 3.875
256 7.27812e-014 1.77150e-013 1.860 19.781
512 3.41732e-013 6.84542e-013 7.250 95.671

Both the forward and the inverse transforms can be generalized to higher dimen-
sions. In particular, the direct inversion algorithm is based only on 1D operations,
and so its generalization to higher dimensions is relatively straightforward. The key
difference as we move to higher dimensions is that the condition m = 2n+ 1 must be
replaced by a different condition for each dimension; for example, m = 3n + 1 will
work in dimension 3.

The ppFT is applicable to problems that require polar Fourier representations but
whose discretizations need not be uniform. Examples of such applications are image
registration [24], symmetry detection [23], and spiral Fourier transform [28]. The
ppFT is also closely related to the discrete Radon transform [3]. Like the continuous
Radon transform, the discrete Radon transform is related to the Fourier transform of
the underlying object through the projection-slice theorem. Thus, the ppFT provides
an efficient algorithm and an infrastructure for the computation and inversion of the
discrete Radon transform. See the companion article [3].

REFERENCES

[1] E. Arias-Castro, D. L. Donoho, and X. Huo, Near-optimal detection of geometric objects
by fast multiscale methods, IEEE Trans. Inform. Theory, 51 (2005), pp. 2402–2425.

[2] A. Averbuch, R. Coifman, D.L. Donoho, M. Elad, and M. Israeli, Fast and accurate polar
Fourier transform, Appl. Comput. Harmon. Anal., 21 (2006), pp. 145–167.

[3] A. Averbuch, R. R. Coifman, D. L. Donoho, M. Israeli, Y. Shkolnisky, and I. Sedel-

nikov, A framework for discrete integral transformations II—The 2D discrete Radon trans-
form, SIAM J. Sci. Comput., 30 (2008), pp. 785–803.

[4] A. Averbuch, R. R. Coifman, D. L. Donoho, M. Israeli, J. Waldén, and Y. Shkol-

nisky, Fast Slant Stack: A Notion of Radon Transform for Data in a Cartesian Grid
which is Rapidly Computible, Algebraically Exact, Geometrically Faithful and Invertible,
manuscript, 2001.

[5] D. H. Bailey and P. N. Swarztrauber, The fractional Fourier transform and applications,
SIAM Rev., 33 (1991), pp. 389–404.

[6] E. Candès, L. Demanet, D. Donoho, and L. Ying, Fast discrete curvelet transforms, Multi-
scale Model. Simul., 5 (2006), pp. 861–899.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

784 AVERBUCH, COIFMAN, DONOHO, ISRAELI, AND SHKOLNISKY

[7] J. W. Cooley and J. W. Tukey, An algorithm for the machine calculation of complex Fourier
series, Math. Comp., 19 (1965), pp. 297–301.

[8] D. L. Donoho and A. G. Flesia, Digital ridgelet transform based on true ridge functions,
in Beyond Wavelets, Vol. 10, J. Stoecker and G. V. Welland, eds., Academic Press, New
York, 2003.

[9] D. L. Donoho and O. Levi, Fast x-ray and beamlet transforms for three-dimensional data, in
Modern Signal Processing, Math. Sci. Res. Inst. Publ. 46, D. M. Healy and D. Rockmore,
eds., Cambridge University Press, Cambridge, UK, 2004, pp. 79–116.

[10] A. Dutt and V. Rokhlin, Fast Fourier transforms for nonequispaced data, II, Appl. Comput.
Harmon. Anal., 2 (1995), pp. 85–100.

[11] P. Edholm and G. T. Herman, Linograms in image reconstruction from projections, IEEE
Trans. Med. Imaging, 6 (1987), pp. 301–307.

[12] P. Edholm, G. T. Herman, and D. A. Roberts, Image reconstruction from linograms: Im-
plementation and evaluation, IEEE Trans. Med. Imaging, 7 (1988), pp. 239–246.

[13] H. G. Feichtinger, K. Gröchenig, and T. Strohmer, Efficient numerical methods in non-
uniform sampling theory, Numer. Math., 69 (1995), pp. 423–440.

[14] K. Fourmont, Non-equispaced fast Fourier transforms with applications to tomography, J.
Fourier Anal. Appl., 9 (2003), pp. 431–450.

[15] I. Gohberg and V. Olshevsky, Fast algorithms with preprocessing for matrix-vector multi-
plication problems, J. Complexity, 10 (1994), pp. 411–427.

[16] I. Gohberg and A. Semencul, The inversion of finite Toeplitz matrices and their continual
analogues, Mat. Issled., 7 (1972), pp. 201–223 (in Russian).

[17] G. H. Golub and C. F. Van Loan, Matrix Computations, The Johns Hopkins University
Press, Baltimore, MD, 1984.

[18] A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM, Philadelphia, 1997.
[19] L. Greengard and J.-Y. Lee, Accelerating the nonuniform fast Fourier transform, SIAM

Rev., 46 (2004), pp. 443–454.
[20] http://curvelet.org/.
[21] http://www-stat.stanford.edu/∼beamlab/.
[22] T. Kailath and A. H. Sayed, eds., Fast Reliable Algorithms for Matrices with Structure,

SIAM, Philadelphia, 1999.
[23] Y. Keller and Y. Shkolnisky, A signal processing approach to symmetry detection, IEEE

Trans. Image Process., 15 (2006), pp. 2198–2207.
[24] Y. Keller, Y. Shkolnisky, and A. Averbuch, The angular difference function and its appli-

cation to image registration, IEEE Trans. Pattern Anal. Mach. Intell., 27 (2005), pp. 969–
976.

[25] W. Lawton, A new polar Fourier transform for computer-aided tomography and spotlight
synthetic aperture radar, IEEE Trans. Acoust. Speech Signal Process., 36 (1988), pp. 931–
933.

[26] O. Levi, Multiscale Geometric Analysis of Three-Dimensional Data, Ph.D. thesis, Stanford
University, Stanford, CA, 2005.

[27] E. Linzer and M. Vetterli, Iterative Toeplitz solvers with local quadratic convergence, Com-
puting, 49 (1993), pp. 339–347.

[28] M. Lustig, J. Tsaig, J. H. Lee, and D. Donoho, Fast spiral Fourier transform for itera-
tive MR image reconstruction, in Proceedings of the IEEE International Symposium on
Biomedical Imaging: Nano to Macro, Arlington, VA, 2004, pp. 784–787.

[29] R. M. Mersereau and A. V. Oppenheim, Digital reconstruction of multidimensional signals
from their projections, Proc. IEEE, 62 (1974), pp. 1319–1338.

[30] F. Natterer, The Mathematics of Computerized Tomography, Classics Appl. Math. 32, SIAM,
Philadelphia, 2001.

[31] J. E. Pasciak, A Note on the Fourier Algorithm for Image Reconstruction, preprint, Applied
Mathematics Department, Brookhaven National Laboratory, Upton, NY, 1973.

[32] D. Potts and G. Steidl, A new linogram algorithm for computerized tomography, IMA J.
Numer. Anal., 21 (2001), pp. 769–782.

[33] L. R. Rabiner, R. W. Schafer, and C. M. Rader, The chirp Z-transform algorithm, IEEE
Trans. Audio Electroacoust., 17 (1969), pp. 86–92.

[34] J. L. Starck, E. J. Candes, and D. L. Donoho, The curvelet transform for image denoising,
IEEE Trans. Image Process., 11 (2002), pp. 670–684.

[35] A. F. Ware, Fast approximate Fourier transforms for irregularly spaced data, SIAM Rev., 40
(1998), pp. 838–856.

