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Abstract

The Radon transform is a fundamental tool in many areas. For ex-

ample, in reconstruction of an image from its projections (CT scanning).

Although it is situated in the core of many modern physical computations,

the Radon transform lacks a coherent discrete definition for 2D discrete

images which is algebraically exact, invertible, and rapidly computable.

We define a notion of 2D discrete Radon transforms for discrete 2D im-

ages, which is based on summation along lines of absolute slope less than 1.
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Values at non-grid locations are defined using trigonometric interpolation

on a zero-padded grid. The discrete 2D definition of the Radon transform is

shown to be geometrically faithful as the lines used for summation exhibit

no wraparound effects. There exists a special set of lines in R
2 for which the

transform is rapidly computable and invertible. We describe an algorithm

that computes the 2D discrete Radon transform and uses O(N log N) oper-

ations, where N = n2 is the number of pixels in the image. The algorithm

relies on a discrete Fourier slice theorem, which associates the discrete

Radon transform with the pseudo-polar Fourier transform [1]. Finally, we

prove that our definition provides a faithful description of the continuum,

as it converges to the continuous Radon transform as the discretization

step goes to zero.

1 Introduction

An important problem in image processing is how to reconstruct a cross section

of an object from several images of its projections. A projection is defined as

the line integral of some function on the object. For example, in CT scanning

this function is the attenuation coefficient at each point, and the line integral

(projection) corresponds to the attenuation of a X-ray beam that passes through

the object. The Radon transform is the underlying mathematical tool used for

CT scanning, as well as for a wide range of other disciplines, including radar

imaging, geophysical imaging, nondestructive testing and medical imaging [6].

For the 2D case, the Radon transform of a function f(x, y), denoted by

ℜf(θ, t), is defined as the line integral of f along a line L inclined at an an-

gle θ (from the y axis) and at a distance t from the origin. Formally,

ℜf(θ, t) =

∫

L

f(x, y)ds

=

∫∫ ∞

−∞
f(x, y)δ(x cos θ + y sin θ − t)dx dy,

(1)
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where δ(x) is Dirac’s delta function.

There is a fundamental relationship between the 2D Fourier transform of a

function and the 1D Fourier transform of its Radon transform. This relation is

called the “Fourier slice theorem”, and for the continuous case it states that the

1D Fourier transform with respect to t of the projection ℜf(θ, t) is equal to a

central slice, at angle θ, of the 2D Fourier transform of the function f(x, y). That

is,

ℜ̂f(θ, ξ) = f̂(ξ cos θ, ξ sin θ), (2)

where f̂ is the Fourier transform of f [6, 10].

For modern applications it is important to have a discrete analog of ℜf for 2D

digital images I = (I(u, v) : u, v = −n/2, . . . , n/2 − 1). This has been the object

of attention of many authors over the last twenty years; a very large literature

has ensued [2, 3, 4, 11, 12, 9]. Despite many attempts at defining a “digital

Radon transform”, we believe that there is at present no definition which is both

intellectually and practically satisfying.

1.1 Desiderate

To support our assertion, we propose the following desiderata for a notion of

digital Radon transform.

P1. Algebraic exactness The transform should be based on a clear and rigor-

ous definition, not for example on analogy to Eq. 1, e.g., formulations such

as ‘we approximate the integral in Eq. 1 by a sum’.

P2. Geometric fidelity The transform should be based on true geometric lines

rather than lines which wrap around or are otherwise non-geometric.

P3. Speed The transform should be rapidly computable, for example, admit

an O(N logN) algorithm where N is the size of the data in I, i.e., N = n2

in the 2D case.
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P4. Invertibility The transform should be invertible on its range. Moreover,

there should be a fast reconstruction algorithm.

P5. Parallels with continuum theory The transform should obey relations

which parallel with those of the continuum theory (for example, relations

with the Fourier transform).

The many existing contributions to the literature do not offer these properties

simultaneously. A complete discussion would take space we do not have, so we

content ourselves with three examples, which also help to illustrate the meaning

of our desiderata above.

• Fourier Approaches. Some authors [7, 11] have attempted to exploit the

projection-slice theorem (Eq. 2). In the continuum theory, this says that

ℜf(θ, ·) can be obtained by (a) performing a 2D Fourier transform, (b) ob-

taining a radial slice of the Fourier transform, and (c) applying a 1D inverse

Fourier transform to the obtained slice. This suggests an algorithm for dis-

crete data, by replacing steps (a) and (c) by fast Fourier transforms for data

on 2D and 1D Cartesian grids, respectively. However, strictly speaking, this

continuum approach is problematic since step (b) is not naturally defined

on digital data: the 2D FFT outputs data in a Cartesian format, while the

radial slices of the Fourier domain typically do not intersect the Cartesian

grid. Therefore, some sort of interpolation is required, and so the transform

is not algebraically exact. Also, even if the transform should turn out to

be invertible (which may be very difficult to determine) the transform is

typically not invertible by any straightforward algorithm.

• Multiscale Approaches. Other authors [3, 4, 5, 8] have attempted to ex-

ploit two-scale relations, which say that if one knows the Radon transform

over four dyadic subsquares of a dyadic square these can be combined to

obtain the Radon transform over the larger square. This suggests a re-
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cursive algorithm, in which the problem is broken up to the problem of

computing Radon transforms over squares of smaller sizes which are then

recombined. Strictly speaking, however, the driving identity is a fact about

the continuum and does not directly apply to digital arrays, so that when

this principle is operationalized, the results involve interpolation and other

approximations, and end up being quite crude compared to what we have

in mind here. Finally, the use of two-scale relations means that summation

along lines is approximated by summation along line segments which are

not exactly parallel and so the results can lack a certain degree of geometric

fidelity.

• Algebraic Approaches. When n is a prime p, the data grid G = {(u, v) :

0 ≤ u, v < n} may be considered as the group Z2
p , which has very special

properties [12]. The “lines” {(ka + b mod p, kc + d mod p) : 0 ≤ k < p}
for appropriate a, b, c, d have a very special structure: pairs of “lines” either

do not intersect at all, or intersect in just one point. This property makes

it possible to define an algebraically exact Radon transform for integration

along “lines” which operates in O(N logN) flops and is invertible. How-

ever, the “lines” have, for most parameters (a, b, c, d), very little connection

with lines of R
2; simple plots of such “lines” reveal that they are scattered

point sets roughly equidistributed through the grid G. In effect, the “lines”

wrap around (owing to the mod p in their definition), which destroys the

geometric fidelity of the transform.

In this paper, we describe a notion of Radon transform for digital data which

has all of our desired properties [P1]–[P5]. The notion we discuss belongs to a

fourth stream of Radon research, complementing the three streams of research

just mentioned (Fourier-based methods, multiscale methods, and algebraic ap-

proaches) and represents in a certain sense the culmination of that stream. In

effect, this fourth stream says that, to really make sense for digital data, the
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appropriate notions of continuum Radon transform and of discrete 2D Fourier

domain are subtly different than the usual ones. Nevertheless, we prove that the

discrete Radon transform converges to the continuous Radon transform. This

property is of major theoretical and computational importance since it shows

that the discrete transform is indeed an approximation of the continuous trans-

form, and thus can be used to replace the continuous transform in digital imple-

mentations.

The organization of this paper is as follows. In Section 2 we define the 2D

discrete Radon transform. The definition in Section 2 is derived for discrete

images and a continuous set of lines. Section 3 provides a detailed proof of the

Fourier slice theorem, which associates the discrete Radon transform with the

2D Fourier transform. Section 4 then discretizes the parameters used by the

definition of Section 2, presents the relation between the discrete definition and

the pseudo-polar Fourier transform [1], and describes fast and accurate forward

and inverse algorithms that are based on the pseudo-polar Fourier transform.

Finally, Section 5 proves that the discrete Radon transform converges to the

continuous Radon transform as the discretization step goes to zero.

2 Construction of the transform

We are looking for a definition for the Radon transform for discrete data that

satisfies properties [P1]–[P5]. Loosely speaking, the discrete Radon transform is

defined by summing the samples of I(u, v) along lines. The two key issues of the

construction are how to process lines of the discrete transform when they do not

pass through grid points, and how to choose the set of lines which we sum in

order to achieve geometric fidelity, rapid computation, and invertibility?

Generally speaking, the discrete Radon transform is defined by summing the

discrete samples of the image I(u, v) along lines with absolute slope less than 1, for

a reason that will be explained later. For lines of the form y = sx + t (|s| ≤ 1),
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we traverse each line by unit horizontal steps x = −n/2, . . . , n/2 − 1, and for

each x, we interpolate the image sample at position (x, y) by using trigonometric

interpolation along the corresponding image column. For lines of the form y =

sx + t (|s| ≥ 1), we rephrase the line equation as x = s′y + t′ (|s′| ≤ 1). In

this case, we traverse the line by unit vertical steps, and for each integer y, we

interpolate the value at the x coordinate x = s′y + t′ by using trigonometric

interpolation along the corresponding row.

Note that we did not restrict the values of s to be within a discrete set. As

for now, we allow s to take any real value in [−1, 1]. The requirement for slopes

less than 1 induces two families of lines:

basically horizontal line is a line of the form y = sx+ t where |s| ≤ 1.

basically vertical line is a line of the form x = sy + t where |s| ≤ 1.

Using these line families we define the 2D Radon transform for discrete images

as

Definition 2.1 (2D Radon transform for discrete images). Let I(u, v), u, v =

−n/2, . . . , n/2 − 1, be a n× n array. Let s be a slope such that |s| ≤ 1, and let

t be an intercept such that t = −n, . . . , n. Then,

Radon({y = sx+ t}, I) =

n/2−1∑

u=−n/2

Ĩ1(u, su+ t), (3)

Radon({x = sy + t}, I) =

n/2−1∑

v=−n/2

Ĩ2(sv + t, v), (4)

where

Ĩ1(u, y) =

n/2−1∑

v=−n/2

I(u, v)Dm(y − v), u = −n/2, . . . , n/2 − 1, y ∈ R, (5)

Ĩ2(x, v) =

n/2−1∑

u=−n/2

I(u, v)Dm(x− u), v = −n/2, . . . , n/2 − 1, x ∈ R, (6)
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and Dm is the Dirichlet kernel give by

Dm(t) =
sin(πt)

m sin (πt/m)
, m = 2n+ 1. (7)

For an arbitrary line l with slope s and intercept t, such that |s| ≤ 1 and t =

−n, . . . , n, the Radon transform is given by

(RI)(s, t) =





Radon({y = sx+ t}, I) l is a basically horizontal line

Radon({x = sy + t}, I) l is a basically vertical line.
(8)

Ĩ1 and Ĩ2 in Eqs. 5 and 6 are column-wise and row-wise interpolated versions

of I, respectively, using the Dirichlet kernel Dm with m = 2n+ 1.

Next, we explain the selection of the parameters t and m in Definition 2.1.

2.1 Selection of the parameters t and m

Let y = sx + t be a basically horizontal line, that is |s| ≤ 1. This selection of s

partitions the plane between basically horizontal and vertical lines, and moreover,

gives a complete symmetry in handling basically horizontal and vertical lines.

Each result applies to basically horizontal lines will apply analogously to basically

vertical lines, and vice versa. Hence, once s is fixed, it remains to find the range

t of relevant intercepts. As we see in Section 4, using t = −n, . . . , n ensures that

the transform is invertible, and moreover, when considering the analogy to the

continuous case, this range of t provides us with all the lines that intersect the

bounding box of I(u, v) (non-trivial projections).

Next, we explain the requirement m = 2n + 1. Suppose we were using the

kernel Dn of length n instead of Dm. Taking some line y = sx + t (Fig. 1) and

evaluating y1 at x1, we obtain from Eq. 5

Ĩ1(x1, y1) =

n/2−1∑

v=−n/2

I(x1, v)Dn(y1 − v).
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Figure 1: Summation of wraparound line without padding

It is easy to verify that if y2 = y1 − n, then (see Fig. 1)

Ĩ1(x1, y1) = ±
n/2−1∑

v=−n/2

I(x1, v)Dn(y2 − v). (9)

Equation 9 states that evaluating Ĩ1 at a point y1 is the same (in absolute value)

as evaluating Ĩ1 at the point y1 − n. Taking a concrete example, evaluating

Ĩ1 at y1 = n/2, which is outside the domain of I(u, v) and therefore should be

interpolated as a small value, is the same as evaluating Ĩ1 at y = −n/2, which is

a true sample of I(u, v). This means that our line exhibits a wraparound, and the

summation is not over true straight geometric lines. See Fig. 1 for an illustration.

To eliminate the wraparound effect we pad I with zeros (see Fig. 2), so that

although wraparound occurs due to the periodic nature of the Dirichlet kernel,

it will be over zeros and not over true samples of I(u, v). See Fig. 2 for an

illustration of geometric and wraparound lines in a padded image. Although the

line on the right image exhibits wraparound, the wraparound is over zeros and

not over true samples of I(u, v). According to our choice of s and t, it follows

that a line y = sx + t with x = −n/2, . . . , n/2 − 1 satisfies y0 < 3n/2. When

wraparound is taken into consideration (due to periodicity of length m = 2n+1),

this y0 is identical to y1 = y0 − (2n + 1) < −n/2. Hence, we have to extend I

with at least n+ 1 zeros to separate y1 (the wrapped-around version of y0) from
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Figure 2: Summation of wraparound line with padding

true samples of I. We conclude that setting m = 2n + 1 ensures that samples

with n/2 ≤ y0 < 3n/2 do not overlap with samples of I with −n/2 ≤ y < n/2.

When basically vertical lines are considered, we obtain (due to symmetry) the

same result, i.e., we have to use an interpolation kernel Dm with m = 2n+ 1.

2.2 Representation of lines using angles

In order to derive the 2D Radon transform (Definition 2.1) in a more natural

way, we rephrase it using angles instead of slopes. For a basically horizontal

line y = sx + t with |s| ≤ 1, we express s as s = tan θ with θ ∈ [−π/4, π/4],

where θ is the angle between the line and the positive direction of the x-axis.

Using this notation, a basically horizontal line has the form y = (tan θ)x+ t with

θ ∈ [−π/4, π/4]. Given a basically vertical line x = sy+t with |s| ≤ 1, we express

s as s = cot θ with θ ∈ [π/4, 3π/4], where θ is again the angle between the line

and the positive direction of the x-axis. Hence, a basically vertical line has the

form x = (cot θ)y + t with θ ∈ [π/4, 3π/4].

Using this parametric representation we rephrase the definition of the Radon

transform (Definition 2.1) as
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Definition 2.2. Let I(u, v), u, v = −n/2, . . . , n/2 − 1, be a n × n array. Let

θ ∈ [−π/4, 3π/4], and let t be an intercept such that t = −n, . . . , n. Then,

RθI(t) =





Radon({y = (tan θ)x+ t}, I) θ ∈ [−π/4, π/4]

Radon({x = (cot θ)y + t}, I) θ ∈ [π/4, 3π/4],
(10)

where Radon({y = sx + t}, I) and Radon({x = sy + t}, I) are given in Eqs. 3

and 4, respectively.

The Radon transform in Definition 2.2 operates on discrete images I(u, v)

while θ is continuous. In Section 4 we discretize the parameter θ in order to get

a “discrete Radon transform” that satisfies properties [P1]–[P5] given in Section

1.

3 Fourier slice theorem

The continuous Fourier slice theorem (Eq. 2) allows to evaluate the continuous

Radon transform using the 2D Fourier transform. We are looking for a similar

relation between the discrete Radon transform and the discrete Fourier transform

of an image. We can then use such a relation to compute the discrete Radon

transform.

To construct such a relation we define some auxiliary operators which enable

us to rephrase the definition of the discrete Radon transform (Definition 2.2) in

a more convenient way. Throughout this section we denote by Cm the set of

complex-valued vectors of length m, indexed from −⌊m/2⌋ to ⌊(m−1)/2⌋. Also,

we denote by Ck×l the set of 2D complex-valued images of dimensions k × l.

Each image I ∈ Ck×l is indexed as I(u, v), where u = −⌊k/2⌋, . . . , ⌊(k − 1)/2⌋
and v = −⌊l/2⌋, . . . , ⌊(l − 1)/2⌋.

Definition 3.1 (Translation operator). Let α ∈ C
m and τ ∈ R. The translation
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operator Tτ : Cm → Cm is given by

(Tτα)u =
n∑

i=−n

αiDm(u− i− τ), m = 2n+ 1, (11)

where u = −n, . . . , n and Dm is given by Eq. 7.

The translation operator Tτ takes a vector of length m and translates it by τ

by using trigonometric interpolation.

Lemma 3.2. Let Tτ be the translation operator given by Definition 3.1. Then,

adj Tτ = T−τ .

The proof easily follows from Definition 3.1 and the fact that Dm(t) is an even

function.

An important property of the translation operator Tτ is that the translation

of exponentials is algebraically exact. In other words, translating a vector of

samples of the exponential e2πikx/m is the same as resampling the exponential at

the translated points. This observation is of great importance for proving the

Fourier slice theorem.

Lemma 3.3. Let m = 2n + 1, ϕ(x) = e2πikx/m. Define the vector φ ∈ Cm as

φ = (ϕ(t) : t = −n, . . . , n). Then, for arbitrary τ ∈ R

(Tτφ)t = ϕ(t− τ), t = −n, . . . , n.

The proof follows since (Tτφ)x and ϕ(x − τ), x ∈ R, are two trigonometric

polynomials of degree n that coincide on m = 2n+ 1 points t = −n, . . . , n [14].

Definition 3.4. The extension operators E1 : Cn×n → Cn×m and E2 : Cn×n →
Cm×n are given by

EiI(u, v) =





I(u, v) u, v = −n/2, . . . , n/2 − 1

0 otherwise,
(12)

where i = 1, 2, and m = 2n+ 1.
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E1 zero pads a n× n image to size (2n+ 1)× n (2n+ 1 rows and n columns)

by adding n/2 + 1 zero rows at the top of the array and n/2 zero rows at the

bottom of the array. Similarly, E2 corresponds to padding the array I with n+1

zero columns, n/2 + 1 at the right and n/2 at the left.

Definition 3.5. The truncation operators U1 : C
n×m → C

n×n and U2 : C
m×n →

Cn×n are given by

U iI(u, v) = I(u, v), u, v = −n/2, . . . , n/2 − 1, (13)

where i = 1, 2, and m = 2n+ 1.

The operator U1 removes n/2+1 rows from the top of the array and n/2 rows

from the bottom of the array, recovering a n × n image. Similarly, U2 removes

n/2 + 1 columns from the right and n/2 columns from the left of the array.

Lemma 3.6. Let Ei and U i, i = 1, 2, be the extension and truncation operators,

given by Definitions 3.4 and 3.5, respectively. Then,

adj E1 = U1, U2 = adj E2.

Definition 3.7. Let I(u, v) , u, v = −n/2, . . . , n/2 − 1, be a n × n image. The

shearing operators S1 : Cn×m → Cn×m and S2 : Cm×n → Cm×n, m = 2n+ 1, are

given by

(S1
θI)(u, v) = (T−u tan θI(u, ·))v, θ ∈[−π/4, π/4], (14)

(S2
θI)(u, v) = (T−v cot θI(·, v))u, θ ∈ [π/4, 3π/4]. (15)

By combining Definitions 2.2, 3.7, and 3.1 we get the following lemma:

Lemma 3.8. For t = −n, . . . , n,

RθI(t) =





∑n/2−1
u=−n/2(S

1
θ (E

1I))(u, t), θ ∈ [−π/4, π/4],
∑n/2−1

v=−n/2(S
2
θ (E

2I))(t, v), θ ∈ [π/4, 3π/4].
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Definition 3.9. Let ψ ∈ Cm, m = 2n + 1. The backprojection operators B1
θ :

Cm → Cn×m and B2
θ : Cm → Cm×n are given by

(B1
θψ)(u, ·) = Tu tan θψ, θ ∈ [−π/4, π/4],

(B2
θψ)(·, v) = Tv cot θψ, θ ∈ [π/4, 3π/4].

(16)

Lemma 3.10.

adj B1
θ =

∑

u

S1
θ , (17)

adj B2
θ =

∑

v

S2
θ . (18)

The proof easily follows from Definitions 3.7 and 3.9, and Lemma 3.2.

From Lemmas 3.8, 3.6, and 3.10 we get the following formula for the adjoint

Radon transform.

Theorem 3.11. The adjoint Radon transform adj Rθ : Cm → Cn×n is given by

adj Rθ =





U1 ◦B1
θ θ ∈ [−π/4, π/4]

U2 ◦B2
θ θ ∈ [π/4, 3π/4],

(19)

where U i, i = 1, 2, is given by Definition 3.5 and Bi
θ, i = 1, 2, is given by

Definition 3.9.

We next examine how the adjoint Radon transform operates on the vector

φ(k) = (ϕ(k)(t) : t = −n, . . . , n), where ϕ(k)(t) = e2πikt/m. For θ ∈ [−π/4, π/4]

and u, v = −n/2, . . . , n/2 − 1 we have

(adj Rθφ
(k))(u, v) = (U1B1

θφ
(k))(u, v) (by Theorem 3.11)

= (B1
θφ

(k))(u, v) = (Tu tan θφ
(k))v (by Eq. 16)

= ϕ(k)(v − u tan θ) (by Lemma 3.3)

= e
2πi
m

k(v−u tan θ).

Similarly, for θ ∈ [π/4, 3π/4] and u, v = −n/2, . . . , n/2 − 1 we get

(adj Rθφ
(k))(u, v) = e

2πi
m

k(u−v cot θ). (20)
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Theorem 3.12 (Fourier slice theorem). Let I(u, v) be a n × n image, u, v =

−n/2, . . . , n/2 − 1, and let m = 2n + 1. Then,

(R̂θI)(k) =





Î(−s1k, k), s1 = tan θ, θ ∈ [−π/4, π/4],

Î(k,−s2k), s2 = cot θ, θ ∈ [π/4, 3π/4],

where R̂θI(k) is the 1D DFT of the discrete Radon transform, given by Definition

2.2, with respect to the parameter t, k = −n, . . . , n, and Î is the trigonometric

polynomial

Î(ξ1, ξ2) =

n/2−1∑

u=−n/2

n/2−1∑

v=−n/2

I(u, v)e−
2πi
m

(ξ1u+ξ2v). (21)

Proof. Denote φ
(k)
j = e

2πi
m

kj. For θ ∈ [−π/4, π/4] we have

R̂θI(k) =

n∑

j=−n

RθI(j)e
−2πikj/m

= 〈RθI, φ
(k)〉

= 〈I, adj Rθφ
(k)〉

=

n/2−1∑

u=−n/2

n/2−1∑

v=−n/2

I(u, v)e−
2πi
m

k(v−s1u)

= Î(−s1k, k),

where Î is the trigonometric polynomial given by Eq. 21.

The proof for θ ∈ [π/4, 3π/4] is similar.

4 Discretization and fast algorithms

The Radon transform, given by Definition 2.2, and the Fourier slice theorem,

given by Theorem 3.12, were defined for discrete images and a continuous set

of lines. Specifically, RθI(t) is defined for any angle in the range [−π/4, 3π/4].
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For our transform to be fully discrete, we must discretize the set of angles. We

denote such a discrete set of angles by Θ. By using the discrete set of intercepts

T
∆
= {−n, . . . , n}, (22)

we define the discrete Radon transform as

RI = {RθI(t) | θ ∈ Θ, t ∈ T}, (23)

where Rθ is given by Definition 2.2 and Θ is the set of angles induced by lines

with equally spaced slopes. Specifically,

Θ
∆
= Θ1 ∪ Θ2, (24)

where

Θ2 = {arctan (2l/n) | l = −n/2, . . . , n/2}, (25)

Θ1 = {π/2 − arctan (2l/n) | l = −n/2, . . . , n/2}. (26)

Note that for two elements θl
2, θ

l+1
2 ∈ Θ2, tan θl+1

2 − tan θl
2 = 2

n
, which means that

our angles define a set of lines with equally spaced slopes.

Theorem 3.12 holds also for the discrete set Θ. For θ ∈ Θ2 (Eq. 25) we have

from Theorem 3.12 that R̂θI(k) = Î(−s1k, k), where s1 = tan θ. Since θ ∈ Θ2

has the form θ = arctan (2l/n), it follows that s1 = 2l/n and

R̂θI(k) = Î(−2l

n
k, k), k = −n, . . . , n. (27)

For θ ∈ Θ1 (Eq. 26), we have from Theorem 3.12 that R̂θI(k) = Î(k,−s2k),

where s2 = cot θ. Since θ ∈ Θ1 has the form θ = π/2 − arctan (2l/n), it follows

that s2 = 2l/n and

R̂θI(k) = Î(k,−2l

n
k), k = −n, . . . , n. (28)

Equations 27 and 28 show that RθI is obtained by resampling the trigono-

metric polynomial Î, given by Eq. 21, on the pseudo-polar grid Ωpp, defined in

[1] as

Ωpp
∆
= Ω1

pp ∪ Ω2
pp, (29)
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where

Ω1
pp

∆
= {(−2l

n
k, k) | − n/2 ≤ l ≤ n/2, −n ≤ k ≤ n} (30)

Ω2
pp

∆
= {(k,−2l

n
k) | − n/2 ≤ l ≤ n/2, −n ≤ k ≤ n}. (31)

Specifically, if we use the notation ÎΩ1
pp

and ÎΩ2
pp

to denote the samples of Î (Eq.

21) on the sets Ω1
pp and Ω2

pp, respectively, then,

R̂θI(k) = ÎΩ1
pp

(k, l), θ ∈ Θ2, (32)

R̂θI(k) = ÎΩ2
pp

(k, l), θ ∈ Θ1, (33)

or equivalently,

RθI = F−1
k ◦ ÎΩ1

pp
, θ ∈ Θ2,

RθI = F−1
k ◦ ÎΩ2

pp
, θ ∈ Θ1,

(34)

where F−1
k is the 1D inverse Fourier transform along each row of the array ÎΩs

pp
,

s = 1, 2 (along the parameter k).

The fast algorithm that computes the pseudo-polar Fourier transform [1] im-

mediately gives an algorithm for computing the discrete Radon transform. To

see this, consider a row in RI (Eq. 23), which corresponds to a constant θ. The

values of the discrete Radon transform that correspond to θ are computed by

applying F−1
k to a row of ÎΩs

pp
, s = 1, 2. Thus, the computation of RI requires to

apply F−1
k to all rows of ÎΩs

pp
, s = 1, 2 (2n + 2 rows). Since each application of

F−1
k requires O(n logn) operations, we get a total of O(n2 log n) operations for

the required 2n+2 calls to F−1
k . Thus, once we compute the arrays ÎΩs

pp
, s = 1, 2,

it requires O(n2 log n) operations to compute RI. Since computing ÎΩs
pp

, s = 1, 2,

requires O(n2 log n) operations [1], the total complexity of computing the values

of RI is O(n2 log n) operations.

Invertibility of the 2D discrete Radon transform RI also follows from Eq. 34.

F−1
k is invertible and can be rapidly inverted by using the inverse fast Fourier

transform. ÎΩpp
is invertible and can be rapidly inverted as described in [1]. Thus,
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the discrete Radon transform is invertible, and can be inverted by applying the

inverse FFT on each row of RI (O(n2 log n) operations), followed by an inversion

of ÎΩpp
(O(n2 log n) operations). Hence, inverting the discrete Radon transform

requires O(n2 logn) operations.

5 Convergence

In this section we prove that the discrete Radon transform converges to the

continuous Radon transform as the discretization step goes to zero.

5.1 Alternative representation of the continuous Radon

transform

In this section we use a definition of the continuous Radon transform which is

equivalent to Eq. 1 but that is more convenient for subsequent derivations. We

divide the set of all lines in R2 into basically horizontal and basically vertical

lines (Section 2). We denote the Radon transform of f along basically horizontal

lines by ℜxf and along basically vertical lines by ℜyf . For a basically horizontal

line y = sx+ t, s ∈ [−1, 1], the integral of f along this line is given by

ℜxf(s, t) =
√

1 + s2

∫ ∞

−∞
f(x, t+ sx) dx. (35)

For a basically vertical line x = sy + t, s ∈ [−1, 1], the integral of f along this

line is given by

ℜyf(s, t) =
√

1 + s2

∫ ∞

−∞
f(t+ sy, y) dy. (36)

When the function f(x, y) has a finite support, the limits of integration in Eqs.

35 and 36 become finite. Indeed, assume that there exists a positive constant D

such that f(x, y) = 0 whenever |x| ≥ D
2

or |y| ≥ D
2
. This ensures that all vertical

and horizontal shears of f(x, y) fit into a square of size D × D. Then, for any
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s ∈ [−1, 1] we have

ℜxf(s, t) =
√

1 + s2

∫ D

−D

f(x, t+ sx)dx (37)

for t ∈ [−D,D] and ℜxf(s, t) = 0 otherwise. Similarly,

ℜyf(s, t) =
√

1 + s2

∫ D

−D

f(t+ sy, y)dy (38)

for t ∈ [−D,D] and ℜyf(s, t) = 0 otherwise.

5.2 Mathematical preliminaries

A one-dimensional trigonometric polynomial of order N is an expression of the

form

T (x) =
N∑

n=−N

cne
inx,

where cn are complex numbers. Similarly, a two-dimensional trigonometric poly-

nomial of order N is an expression of the form

T (x, y) =

N∑

k=−N

N∑

l=−N

ck,le
i(kx+ly),

where ck,l are complex numbers.

Theorem 5.1. ([14] Uniqueness of a trigonometric interpolating polynomial)

Given 2N + 1 points x−N , . . . , x0, . . . , xN , which are distinct modulo 2π, and

arbitrary numbers y−N , . . . , y0, . . . , yN , there always exists a unique trigonometric

polynomial such that T (xk) = yk, k = −N, . . . , N .

The polynomial T (x) is called the (trigonometric) interpolating polynomial

that corresponds to points xk and values yk. Given a function f : R → R, the one-

dimensional trigonometric interpolating polynomial of degree N corresponding to

points
{

2π
M
u
}N

u=−N
and values

{
f

(
2π
M
u
)}N

u=−N
is given explicitly by

fN (x) =
N∑

n=−N

f

(
2π

M
n

)
DM

(
n− M

2π
x

)
, (39)
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where DM(x) is the Dirichlet kernel given by Eq. 7. Similarly, for a function f :

R2 → R, the two-dimensional trigonometric interpolating polynomial of degree

N corresponding to points
{(

2π
M
u, 2π

M
v
)}N

u,v=−N
and values

{
f

(
2π
M
u, 2π

M
v
)}N

u,v=−N

is explicitly given by

fN(x, y) =
N∑

u=−N

N∑

v=−N

f

(
2π

M
u,

2π

M
v

)
DM

(
u− M

2π
x

)
DM

(
v − M

2π
y

)
.

Definition 5.2. Let D ∈ R+, f : R2 → R. We define

fD
N (x, y)

∆
=

N∑

u=−N

N∑

v=−N

f

(
2D

M
u,

2D

M
v

)
DM

(
u− M

2D
x

)
DM

(
v − M

2D
y

)
.

Note that when D = π, we have fD
N (x, y) = fN(x, y).

Lemma 5.3. Let f : R
2 → R, N ∈ N, v ∈ [−N : N ]. Then, for g(x)

△
= f

(
x, 2π

M
v
)

we have gN(x) = fN

(
x, 2π

M
v
)
.

Proof. The function fN

(
x, 2π

M
v
)

is a trigonometric polynomial of degree N in

x. For any u ∈ [−N : N ] we have fN

(
2π
M
u, 2π

M
v
)

= f
(

2π
M
u, 2π

M
v
)

= g
(

2π
M
u
)
.

The lemma now follows from Theorem 5.1 (uniqueness of the one-dimensional

trigonometric interpolating polynomial).

Definition 5.4. (Lipschitz class LipC(α,Ω)) Let Ω ⊆ Rn. If f : Rn → R satisfies

the condition

|f(x) − f(y)| ≤ C‖x− y‖α, 0 < α ≤ 1,

for all x, y ∈ Ω, then we say that f belongs to the class LipC(α,Ω). When the

value of the constant C is not important we say that f is Lipschitz α on Ω.

Lemma 5.5. [13](Uniform convergence of a shifted interpolation)

Let A ∈ [0, π], C ∈ R+, α ∈ (0, 1], N ∈ N. Let f(x) ∈ LipC(α,R) such that

f(x) = 0 whenever |x| ≥ A. Then, for any |δ| ≤ π − A we have

|fN(x− δ) − f(x− δ)| ≤ Φ(C, α,N), x ∈ [−π, π],

where fN(x) is given by Eq. 39 and Φ(C, α,N) is a function independent of both

f and A, such that limN→∞ Φ(C, α,N) = 0.
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Definition 5.6. Let s ∈ [−1, 1], f : R2 → R. The horizontal shear of f , denoted

fs(x, y), is defined as fs(x, y)
∆
= f(x+ sy, y).

Lemma 5.7. Let f ∈ LipC(α,R2). Then, for any s ∈ [−1, 1] we have fs ∈
Lip(

√
3)αC(α,R2).

Proof. Since f(x, y) is Lipschitz, for any two points in R2 we have

|fs(x1, y1) − fs(x2, y2)| = |f(x1 + sy1, y1) − f(x2 + sy2, y2)|

≤ C

(√
((x1 − x2) + s(y1 − y2))

2 + (y1 − y2)2

)α

.

For s ∈ [−1, 1] and for any x, y ∈ R2 we have

(x+ sy)2 + y2 ≤ x2 + 2|x||y|+ y2 + y2 ≤ 3(x2 + y2).

Therefore,

|fs(x1, y1) − fs(x2, y2)| ≤ (
√

3)αC
(√

(x1 − x2)2 + (y1 − y2)2
)α

.

The following lemma easily follows by using the mean value theorem for in-

tegrals.

Lemma 5.8. Let C ∈ R+, α ∈ (0, 1], t1, t2 ∈ R such that t1 < t2. Consider

f ∈ LipC(α, [t1, t2]) and ξ ∈ [t1, t2]. Then,

∣∣∣∣
∫ t2

t1

f(x)dx− f(ξ)(t2 − t1)

∣∣∣∣ ≤ C|t2 − t1|1+α.

5.3 Discretization of the continuous Radon transform

We next consider the discretization of the integral from Eq. 38. First, we consider

this integral for s = 0.
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Definition 5.9. Let D ∈ R+, f ∈ C0(R2). For an arbitrary x ∈ R we define

T [D, f ](x)
△
=

∫ D

−D

f(x, y) dy.

Definition 5.10. Let N ∈ N, M = 2N + 1. Let D ∈ R+, f : R2 → R. For an

arbitrary x ∈ R we define

TN [D, f ](x)
∆
=

2D

M

N∑

v=−N

f

(
x,

2D

M
v

)
.

Theorem 5.11. (Approximation of the vertical Radon transform)

Let D ∈ R+, C ∈ R+, α ∈ (0, 1]. Let N ∈ N,M = 2N + 1. Denote Ω =

{(x, y) | x, y ∈ [−D,D]}. Then, TN [D, f ](x) converges to T [D, f ](x) uniformly

in both f ∈ LipC(α,Ω) and x ∈ [−D,D].

Proof. Let us fix f ∈ LipC(α,Ω) and x ∈ [−D,D]. We define fx(y)
△
= f(x, y).

Then,

|T [D, f ](x) − TN [D, f ](x)| =

∣∣∣∣∣

∫ D

−D

fx(y) dy −
2D

M

N∑

v=−N

fx

(
2D

M
v

)∣∣∣∣∣ .

For v ∈ [−N : N ] we define ξv
△
= 2D

M
v. The interval [−D,D] is a union of the

subintervals
[
ξv − D

M
, ξv + D

M

]
, v ∈ [−N : N ]. Then,

|T [D, f ](x) − TN [D, f ](x)| =

∣∣∣∣∣
N∑

v=−N

∫ ξv+ D
M

ξv− D
M

fx(y) dy −
N∑

v=−N

2D

M
fx(ξv)

∣∣∣∣∣ . (40)

Since f belongs to LipC(α,Ω), we have fx ∈ LipC(α, [−D,D]). From Lemma 5.8

we have for an arbitrary v ∈ [−N : N ]
∣∣∣∣∣

∫ ξv+ D
M

ξv− D
M

fx(y) dy −
2D

M
fx(ξv)

∣∣∣∣∣ ≤ C

(
2D

M

)1+α

. (41)

Applying the triangle inequality to Eq. 40 and using Eq. 41 we get

|T [D, f ](x) − TN [D, f ](x)| ≤
N∑

v=−N

∣∣∣∣∣

∫ ξv+ D
M

ξv− D
M

fx(y) dy −
2D

M
fx(ξv)

∣∣∣∣∣

≤MC

(
2D

M

)1+α

= 2DC

(
2D

M

)α

.
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The last expression tends to zero as N grows, and it depends neither on x nor

on f .

Definition 5.12. Let s ∈ [−1, 1]. Let D ∈ R+, f ∈ C0(R2). For an arbitrary x

we define

T s[D, f ](x)
△
=

∫ D

−D

f(x+ sy, y) dy.

Note that T s[D, f ](x) = T [D, fs](x).

Definition 5.13. Let s ∈ [−1, 1], N ∈ N, M = 2N + 1. Let f : R2 → R. For an

arbitrary x ∈ R we define

T s
N [D, f ](x)

∆
=

2D

M

N∑

v=−N

f

(
x+ s

2D

M
v,

2D

M
v

)
. (42)

Note that T s
N [D, f ](x) = TN [D, fs](x).

Theorem 5.14. (Approximation of the vertical Radon transform of a sheared

object)

Let D ∈ R+, and let f ∈ LipC(α,R2) such that f(x, y) = 0 whenever |x| +

|y| ≥ D. Then, T s
N [D, fD

N ](x), where fD
N is given by Definition 5.2, converges to

T s[D, f ](x) uniformly in x ∈ [−D,D] and s ∈ [−1, 1].

Proof. It is sufficient to prove the theorem for D = π since we can always scale

the variables x and y. This affects the constant C in LipC(α,R2), but does not

affect α. In the context of X-ray tomography, f(x, y) describes a physical object,

and therefore, scaling x and y corresponds to a change in the metric units.

By definition, T s[D, f ](x) = T [D, fs](x). By the note from Definition 5.2, for

any function g : R2 → R we have gD
N = gN when D = π. Therefore, for D = π
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we have

∣∣T s[D, f ](x) − T s
N [D, fD

N ](x)
∣∣ =

∣∣∣∣∣T [D, fs](x) −
2π

M

N∑

v=−N

fN

(
x+ s

2π

M
v,

2π

M
v

)∣∣∣∣∣

(43)

≤
∣∣∣∣∣T [D, fs](x) −

2π

M

N∑

v=−N

f

(
x+ s

2π

M
v,

2π

M
v

)∣∣∣∣∣ + (44)

+

∣∣∣∣∣
2π

M

N∑

v=−N

(
f

(
x+ s

2π

M
v,

2π

M
v

)
− fN

(
x+ s

2π

M
v,

2π

M
v

))∣∣∣∣∣ . (45)

The expression in Eq. 44 can be written as |T [D, fs](x) − TN [D, fs](x)|. By

Lemma 5.7, for any s ∈ [−1, 1], the function fs belongs to LipC(
√

3)α(α,R2).

By Theorem 5.11, the expression in Eq. 44 tends to zero uniformly in both

x ∈ [−π, π] and s ∈ [−1, 1] as N grows.

Next we consider Eq. 45. For a fixed v ∈ [−N : N ], we denote gv(x) =

f
(
x, 2π

M
v
)
. This function belongs to LipC(α,R). By Lemma 5.3 we have gvN

(x) =

fN

(
x, 2π

M
v
)
. The function gv(x) satisfies gv(x) = 0 for |x| ≥ π− 2π

M
v. From Lemma

5.5 there exists a function Φ(C, α,N) that tends to zero as N grows such that

for any s ∈ [−1, 1] and x ∈ [−π, π] we have
∣∣gv

(
x+ s2π

M
v
)
− gvN

(
x+ s2π

M
v
)∣∣ ≤

Φ(C, α,N). It is important to note that the function Φ(C, α,N) does not depend

on v. By expanding the definition of gv(x), we see that for any v ∈ [−N,N ],

s ∈ [−1, 1] and x ∈ [−π, π] the following inequality holds

∣∣∣f
(
x+ s

2π

M
v,

2π

M
v

)
− fN

(
x+ s

2π

M
v,

2π

M
v

) ∣∣∣ ≤ Φ(C, α,N).

For any ε > 0 there exists N0 such that for anyN > N0 we have |Φ(C, α,N)| < ε
2π

.

Therefore, for N > N0 the expression in Eq. 45 is less than ε for any x ∈ [−π, π]

and s ∈ [−1, 1].
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5.4 2D discrete Radon transform as an approximation of

the continuous Radon transform

Let D ∈ R+ and let A(D) =
{
(x, y) | − D

2
< x < D

3
, −D

2
< y < D

3

}
. Throughout

this section we assume that the function f(x, y) satisfies f(x, y) = 0 for (x, y) 6∈
A(D). This assumption is imposed only for convenience, to simplify subsequent

proofs. The bounds in the definition of A(D) are technical assumptions that

ensure that f
(

2D
M
u, 2D

M
v
)

= 0 whenever u /∈
[
−N

2
: N

2
− 1

]
or v /∈

[
−N

2
: N

2
− 1

]
.

Theorem 5.15. Let D ∈ R+. Let f : R2 → R be a function such that f(x, y) = 0

whenever (x, y) 6∈ A(D). Consider the array

I(u, v) = f

(
2D

M
u,

2D

M
v

)
, u, v ∈

[
−N

2
:
N

2
− 1

]
. (46)

Then, for any w ∈ [−N : N ] and s ∈ [−1, 1] we have

T s
N [D, fD

N ]

(
2D

M
w

)
=

2D

M
Radon({x = w + sy}, I),

where Radon({x = w + sy}, I) is given in Definition 2.1.

The proof easily follows from Definitions 5.2 and 2.1, Eq. 46, and the fact

that f(x, y) = 0 whenever (x, y) 6∈ A(D).

When the function f(x, y) represents an object that is bounded in space,

it is always possible to find such a D that the conditions of Theorem 5.15 are

satisfied. If, in addition, we assume that f ∈ LipC(α,R2) for some C and α,

then we can use the 2D discrete Radon transform to approximate the continuous

Radon transform of this object. We prove it formally in Theorem 5.16.

Theorem 5.16. Let D ∈ R+, C ∈ R+, and α ∈ (0, 1]. Let f ∈ LipC(α,R2) such

that f(x, y) = 0 whenever (x, y) 6∈ A(D). For an arbitrary N ∈ N we define the

array IN by

IN(u, v)
△
= f

(
2D

M
u,

2D

M
v

)
, u, v ∈

[
−N

2
,
N

2
− 1

]
. (47)

25



Then, for any ε > 0 there exists N0 ∈ N such that for any N > N0

∣∣∣∣ℜyf

(
s,

2D

M
w

)
−

√
1 + s2

2D

M
Radon({x = w + sy}, IN)

∣∣∣∣ < ε

for any w ∈ [−N : N ] and any s ∈ [−1, 1].

Proof. Fix ε > 0 and let s ∈ [−1, 1]. Under the conditions imposed on f in the

statement of the theorem, ℜyf(s, t) is given by Eq. 38 when t ∈ [−D,D] and

equals zero outside this interval. Using Definition 5.12 we rewrite Eq. 38 as

ℜyf(s, t) =
√

1 + s2 T s[D, f ](t), t ∈ [−D,D]. (48)

By Theorem 5.14, there exists N0 such that for any N > N0

∣∣T s[D, f ](x) − T s
N [D, fD

N ](x)
∣∣ < ε√

2

for any x ∈ [−D,D] and s ∈ [−1, 1]. Then,

∣∣∣∣
√

1 + s2 T s[D, f ]

(
2D

M
w

)
−

√
1 + s2 T s

N [D, fD
N ]

(
2D

M
w

)∣∣∣∣ < ε

for any w ∈ [−N : N ] and s ∈ [−1, 1]. Replacing the first term in this inequality

by ℜyf
(
s, 2D

M
w

)
(see Eq. 48) and applying Theorem 5.15 we get the required

result.

Theorem 5.16 states that the continuous Radon transform of an object for

lines with intercepts
{

2D
M
w | w ∈ [−N : N ]

}
can be approximated by means of

the discrete Radon transform applied to a Cartesian set of samples this object.

Theorem 5.16 was formulated and proved for ℜyf(s, t), which corresponds to

projections along basically vertical lines. An analogous theorem can be proved

for ℜxf(s, t) and basically horizontal lines by minor modifications of the proofs

in Sections 5.3–5.4.
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6 Conclusions

We developed a 2D discrete Radon transform, derived its main properties, and

presented fast algorithms for its computation and inversion. The discrete trans-

form is based on a rigorous definition, where each step in the construction is

chosen to achieve some desirable property. As a result, the transform does not

use arbitrary interpolation schemes, preserves the concept of summation along

straight lines, and is rapidly computable and invertible.

We proved a Fourier slice theorem that relates the discrete Radon transform

to the pseudo-polar Fourier transform of the underlying image. The fast algo-

rithms for the pseudo-polar Fourier transform provide fast forward and inverse

algorithms for the discrete Radon transform.

Finally, we proved that the discrete Radon transform converges to the contin-

uous Radon transform. This enables the discrete Radon transform to be used as

an approximation to the continuous Radon transform in digital implementations.
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