
A FRAMEWORK FOR DISTRIBUTED PROBLEM SOLVING 

Dave McArthur, Randy Steeb and Stephanie Cammarata 

The Rand Corporation 
1700 Main St. 

Santa Monica, CA, 90406. 

ABSTRACT 

Situations in which several agents must 
interact to achieve goals present difficulties of 
coordination and cooperation not found in 
single-agent problem solving contexts. Techniques 
for coordination and cooperation required in group 
problem solving are not well understood because 
most AI models deal with cases in which problems 
are solved by a single agent. In this paper we 
present a framework for distributed problem solving 
that describes some of the expertise an agent 
working in an multi-agent environment must have. 
An application of the framework to the domain of 
air-traffic control is discussed. Here each 
aircraft is viewed as an agent that must cooperate 
with others to achieve a conflict-free plan. 

1. The agent must be able to continuously update 
possibly incomplete or incorrect world models 
(caused by limited situation assessment or by 
the existence of agents that change the 
environment dynamically and unpredictably). 

2. The agent must be able to integrate information 
coming asynchronously from other agents. 

3. The agent must know when new information 
invalidates his current attempt to plan and be 
able to modify his plan during execution if new 
and inconsistent information is uncovered. 

4. The agent must be able to interrupt his 
planning to help others acquire knowledge to 
achieve their goals (especially when his goals 
and theirs interact or conflict). 

5. The agent must be able to get others 
satisfy his goal or play his role. 

to help 

Not all these competences are required of 
single-agent problem solvers, and, since most 
existing models of problem solving (e.g., STRIPS 
Dl, BUILD [Z], NOAH [3] and many others) focus on 
single-agent problems, little is known about how 

agents solving distributed problems achieve such 
competences. We have been attempting to understand 
distributed problem solving by developing 
computational models of agents that have these 
abilities. In this paper we present a view of 
agents in group problem solving situations that we 
have developed, and discuss a specific problem 
solver for distributed air-traffic control (DATC) 
consistent with this view. 

II A VIEW OF DISTRIBUTED PROBLEM SOLVING --- -- 

Using competences such as those discussed 
above, we have evolved a view of the important 
features of distributed problem solving agents that 
differs considerably from the view traditionally 
adopted in models of single-agent problem solvers. 
For example, many theories [l], [Z] suggest that a 
central feature of the single-agent problem solver, 
is that its activities are decomposed into separate, 
strictly ordered, phases of information gathering, 
planning, and execution. However, the above 
competences indicate that, in situations where a 
given agent is not the sole cause of change, and 
therefore where not all important consequences of a 
planned action can be foreseen at the time of 
planning, it is essential that the agent be able to 
effectively interweave information gathering, 
planning and execution tasks. 

1. 

2. 

3. 

4. 

Briefly, the main tenets of our view are: 

Each agent has several distinct kinds of generic 
tasks such as information gathering (sensing and 
input communication), information distribution 
(output communication), planning, plan 
evaluation , plan fixing, and plan execution. 

Each kind of generic task invocation (or task 
instance) is a process: it can be suspended and 
resumed; hence tasks can be interwoven without 
losing continuity. 

Each agent has a knowledge-base that represents 
his beliefs about other agents and their 
intentions, as well as information about the 
static environment and his own intentions. 

Within a single-agent, the knowledge-base is 
shared by all task instances, like a HEARSAY 
blackboard [41. by change in the 
knowledge-base made by a task (e.g., information 
gathering) while another task is suspended 
(e.g., planning) will be visible to the latter 

181 

From: AAAI-82 Proceedings. Copyright ©1982, AAAI (www.aaai.org). All rights reserved. 



5. 

6. 

7. 

8. 

9. 

10. 

11. 

when it resumes. Thus tasks such as planning 
exhibit currency as well as continuity: they do 
not base computations on an outdated 
world-model. 

Task instances are both data-driven and 
event-driven. Instances of generic tasks are 
triggered in two ways: by sets of well-defined 
knowledge-base states; or well-defined events 
which result in changes to the knowledge-base. 
Tasks that are created do not immediately get 
executed but are enabled and may compete for 
processing resources. 

Each enabled task has a limited amount of 
self-knowledge, including explicit intentions 
and validity conditions. This information can 
be used to determine if a task is justified in 
continuing as conditions change. Thus tasks 
will exhibit relevance. 

Enabled tasks are not invoked in a fixed order, 
as in single-agent problem solvers. Rather the 
agent acts as a scheduler, reasoning about the 
ordering of task instances. More specifically, 
the agent uses a set of heuristic rules to 
prioritize processes representing enabled tasks. 

A task selected by the agent for execution is 
not necessarily allowed to run to completion. 
It is given a quantum of processing resources 
(time). The size of this quantum is also 
controlled by the agent. 

During the execution of a task or process (i) 
the task may complete, in which case it is 
eliminated from the set competing for resources; 
(ii) new tasks may be created because of 
knowledge-base changes effected by the running 
task (iii) the changes may cause existing tasks 
to lose their justification. 

After a task has consumed its allocated supply 
of resources (i.e., time), the agent reorders 
the priority of enabled tasks and selects a new 
one to run, in light of the conditions in the 
altered knowledge-base. It also eliminates 
unjustified tasks (if the tasks have not 
eliminated themselves). 

This procedure iterates until there are no more 
enabled tasks worth running. 

Speaking generally, then, we view the agent in a 
group problem solving situation as a kind of 
knowledge-based operating system. The view is 
similar to a HEARSAY blackboard model [4], except 
that (i) tasks are not suspended and resumed in such 
a model, (ii) in a HEARSAY-like model a given KS can 
have several different simultaneous activations, 
while our framework permits only one instance of a 
generic at a time, and (iii) the heuristic rules 
used by agents in our framework (to control the 
selection of tasks to run) typically use more 
knowledge of global context than do the scheduling 
rules in HEARSAY (which control KS invocation). 
Hence, the performance of our agents may often 
appear more goal-directed and less data-directed 
than comparable HEARSAY agents [S]. 

Our view is not a model of an agent in a 
specific distributed domain, but rather represents a 
theoretical framework for describing distributed 
agents or a set of guidelines for constructing a 
specific model. Adhering to the framework, the user 
still needs to provide several sorts of 
domain-specific expertise. These include the 
procedures that comprise each generic task, the 
triggering conditions under which a task instance is 
to be created, the validity conditions under which 
it is permitted to continue, and the heuristic rules 
that order the priority of enabled tasks in light of 
the current state of knowledge. 

In order to facilitate the development of our 
specific distributed problem solvers, we have 
implemented the framework in a simple task language. 
The task language is a set of INTERLISP functions 
that provides the user with a convenient vocabulary 
stating the required domain-specific expertise. 
Once stated, the task language takes care of all the 
specifics of task management. It insures that an 
appropriate task instance is enabled whenever the 
triggering conditions of a user-defined generic task 
are met. The task language also takes care of the 
low-level implementation of tasks as resumable 
coroutines, and guarantees that these processes 

suspend after consuming the appropriate amount of 
time. Finally, it handles the details of scheduling 
the next task to run; the user only needs to state 
the properties of the scheduler his application 
requires. (For more details on the capabilities of 
the task language, see [6]). By attending to the 
details of task creation and management, the task 
language frees the user to focus on the 
theoretically more interesting issues of designing 
(and debugging) rules that achieve the appropriate 
interweaving of tasks. 

To get a more concrete idea of the value of our 
view of distributed problem solving agents and of 
how the user interacts with the task language to 
create a particular agent, we will now discuss 
examples of use of the language in developing our 
distributed air-traffic control (DATC) system. We 
begin with a brief description of the air-traffic 
control domain. 

III DISTRIBUTED AIR-TRAFFIC CONTROL 

The domain of Air Traffic Control exhibits a 
number of features that make it useful for studying 
distributed problem solving. Our ATC system 
consists of several functionally identical agents, 
one associated with each aircraft in a rectangular 
(14 x 23 mile) airspace. The agents (aircraft) 
essentially operate in parallel. (The details 
involved in getting the agents to time-share on a 
single processor are invisible to the user). 
Aircraft may enter the airspace at any time, at any 
one of 9 infixes on the borders of the airspace, or 
from one of two airports. The main goal of each 
aircraft is to traverse the airspace to an assigned 
destination--either a boundary outfix, or an 
airport. Each aircraft has only a limited sensory 
horizon, hence its knowledge of the world is never 
complete and it must continually gather information 
as it moves through the airspace. Information may 

182 



be accumulated either by sensing or communication. 
Agents are allowed to communicate over a limited 
band-width channel to other aircraft, for purposes 
of exchanging information and instructions. 

DATC is a group problem not only because agents 
may help one another gather information but also 
because the goals of one agent may interact with 
those of another. Goal interactions come in the 
form of shared conflicts. A conflict between two 
agents arises when, according to their current 
plans, the two will violate minimum separation 
requirements at some point in the future. 
(Currently we require a separation of 3 miles and 
1000 feet of altitude). When shared conflicts 
arise, agents must negotiate to solve them. In a 
crowded airspace, such goal conflicts can get 
particularly complex, and involve several aircraft, 
thus necessitating a high degree of group 
cooperation. Our goal has been to discover problem 
solving methods by which a DATC agent can eliminate 
shared conflicts. 

To define our system within the framework of 
the task language we must identify the tasks 
comprising each agent and specify the expertise 
associated with each task. The top-level generic 
tasks of each DATC agent currently include: 

1. Sensing (gathering information about positions 
and types of other aircraft). 

2. Input-communication (gathering information about 
routes, plans and requests of other aircraft). 

3. Output-communication (distributing information 
about your routes, plans, and requests to 
others). 

4. Initial plan generation (computing a reasonable 
path through the airspace to one's outfix). 

5. Plan evaluation (finding conflicts between your 
plan and the plans you believe others are 
following; reviewing new information for 
consistency with beliefs about others' plans). 

6. Plan fixing (using existing plans and 
evaluations to create new plans that avoid 
conflicts with others). 

7. Plan execution. 

A. Defining DATC generic tasks and invocation - - 
conditions 

A major part of defining a generic task is 
stipulating the conditions under which an instance 
of a generic task should be created. Consider plan 
evaluation. We want to define the DATC agent so 
that an evaluation task is created when (i) the 
agent has a plan and, via some information gathering 
task, learns the plan of some other aircraft, (ii) 
the agent changes his own plan, or (iii) the agent 
believes he knows the plan of another aircraft and 
senses a new position for that aircraft that may not 
be consistent with what the believed plan predicts. 
In the first two cases the kind of evaluation needed 

Declarations such as (4) show how task creation 
is data-driven, how tasks insure that they are 
relevant as conditions change, and how tasks may be 
suspended and resumed. But to interweave tasks such 
as plan evaluation, information gathering, etc., 
permitting the DATC agent to perform intelligently, is "conflict detection"; in the third it is c _ 

"consistency checking". Using the task language, 
the "conflict detection" case is implemented as 
follows: 

(1) (CREATE-SUBTASK-TYPE 'Evaluation 'Agent) 
(2) (CREATE-SUBTASK-TYPE 'DetectConflict 

'Evaluation) 
(3) (SET-TASK-PUNCALL 'DetectConflict 

'(COMPUTE-CONFLICTS Aircraft Other)) 
(4) (DEFINE-TASK-TRIGGER 

'DetectConflict 
'Evaluation 
'(SET-AIRCRAFT-PLAN Other <newplan>) 
'(Check new plan of Other for conflicts 
against yours) 

'(AND (AIRCRAFT-PLAN Other) 
(EQUAL <newplan> 

(AIRCRAFT-PLAN Other)))) 

(1) Establishes the generic task of plan evaluation. 
Evaluation can be thought of as a class object in 
the SMALLTALK sense [7]. Instances of Evaluation 
represent specific plan evaluation tasks that might 
be created. The second argument in (1) says that 
when a plan evaluation task is created it is to be a 
a top-level task of the agent. 

(2) establishes a generic subtask of plan 
evaluation. When triggering conditions of 
DetectConflict are met and an instance of it is 
created, the instance becomes a subtask of the 
current Evaluation task of the agent. Thus while 
the agent is a scheduler that chooses from among 
enabled tasks that are instances of generics such as 
Evaluation and Sensing, an Evaluation instance 
itself is a scheduler that chooses from among 
instances of CheckConsistency and DetectConflict. 

(3) associates a function call with 
DetectConflict. When an instance of a generic task 
becomes enabled, it may be selected to execute by 
the Evaluation task. If the task has previously 
executed and suspended, Evaluation knows where to 
resume; if this is the first time the task has been 
allocated processing resources, Evaluation needs to 
have a way of initiating the task. It does this by 
evaluating the function call. Note (3) presupposes 
COMPUTE-CONFLICTS has been defined by the user and 
encodes the appropriate expertise. 

(4) stipulates the conditions under which task 
instances of DetectConflict will be created and 
become a subtask of Evaluation. Roughly, it says 
"Any time you believe you know some other aircraft's 

plan, it is reasonable to create a DetectConflict 
task as a subtask of the current Evaluation task, to 
see if your current plan conflicts with his new one. 
This task is justified as long as you still believe 
you know the aircraft's plan and it is the new one". 

B. Defining rules that interweave DATC task - - - - 
instances 

183 



we still need to define heuristic rules that will 
order the priority of enabled tasks. Two rules 
currently used are: 

(1) (DEFINE-SCHEDULING-RULE 'Agent 
(if (TASK-TYPE Task)='PlanFixing 

and (EXISTS-TASK-OF-TYPE 'Agent 
'Evaluation) 

then (SET-TASK-PRIORITY Task 0))) 
(2) (DEFINE-SCHEDULING-RULK 'Agent 

(if (TASK-TYPE Task)='SendReplanRequest 
and (EXISTS-TASK-OF-TYPE 'Agent 

'PlanFixing) 
and (GREATERP (TASK-TOTAL-TIME 

(TASK-OF-TYPE 'Agent 
'PlanFixing)) 

5000) 
and (NOT (IN-IMMINENT-DANGER Aircraft)) 
then (SET-TASK-PRIORITY 

(TASK-OF-TYPE 'Agent 'PlanFixing) 
0) 

(SET-TASK-PRIORITY Task zoo))) 

(1) defines a top-level scheduling rule of a DATC 
agent; it helps the agent decide which of the 
enabled top-level tasks to execute next. The rule 
says that if PlanFixing is enabled (because an 
aircraft's plan has a conflict in it), then it is a 
good idea not to allocate further resources to this 
task if there is some evidence that the 
conflict-status of the plan should be re-evaluated. 
The rationale is that the Evaluation task may have 
been enabled by receipt of a new plan for the 
aircraft causing the conflict and this plan may 
avoid the conflict. 

(2) also defines a top-level scheduling rule 
for the DATC agent. Details aside, its role is to 
decide when a given agent (aircraft) has tried "hard 
enough" to solve a conflict shared with another 
aircraft. Note that "hard enough" has a natural 
definition in terms of the processing resources 
(time) that have already been devoted to attempts at 
PlanFixing. If this criterion is met, the agent 
will use his other option in solving a shared 
conflict--he will ask the other conflictee to try to 
resolve it (by invoking the SendReplanRequest task) 
instead of expending more effort to try to resolve 
the conflict himself. 

Rules such as (1) and (2) are the key to the 
DATC agent's ability to interweave its several 
enabled tasks in way that is sensitive to changing 
conditions. Many of the rules the DATC problem 
solver currently employs are devoted to ordering 
tasks purely "internal" to the agent. These tasks, 
including sensing, evaluation, plan-fixing, and plan 
execution, often must be interwoven because of the 
existence of external, unpredictable, agents. 
However, these tasks do not directly involve those 
agents. On the other hand, rules like (2) reason 
about tasks that involve interaction (communication) 
with others, either in the service of one's own goal 
or other's goals. In short, these rules encode 
cooperative strategies, which are critical to any 
effective group problem solving activity. 

IV CONCLUSIONS 

We are developing a system for distributed 
problem solving in DATC using our task language and 
adhering to the general view of distributed problem 
solving agents set out above. Our aim is not to 
produce a fixed distributed ATC problem solver so 
much as to perform computational experiments to 
discover policies for interweaving tasks and 
strategies of cooperation which are sound across a 
variety of group problem solving conditions. 

We believe the development of such policies to 
be a central goal for DAI. We are pursuing this 
goal by implementing several alternative policies 
and strategies, then evaluating the performances of 
the resulting systems. In order to complete our 
experiments, therefore, it is necessary to be able 
to easily modify the strategies and policies 
embedded in the system. This is straightforward 
because, by developing the DATC problem solver in 
the context of our general view of distributed 
problem solving, we are encouraged to write domain 
specific strategies for agents as rules that are 
explicit, modular, hence modifiable. 

ACKNOWLEDGMENTS 

for 

ill 

121 

[31 

[41 

[51 

[61 

171 

We are grateful to Lee Erman and Phil Klahr 
comments on an earlier version of this paper. 

Fikes, R. 
approach 

, and Nilsson, N., 
to the application 

STRIPS: 
of theorem 

A new 
proving 

to problem solving. Artificial Intelligence: 
2, (3), 189-208, 1971. 

REFERENCES 

Fahlman, A planning system for robot 
construction tasks. Artificial Intelligence, 
5, (l), l-49, 1974. 

Sacerdoti, E., 4 structure for plans and 
behavior. New York: Elsevier North-Holland, 
1977. 

Erman, L, and Lesser, V., A multi-level 
organization for problem solving using many 
diverse cooperating sources of knowledge. 
Proceedings of the Fourth Joint Conference on --- 
Artificial Intelligence, Tbilisi, USSR, 1975, 
483-490. 

Corkill, D., and Lesser, V., A goal-directed 
Hearsay-II architecture: Unifying 
data-directed and goal-directed control. COINS 
Tech. Rep. 81-15, University of 
Massachusetts. 

McArthur, D, Steeb, R., and Cammarata, S., A 
model of problem solving in domains with 
multiple active agents. In preparation, April, 
1982. 

Goldberg, A., and Kay, A., The SMALLTALK- 
Instructional Manual, SSL-76-6, Xerox PARC, 

184 


