
A Framework for Document-Driven

Workflow Systems

Jianrui Wang and Akhil Kumar

Smeal College of Business,
Pennsylvania State University, University Park, PA 16802, U.S.A.

{JerryWang, AkhilKumar}@psu.edu

Abstract. We propose and demonstrate the feasibility of a framework
for document-driven workflow systems that requires no explicit control
flow and the execution of the process is driven by input documents.
The framework can assist workflow designers to discover the data de-
pendencies between tasks in a process and achieve more efficient control
flow design. The framework also provides an architecture to separate the
workflow system from application data and facilitate inter-organizational
processes. Document-driven workflow systems are more flexible than tra-
ditional control flow processes, easier to verify and work better for ad
hoc workflows. We also implemented a prototype workflow system using
the framework entirely in a RDBMS using Transact-SQL in Microsoft
SQL Server 2000. A detailed comparison with control driven workflows
has also been done.

1 Introduction

Academic interest in workflow systems has increased considerably in the past
decade, especially with the boom in e-business and supply chain management.
Workflow is built into most commercial e-business and supply chain management
software, and functions as a foundation module to support business process
performance and coordination.

ARIS (Architecture of Integrated Information Systems) [17] developed a pio-
neering approach to model business processes, and also served as a foundation of
SAP/R3. ARIS takes five views of business processes: functional, organizational,
data, output, and control. The Workflow Management Coalition views workflows
as interactions of process, information and resource [9]. Depending on the di-
mension used for modeling, workflow systems can be viewed from one of the
following perspectives:

1. Process based perspective. This perspective tends to emphasize process as
the dominant dimension; processes consume, produce or transform informa-
tion under a set of business rules.

2. Information based architectures. This perspective emphasizes the informa-
tion dimension, viewing processes as operations that are triggered as a result
of information changes.

W.M.P. van der Aalst et al. (Eds.): BPM 2005, LNCS 3649, pp. 285–301, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



286 J. Wang and A. Kumar

3. Organization perspective. This perspective views workflow as a mapping of
organization structures and focuses on the utilization of organization re-
source.

Unfortunately, although it is well accepted that workflow systems are an
integration of data, control, and resource, most workflow modeling languages
such as WSBPEL [16] (formerly BPEL4WS) and XPDL [19] focus on control
flow, and give less attention to other dimensions. One popular control flow study
is the one on workflow patterns by Aalst [1]. There are only a few studies on
data flow modelling [4,6,7,11,12]. However, for the most part, data and resource
flow research has received little attention compared with control flow [15].

In this paper, we take the information based perspective, and extend the
ideas in the WIDE approach [8]. As noted there, workflow systems must be
able to respond to data events, temporal events and external events. One logical
development of this idea is to consider the possibility of implementing a complete
workflow system inside a database using events as the main mechanism to drive
the workflow. In our study, we propose a framework and implementation of
document-driven workflow systems. This framework is more flexible than control
flow oriented workflow systems and works much better for ad hoc workflows. The
rest of the paper is organized as follows. In Section 2 we provide a motivation
for our approach with a clear example. Then in Section 3, we give a framework
and meta-models for document-driven workflow systems. An implementation
of this framework is described in Section 4. Here we discuss our SQL-based
implementation for a document-driven workflow system. Finally, in section 5 we
discuss the advantages and disadvantages of document-driven workflow systems
compared with control flow based systems. The paper is concluded in Section 6.

2 Motivation

In this section, we motivate our approach with a detailed example that compares
a control flow based workflow with the corresponding data flow based approach.
Fig. 1(a) shows an order process using control flow design. In this process, an
order is received, and then the customer’s credit rating is checked. Based on the
result of the credit check, either the order is cancelled or the steps of warehouse
pickup, shipping, invoicing and close order are performed. (To simplify the case,
we ignore the exception handling issues.)

The control flow design puts emphasis on the process, that is, the execution
sequence of the tasks. It does not explicitly explain why a task should be per-
formed before another. For example, it is not clear why the Warehouse Pickup
task is done before Ship (in Fig. 1(a)), or Invoice is done after Ship. In gen-
eral, control flow diagrams assume that the process designer has the business
knowledge to layout the task sequence. Tasks have various kinds of dependen-
cies between them. Zlotkin [20] summarizes three basic types of dependencies:
Fit, Flow, and Sharing, as shown in Fig. 2. Using Zlotkin’s dependency theory,
we can find that the tasks Warehouse Pickup and Ship have a flow dependency
between them, i.e. the output of task Warehouse Pickup is one of the required



A Framework for Document-Driven Workflow Systems 287

inputs of task Ship. A sharing dependency arises when several tasks compete
for the same resource. Fit dependencies arise when multiple activities collec-
tively produce a single resource, and they do not occur very often in workflow
situations.

Receive Order

Check Credit

Warehouse Pickup

Invoice

Ship

Close Order

Approve Reject

Cancel Order

OR

OR

ReceiveOrder

Check Credit
Warehouse Pickup

Invoice Ship

Order

Payment Order Items Shipping advice

Package List

Close Order

Invoice Shipping Report

Payment
(approved)

AND

ANDAND

AND

AND
Payment
(rejected)

OR

Cancel Order

Order Summary
(canceled) Order Summary(fulfilled)

OR

soft constraint

(a) (b)

Fig. 1. Order processing workflow with the control and document flow approaches

Fig. 2. Three basic types of dependencies among activities (Zlotkin [20])

If we take the dependency analysis approach one step further, and focus on
data dependencies, then we can develop a data flow chart as shown in Table
1 for the order process of Fig. 1(a). The data flow analysis provides the input
data for a task to be executed, and its output data. Then we can draw a new
process diagram using data flow analysis. This is shown in Fig. 1(b). As can be
seen from Fig. 1(b), the task Invoice does not have to be performed after task
Ship because there is no data dependency between them. However, a seller may



288 J. Wang and A. Kumar

have a policy that invoicing can only be done after shipment. Thus, we have
two types of constraints which determine the sequence of tasks: data dependency
constraints and business policy constraints. We call data dependency as a hard
constraint and business policy as a soft constraint because the former applies to
all organizations, while the latter may vary from one organization to another.

Table 1. Data flow analysis for tasks in an order process

Task Input Data Output Data

Receive order Order Information:
– Payment information(i.e. Cus-

tomer ID, credit card.)
– Order items(i.e. SKUs, unit price,

quantity.)
– Shipping Advice(i.e. UPS ground.)

The order information in the in-
put document is split into three
documents:

– Payment information
– Order items
– Shipping Advice

Check credit Payment Approved or rejected

Warehouse pickup Order items Pickup List

Invoice Payment, Package List, and Shipping
Advice

Invoice

Ship Pickup List and Shipping Advice Proof of Shipment

The process in Fig. 1(b) also raises two important questions about informa-
tion flow. The first question is: Why did the task Receive Order split the original
order data into three documents (payment, order items and shipping advice),
instead of handling it as one document? There are two advantages of doing so.
First, it is more efficient. If we simply send the whole order to task Warehouse
Pickup, then the whole order is locked when the task is executing, which pre-
vents others from making changes to any part of the order. However, such a lock
is unnecessary because change of shipping advice has nothing to do with Ware-
house Pickup. Second, it is more secure. The payment information is sensitive
and should be only released to relevant staff, i.e. the Credit Check staff. The
second question is: Can the two tasks, Invoice and Ship, be performed concur-
rently? Since both tasks require Shipping Advice and Package List information,
the question actually is, can Shipping Advice and Package List information be
accessed at the same time? The answer in this case is yes, because both tasks
only need read access to the data in the documents. In the next section, we will
introduce a document meta-model to go deeper into these issues.

The above data flow analysis has two advantages. First, it provides a partial
ordering for the tasks. Second, it imposes restrictions on the way in which the
process can be reconfigured because of soft constraints.

3 A Framework for Document-Driven Workflow Systems

We propose a four-layer architecture for modeling document-driven workflow
systems as shown in Fig. 3. The four layers are schema, runtime, scheduling, and



A Framework for Document-Driven Workflow Systems 289

application layer. The schema layer defines workflow processes, which consist of
tasks, documents and resources. The runtime layer specifies how processes and
tasks are started and ended. The scheduling layer contains algorithms to assign
documents and resources to a task so they can be executed. The application layer
provides links between the workflow system and the applications. It defines how
application data can be linked to the corresponding documents. Since there is
a clear separation between workflow data and application data, the details of
the application data are not important in the context of the workflow architec-
ture and are not discussed in detail here. The significant differences between our

Activity

change

trigger

activate

assign to

has
Process Task DocumentClass ResourceClass

perform

input

Schema layer

Runtime layer

Scheduling layer

Case

<<Process>>

Workitem

<<Task>>

Document

<<DocumentClass>>

Resource

<<ResourceClass>>

Application Data
change

Application layer

folder

role

initiate

trigger

instantiate

terminate

instantiate

change

Fig. 3. Document-driven workflow framework

document-driven workflow systems and conventional control flow based workflow
systems lie in the runtime and the application layers. In document-driven work-
flow systems, a process is instantiated into a case when certain external events
arrive (say, along with a message or a document). The process also creates a
set of initial documents of the process instance (or case). A task is instantiated
into a workitem when its input documents exist. The input documents required
by one task are usually the output documents from a previous task, except the
initial documents for the first task, which are generated by the process reposi-
tory when the process is instantiated. After a workitem gets its input documents
and associated resources (at the scheduling layer), it becomes an activity, which
can be executed. An activity changes input documents or produces new docu-
ments, which drives the next task. A process ends when its desired documents
are produced and its exit constraints are satisfied.

It is important to realize that the input documents may not be available
for the workitem when it is instantiated (because someone else may be using
them). Therefore, multiple workitems can be created concurrently if their input
documents exist, and they will compete for both resources and documents to
become executable activities.

The application layer serves as a bridge between the workflow system and the
applications. It should be noted that users cannot change application documents



290 J. Wang and A. Kumar

directly, rather it is done under the control of the workflow system. When an
attempt is made to change a document (by a user or another application), each
document has its own event adapter that will capture the changes and check
the associated constraints, and then update the document if the constraints are
satisfied. Although the architecture encompasses resource and scheduling, the
main focus is on documents in this paper. However, it is important to incorporate
resource and scheduling in the future research.

DocumentDocLockState

1..*

1..*

transition

DocCopyState
1..*

1..*

transition

DocElement

DataField

1..*
has

Version

1..*

applies to

1..*applies to

1..*
applies to

1..*
has

1..*

applies to

1..*

applies to

EventAdapter

1..*

updates

1..*
updates

1..*
updates

child+
1..*

parent +

Fig. 4. Document meta-model

To support this framework, we develop a meta-model for documents as shown
in Fig. 4. A Document is a set of information pieces which are composed to-
gether to serve a well defined business purpose. A Document consists of several
DocElements. A DocElement is a group of DataFields which have certain busi-
ness meaning. For example, address can be a DocElement which may consist of
street number, street, city, state, and zip code. A DataField is a piece of infor-
mation which is treated atomically. Moreover, changing a zip code from 16801 to
16802 is an example of an atomic change. A document may receive events from
its DocElements and DataFields, or from other documents. Not all the received
events will produce changes in the document. For example, an order form will
not be changed if the order has already been shipped. This is managed by the
use of constraints (to be discussed shortly). A document generates update events
if its content is changed. EventAdapters along with theirs constraints are used
to determine which events documents should respond to.

Fig. 4 also shows that a document has Versions. A version is used to model
the traceable history of workflow data. Since workflow transactions have long
transaction time, it is very common that some of the original data have been
changed before the transaction is completed. Therefore, keeping the data trace-
able is necessary and helpful. An order may also be split into two sub orders,
which result in two new documents with their own versions. A version may ap-
ply to a DataField, DocElement, or Document, but it is most relevant for a
Document. In general, a series of related data field changes will lead to a new



A Framework for Document-Driven Workflow Systems 291

document version. Documents can also have a link or parent-child relationship
between them. It is the responsibility of the application to keep the historical
data; the workflow system only provides a link to the application.

Unlocked

ShareLocked

ExclusiveLocked

read

modify

release

modify

release

release

AppendLockedappend

relase

append

release

(a) DocLockState

Original

Duplicate

Split

Duplicate

Merge

Split

Merge

(b) DocCopyState

Fig. 5. State diagram of DocLockState and DocCopyState

We also introduce DocCopyState and DocLockState to model concurrent ac-
cess to a Document. The different values of DocLockState (ShareLocked, Exclu-
siveLocked and AppendLocked) and the permissible transitions between them
can be found in Fig. 5(a). The DocCopyStates are Duplicate (which means an
identical copy of the original) and Split which divides the DocFields into sep-
arate documents. ShareLocked means that the lock mode is shared between
multiple tasks, while ExclusiveLock mode can be held by only one task. Finally
AppendLock mode means that the task can attach (or append) data into the
document, but not change any existing data. Multiple access is allowed in this
mode. DocCopyState can be used to trace and monitor documents when several
copies are distributed in the workflow system. The two types of states are related;
however, in a manual workflow system or in an inter-organizational system, the
DocCopyState is needed in addition to the DocLockState to keep track of how
many copies of a physical document are in circulation.

Fig. 5(b) shows the state diagram of DocCopyState. If a document has to
be used by more than one task (say, in a manual system), copies must be made,
thus the document enters the Duplicate state. Once a task is done, its duplicate
copy must be destroyed to avoid inconsistency. A document can also be split,
for example, if an order is partially fulfilled, then the order can be divided into
two parts: the fulfilled part and the back order part. The former can be shipped
immediately and the latter will still remain in process. In this case, the split
documents require no merge. However, there are other situations in which merge
may be necessary. For example, if the customer asks for all items to be sent in
one shipment, then split documents (corresponding to individual item orders)
should be merged.

DocLockState and DocCopyState together play a key role in determining the
control flow. A parallel split is only feasible when the document supports certain
state combinations given in Table 2. For example, row 1 of this table shows that
if the DocCopyState is Duplicate and the DocLockState is ShareLocked, then



292 J. Wang and A. Kumar

Table 2. State combinations that support parallel split

DocCopyState DocLockState

Duplicate SharedLocked

Duplicate AppendLocked

Split SharedLocked

Split AppendLocked

Split ExclusiveLocked

it is possible to access the document simultaneously in parallel. However, if the
DocCopyState is Duplicate and the DocLockState is Exclusive then sharing is
not possible. Hence, there is no entry for this combination. On the other hand,
when the DocCopyState is Split, then all three lock states are permissible.

The impact of application data changes on documents can be very complex
and has not been fully studied. From a systems perspective, the application data
is dynamic and subject to change over time. Any time some application data
changes, all associated tasks may be triggered. For example, a customer may
change his shipping address after he submits the order. Then, the order form
may be changed depending on the order status and the seller’s business policy
(i.e. the order form will not be changed if the order has already been shipped;
otherwise, it can be changed).

EventAdapter

Constraint

EventListener EventAction

1..*

register

1..*
invoke

1..*

*

Fig. 6. EventAdapter and Constraint meta-model

Next, we turn to the EventAdapter and Constraint meta-model shown in
Fig. 6. All the workflow entities (e.g. process, task, resource, document) in a
document-driven workflow system communicate with each other through events.
Fig. 6 shows that the EventAdaptor registers itself with EventListener and re-
ceives specified events. If an event arrives and all the constraints are satisfied,
then an EventAdaptor performs one or more EventActions. An EventAction is a
set of SQL statements. A constraint is an SQL statement that returns a Boolean
value. For example, we may have a constraint that says that an order can only
be changed when it is open. The constraint for order #99 can be written in a
Transact-SQL [14] statement as:



A Framework for Document-Driven Workflow Systems 293

Exists(Select * from Orders Where ID= 99 and State=’open’)

If this constraint returns FALSE, the EventAdaptor will ignore the order
change event, and the corresponding action will not be executed. In general,
this constraint language is powerful because any kind of constraint that can be
expressed in SQL can be handled by this system. In the next section, we turn
to implement this framework.

4 Implementation

We implemented the document-driven workflow system using Transact-SQL on
Microsoft SQL Server 2000. We use triggers to enact the workflow system. The
framework presented in Fig. 3 is mapped into a RDBMS using the architecture
described in Fig. 7. It shows that when a database table is changed (through an
insert, update, or delete operation), a corresponding trigger is fired. This trigger
generates appropriate events and puts them into the event queue table. Then
the trigger associated with the event queue table sends new event messages to
event listeners and the listeners execute all the event adapters that registered
for these events. Finally, the event adapters update the associated tables and
start the next iteration. The architecture shown in Fig. 7 consists of two loops:
workflow layer loop and application layer loop. The workflow layer loop updates
the workflow tables (through the workflow event adapter) and the application
layer loop updates the application table (through the application event adapter).
There are two types of triggers shown in Fig. 7, the system triggers (i.e. work-
flow and event triggers) and application triggers. Both use the same underlying
technology. However, it is the user’s responsibility to supply application triggers,
event adapters and tables for the application layer.

Event Triggers

Workflow Tables

EventListeners

Application EventAdapters

Application Tables

Event Queue Table

Workflow layer loop Application layer loop

Workflow Triggers Application Triggers

Workflow EventAdapters

fire

send event

insert insert

update update

execute execute

fire fire

Fig. 7. Workflow system execution architecture in RDBMS



294 J. Wang and A. Kumar

Fig. 8. Workflow system entity schema

Fig. 8 shows the tables for entities presented in the document meta-model
arranged by the layers of the framework (the scheduling layer is not shown
because it was not implemented). The entities in the schema layer are Process,
Tasks, DocumentType and associated tables. The entities in the runtime layer
are: Case, Workitem, Document and associated tables. There are no entities at
the scheduling level. Finally, the entities at the application layer are: DataField
and DataFieldType. DataField also serves as a link between the workflow system
and the application data by mapping a document data field into a cell in the
application data tables. This is indicated by the TableName and ColumnName
attributes in the DataFieldType table, and the RowId in the DataField table.
Therefore, we can link application data back to the workflow system by looking
up these two tables. This is also how a clean separation between the workflow
system and the application is achieved.

Fig. 9 shows the mechanism that drives the workflow system and belongs to
the runtime layer. It shows the implementation of the architecture in Fig. 7. The
main entities are: Event, EventAdapter and EventListener. The EventAction
entity in the meta-model is implemented as an attribute (called CommandText)
in the EventAdapter table.

Fig. 10 shows the trigger used to fire events when new documents arrive.
The trigger is fired when a new record is inserted into table Document by the
workflow system. It first retrieves the new document context into the @docId
variable using the select query in line 10. Then it retrieves the corresponding



A Framework for Document-Driven Workflow Systems 295

Fig. 9. Workflow system event schema

Fig. 10. System trigger for new document arrival

event into the variable @eventType using the select query in lines 12-13. Then it
generates a new event and inserts it into the event queue (i.e. the Events table)
in lines 15-16.

Fig. 11 demonstrates another system trigger used to activate event adapters
when events arrive. A cursor is declared to retrieve all the event adapters regis-
tered to listen to this event in lines 11-16. Then a loop is used to execute each
entry in the cursor in lines 18-27. Each iteration through the loop will retrieve
the event action stored in the variable @commandText, and attach the case Id
to the event action as a part of the SQL statement stored in the new string
@commandText (line 22). Then this SQL statement is executed in line 24. It
should be noted that no application data or tables are directly touched in the
above system triggers.

The workflow designer has to supply a process definition file to load the pro-
cess into the workflow system. The process is defined in an XML file that includes
three sections: interfaces, documents and tasks. The interfaces section describes
the events and event adapters for the process repository. The documents and
tasks sections define all the documents and tasks related to the process. Fig. 12



296 J. Wang and A. Kumar

shows parts of an order process definition file. The top part of this file describes
the interfaces section. There can be multiple interfaces in this section. Each in-
terface consists of an event element and the associated eventAdapter element.
For example, the definition shows that the order Arrives event is an external
event and the event type is Order. The corresponding event adapter has an action
called dbo.wfEAOrderArrives. This event adapter looks for an external event of
type order in listen mode (as opposed to send mode). This interface defines the
event that triggers the process repository to instantiate the process into a case.
The actual code of instantiating the process is implemented in the adapter action
(e.g. dbo.wfEAOrderArrives). The constraints associated with each adapter can
also be defined as child elements of the eventAdapter element. Each constraint
has a name attribute and a constraintText attribute as shown in line 12.

Fig. 11. System trigger for new event arrival

The next section of the file describes an Order Form document. Two events
are associated with this document. When a new instance of this document is
created, it will generate the New Document event. When an existing instance
of this document is updated, it will generate the Document Updated event. A
document may also have other events such as Split and Duplicate as described
in the document meta-model.

The last section of the file describes a Receive Order task. A task has at
least three definition subsections: inputDocument, outputDocument, and even-
tAdapter. The inputDocument subsection specifies the input documents for a



A Framework for Document-Driven Workflow Systems 297

Fig. 12. Sample process description file

task (i.e. the Receive Order task requires an Order Form document as its input
document). In general, a task must have at least one input document. The out-
putDocument subsection defines the output of the task. There are three output
documents: Payment, Pickup List, and Shipping Advice. The last subsection is
eventAdapters, which describes all the eventAdapters for the task. A task has at



298 J. Wang and A. Kumar

least one eventAdapter that instantiates the task into a workitem. For example,
the eventAdapter waiting for a new document event of type Order (lines 44-45)
creates an instance for the task (e.g. workitem) when it receives such an event.
A task may have entryConstraints and exitConstraints which are not shown in
Fig. 12. An example of an entryConstraint could be some business rules such as:
if the shipping option is UPS ground, then the Receive Order will wait for one
day to instantiate.

In this section we have demonstrated that the framework proposed in Section
3 can be implemented entirely inside a database system using SQL. The general
methodology consists of the workflow designer creating a process definition file
such as the one in Fig. 12 (using a text editor), and loading it into the workflow
system. Then the application developer supplies the application triggers and
event adapters to operate on the application data. After that the system triggers
enable the execution of the process, and react to events from the application.

5 Discussion and Related Work

It is evident that researchers are realizing the importance of integrating data
flow (document) into workflow modeling as indicated by some recent work on
document-centric workflows [6,7,11,12]. These studies present useful concepts for
modeling aspects of documents; however, the role of document (and it’s more
general concept, resource) and the dependencies between documents are not
addressed. Therefore, it is unclear how documents can be integrated fully into
workflow systems in the design stage.

Flexibility is one of the most important issues in a workflow management sys-
tem. Different approaches such as structured processes [10], workflow patterns
[1], and Petri-Nets [2,3] offer varying degrees of flexibility. All these approaches
are based on control flow, and try to achieve better flexibility by using complex
flow structures built upon split, join, loop, and wait-for constructs [3]. However,
they cannot predict the upper boundary of the flexibility. In the document-driven
architecture, this upper boundary is obviously the dependency between docu-
ments. For example, a customer cannot start to eat unless the food is produced,
but whether the customer should pay before or after eating may vary from one
restaurant to another. Therefore, the food dependency is a hard dependency,
and the payment policy is a soft one. The document-driven design can easily
discover the hard dependencies and provides the upper boundary of flexibility.

This flexibility makes document-driven workflows especially suitable for ad
hoc workflow processes as opposed to production workflows. Voorhoeve and Aalst
[18] define an ad-hoc workflow as an intermediate between well-structured, high
volume production workflow and less-structured cooperative groupware systems.
They also note that traditional workflow management systems (mostly based on
control flow) could be error-prone when the processes require frequent changes.
As an example, document-driven workflows may work well for most maintenance
processes which have a few tasks and no strict control flow. There are two issues
here. On the one hand, verification of document driven workflow is easier than



A Framework for Document-Driven Workflow Systems 299

Table 3. Comparison between document-driven workflow and control flow workflow

Document-Driven Workflow Control Flow Workflow

Process is driven by the documents. Process is driven by the control flow.

The process is very flexible and can be
changed instantly by changing constraints.

The process is less flexible because of the limi-
tation of flow patterns. It is difficult to change
a control flow of an instance because all the
instances share the same control flow pattern.

There are no fork/join design issues since
there is no control flow.

Fork/join elements are used to describe con-
trol flow. The control flow may not be feasible
because resource dependencies are ignored.

Application Data is separated from the pro-
cess.

In most case, the application data are at-
tached to the control flow.

Suited for ad hoc workflows. Good for production workflows with mature
processes and a large number of tasks.

Verification is relatively easy. Verification could be hard.

Need conflict resolution in complex workflows. No need for conflict resolution.

Difficult to visualize the process. Process can be visualized easily.

for a control driven workflow. However, document driven workflows can lead
to multiple triggers being enabled simultaneously when a document is created
or updated. In this situation, it is necessary to use priorities with triggers in
order to choose between enabled triggers. Table 3 shows a detailed comparison
between document-driven and control flow methodologies.

A drawback of document-driven workflows is that they lack visualization
of processes since there is no explicit control flow. The lack of visualization
makes document-driven workflows unsuitable for modeling processes with a large
number of tasks. Besides, a control flow diagram is still needed to get the big
picture when designing the process.

Another advantage of our approach is that it produces a clean separation
of application data from workflow processes. The DataField and DataFieldType
tables with associated events and eventAdpaters act as a middle layer between
the workflow system and the application. Any changes on each side only require
the middle layer to be changed and will not affect the other side. This strict
separation of application data from the process can facilitate the implementa-
tion of inter-organizational processes because no control information needs to be
exchanged between organizations.

The use of triggers in workflow system has been discussed in the WIDE
project [8]. Triggers are used to capture events and handle exceptions in addi-
tion to the normal workflow which is designed as a control flow. However, our
study takes this approach one step further by the use of database triggers as
mechanisms to drive and enact the workflow system, and removing the need for
a workflow “engine”. As a result, the workflow system can be implemented en-
tirely inside the database. The concept of constraints has been studied in most
workflow systems and they are usually represented as ECA (Event-Condition-
Action) rules [13]. Finally, a State Entity Activity Model (SEAM) was developed



300 J. Wang and A. Kumar

by Bajaj and Ram [5] to model workflows at the conceptual level. While SEAM
provides a direct mapping between the SEAM models and RDBMS, it is unclear
whether SEAM could support complex workflows such as the ones in [1].

6 Conclusion and Future Research

We proposed a framework for document-driven workflow systems. In addition we
implemented this framework to demonstrate that it is feasible to build a work-
flow system entirely inside a RDBMS. The most important difference between
this approach and conventional workflows is that, in document-driven workflow
systems there is no predefined control flow. All the tasks are executed based on
the availability of their input documents and associated resources. Therefore,
the extra work of checking the correctness of control flow can be reduced. In
addition, the framework provides a simple way to find deadlock and dangling
tasks through the input/output documents analysis.

The prototype workflow system was implemented entirely in a RDBMS using
Transact-SQL. The enactment depends on various events fired by database trig-
gers. The RDBMS based workflow system can be embedded into any database
application easily.

The document-driven approach may not work well when a large number
of data changes occur concurrently. This may lead to concurrency and conflict
resolution issues. Moreover, as mentioned above, lack of visualization is also a
drawback. While this approach may not be appropriate in all environments,
we feel that for the most part it is especially suitable for ad hoc workflows. The
concept of a document-driven model can be extended into a more comprehensive
resource-based model by viewing documents as a type of resource along with
other resources such as people, machines, facilities and equipment. Information
about all these resources can be kept in a database, and tasks would be enabled
only when all the resources are available. Thus, the same approach presented
here can be easily extended to encompass multiple types of resources.

References

1. Aalst, W.M.P. van der: Workflow Patterns. http://is.tm.tue.nl/research/

patterns/.

2. Aalst,W.M.P. van der and Hee, K.van: Workflow Management: Models, Methods,
and Systems. The MIT Press, January,2002.

3. Aalst, W.M.P. van der, and Kumar, A.: XML-Based Schema Definition for Support
of Interorganizational Workflow. Information System Research, Vol. 14, No. 1,
March 2003, 23-46.

4. Bae, H., et al.: Document configuration control process captured in a workflow.
Computers in Industry, No. 53, 2004, 117-131.

5. Bajaj, A. and Ram, S.: SEAM: A state-entity-activity-model for a well-defined
workflow development methodology. Knowledge and Data Engineering, IEEE
Transactions on Volume 14, Issue 2, March-April 2002 Page(s):415 - 431.

http://is.tm.tue.nl/research/patterns/
http://is.tm.tue.nl/research/patterns/


A Framework for Document-Driven Workflow Systems 301

6. Botha, R.A., Eloff, J.H.P., 2001. Access control in document-centric workflow
systems–an agent-based approach. Computers and Security 20 (6), 525-532.

7. Paul Dourish, W. Keith Edwards, Anthony LaMarca, et al., Extending document
management systems with user-specific active properties. ACM Trans. Inf. Syst.
18(2): 140-170 (2000).

8. Grefen, P., et al.: Database Support for Workflow management - The WIDE
Project. Kluwer Academic Publishers, 1999.

9. Hollingsworth, D.: The Workflow Reference Model 10 Years On. http://www.wfmc.
org/standards/model.htm.

10. Kiepuszewski, B., Hofstede, A.H.M, and Bussler, C.: On Structured Workflow Mod-
eling. In Proceedings CAiSE’2000, LNCS Vol. 1797, Springer Verlag.

11. Krishnan, R., Munaga, L., and Karlapalem, K., 2002, ”XDoC-WFMS: A Frame-
work for Document Centric Workflow Management System,” Lecture Notes on
Computer Science, 2465, pp. 348-362.

12. Mazumdar, S. and AbuSafiya, M., 2004. A Document-Centric Approach to Busi-
ness Process Management. In Proc. Intl. Conf. on Information and Knowledge
Engineering, pages 461-466.

13. McCarthy, D.R. and Dayal, U.: The Architecture of an Active Database System. in
Proc. ACM SIGMOD Conf. on Management of Data, Portland, 1989, pp. 215-224.

14. Micorsoft Corporation: SQL Server Books Online:Transact-SQL Reference. 2000.
15. Muehlen, M. zur: Resource Modeling in Workflow Applications. http://

www.workflow-research.de/Publications/PDF/MIZU-WF99.PDF.
16. OASIS: Web Services Business Process Execution Language (WSBPEL).

http://www.oasis-open.org.,fig:Architecture
17. Scheer, A.W.: ARIS - Business Process Frameworks. 2ed, Springer, 1998.
18. Voorhoeve, M. and van der Aalst, W.: Ad-hoc workflow: Problems and solutions.

International Conference on Database and Expert Systems Applications - DEXA,
1997, p 36-40

19. WFMC: XML Processing Description Language (XPDL). http://www.wfmc.org/
standards/XPDL.htm.

20. Zlotkin, G.: Organizing Business Knowledge - The MIT Process Hand-book. Edited
by Malone, T.W., et al, The MIT Press, 2003, pp. 20.

http://www.wfmc.org/standards/model.htm
http://www.wfmc.org/standards/model.htm
http://www.workflow-research.de/Publications/PDF/MIZU-WF99.PDF
http://www.workflow-research.de/Publications/PDF/MIZU-WF99.PDF
http://www.oasis-open.org
http://www.wfmc.org/standards/XPDL.htm
http://www.wfmc.org/standards/XPDL.htm

	Introduction
	Motivation
	A Framework for Document-Driven Workflow Systems
	Implementation
	Discussion and Related Work
	Conclusion and Future Research

