
A FRAMEWORK FOR DYNAMIC KNOWLEDGE
EXCHANGE AMONG INTELLIGENT AGENTS

Authors

Yilmaz Cengeloglu, University of Central Florida,
Department of Electrical and Computer Engineering,

Orlando, FL, 32816, E-maih yil@engr.ucf.edu

Soheil Khajenoori, Assoc. Prof., Embry-Riddle Aeronautical University,
Department of Computer Science,

Daytona Beach, FL, 32114, E-mail: soheil@erau.db.erau.edu

Darrell Linton, Assoc. Prof., University of Central Florida,
Department of Electrical and Computer Engineering,

Orlando, FL, 32816, E-mail: dgl@engr.ucf.edu

ABSTRACT

An intelligent agent is an object with its own knowledge and
information base. F, ach intelligent agent acts in parallel with other
intelligent agents and cooperates with a selected set of other agents
to achieve a common set of goals. In a dynamic environment,
intelligent agents must be responsive to unanticipated conditions.
When such conditions occur, an agent may have to stop a
previously planned and scheduled course of actions and replan,
reschedulc, start new activities and initiate a new problem solving
process to successfully respond to the new conditions. Problems
occur when an intelligent agent does not have enough knowledge
to properly reslxmd to the new situation. A framework lbr dynamic
knowledge exchange among intelligent agents has been proposed
to allow an intelligent agent to react to knowledge deficiency.
Hence, using the prolx)sed framework new knowledge can be
transferred when an intelligent agent is unable to solve the
problem using its own knowledge. Once the knowledge has been
transferred, the intelligent agent can either keep the transferred
knowledge permanently or remove it after the transferred
knowledge has he, en used to re)lye the problem

1. INTRODUCTION

1.1. Distributed Problem Solving and Objective

A Distributed Problem Solving (DPS) system can
characterized as a group of individual agents running and
cooperating with other agents to solve a problem. As
dynamic domains such as air traffic controlling and
automated factories are continuing to grow in complexity, it
becomes more difficult to control the behavior of agents in
these domains where unexpected events can occur. In recent
years, there has been considerable growth of interest in the
design of intelligent agent architectures for dynamic and
unpredictable domains. Most of today’s intelligent agent
architectures are limited to performing pre-programmed or
human assisted tasks. In order to be more useful in complex
real world domains, agents need to be more robust and
flexible. Because of the limited knowledge resources agents

may have inadequate problem solving capabilities. They
need to learn how to respond promptly to unexpected events
while simultaneously carrying out their pre-programmed
task.

It is highly possible that an agent with a responsibility
in the dynamic environment faces unexpected events. In
order to be responsive, the agents should have enough
knowledge to deal with the unexpected events. If an agent
is not able to deal with a particular event on its own, it can
take the following actions :

1) Learn how to solve the problem by experimenting
with different solution strategies.

2) Let some other knowledgeable agent solve the
problem and then use the results.

3) Learn how to solve the particular problem by
acquiring the necessary knowledge from other
agents capable of solving the problem.

4) Ignore the unexpected event.

The objective of this research is to investigate and
recommend a framework to support distributed problem
solving for actions 2 and 3 listed above.

Unexpected Event z

Events

4

Events

OK. Send me the
result, After you

ioent solve it.

Figure 1. Allowing Another Agent To Solve The
Problem.

11

From: AAAI Technical Report FS-94-02. Compilation copyright © 1994, AAAI (www.aaai.org). All rights reserved.

Figure 1 illustrates problem solving by another agent
(i.e., action 2). There are circumstances when this approach
may not be efficient; examples may include, excessive data
transfer required to solve the problem or the agent may face
the same problem over and over again. Under these
circumstances, a better solution could be to learn from other
agent(s). Figure 2 illustrates how this process might work.

Unexpected 1
Eventx

Events ~o t~ke even~_.~r

I

Figure 2.

2~4

Events

o~.,~ ~nO,~ ~
think you Wltt face the I I
same problem again,

anti do not bug n~

Leaming and Teaching Between Intelligent
Agents

According to the proposed framework, each agent in the
system can learn (permanently or temporarily) how to deal
or handle an event for which previous knowledge was not
available. This is accomplished by allowing each agent to
transfer its knowledge to the other agents rather than solving
the problem on their behalf. These abilities play a very
important role in the real time distributed problem solving
systems because of the dynamic behavior of the
environment.

In this research, we address two impo "rtant issues :

1) How individual agents should be interconnected so
that their capacities are efficiently used and their
goals are aec~mplished effectively and efficiently.

2) How the knowledge transfer should take place
among agents to allow them to respond successfully
to unexpected situations.

1.2. An Overview of DPS Systems

A number of Distributed Problem Solving systems are
reported in the literature. Here we provide an overview of
some of these systems.

RT- 1 architecture [1] is a small-scale, coarse-grained,
distributed architecture based on the blackboard model. It
consists of a set of reasoning modules which share a
common blackboard data and communicate with each other
by "signaling events". The reasoning modules operate
asynchronously and run in parallel. Blackboard data, shared
by all reasoning modules and blackboard, is physically
distributed with each module in the distributed
multiprocessing environment. The class definitions of
various domain dependent object reside on the blackboard.
The blackboard also holds information about goals, plans,

status, current problem-solving strategy. This system is
implemented in LISP.

PRAIS (Parallel Real-Time Artificial Intelligence
Systems) [2] is an architecture for real-time artificial
intelligence system. It provides coarse-grained parallel
execution based upon a virtual global memory. PRAIS has
operating system extensions for fact handling and message
passing among multiple copies of CLIPS.

MARBLE (Multiple Accessed Rete blackboard linked
Experts) [3] is a system that provides parallel environment
for cooperating expert systems. Blackboard contains facts
related to the problem being solved and it is used for
communication among expert systems. Each expert shell in
the system keeps a copy of the blackboard in its own fact
base. Marble has been used to implement a multi-person
blackjack simulation.

AI Bus [4] is a software architecture and toolkit that
supports the construction of large-scale cooperating
systems. An agent is the fundamental entity in the AI bus
and communicates with other agents via message passing.
An agent has goals, plans, abilities and needs that other
agents used for cooperation. An agent can keep a list of
most recently used capabilities and interests of other agents.
Using the list, an agent can determine which agent can be
most useful to solve the current problem that the agent is
facing. Agents share a blackboard which is used to keep
information resulting from matching events and current and
past conditions.

The work by Raulefs, P. [5] attempts to solve problem
that is replaning and rescheduling when unanticipated
conditions occur while an agent is running, in blackboard
architecture. Knowledge sources are specified with
situations which consist of assertion about blackboard s t,~¢
and a description of the time period over which the assertt~t
holds. Situations are trigger conditions, preconditions, while
conditions, while effect, termination condition, abnormal
termination effect and post effect. This mechanism applied
to the real-time control of manufacturing cell using
blackboard architecture.

GBB (Generic Blackboard) [6,7] is toolkit for
developers needs to construct a high-performance
blackboard based applications. The focus in GBB is
increasing the efficiency of blackboard access, especially for
pattern-based retrieval. GBB consist of different subsytems :
a blackboard database development subsystem, control
shells, knowledge source representation languages and
graphic displays for monitoring and examining blackboard
and control components. GBB is an extension of Common
Lisp and CLOS (Common Lisp Object System). It allows
knowledge sources to be written in any language callable by
the developer’s Common Lisp Implementations. The
blackboard consists of hierarchical structure called spaces
and blackboard objects called units. The application
programmer can write its own control shell and integrate to

12

the GBB or can chc×~se a generic control supplied by GBB.
GBB has being developed for DVMT (Distributed vehicle
Monitoring Testbed) and currently is commercial product.

GEST (Generic Expert System Tool) [81 has been
developed by Georgia Tech Research Institute. The main
components of the GEST are the central blackboard data
structure, independent experts or knowledge sources and the
control mcxtule. The blacklx~ard data structure holds the
current state of the problem solving process. It is also
common communication pathway among knowledge
sources. Blackboard data structure holds frames, production
rules, facts, and procedures. The control module is a single
knowledge source, implemented as a GEST expert system.
Control has several tasks: l) It determines which knowledge
sources can contribute to the problem solving; 2) It is
responsible for checking trigger conditions; 3) It determines
knowledge sources that are most desirable to activate. Every
action in the GEST is time-stamped. This provides temporal
reasoning and backtracking reference point for hypothesis
generation and testing paradigms. Time-stamping also
allows what-if capability. GEST incorporates a number of
knowledge representation techniques and offers several
methods for handling uncertainty, a truth maintenance
facility, and tools for checking knowledge base consistency.
GEST has been implemented in LISP.

The work by Taylor, J.[91 is a framework for running
cooperating agents in a distributed environment. This
framework supports the Intelligent Computer Aided Design
System (ICADS) projects. The core of ICADS is connected
to the blackboard control system. Blackboard control system
has two main components; message handler and conflict
resolver. They are implemented as expert systems using
CLIPS shell. Multiple hierarchies of connections among
agents is supported by this framework.

MACE (Multi-Agent Computing Environment) [I0]
has been used to made lower-level parallelism and to build
higher-level distributed problem solving architecture. The
main components of MACE are agents. Agents in MACE
run in parallel, and communicate through messages. Agents
provide optional representation and reasoning capabilities.
There is no blackboard in the system, agents communicate
only via messages. Message can be sent to individual agent,
to group of agents, or all agents. Agent Description
¯ Language (ADL) is used for describing agents.

CAGE and POLIGON]111 have been developed at
Stanford University. They are two different frameworks for
concurrent problem solving. CAGE is a conventional
blackboard system which supports parallelism at knowledge
sources level. The knowledge source, the rules in the
knowledge source, or clauses in a rule can be executed in
parallel. CAGE is a shared memory multiprocessing system.
POLIGONs’ functionality is similar to CAGE. POLIGON
has been implemented using distributed memory
multiprocessing architecture whereas CAGE was

implemented using shared memory multiprocessing
architecture.

Hearsay-II [12,13,14] is a speech understanding system
developed at Carnegie-Mellon University. Hearsay-II
provides a framework that different knowledge sources
cooperate to solve a problem. Each knowledge source has
two major components: 1) preconditions that are used for
finding subset hypotheses and 2) action which is a program
for applying the knowledge to stimulus frame and making
changes to the blackboard. The blackboard is utilized as:
1) storage area for results generated by search process,
2) communication channel among knowledge sources, 3)
database for the system scheduler, and 4) storage area for
debugging results.

CASSANDRA architecture [15] is based on multi-level
blackboard architecture. The principal component of the
architecture is the level manager which is an independent,
autonomous unit in a system. Each level manager has a set
of knowledge sources, local controller, local database and
communication port. There is a communication channel
between each level manager which determines the
relationships among level managers. All communication
channels among level managers must be pre-defined.
Dynamic creation of communication channel is not
permitted, this prevents the level manager to set a
communication link to other level manager(s) at run time.
The basic communication model is asynchronous which is
sending data at irregular intervals, rather than at clocked
times. A communication channel can be either input or
output, bi-directional channel is not supported. Each level
manager can be connected to many level managers by
setting up a communication channel to other level
manager(s). Level managers can send and receive two types
of messages: Problem Solving Message which is solution of
the current problem and Control Solving Message which is
relevant to the control of the problem.

Control of traffic signals by a distributed processor is
proposed by N. V. Findler [16] for improving traffic flow.
In this research, each processor controls an intersection
using an expert system. Each expert system contains a
different knowledge base associated with the specific
intersection. Each processor communicates directly
with the four adjacent processors. The information
transmitted among processors could be raw data, processed
information or expert idea. Prototype system has been
implemented in LISP. A traffic simulator and traffic
scenario generator has been developed to test the system.

Significant work has been directed to develop
Knowledge Interchange Formats (KIF) and Knowledge
Query and Manipulation Languages (KQML) [17,18]
Stanford University. KIF is a computer-oriented language
for the interchange of knowledge among disparate programs
that is written by different programmers, at different times,
in different languages. KIF is not a language for the internal
representation of knowledge. When a program reads a

13

knowledge base in KIF, it converts the knowledge into its
own internal form. When the program needs to
communicate with another program, it maps its internal
data structures into KIF. KQML messages are similar to
KIF expressions. Each Messages in KQML is one piece of a
dialogue between the sender and receiver programs.

1.3. Problem Statement and Discussion

Artificial Intelligence approaches to real time
applications are becoming more attractive. An intelligent
agent operating in real time environment will find its
reasoning and other actions constrained by limitation of
time, information, and other critical resources. These agents
have to interact with dynamically changing and partially
unknown environments. Nonetheless, these agents must be
able to give respond to unanticipated changes and events
occurring in their operational environment. When
unexpected situations occurs, agents must know what
actions need to be taken. If the agents are not able to deal
with the unexpected situation, they should seek help from
other agents in the system to resolve the problem.

The review of current literature in distributed problem
solving reveals that most related systems or architectures
proposed are limited only to the exchange of problem
related facts among the knowledge sources (i.e., agents).

Knowledge exchange among intelligent agents should
be done in a manner such that: 1) it does not effect the
execution of either receiver or sender, and 2) an intelligent
agent should be able to keep the knowledge temporarily or
permanently. In other words, knowledge exchange among
agents should allow for a form of learning to be
accomplished.

In this research, we propose a framework based on
distributed blackboard model of problem solving which
allows for dynamic knowledge exchange among intelligent
agents. The distinguishing characteristic between this
framework and existing architectures is capability of
dynamic knowledge exchange among intelligent agents.
Under this framework, an intelligent agent is capable of
transferring knowledge to the other intelligent agents or
seeking help from other agents to solve a particular
problem that the agent is unable to solve using its own
knowledge. We have implemented a prototype system using
multiprocessing techniques and operating system facilities
on a computer system that has a single processor. Based on
the proposed framework, groups of agents run in parallel
and cooperate with each other to solve a problem. Each
agent can use different problem solving strategies. Most
importantly, agents can exchange knowledge (e.g, rules
facts, commands, etc.) dynamically without interrupting the
tasks that they are performing.

2. DESCRIPTION AND DISCUSSION OF THE
PROPOSED FRAMEWORK

2.1. Overall Architecture of The Framework

The overall architecture of the proposed framework is
based on the blackboard model of distributed problem
solving. Figure 3 shows the overall architecture of the
framework. The framework has four main components:

¯ Intelligent agents,

¯ Control,

¯ Main Blackboard.

World

Main Blackboard

CONTROL

Figure 3. A Communication Network Among Intelligent
Agents

An intelligent agent is any process that runs in parallel
with other process(es) and has the ability to use the
communication protocol to communicate and cooperate
with a selected set of other agents to achieve a common set
of goals. Intelligent agents can be distributed on different
computers, or be on a single computer using
multiprocessing techniques or a combination of both~ In
addition, processing ability of an intelligent agent can vary
from very simple functions to very complex behavior.
Intelligent agents have the ability to set up a
communication link to other intelligent agents or
applications. All agents use the blackboard for any form of
data transfer among them. The framework does not require
the agents to have one-to-one communication links except
under special circumstances, such as continuous data
transfer between two agents. Intelligent agents are able to
transfer facts, rules and commands dynamically.

Control is the core element of the framework. It
organizes the blackboard and broadcasts its content when
necessary. The main goal of control is to synchronize the
framework and handle the blackboard related requests.
Framework is synchronized only when changes occur on the
blackboard. When there is a different priority among the
intelligent agents, control handles the intelligent agents’
requests depending on the agent’s priority.

The blackboard is a data structure that can be shared by
all intelligent agents simultaneously. In the following

14

sections each component of the proposed framework is
explained in detail.

2.2 Intelligent Agent

An intelligent agent is an object with its own
knowledge and information base. An intelligent agent’s
information base is a structure holding facts and knowledge
about the part of the system for which that intelligent agent
is responsible. An information base is also known as a
blackboard.

An intelligent agent has a number of elements which
allow it to communicate with other agents to achieve its
goals. Figure 4 shows the internal elements of an intelligent
agent and their interrelationship. The Knowledge Source
provides intelligence to the agents, Reader receives data
from outside the agent and distributes the data to the other
elements of the agent, Sender transmits the internal data to
the outside world, and Local Blackboard holds a copy of
the main blackboard which contains facts and knowledge.

Input/output to Input from

An intelligent agent also has input/output
communication links to the world outside of the application
framework. This provides a mechanism to easily integrate
the agents with other systems or applications.

2.3. Control

The control process is the most important part of the
framework. The control organizes the blackboard and
broadcasts its content to the intelligent agents. Figure 5
shows internal component of the control process and their
inter relationships.

Request Queues

~nput/output

Main
Blackboard

Broadcast

Figure 4. Intelligent Agent

The knowledge source consists of a static knowledge
base, dynamic knowledge base, blackboard facts and local
facts. A static knowledge base contains rules that are not
changed during the program execution. Conversely, the
content of a dynamic knowledge base can be changed with
the execution of knowledge exchange process. A dynamic
knowledge base allows intelligent agents to exchange
knowledge when necessary; rules can be deleted and/or
inserted into the dynamic knowledge base at run time. This
process is termed dynamic knowledge exchange. Facts and
rules that need to be broadcasted must be placed by the
sender agent on the main system blackboard via the control
mechanism. This means under the proposed framework,
intelligent agents do not have one-to-one communication
links. Any message that needs to be broadcasted must be
placed on the main system blackboard.

Figure 5. Control

The Reader reads incoming requests from intelligent
agents. It handles the requests on a first-come first-served
basis. The Reader has different queues for different kinds
of requests such as command or blackboard access
requests. The Blackboard handler deals with only
blackboard related requests and updates the blackboard by
adding or deleting rules and facts to/from the blackboard.
The Read signal handler waits for a read signal from
intelligent agents to synchronize the framework. The
Command handler deals with the system related commands
such as clear blackboard or new intelligent agent has entered
the framework. The world input~output handler, deals with
external application programs input/output operations. The
Sender broadcasts the blackboard, and the Supervisor
always makes last decision about any request that control
has to deal with.

2.4 Blackboard

The blackboard is a data structure that holds
information and knowledge that intelligent agents use. The
blackboard is organized by the control component. The
blackboard has four different members as shown in Figure
6. These members are: 1) Blackboard name which holds

15

the name of the blackboard that is being used, this is
necessary if multiple blackboard are in use, 2) Blackboard
status which is a counter that is incremented after each
update of the blackboard, 3) Private message area which is
used by the control component to send system related
messages to the intelligent agents, 4) The knowledge area
which holds, rules, facts and commands that needs to be
broadcast to the intelligent agents.

CONTROL

main system blackboard and has only read access from the
message queues.

3.3. Intelligent Agents

An intelligent agent can be any application, such as an
expert system shell, that is able to use IPC facilities on the
SunOS operating system. In this prototype system, CLIPS
(C Language Production System) [20] was used
intelligent agents. CLIPS is an expert system shell which
uses a rule-based knowledge representation scheme. We
have extended the CLIPS shell by adding a set of functions
to provide the necessary capabilities to use IPC facilities.

Figure 6. Blackboard

3. A PROTOTYPE IMPLEMENTATION

3.1. Prototype System

Using the SunOS operating system multiprocessing
techniques and interprocess communication facilities (IPC),
we have developed a prototype system on a Sun platform to
demonstrate the concepts described.

In the following sections we provide an overview of the
prototype system followed by the discussion of each
component of the system. Figure 7 represents the overall
architecture of the prototype system. Shared memory has
been used to implement the system main blackboard to
broadcast messages from control to intelligent agents.
Message queues have been used to transfer messages from
the intelligent agents to the control. As described in the
previous sections, each intelligent agent and control has an
input/output port to the world outside of the application
framework to interface with the other processes outside of
their environment. These outside processes might be any
program that uses the application framework. In the
prototype system, intelligent agents and control use IPC
facilities to interface with the outside programs. [19]

3.2. Control

The control component of the system has been
implemented using the C programming language. It runs as
a separate process and communicates with the other
processes using 1PC facilities as described in the previous
sections. The control always has to be loaded first. Once the
control is loaded, it creates the three incoming control
message queues for the requests coming from the intelligent
agents and one shared memory to be used as the main
system blackboard. Fhe control has read/write access to the

Figure 7. Prototype of Framework

3.4. Fact Transfer Among Intelligent Agents

An intelligent agent can send fact(s) to an individual
intelligent agent or to all intelligent agents in the system.
Facts stay in the main blackboard until removed by the
sender agent or by other agent(s) that has/have the
permission to delete the fact.

3.5. Command Transfer Among Intelligent Agents

An intelligent agent can send command(s) to
individual intelligent agent or to all intelligent agents in the
system. Commands do not remain on the main blackboard,
the receiver agent executes the command immediately upon
its arrival. Commands are deleted by the receiver agent(s)
as soon as they are executed.

All CLIPS commands are ~up~o~ed by the prototyi~
system. Hence, an intelligent agent can modify the
knowledge of other agents via send,_ng the appropriate
command. Application programmer ,~honld he careful when
designing the system since it is possible to remove static
knowledge and local facts of the intelligent agent receiving
the commands.

16

3.6 Rule Transfer Among Intelligent Agents

An intelligent agent can send rule(s) to an individual
intelligent agent or to all intelligent agents in the system.
Rules stay on the main blackboard until removed by the
sender agent or other agent(s) that has the right permission
to delete the rule. CLIPS format should be followed to
represent rules.

3.7. Knowledge Transfer Among Intelligent Agents

Knowledge can be exchanged among intelligent agents
by using combination of facts, rules and commands
transfers. Different methodologies can be used for
knowledge transfer; knowledge can be exchanged among
intelligent agents in temporary or permanent bases.

4. CONCLUSIONS

The focus of this research is dynamic knowledge
exchange among intelligent agents. By introducing simple
communication protocols among intelligent agents, we have
introduced a framework through which intelligent agents
can exchange knowledge in a dynamic environment. Using
the proposed framework common knowledge can be
maintained by one intelligent agent and broadcasted to
the other agents when necessary.

Research related to the proposed system architecture
has been limited to the exchange of simple facts and goals
among intelligent agents. However, in order to successfully
respond to unexpected events in dynamic environments, it
is imperative to have the capability of dynamic knowledge
exchange among intelligent agents.

The framework proposed in this research extends the
current technology by allowing dynamic knowledge
exchange among intelligent agents. In a dynamic
environment, intelligent agents must be responsive to
unanticipated conditions. When such conditions occur, an
agent may be required to terminate previously planned and
scheduled courses of action, and replan, reschedule, start
new activities, and initiate a new problem solving process,
in order to successfully respond to the new conditions.
Problems occur when an intelligent agent does not have
sufficient knowledge to properly respond to the new
condition. The framework presented in this research would
allow an intelligent agent to react to any knowledge
deficiency. Using the proposed framework, new knowledge
can be transferred when an intelligent agent is unable to
solve the problem due to its limited knowledge. Once the
knowledge has been transferred, the intelligent agent can
either retain the transferred knowledge permanently or
remove this knowledge after the problem has been resolved.

Complex systems can be built using different
networking techniques. The proposed framework is based
on the blackboard model of distributed problem solving. As
presented in the literature review, current systems based on
a blackboard architecture only allow facts to be posted or

removed from the system main blackboard in a distributed
problem solving environment. In this research, the basic
blackboard architecture has been extended to allow transfer
of knowledge (i.e., rules) as well as facts, among the
intelligent agents.

We believe that dynamic knowledge exchange would
be an important feature for any application in which
unanticipated conditions or events occur. Using the
proposed dynamic knowledge exchange capability,
cooperative problem solving sessions can be initiated where
each agent can share its problem relevant knowledge with
other agents to resolve the problem. An obvious advantage
of this capability is the elimination of redundant knowledge
and hence the improved utilization of the system memory
capacity. In addition, by using this framework a form of
learning can take place and thus additional problem solving
knowledge is created.

A prototype system has been developed an a Sun
workstation platform in order to demonstrate the operational
aspects of the proposed framework. Interprocess
Communication Facilities (IPC) from the SunOS operating
system have been utilized to develop the system blackboard
as well as to implement the communication protocols which
allow interaction among intelligent agents.

The CLIPS expert system shell has been used to
represent intelligent agent(s) in the prototype system. The
functionality of CLIPS has been extended to support IPC
facilities as well as the proposed framework communication
protocols. In addition, new functions have been added to the
CLIPS environment to allow for dynamic insertion and/or
deletion of rules and facts into knowledge and fact bases.

Other possible areas of application for the proposed
framework include: Distributed Intelligent Simulation
(DIS), Robotics and Manufacturing (RM) and Intelligent
Simulation and Training (IST). In DIS applications, each
object in the simulation can be represented by an intelligent
agent. In this case an agent would encapsulate the
knowledge and behavior representing the real-world entity
in the domain. In RM applications, functions such as vision
and assembly/disassembly tasks can benefit from the
dynamic knowledge exchange capability to identify new
objects or perform new tasks without interruption. In IST
applications, training simulators have been networked using
protocols such as Distributed Interactive Simulation to
provide realism to the training function. In a war game
simulation exercise, entities such as officers and soldiers can
be modelled as intelligent agents. In this case, an intelligent
agent representing an officer can dynamically transfer
appropriate knowledge to each soldier according to each
soldier’s specific condition at the time.

17

REFERENCES

[1] Dodhiawala, R. T., Sridharan, N. S. and Picketing C. A
Real-Time Blackboard Architecture, Blackboard
Architectures and Applications. Academic Press, San
Diego, CA, 1989.

[2] Golstein, G. PRAIS: Distributed, Real-Time
Knowledge_Based Systems Made Eassy. Proceeding of
the First CLIPS User’s Group Conference, Houston,
TX, 1990.

[31 Myers, L. Johnson, C and Johnson, D. MARBLE: A
Systems for Executing Expert System in Parallel.
Proceeding of the First CLIPS User’s Group
Conference, Houston, TX, 1990.

[41 Schultz, R. D. and Stobie, I. C. Building Distributed
Rule-Based Systems Using the AI Bus. Proceeding of
the First CLIPS User’s Group Conference, Houston,
TX, 1990.

[51 Raulefs, P. lbward a Blackboard Architecture for
Real-Time Interactions with Dynamic Systems.
Blackboard Architectures and Applications. Academic
Press, San Diego, CA, 1989.

161 Corkiil, D. D., Gallagher K. Q, and murray, K. E.
GBB: A Generic Blackboard Development System,
Blackboard Systems. Addison Wesley, Reading, Mass,
1988.

[71 Gallagher K. Q. and Corkill, D. D. Performance
Aspects of GBB, Blackboard Architectures and
Applications. Academic Press, San Diego, CA, 1989.

[81 Gilmore, J. F., Roth, S. P. and Tynor S. D. A
Blackboard System for Distributed Problem Solving.
Blackboard Architectures and Applications. Academic
Press, San Diego, CA, 1989.

[9l Taylor, J. and Myers, L. Executing CLIPS Expert
Systems in a Distributed Environment. Proceeding of
the First CLIPS User’s Group Conference, Houston,
TX, 1990.

[101Gasser, L. Braganza, C. and Herman, N. MACE : A
Flexible Testbed for Distributed AI Research.
Distributed Artificial Intelligence, Morgon Kaufman
Publisher, 1987.

I 111 Rice, J., Aiello, N., and Nii, H. P. See How They Run,..
The Architecture and Performance of Two Concurrent
Blackboard Systems. Blackboard Systems. Addison
Wesley, Reading, Mass, 1988.

[12] Nii, H. P. Blackboard Systems: The Blackboard Model
of Problem Solving and the Evolution of Blackboard
Architectures, AI Magazine, Summer 1986, pp. 38-53.

[131 Nii, H. P. Blackboard Systems: Blackboard Application
Systems, Blackboard Systems from a Knowledge
l~ngineering Perspective. AI Magazine, August 1986,
pp. 82-106.

[14] Erman, L. D., Hayes-Roth, F., Lesser, R. V. and
Reddy, D. R. The Hearsay-H Speech-Understanding
System : Integrating Knowledge to Resolve
Uncertani~. Blackboard Systems. Addison Wesley,
Reading, Mass, 1988.

[15] Craig, I. D. The Cassandra Architecture: distributed
control in a blackboard system. Ellis Horwood
Limited, West Sussex, 1989.

[16] Findler, N. V. Distributed Control of Collaborating
and learning Expert Systems for Street Traffic Signals,
IFAC Symposium on Distributed Intelligence Systems,
Arlington, VA, 1991.

[171Genesereth, M.R., Fikes, R. E. Knowledge
Interchange Format Reference Menual, Stanford
University Logic Group, 1992.

[18] Genesereth, M.R., Ketchpel, S. P., Software Agents,
ACM Communication, July 1994, pp. 48-53.

[19] Cengeloglu, Y., Sidani, T. and Sidani, A. Inter/Intra
Communication in Intelligent Simulation and
Training Systems (ISTS). 14th Conference on
Computers and Industrial Engineering, Cocoa Beach,
March 1992.

[20] CLIPS Version 5.1 User’s Guide, NASA Lyndon B.
Johnson Space Center, Software Technology Branch,
Houston, TX, 1991

18

