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Abstract Embedded system design is one of the most chal-
lenging tasks in VLSI CAD because of the vast amount of
system parameters to fix and the great variety of constraints to
meet. In this paper we focus on the constraint of low energy
dissipation, an indispensable peculiarity of embedded mo-
bile computing systems. We present the first comprehensive
framework that simultaneously evaluates the tradeoffs of en-
ergy dissipations of software and hardware such as caches and
main memory. Unlike previous work in low power research
which focused only on software or hardware, our framework
optimizes system parameters to minimize energy dissipation
of the overall system. The trade-off between system perfor-
mance and energy dissipation is also explored. Experimental
results show that our Avalanche framework can drastically
reduce system energy dissipation.

1 Introduction
The design of embedded systems is a challenging task for

today’s VLSI CAD environments. As opposed to a general
purpose computing system, an embedded system performs
just one particular application that is known a priori. There-
fore, the system can be designed with respect to the partic-
ular application to have lower cost, higher performance, or
be more energy-efficient. Energy efficiency is a hot topic
in embedded system design. As mobile computing systems
(e.g. cellular phones, laptop computers, video cams, etc.) be-
come more popular, how to length the battery life of these
systems becomes a critical issue.

From the design process point of view, many of the em-
bedded systems can be integrated on just one chip (systems
on a chip) using core based design techniques. Previous
work in core-based system design has mainly focused on
performance and cost constraints. Some recent work has
been presented in co-synthesis for low power [1, 2]. How-
ever, the trade-off in energy dissipation among software 1,
memory and hardware has not yet been explored. This is
a challenging and indispensable task for the design of low
power embedded systems. Consider for example, that the
use of a bigger cache can reduce the number of cache misses
and speed up the software execution, which may cause less
energy dissipation on the processor. On the other hand, a
larger cache size also causes bigger switching capacitance
for cache accesses and therefore increases the cache energy
dissipation per access.

In this paper we present our framework Avalanche, the
first framework that explores the design space of hard-
ware/software systems in terms of overall system energy dis-
sipation. Since embedded system design usually has multiple
constraints such as performance and power, our framework

1We use the term software energy dissipation for the energy that is dissipated within
a processor core. Permission to make digital/hard copy of all or part of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for profit
or commercial advantage, the copyright notice, the title of the publication and its date
appear, and notice is given that copying is by permission of ACM, Inc. To copy
otherwise, to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
DAC 98 (c)1998 ACM 1-58113-049-x/98/06 $3.50
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Figure 1: Target architecture of an embedded system

evaluates performance as well and optimizes for the best
energy-performance trade-off.

This paper is structured as follows: Sec.2 reviews some
of the related work in energy estimation and optimization for
embedded systems. Sec.3 describes our model for embedded
system energy dissipation. In Sec.4 we present our approach
for energy dissipation optimization under timing constraints,
and energy and performance trade-off optimization. Experi-
mental results are presented in Sec.5.

2 Related Research
Energy estimation and optimization has been studied for

both software and hardware. Tiwari and Malik [3] inves-
tigated the energy dissipation during the execution of pro-
grams running on different processor cores. Ong and Ynn
[4] showed that the energy dissipation may drastically vary
depending on the algorithms running on a dedicated hard-
ware. A power and performance simulation tool for a RISC
design has been developed by Sato et al. [5]. Their tool can
be used to conduct architecture-level optimizations.

Further work deals with energy dissipation from a hard-
ware point of view. Gonzales and Horowitz [6] explored
the energy dissipation of different processor architectures
(pipelined, un-pipelined, super-scalar). Kamble and Ghose
[7] analyzed cache energy consumption. Itoh et al. studied
SRAM and DRAM energy dissipation and low power RAM
design techniques [14]. Panda et al [8] presented a strategy
for exploring on-chip memory architecture in embedded sys-
tems with respect to performance only. Optimizing energy
dissipation by means of high-level transformations has been
addressed by Potkonjak et al. [9].

While estimating or optimizing power, these previous
work only focuses on one component of the system at a time.
A comprehensive approach that takes into consideration the
mutual impacts of software and hardware in terms of en-
ergy dissipation — as it is actually the case in an embedded
hardware/software system — has not been addressed so far.

3 System Model and Design Flow
In this section we present our energy estimation model of

an embedded system–on–a–chip. It is based on an architec-
ture template shown in Fig.1, which comprises a processor



core, an instruction cache, a data cache, a main memory,
and a custom hardware part (ASICs). We assume that hard-
ware/software partitioning has already been performed and
the custom hardware is fixed, therefore it adds a constant
amount of energy to our model. During the design space
exploration, we change the software and the cache/memory
part, by performing high–level transformations on software
and changing the cache and/or main memory parameters.
When either of these components changes, the energy dissi-
pation of other components is influenced and so is the overall
system energy.
3.1 Analytical Cache Memory Model

We deploy a cache energy model based on transistor-
level analysis. The model consists of an input decoder, a tag
array and a data array. Attached to the tag array are column
multiplexers whereas data output drivers are attached to the
data array. A SRAM cell in data and tag array comprises
six CMOS transistors. The switching capacitances in the
equations derived below, are obtained by the tool cacti [10].

Only the energy portions in the bit lines for read and write
(Ebit;rd and Ebit;wr), in the word lines (Eword;rd=wr), in the
decoder (Edec) and in the output drivers (Eod) contribute
essentially to the total energy. The according effective ca-
pacitances are:

Cbit;rd = Nbitl �Nrows � (CSRAM;pr + CSRAM;rd)

+Ncols �Cpr logic (1)

where CSRAM;pr, CSRAM;rd and Cpr logic are the capac-
itances of the SRAM cell affected by precharging and dis-
charging and the capacitance of the precharge logic itself,
respectively. Nrows is the number of rows (number of sets)
in the cache. The number of bit lines is given by Nbitl:

Nbitl = (T �m + St + 8 �L �m) � 2

Ncols = m � (8 � L + T + St)

where m means a m–way set associative cache, L is the line
size in bytes, T is the number of tag bits and St is the number
of status bits in a block frame. Cbit;wr is defined in a similar
manner as Cbit;rd.

The effective wordline capacitance is given by:

Cword = Ncols �Cword;gate (2)

where Cword;gate is the sum of the two gate capacitances
of the transmission gates in the 6–transistor SRAM cell. For
simplification, we do not include the equations for Cdec and
Cod here. Apparently, the switched capacitance is directly
related to the cache parameters (Eq. 2).

Finally, the total energy dissipated within the cache (i-
cache or d-cache) during the execution of a software program
is related to the number of total cache accesses Nacc, as well
as the number of hits and misses for cache reads and writes:

Ec = 0:5 � V 2
DD(Nacc �Cbit;rd + Nacc �Cword

+a �Cbit;wr + b �Cdec + c �Cod) (3)

where a, b and c are complex expressions that depend on
read/write accesses and, in parts on statistical assumptions.
a�Cbit;write, b�Cdec and c�Cod

2 are the effective capacitances
to switch when writing one bit, during decoding of an access
and during output, respectively.

The implemented cache model has a very high accuracy
(compared to the real hardware) since every switching tran-
sistor within the cache has been taken into consideration

2The capacitances of the output drivers are derived for an on-chip cache implemen-
tation i.e. we assume that all resources like processor, cache and main memory are
implemented on just one chip.

(even if this is not transparent through our equations because
of the simplification). All the capacitances are obtained by
running cacti [10] and are derived for a 0:8�m CMOS tech-
nology. The calculation of the capacitances within cacti has
been proofed against a Spice simulation.

3.2 Main Memory Energy Model
For energy analysis of the main memory, we use the

model for DRAM described by Itoh, et al: [14]. The en-
ergy source for DRAM mainly includes: the RAM array, the
column decoder, the row decoder and peripherals.

Ia = m � iact +m(n� 1) � ihld +m � idec + n � idec + Iperi (4)

Eq.4 shows the current drawn during each memory access.
Note that during each access, m cells are selected. m � iact is
the active current of the m selected cells. m(n � 1) � ihld is
the data retention current of the m � (n� 1) cells that are not
selected. m�idec andn�idec are the currents drawn on column
and row decoder, respectively. Iperi represents the current
on peripheral circuits. The equations show that energy dis-
sipation of each memory access is directly related to the size
of the memory. For the total energy dissipation, iactive is the
dominating component. At high clock frequencies, ihld is
negligible [14].

3.3 Software Energy and Performance Model
For software energy estimation we deploy a behavioral

simulator ([16]) that we enhanced by values of the current
drawn during the execution of an instruction. Those current
values are obtained from [12]. The total SW program energy
is:

Eprg = Tw c � VDD �

N�1X
i=0

(Iinstr;i �Ncyc;i) +

Tcyc � VDD � (Nmiss;rd �Ncyc;rd pen � Iinstr;nop| {z }
data write miss penalty

+

Nmiss;wr �Ncyc;wr pen � Iinstr;nop| {z }
data write miss penalty

+

Nmiss;fetch �Ncyc;fet pen � Iinstr;nop| {z }
instruction fetch miss penalty

) (5)

where VDD is the voltage supply, Iinstr is the current that is
drawn during the execution of instruction i at the processor
pins, Ncyc;i is the number of cycles the instruction needs
for execution and N is the total number of instructions of
the program. Tw c is the execution time of the application
assumed that there is a cache as specified.

The three additional portions within the brackets refer to
the energy dissipated in the penalty cycles when occurs a data
cache write miss, a data read miss and an instruction fetch
miss, respectively. We assume that the energy dissipated
within processor is negligible after the program has been
executed (through gated clock).

Let Tw=o c be the execution time of a program running
on the processor core (simulated by a behavior compiler)
without cache, the corrected execution time (i.e. including
cache behavior) is estimated by:

Tw c = Tw=o c + Tcyc � (Nmiss;rd �Ncyc;rd pen +Nmiss;wr �

Ncyc;wr pen + Nmiss;fet �Ncyc;fet pen) (6)

2
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Figure 2: Design flow of the estimation part of our Avalanche framework

3.4 Design Flow of Our Framework
Using the above energy models and timing models, the

estimation design flow (the energy optimization part is not
shown) of our framework is shown in Fig.2. The input is
an application program. It is fed into a behavioral model of
the target processor that simulates the program and delivers a
program trace to the software energy model and the software
performance model. At the mean time, the input program
is also fed into the memory trace profiler QPT [13] which
generates the memory access trace to be used by Dinero[13].
Dinero provides the number of demand fetches and demand
misses (for data and instructions). These numbers are then
used: by the software performance model to get the total
execution time with cache miss penalty considered (Eq.6);
by the software energy model to adjust the software energy
with the stalls caused by cache misses (Eq.5); and by the
cache and main memory energy models (Eq.3 and Eq.4) to
calculate the energy dissipation by the memory components
based on the actual number of instruction/datacache accesses
and main memory accesses.

4 System-level Energy Optimization
To optimize the system energy, we explore the design

space in the dimensions of software and cache/memory.
As mentioned in Sec.3, our framework assumes that the
hardware (ASIC) is fixed. It changes the software by per-
forming various high-level transformations. It changes the
cache/main memory by modifying their parameters such as
size, associativity, etc. When one component (software,
cache or memory) changes, it not only affects the energy
consumption of itself, but also that of other components in
the system; it not only affects the power, but also the perfor-
mance. The interesting aspect is that the change of overall
system energy and performance can not be easily predicted
unless comprehensive system analysis is performed. We
now discuss some scenarios of software and cache/memory
changes and their possible impacts on energy and perfor-
mance:

� Software transformation: suppose a transformation
can be performed on the software to lower the software
energy. However, this transformation may change the
cache/main memory access pattern and result in am-
biguous changes of the caches or main memory energy
and the performance. In some cases, software trans-
formations may increase the code size so that a larger
main memory is required to accommodate the new
program; therefore, the energy of each memory access
increases.

� Cache: when a larger instruction and/or data cache
is used, in general, there are less cache misses and
the system performance is improved. The software
energy decreases because less cache misses imply less
main memory access penalties. The energy of the
main memory is decreasing because of less accesses.
However, the energy dissipated by the caches increases
due to its increased size, and the system energy change
is ambiguous.

test1(...) test2()
{ ... ... { ... ... }
test2(); /*call 3*/
... ... }

main()
{ int i, j;
... ...
for (i=0; i<100; i++) { /* loop 1 */

test1(...); /* A */
for(j=0; i<100; j++) /* loop 2 */

test1(...); /* B */
}
... ... }

Figure 3: Program example for software transformations.
� Main memory: When a bigger main memory is used,

the energy dissipation of the main memory increases
because of its larger size (Eq. 4), but the energy of
other parts is usually not affected.

4.1 Software Transformation and Energy
Many source-level transformations have been proposed

for the purpose of improving performance. However, they
may have some side-effects other than performance improve-
ment, such as a bigger main memory requirement due to in-
creased code size. This will lead to larger energy dissipation
due to larger capacitances to switch for each access. Here
we have a brief look at some of the commonly used transfor-
mation techniques and analyze their impacts on energy and
performance.

Procedure calls are costly in most architectures. Proce-
dure in-lining can help improve performance and save soft-
ware energy by eliminating the overhead associated with
calls and returns. For example, suppose we have a SPARC
architecture that features up to 8 register windows. For each
new procedure call a new window is required and released
after the return from the procedure. However, if the depth
of procedure calls (i.e. a consecutive number of calls without
returns) exceeds the available number of register windows,
an interrupt is released for the operating system to process the
spilling of register contents to the main memory. This is time
consuming. A side effect of in-lining is the increased code
size, especially when the procedure is called from different
points within the program.

Loop unrolling is another transformation technique. It
can help to increase the instruction level parallelism and elim-
inate control overhead. Similar to procedure in-lining, it also
results in code size increase. Another possible impact is that
an unrolled loop may no longer fit in the instruction cache
so that it possibly will be slowed down. Other techniques
include software pipelining, recursion elimination, loop op-
timization, etc. [15], whose impacts on both the software and
cache/memory accesses may make it hard to judge the change
of the overall system energy dissipation.

4.2 Software Transformation Selection Algorithm
When a designer is concerned about both performance

and power, a sophisticated approach is mandatory to choose
which transformations to perform, and in what order. In order
to find the combination and sequences of transformations that
yield the most energy savings under memory size constraints,
we designed a transformation-selection algorithm. Given a

3
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set of available transformations techniques, the algorithm
needs to:

1. identify which transformations can be applied and
where, and evaluate these choices of transformations.

2. choose the combination and the order of the trans-
formations that obtain the best energy improvement
without violating a memory size limit.

Currently, we have implemented procedure in-lining
and loop unrolling using SUIF [11]. However, our
transformation-selection algorithm is applicable to general
types of transformations as long as their particular character-
istics are defined (see later). The algorithm is independent of
the transformations themselves.

In the first step of the algorithm, to evaluate the impacts of
the transformations, we developed some heuristic measures
to characterize the estimated-energy-saving (EES) and code
size increase (CSI) incurred by these transformations. EES is
the estimated energy improvement while performing a certain
transformation. Fig.3 shows a code segment that contains
two loops and three procedure calls. The EES for inlining
the procedure test1 at location A is 100 times the base EES
of inlining test1. At location B, EES is 10,000 times the base
EES. Similar considerations apply to loop unrolling.

To identify the calling relationships, a procedure calling
graph is constructed (Fig.4) for each program. In the calling
graph, a node represents a procedure and a directed edge rep-
resents a procedure call. Multiple edges between nodes may
exist, reflecting that a procedure can be called from different
locations. The edges have been assigned the attributes EES
and CSI. Since our algorithm does not support recursion, the
procedure calling graph is acyclic. After inlining has been
applied, the edge corresponding to the call is removed. For
loop unrolling, a similar graph is created, in which a node
represents a loop, an edge indicates one loop is nested in
another. However, unlike the procedure calling graph, the
nodes are labeled instead of the edges because the nodes are
where the transformations are applied to.

Note that the possible transformations are not indepen-
dent of each other. For the example in Fig.3: if loop 1 is
unrolled, 100 new instances of test1 calls will be generated
and new calling edges in the procedure calling graph need
to be added. It is important for the algorithm to not only
choose the best combination of the transformations, but also
the right order.

In the second step, the algorithm, 1) prioritizes all possi-
ble transformations according to a heuristic measure — the
EES=CSI ratio; 2) a probability is assigned to each trans-
formation according to its priority value; 3) in each trans-
formation step, randomly select a transformation based on
the probabilities, perform the transformation, and update the
procedure and loop graphs; 4) repeat 3) until the memory
limit is reached. This algorithm is called repeatedly by the
system-level energy optimization algorithm (Sec.4.3).

Inputs: source_software, design_goal;
Variable: solution_pool, current_sw, new_sw,

current_design, new_design, tmp_design;
1. Static analysis of program:
2. identify all possible transformations;
3. construct procedure graphs / loop graphs;
4. generate possible cache / memory sizes;
5. Energy optimization:
6. for each memory size m_size {
7. current_sw = source_sw;
8. current_design = best design with

current_sw from solution_pool;
9. do{
10. new_sw = transformation_select

(current_sw, m_size);
11. new_design = (new_sw,0,0,m_size);
12. A=set of i_cache/d_cache sizes for new_sw;
13. for each (dcache, icache) in A {
14. tmp_design = (new_sw,d_cache,

i_cache,m_size);
15. new_design = choose one by design_goal

(tmp_design, new_design);
16. }
17. if new_design better than current_design{
18. save new_design in solution_pool;
19. current_sw = new_sw;

current_design= new_design; }
20. else continue;
21. } while( !stop_condition)
22. }
23. output: designs from solution_pool

that satisfies design_goal.

Figure 5: System-level energy optimization algorithm.

4.3 System-Level Energy Optimization Algorithm
We now formally define the problem of our system-level

energy optimization algorithm. We assume that:
1. Hardware/software partitioninghas already been done and
application specific hardware is synthesized and therefore
fixed.
2. A processor has been chosen.
3. We are given an initial version of the software.
4. The user specifies one optimization goal. The algorithm
is designed for minimizing energy. However, as power is
usually not the sole concern in the design process, we allow
three different optimization goals:

� Goal I: minimized power.
� Goal II: minimized power under performance con-

straints.
� Goal III: multiple objective optimization

Goal III is to find a set of solutions within performance
and energy constraints. This will provide important trade-
off information to the designer. The designer can review
different design options and choose the most suitable one.
For example, there are two designs A and B, with design A
being 20% faster than design B, but Design B consuming just
1% less energy. They both meet the performance constraints.
Goal I and II will discard A, although it might be a better
choice for the designer.

The algorithm returns the optimized new system config-
uration of the target system architecture (Fig.1): the trans-
formed program, the data cache and instruction cache sizes
and other parameters, and the main memory size. The energy
dissipation of each component and the performance is also
delivered. For Goal-III, a set of designs is returned, with per-
centage data indicating energy and performance difference
between two designs adjacent in terms of energy dissipation.

Fig.5 shows the pseudo-code for the optimization algo-
rithm. It consists of two main steps:

1. Static analysis of the application program (lines
1-4), includes

� generating the procedure calling graph and loop
graph, as described in Sec.4.2, and

� generating the set of feasible cache and mem-
ory sizes and configurations based on the current
version of the program.
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Figure 6: Energy and execution time vs. instruction/data cache size, for
applications MPEG, bsort and ismooth.

2. Optimization step (lines 6-23): choose the design,
i.e. set of transformations and the cache and memory
parameters, to meet the constraints and optimization
goal.

In the algorithm, we limit the maximum memory size
to four times of the original memory size (of the original,
not transformed software program) because as shown by our
experiments, the energy overhead of a very large memory
usually out-weighs the energy saving provided by software
transformations. We generate a set of designs for each possi-
ble memory size (lines 6-22), and select design(s) that meet
the design goal (I, II or III) in line 23. A design is represented
as a quadruple of software, instruction cache, data cache and
main memory.

To construct designs for a certain memory size, we per-
form software transformations using the algorithm described
in Sec. 4.2 (line 10), and then decide the subset of feasible
instruction/data caches for the transformed software (lines
11-12). The best instruction/data caches are chosen based
on the designer’s goal (line 13-16). The transformed soft-
ware, the best suited cache sizes and parameters and the new
memory size makes up a new design.

If the new design has a better quality than the previous
one, then it is saved in a solution pool (line 17-19) and will
be used in the next iteration. Otherwise, the transformation
is discarded (line 20) and a new transformation is performed
on the previous version of the software. The process is
repeated until a stop criteria is met (line 21): there is no
improvement in a given number of consecutive iterations, or
the total number of iterations reaches a preset limit.

An important issue in the algorithm is evaluating the qual-
ity of two designs. The evaluation depends on the design
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goal: for minimizing energy (Goal I), energy is the sole stan-
dard; for minimized energy under a performance constraints
(Goal II), the performance constraint is to be met first then
energy is considered; for Goal III, for designs falling within
energy and performance constraints, we use the Pareto op-
timality measure to discard solutions that are both higher in
energy and slower in performance. Note the energy and per-
formance data are obtained using the models described in
Sec.3.

5 Experiments and Results
As will be shown in this section, our framework can

be deployed to support a system designer through a design
space exploration or for automated optimization according
to the designers goals (energy, performance). We used data-
dominated applications (including an MPEG encoder con-
sisting of about 200kB of C source code), in which caches
and memory play a key role in energy and performance.
5.1 Design space explorations

Since the variety of system parameters to choose is very
large, we fixed all parameters except for the sizes of data
cache and instruction cache. Each application in Fig.6 has
been dedicated two figures showing the total energy dissipa-
tion of the whole system (left) and the number of clock cycles
to perform that application on our target architecture (right).
The varied parameters in each figure are the data cache size
(left axis) and the instruction cache size right axis). A num-
ber of 12 for example means a cache size of 4K (= 212) byte.
Figures a) and b) show the results of the MPEG encoder.
Here, both large and small cache sizes lead to a high system
energy dissipation. In case of large caches, the caches’ energy
dominates the system energy; while in case of smaller cache
sizes, the software energy is dominating — from Eq.5, large
number of cache misses (due to small caches) result in poor
performance and large energy consumed in the miss penalty
cycles. The right figure shows in fact that the program execu-
tion time raises drastically for small instruction cache sizes
(< 1024 byte). Remarkably, the least energy consuming
configuration (data cache size and instruction cache size 4k
each) is also one of those with the highest performance (i.e.
small number of clock cycles). This is a behavior that would
possibly not be expected (and is not the case for the other
applications). In addition, Fig.7 reveals the contribution (in
percent) of each component to whole system energy dissi-
pation (i.e. software program, caches, main memory). In
that figure, the data cache size has been fixed whereas the
instruction cache size varies.

The experiments conducted with the bsort ( c) and d) )
application (bubble sort) show mainly that there is almost no
dependency on data cache size in terms of system energy dis-
sipation and system performance. More dependencies can be
observed by changing the instruction cache size. Obviously,
a large instruction cache size leads to a large system energy

5



appl. objective
orig. architecture

optim
w/o fixed arch.
cache cache Goal I

energy [J] 0.33 0.30 23.21E-3
energy improv. [%] n/a -9.09 -93.21
time [# cyc�106] 19.4 17.6 1.4

bsort

exec. improv. [%] n/a -9.52 -92.98
energy [J] 0.31 0.28 19.41E-3
energy improv. [%] n/a -9.68 -93.73
time [# cyc�106] 17.9 16.5 1,186.8

eg2

exec. improv. [%] n/a -8.34 -93.39
energy [J] 1.03 0.96 67.411E-3
energy improv. [%] n/a -6.80 -93.45
time [# cyc�106] 60.1 56.2 3.9

ismooth

exec. improv. [%] n/a -6.60 -93.46
energy [J] 2.97 2.78 186.01E-3
energy improv. [%] n/a -6.40 -93.73
time [# cyc�106] 173.8 162.5 8.8

itimp

exec. improv. [%] n/a -6.50 -94.91

Table 1: Optimization of architecture through GOAL I compared to original
architecture (no cache) and an achitecture with non–optimized cache size

dissipation also. But as opposed to the MPEG encoder, a
small instruction cache size does not lead to a larger system
energy dissipation as a consequence of a larger program ex-
ecution time. Rather than that, the performance decreases
(more cycles due to the mid-right figure on page 6).

An additional different behavior is shown by the appli-
cation ismooth, ( e) f) ) an image smoothing application. As
could be observed, the behavior of a system in terms of en-
ergy and performance is hard to predict and therefore needs
powerful tools for analyzing and optimizing.

5.2 Optimizing system-level energy dissipation
In Sec.4.3 we have presented our algorithms for three dif-

ferent design goals. For all following experiments we have
chosen the clock cycle time to 30ns. The behavior simula-
tion tool for evaluating software performance is a SPARC
simulator [16]. The same conventions were used for the ex-
periments in Sec.5.1. All other system parameters are subject
to change through the optimization process.

Table.1 shows the results for Goal I compared to two
original architectures called w/o cache (no cache) and the
architecture called fixed cache (a small standard cache; same
size for i-cache and d-cache). For all applications, system
energy dissipation (Joule) and execution time (number of
clock cycles) is given. Additionally, the relative improve-
ment (value�valueref )=valueref �100 for both objectives
is given. Apparently, a negative percentage number means
an improvement.

As shown in Table.1, Goal I yields remarkable improve-
ments in energy and performance. The "fixed cache" archi-
tecture is somewhere between "w/o cache" and the optimized
architecture. As investigations have shown, in parts, the dras-
tic improvements in performance are due to the architecture:
we assume a cache miss penalty of 20 clock cycles, which
is a quite typical value. The contribution of software trans-
formation techniques solely (as described in section 4.1) to
energy and performance improvements varies in most of the
shown cases between 5% and 10%.

Table.2 shows the results yielded with our algorithms for
improving energy dissipation under performance constraints
(Goal II and a multiple objective optimization Goal III). In
the latter case, the designer is provided with a set of different
solutions where he can choose from since design constraints
are not completely defined every time. The algorithm for
Goal II is searching the design space around a given perfor-
mance constraints i.e. it searches for design configurations

appl. objective w/o optimized architecture
cache GOAL II GOAL III

energy [J] 0.33E-3 22.4E-3 0.27 0.24 0.21
e-improv. [%] n/a -93.2 -17.6 -26.8 -36.1
time [# cyc�106] 19.4 1.4 15.9 14.1 12.3

bsort

t-improv. [%] n/a -93.0 -18.4 -27.5 -36.8
energy [J] 0.31 19.4E-3 0.25 0.23 -
e-improv. [%] n/a -93.7 -18.2 -24.8 -
time [# cyc�106] 18.0 1.2 14.8 13.6 -

eg2

t-improv. [%] n/a -93.4 -17.6 -24.3 -
energy [J] 1.03 67.4E-3 0.10 0.72 0.48
e-improv. [%] n/a -93.4 -90.1 -29.8 -53.5
time [# cyc�106] 60.1 3.9 3.6 42.1 28.0

ismooth

t-improv. [%] n/a -93.5 -94.0 -30.0 -53.5
energy [J] 2.97 0.19 2.4 2.2 -
e-improv. [%] n/a -93.7 -19.9 -25.3 -
time [# cyc�106] 173.8 8.8 139.1 129.5 -

itimp

t-improv. [%] n/a -94.9 -20.0 -25.5 -

Table 2: Optimization of architecture through GOAL II and GOAL III com-
pared to original architecture that has no cache

with minimum energy dissipation while not exceeding the
budget of clock cycles to execute. Here also, large improve-
ments could be yielded as shown in Table.2.

The computation time for determining one design point
(fixed system parameters) is in the range of 3-5 minutes. A
whole optimization run is between 2 and 10 hours on an Ultra
Sparc.

6 Conclusions
We have presented our Avalanche framework for esti-

mating and optimizing the energy dissipation of embedded
systems. It is the first approach that trades off the energy dis-
sipation of software against the energy dissipation of system
resources like caches and main memory. Through various
experiments we have shown that it is not straightforward to
judge the change of the total system energy when various
system parameters are varied and software transformation
are performed. Our Avalanche framework provides a power-
ful tool for low power design at system level. Experimental
results have shown significant improvements (up to � 95%
energy cut) in energy dissipation.
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