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METHODOLOGY

A framework for estimating forest 
disturbance intensity from successive remotely 
sensed biomass maps: moving beyond average 
biomass loss estimates
T. C. Hill1,2,3*, C. M. Ryan2 and M. Williams2,3

Abstract 

Background: The success of satellites in mapping deforestation has been invaluable for improving our understand-

ing of the impacts and nature of land cover change and carbon balance. However, current satellite approaches strug-

gle to quantify the intensity of forest disturbance, i.e. whether the average rate of biomass loss for a region arises from 

heavy disturbance focused in a few locations, or the less severe disturbance of a wider area. The ability to distinguish 

between these, very different, disturbance regimes remains critical for forest managers and ecologists.

Results: We put forward a framework for describing all intensities of forest disturbance, from deforestation, to 

widespread low intensity disturbance. By grouping satellite observations into ensembles with a common disturbance 

regime, the framework is able to mitigate the impacts of poor signal-to-noise ratio that limits current satellite obser-

vations. Using an observation system simulation experiment we demonstrate that the framework can be applied to 

provide estimates of the mean biomass loss rate, as well as distinguish the intensity of the disturbance. The approach 

is robust despite the large random and systematic errors typical of biomass maps derived from radar. The best accura-

cies are achieved with ensembles of ≥1600 pixels (≥1 km2 with 25 by 25 m pixels).

Summary: The framework we describe provides a novel way to describe and quantify the intensity of forest distur-

bance, which could help to provide information on the causes of both natural and anthropogenic forest loss—such 

information is vital for effective forest and climate policy formulation.

Keywords: Deforestation, Forest, Degradation, Disturbance, Intensity, Biomass, REDD, Satellite, Remote sensing, 

Carbon
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creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate 
if changes were made.

Background

Tropical deforestation has been estimated to occur at a 

rate of 13 million ha per year [1], with an associated net 

loss of forest biomass of 1.3 ± 0.7 Pg C year−1 [2]. Remote 

sensing has been successful at mapping global deforesta-

tion [3, 4]. However, deforestation presents a simplified 

view of forest disturbance that ignores the many gradua-

tions of lower intensity, but often widespread, forest dis-

turbance and degradation [5]. Forest disturbance refers 

to the mechanisms which limit biomass by causing its 

destruction [6]. �e impact of forest disturbance is highly 

variable, leading to the total or partial loss of biomass 

through a diverse range of natural (e.g. disease, droughts, 

fires, herbivory and windstorms) and/or anthropogenic 

processes (e.g. urbanisation, agriculture, selective log-

ging, and fires). Remotely sensed information on the spa-

tial extent and intensity of forest disturbance would be 

extremely useful for managers and ecologists in attempts 

to develop a mechanistic understanding of forest degra-

dation and the processes of forest disturbance [7, 8].

Unfortunately, whilst satellites have the coverage to 

provide global information on forest disturbance, very 
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few studies have attempted to do so [9]. �e focus of 

remote sensing has remained on mapping deforesta-

tion (e.g. [3]) and arises from a number of technologi-

cal limitations which include, amongst other factors, 

observation precision and the relative “directness” of 

the observation [10–12]. Ideally remote sensing meas-

urements would have a direct dependence on the quan-

tity being estimated; however current optical satellite 

derived estimates of forest disturbance are not able to 

achieve this ideal. Instead, optical satellite measurements 

of forest disturbance rely on observing physical proper-

ties that are expected to correlate with disturbance (e.g. 

changes in leaf area that can be detected by satellites due 

to a change in the absorption in the chlorophyll spectral 

bands). When these correlations change, indirect meas-

ures cannot be expected to provide a robust estimate of 

disturbance.

As Synthetic aperture radar (SAR) is sensitive to the 

structural properties of forests it can be thought of as a 

more direct measure of forest biomass than the passive 

optical alternatives [8, 13, 14]. SAR provides one of the 

only viable data sources currently available for global 

monitoring of forest disturbance at moderate spatial res-

olutions. However, the low signal to noise ratio of SAR 

leads to poor precision and large uncertainty in the esti-

mated biomass of individual pixels [13] and this equates 

to high levels of uncertainty when detecting biomass 

change at the pixel level. Filtering can be used to improve 

the signal to noise ratio of SAR, but this improvement 

comes at the expense of a reduction in the effective spa-

tial resolution of the biomass change estimates. �erefore 

remote sensing can provide regional estimates of biomass 

change or fine scale maps of deforestation, but it cannot 

yet be said to truly determine the intensity of forest deg-

radation across scales [13].

In this study we set out a novel framework for quan-

tifying the intensity of forest disturbance from succes-

sive remotely sensed biomass maps. �is approach can 

describe both focused high intensity forest loss and low 

intensity, widespread degradation. We provide an exam-

ple methodology to exploit this framework using SAR 

data with realistic observation errors. We explore the 

strengths and limitations of this approach using an obser-

vation system simulation experiment.

Results and discussion

A framework for quantifying the intensity of forest 

disturbance

�e framework that we propose describes forest distur-

bance for an area in which all satellite observation pixels 

are assumed to experience the same disturbance regime. 

�at is, whilst each pixel might or might not be disturbed, 

each pixel within each area has the same probability of 

being disturbed and the same relative loss of biomass 

when disturbed. We consider an ensemble of n remote 

sensing pixels, which are observed on two successive 

dates (t = 1 and t = 2). �is approach builds on an earlier 

framework set out in Williams [15] that used the biomass 

distribution at a single point in time. �e first advantage 

of this new approach is that it allows ensemble statistics 

to be calculated, negating the limitations of poor signal to 

noise of individual biomass pixels by estimating ensem-

ble’s mean fractional loss of biomass per year (EM). �e 

second advantage of the framework is that it permits EM 

to be split into two factors for the ensemble: the prob-

ability of disturbance per year for each ensemble pixel 

member (EP) and the fractional loss of biomass per dis-

turbance for each disturbed ensemble pixel member (EI), 

Eq. 1.

Both EM and its factors EP and EI can take values rang-

ing from 0–1. Where, for example, an EP =  0.05 would 

imply a 1 in 20 chance of each pixel being disturbed in 

a year. An EI = 0.2 implies that, if disturbed, a pixel will 

lose 20 % of its biomass. Combining these example fac-

tors would lead to the expectation of EM = 0.01, or a 1 % 

reduction in mean biomass for the ensemble. �e ensem-

ble size can be picked to balance the competing require-

ments of high precision on estimates of EM, EP and EI 

and meeting the assumption of a continuous disturbance 

regime.

�e inclusion of the factors EP and EI allows a flexible 

description of biomass loss, without the arbitrary distinc-

tion between deforestation and lower intensity forest dis-

turbance. Forest disturbance (other than deforestation) 

can be represented by the parameter space 0  < EM  <  1, 

0 < EI < 1 and 0 < EP ≤ 1 (Fig. 1). �ere are also several 

special cases: the total deforestation of the ensemble area 

(EM = 1, EI = 1 and EP = 1); partial deforestation within 

the area (0 < EM < 1, EI = 1 and 0 < EP < 1); and no distur-

bance (EM = 0).

Describing forest disturbance using this framework 

has a number of advantages over traditional descriptors 

as it avoids the need for an arbitrary threshold for a for-

est cover loss used in other studies, e.g. [16]. In turn, this 

allows for a more nuanced description of forest distur-

bance than is possible with categorical land cover classes, 

or measures of forest cover.

Using the framework to estimate biomass loss 

and disturbance intensity

Using the disturbance framework, our observation sys-

tem simulation experiments (OSSE) show it is possible to 

robustly estimate the mean biomass loss for the ensem-

ble (EM) and also the disturbance regime, as described by 

(1)EM ≈ EPEI
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EP and EI (Fig. 2; Table 1). EM is better constrained than 

either EI or EP, reflecting the direct impact of EM on the 

mean of the biomass distribution versus the more vari-

able impacts of the EI or EP on the second and third order 

moments: standard deviation and skew. With larger 

mean disturbances the constraints on EI or EP improve, 

presumably due to the larger number of pixels effected 

and/or greater impact on the observed biomass. 

How the framework is a�ected by observation bias

It is highly likely that biomass maps used with the frame-

work will not only have random noise, but also systematic 

observation errors [13], therefore we test the framework’s 

sensitivity to bias. �e inclusion of a realistic observation 

bias of ±160 gC m−2 (±1.6 tC ha−1) [13] had the larg-

est impacts on the estimates of EM, which showed a bias 

of 0.004 (0.4  %). However EI and EP were less affected 

(Fig.  3; Table  1) and it was still possible to distinguish 

high and low intensity disturbance regimes. �e bias in 

the estimate for EM is consistent with change in the mean 

biomass that is implied by a bias of 160 gC m−2, and 

would therefore apply to any other approach to estimat-

ing biomass loss.

What is the optimal ensemble size?

�e accuracy of predictions using the framework are best 

when considering an ensemble size of n ≥  1600, whilst 

for n  ≤  400, the precision of our estimates drops rap-

idly (Fig. 4; Table 1). �erefore, for the 25 m pixels typi-

cal of current SAR biomass estimates, the recommended 

ensemble size covers an area of at least 1 km2 or 100 ha. 

�e implication is that it must be reasonable to assume 

that the disturbance regime is constant across areas 

of at least 100  ha. We expect this minimum area to be 

Fig. 1 The relationships between the magnitude of disturbance (i.e. the mean fractional disturbance of a region per year, EM), the disturbance prob-

ability (i.e. the probability of a pixel being disturbed each year, EP), and the disturbance intensity (i.e. the fraction of biomass lost if disturbed, EI) are 

shown. Indicated within the figure are regions corresponding to widespread forest degradation, localised deforestation and widespread deforesta-

tion
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robust, at least for ALOS PALSAR data, but the sensitiv-

ity to ensemble size should checked in each new study. 

It is worth noting that there is no requirement for these 

areas to be rectangular, or even contiguous. �e grainy 

texture evident in the estimates from the analyses is due 

to the simulation of stochastic disturbances (Figs. 2, 3, 4). 

�is graining is reduced with increasing ensemble size, 

but can be further reduced, at significant computational 

expense, by averaging repeat runs of the maximum likeli-

hood estimation.

Alternative formulations of the framework

We formulated the framework in terms of a fractional 

change in biomass for both EM and EI. �is is not the 

only possible formulation, nor is it necessarily the opti-

mal for all situations; however, it is a mathematically 

simple approach to maintaining a positive (i.e. plausible) 

biomass for each pixel. �e implicit assumptions of the 

formulation are: 1) that all pixels are equally likely to be 

disturbed, and 2) that when disturbed a fixed fraction is 

lost, irrespective of the starting biomass. It is possible 

to imagine scenarios that would not be well described 

by our scheme where (say) selective logging only targets 

the largest trees (i.e. EP is high for pixels above a thresh-

old biomass and zero for all others). �ese scenarios do 

not contradict our first assumption of common distur-

bance regime for the ensemble and it should be possi-

ble to restate the parameters used in the framework to 

accommodate a particular set of assumptions about the 

disturbance regime. However the inclusion of more com-

plicated mathematical representations and, specifically, 

more parameters, can be expected to increase the chal-

lenge of estimating the parameters of any new framework 

formulation and decrease its general applicability.

Limitations to the framework

Finally there are two notable caveats: Firstly, the success 

of the approach is strongly tied to the ability to charac-

terise the random error of biomass estimates. �e design 

of the analysis mitigates some of the errors as biomass 

errors that are consistent between the two biomass maps 

will be removed by this differencing. Whilst Ryan et  al. 

(2012) report normal errors in the biomass domain, 

other studies assume errors will actually be normal in 

Fig. 2 Estimates from the biomass difference approach for nine different combinations of disturbance intensity and disturbance probability. Crosses 

indicate the actual EP and EI used for each synthetic analysis. Coloured areas indicate the most likely combinations of EI and EP as estimated by the 

difference approach. The filled areas encompass the first 95 % of the cumulative likelihood, L. Low intensity cases are shown in blue, high intensity 

cases are shown in red and the special case of no disturbance is shown in grey
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the dB (i.e. log10) domain [17] which would result in log-

normal, asymmetric errors on biomass estimates. We 

therefore reran the synthetic experiments with 0.5  dB 

error and achieved similar results. �e second caveat is 

that the biomass differencing approach assumes the car-

bon model (A-DALEC) is unbiased. �is assumption is, 

by definition, valid in a observation system simulation 

experiment (OSSE). However in practice the productivity 

of the ecosystem is not known perfectly, and so estimates 

of EM can be expected to be biased. However the assump-

tion is not as crude as it at first might seem: ignoring the 

production term (as is implicitly done by most deforesta-

tion algorithms) makes the assumption that the forest 

otherwise in steady state. �is issue is likely to be more 

severe in field sites where less information is available 

on which to provide independent estimate of the rates of 

aboveground biomass accumulation, e.g. [18].

Conclusions

From a management and policy perspective it is impor-

tant to be able to distinguish between the different inten-

sities of biomass loss as they may be associated with 

different disturbances mechanisms (e.g. low intensity 

disturbances are likely driven by a need for timber or 

fuel, and high intensity disturbances driven by a need 

for agricultural land) [19]. However, current estimates of 

deforestation and biomass loss are not adequate for esti-

mating lower intensity forest disturbance. �eoretically, 

high resolution biomass loss estimates could provide 

fine-scale estimates of forest degradation, but the cur-

rent precision is not adequate and there is no immedi-

ate prospect of this changing, partly due to the speckle 

and other noise in SAR imagery [20]. �e framework that 

we have described is a pragmatic representation of for-

est degradation that uses ensemble statistics to mitigate 

the poor precision of current SAR biomass estimates 

[13, 17, 20]. SAR is expected to remain a key technique 

for global mapping of forest biomass, and the framework 

we propose is compatible with the upcoming BIOMASS 

and new L-band satellites [14]. Using an OSSE we have 

shown that is possible to robustly estimate the param-

eters of the framework to describe forest disturbance, 

provided that two successive biomass maps, separated 

by at least one year, are available. We suggest that using 

Fig. 3 As for Fig. 2, but showing the impact of observation bias on estimated EP and EI. Biases of 160, 0 and −160 gC m−2 are applied to the first of 

the biomass images. For each bias two example cases with the same EM are shown: (1) High intensity disturbance, EI = 0.9 and EP = 0.05. (2) Low 

intensity disturbance, EI = 0.05 and EP = 0.9
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a similar framework will allow remote sensing studies to 

provide more relevant constraints on estimates of land-

use change.

Methods

Estimating the framework parameters

A number of approaches could be taken to estimating 

EM, EI and EP, we chose to use maximum likelihood esti-

mation. We identify the combinations of EI and EP that 

allow a simulations to most closely match the observed 

changes in the biomass distribution from time t =  1 to 

time t = 2, for an ensemble of n pixels.

�e observed biomass (O
i

t) of the ith pixel at time t 

is sum of the actual biomass (Bi

t) and the measurement 

noise (Ni

t), Eq.  2. �e observed biomass at time t  +  1, 

follows the same logic (Eq. 3). �e actual biomasses are 

related via the growth Gi

t and disturbance Di

t of each pixel 

in the ensemble (Eq. 4).

(2)O
t

i = B
t

i + N
t

i for i = 1, 2, 3, . . . , n

(3)O
t+1
i

= B
t+1
i

+ N
t+1
i

for i = 1, 2, 3, . . . , n

(4)B
t+1
i

= B
t

i + G
t

i − D
t

i for i = 1, 2, 3, . . . , n

Similarly we are able to simulate the observed biomass at 

time t (Osi
t) based on the simulation biomass (Bsi

t) added 

to the simulated noise (Nsi
t), Eq. 5. �e observed biomass 

at time t (Osi
t+1) is calculated from the simulation bio-

mass (Bsi
t) through the sum of the simulated growth (Gsi

t), 

the simulated disturbance (Dsi
t), and the simulated noise 

(Nsi
t+1), Eq. 6.

where Dsi
t is related to the disturbance parameters in 

Eq. 7.

We model Gsi
t using the A-DALEC model, a biogeo-

chemical model of carbon cycling in forests, which runs 

at an annual time step (see Additional file  1 A for full 

details) [15, 21]. Nsi
t and Nsi

t+1are based on observed 

pixel uncertainty in SAR biomass estimates [13]. We 

(5)Os
t

i = Bs
t

i + Ns
t

i for i = 1, 2, 3, . . . , n

(6)

Os
t+1
i

= Bs
t

i + Gs
t

i − Ds
t

i + Ns
t+1
i

for i = 1, 2, 3, . . . , n

(7)

Dsti =

{

0 if U([0, 1]) ≥ Ep
EIBs

t
i otherwise

for i = 1, 2, 3, . . . , n

Fig. 4 The effect of ensemble size (the number of pixels) on the analysis. The cross shows the synthetic truth and the coloured areas indicate the 

most likely EI and EP
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cannot base Bsi
t directly on the observed biomass Oi

t, as 

the observation noise Ni

t cannot be determined (and thus 

removed) for each pixel, and so the A-DALEC model is 

used to spin-up an estimate of Bsi
t, see Additional file  1 

section B for full details. �e equations above assume 

that t = 1 and t = 2 are separated by 1 year. When the 

separation is more than 1 year, as in the case of our OSSE, 

the base Bs
i

t should have the annual growth and distur-

bance applied once for each year of separation.

95  % confidence intervals for the factors EP and EI 

are found using a maximum likelihood estimation rou-

tine, see Additional file 1 C for full details. �is routine 

finds the most likely combinations of EP and EI based on 

minimising the differences between the observed and 

simulated ensemble distributions; ΔO = Ot+1 − Ot and 

ΔOs = Os
t+1 − Os

t.

Testing the framework parameter estimates

To allow the technique to be assessed against a known 

‘truth’ we use a set of observation system simulation 

experiment (OSSE). In the OSSE we simulate two suc-

cessive (noisy) biomass observations which have obser-

vation noise and a definable disturbance regime applied. 

�e OSSE observations are derived by spinning up the 

A-DALEC model to match ALOS observations within 

the Gorongosa and Nhamatanda districts of Sofala prov-

ince in central Mozambique. �e area is dominated by 

dry miombo woodland, the dominant woodland type in 

Southern Africa, see Additional file  1 B. �e first OSSE 

observation, t = 1, is taken at the end of the 1st year, the 

second observation, t = 2, is taken at the end of the 5th 

year, i.e. separated by 4 years. Separate spin-ups are per-

formed for the ΔO and ΔS simulations. �ree tests are 

performed; the first to assess the ability of the approach 

to identify EM, EI and EP, the second to assess the impact 

of observation bias and the third to determine impact of 

ensemble size.

Determining the accuracy of the framework parameter 

estimates: test 1

A set of nine analyses were used to test the ability of our 

approach to identify EM, EI and EP. Each analysis was per-

formed for the same size ensemble of n  =  1600 pixels, 

which equates to an area of 1000 by 1000 m given the 25 

by 25 m pixel size of the ALOS biomass maps [13]. We 

perform OSSEs with four levels of mean disturbance 

EM = 0, 0.018, 0.045, 0.090 and 0.180. �ese disturbance 

fractions equate to annual biomass loss rates of 0, 1.8, 

4.5, 9 and 18 %. For each nonzero EM we simulate a high 

intensity (EI ≫ EP) and low intensity (EI ≪ EP) distur-

bance scenario. In the high intensity cases only a few pix-

els are disturbed, but when disturbed 90 % of the biomass 

is lost (i.e. EI = 0.9). In the low intensity cases, 90 % of the 

pixels are disturbed (i.e. EP = 0.9), but each disturbance 

results in a small loss of biomass at the pixel level. �e 

various combinations of factors are shown in Table 1.

Determining the impact of observation bias on the 

framework parameter estimates: test 2

To simulate the impact of observation bias we perturb 

the synthetic experiments using the bias observed in the 

actual biomass maps [13]. Only the first biomass obser-

vation (i.e. at time t =  1) is biased by −160, 0, and 160 

gC m−2. �e impact of the bias is assessed using both 

a low intensity case (i.e. EI =  0.05 and EP =  0.9), and a 

high intensity case (i.e. EI = 0.9 and EP = 0.05). In both 

cases the OSSE has an EM = 0.045 and an ensemble size 

of n = 1600 pixels.

Determining the impact of ensemble size on the 

framework parameter estimates: test 3

�e impact of varying the ensemble size is tested for 

n = 6400, 1600, 400, and 100. �ese ensembles equate to 

areas of 2000 by 2000  m (6400 pixels), 1000 by 1000  m 

(1600 pixels), 500 by 500 m (400 pixels), and 250 by 250 m 

(100 pixels). �e areas are centred on the same location. 

We analyses these areas for a single low intensity distur-

bance regime EM = 0.045, EI = 0.05 and EP = 0.9.
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