
USENIX Association

Proceedings of the
FAST 2002 Conference on

File and Storage Technologies

Monterey, California, USA
January 28-30, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



A framework for evaluating storage system security

Erik Riedel, Mahesh Kallahalla, and Ram Swaminathan
Hewlett-Packard Laboratories

Palo Alto, California
{riedel,maheshk,swaram}@hpl.hp.com

Abstract
There are a variety of ways to ensure the security of data
and the integrity of data transfer, depending on the set of
anticipated attacks, the level of security desired by data
owners, and the level of inconvenience users are willing
to tolerate. Current storage systems secure data either by
encrypting data on the wire, or by encrypting data on the
disk. These systems seem very different, and currently
there are no common parameters for comparing them. In
this paper we propose a framework in which both types
of systems can be evaluated along the security and per-
formance axes. In particular, we show that all of the
existing systems merely make different trade-offs along a
single continuum and among a set of related security
primitives. We use a trace from a time-sharing UNIX
server used by a medium-sized workgroup to quantify the
costs associated with each of these secure storage sys-
tems. We show that encrypt-on-disk systems offer both
increased security and improved performance over
encrypt-on-wire in the traced environment.

1  Introduction
Much of the focus of recent storage security work has
been on protecting communication between clients and
servers in an untrusted, networked world [Gobioff98,
Kent98, Mazieres99, Satran01]. In particular, the focus is
on protecting data integrity: preventing unauthorized
modification of commands or data, modification of
requests in transit, and replaying of requests. Some of
these systems further address the issue of privacy, or con-
fidentiality, of data transfer: preventing the leaking of
data in transit by snooping on the network.

The most comprehensive treatment of this topic is Net-
work-Attached Secure Disks (NASD) [Gobioff99a],
which uses capabilities provided to users by a file man-
ager separate from the storage servers. A barrier to wide
acceptance of the NASD scheme is the performance cost
of the encryption and integrity checking needed at both
clients and servers. In order to reduce this cost, NASD
proposes a scheme using pre-computed checksums with
secure hashes [Gobioff99] that pre-calculates and stores
checksums for long-lived data. NASD does not provide
a comparable scheme to optimize privacy since this

would require pre-computed encryption. If data were
stored on the server in encrypted form, then it would not
be necessary to encrypt it for each transfer on the net-
work. The difficulty with such a scheme is that encryp-
tion in NASD is done using session keys generated for
each client/server interaction, whereas pre-computation
requires longer-lived keys.

From the client’s point of view, these two schemes are
identical – it receives encrypted data and must pay the
cost of checksumming and decrypting it. From the point
of view of an adversary, they are also equivalent – the
data he sees is encrypted and unintelligible. The differ-
ence is only whether the server has to bear the encryption
cost each time a new session key is chosen, or whether it
can take advantage of data already stored in encrypted
form. Similarly, if written data is encrypted before it
leaves the client and is stored encrypted, the server elim-
inates any decryption work.

Storing data in encrypted form was originally proposed
in Blaze’s Cryptographic File System (CFS) and
expanded in later systems [Blaze93, Cattaneo97,
Zadok98, Hughes99], where it is used for a different pur-
pose – to protect data from untrusted servers. If data is
stored on the server in encrypted form it is protected
from leaking by the server (who does not know the key),
and there is no need to encrypt data again when it is sent
on the network. Encryption is done by the original cre-
ator of the file, and updated by subsequent writers, but
the server performs no encryption or decryption. Secure
checksums are still needed to ensure the integrity of the
communication, but privacy is ensured without repeated
per-byte encryption1. In order to use the data, users must
still decrypt it, but using a long-term key that must now
be obtained a priori.

To support sharing in a system that encrypts data on disk,
the problem is simply one of key distribution – how users
obtain these long-term keys. This can be done via a cen-
tralized server such as the NASD file manager or an NIS
server. Alternatively, a distributed scheme where data
owners provide keys to eventual users directly, as would
have to be done for a system such as CFS, removes a cen-

1. If desired, privacy of arguments still requires encryption
of message headers, but not of bulk file data.



tral point for attack. A variant of such a key distribution
scheme is proposed in SFS [Mazieres99, Fu00] and fur-
ther expanded in the Cepheus file system [Fu99]. The
SNAD system [Miller02] combines aspects of both CFS
(on-disk encryption) and SFS (secure communication
and authentication) into a single encrypt-on-disk system.

Even though many secure storage systems have been
proposed and described individually, there is no system-
atic way to compare and contrast them. We remedy this
situation by presenting an agnostic framework to
describe the features of these systems and the level of
security they offer. Any secure storage system must
implement a core set of functions, although they may
vary in the detailed design choices. These choices affect
both the level of security that the system provides, and
the performance the system achieves. A similar study has
been done to establish a framework for evaluating digital
certificate revocation mechanisms [Iliadis00].

In addition to security and performance, there is a third
factor to consider when building any secure system: the
level of inconvenience users are willing to tolerate. If
users must type in a separate password for every docu-
ment they open, or individually choose access rights for
every file they create, they will soon begin to circumvent
the best intentions of the system designers [Whitten99].
Precise metrics to gauge the impact of this effect are not
yet established, so we will treat this issue only indirectly.

Given our framework, we show how to quantitatively
compare the performance of previously proposed sys-
tems, the overhead on users, and the security guarantees
that the systems offer. We do this using a trace from a
non-secure UNIX file system to estimate the work
required for the various secure schemes. This evaluation
is independent of the actual system implementations, and
provides a general way of evaluating security and esti-
mating cost. Finally, our analysis shows that encrypt-on-
disk systems are not only more secure but also provide
better performance than encrypt-on-wire systems.

The rest of the paper is organized as follows. Section 2
defines our framework for storage system security, iden-
tifies a range of attacks, and suggests a core set of secu-
rity primitives. Section 3 describes how system designs
proposed elsewhere fit into the framework, and how the
choices they make impact security or improve perfor-
mance. Section 4 evaluates the decisions made along
each of these axes using a traced workload from a UNIX
time-sharing server to concretely quantify security costs
in day-to-day usage. Finally we conclude in Section 5. 

2  Framework of storage security
In this section, we abstract the commonalities among
known secure storage systems into a general framework.
The framework consists of five components: players,

attacks, security primitives, granularity of protection,
and user inconvenience. We elaborate each of these next.

2.1 Players
Here we define the players we use in the rest of the paper.
This list covers all of the possible players that one has to
consider for protecting stored data. Each player is listed
with a set of legitimate actions it can perform. Any other
action by that player is treated as an attack.

a) owners – create and destroy data (i.e., render data
un-readable by all readers), delegate read and
write permission to other players, and revoke an-
other user’s privilege to read or write owned data.

b) readers – read data once permission to read was
delegated by owners.

c) writers – modify data once permission to write
was delegated by owners.

d) wire – transfers data between other players.

e) storage servers – store and return data upon re-
quest. (For instance, these are file servers in NFS,
disks in NASD, or disk arrays in iSCSI.)

f) group servers – authenticate other players and au-
thorize access based on membership groups as de-
fined by owners. (For instance, these are group
servers in NASD or the NIS server in NFS.)

g) namespace servers – allow traversal of
namespaces, such as provide support for lookup
of directories and files in directories.

Finally, we define an adversary to be any entity who
attempts to perform functions other than those that it is
authorized to. Notice that this definition of adversary
also includes legitimate players attempting to perform
actions beyond what they are authorized to.

Though in the above definitions, functionalities differen-
tiate players, actual systems might choose to aggregate
multiple players into a single entity. For instance, NASD
combines the functionality of the group server and
namespace server into a single metadata server.

We intentionally omitted any key-escrow agent from the
list of players because its main purpose is to reveal keys
and identities when necessary but it does not add to the
basic level of security of a storage system.

At this point, it is important to note that the framework
presented here is not intended to allow evaluation of the
end-to-end security of a particular system. This requires
careful analysis of each system component and the par-
ticular combination of components. Any secure system is
only as strong as its weakest link. Our framework is no
replacement for such analysis, but simply seeks to allow
a high-level comparison among different schemes, pur-
posely leaving some secondary details unexamined.



2.2 Attacks
Broadly, there are two kinds of data that players handle:

• short lived data that is communicated, or agreed
upon, in each session, and

• long lived data and metadata for persistent storage.

Existing systems for network security have mostly
addressed the compromise of short-lived data and the
protocols used to communicate them. In addition to
securing data on the wire, storage systems must also
secure long-lived data on the servers. These two require-
ments give rise to the following set of attacks. The
attacks may be mounted on the data or the metadata,
unless explicitly specified otherwise:

a) by the adversary on the wire – for instance, an
attack mounted on the NASD protocol used to
communicate files to the clients. 

b) by the adversary on the servers – for instance, an
adversary updating a file on a NFS file server.

c) by a revoked user on the servers – for instance
where a revoked reader (no longer part of the sys-
tem) can continue to read files in Cepheus.

d) by the adversary colluding with the storage serv-
er – for instance, one where a CFS encrypted di-
rectory is deleted by the UNIX file system.

e) by the adversary colluding with the group server
– for instance an adversary gaining access to data
after corrupting a NASD file manager.

f) by the adversary colluding with readers or writ-
ers – for instance, a reader passing a copy of a file
to an adversary.

The last attack, involving collusion with other readers or
writers is very difficult to prevent without substantial
complexity and support from outside the system, and has
been listed above for completeness. We will not consider
it further in this paper.

Each of the above attacks can further be broken into three
kinds based on the effect they have on the data:

a) leak attacks – are those where the adversary gains
access to some data. 

b) change attacks – are those where the adversary
makes valid modifications to data (i.e., modifica-
tions that readers cannot detect as invalid).

c) destroy attacks – are those where the adversary
makes invalid modifications to some stored data.
An invalid modification is any change to data that
is detectable as incorrect by the owner or readers.

Table 1 provides a summary of these attacks and where
they occur in practice. The data summarizes a survey of
CIOs and system managers showing the percentage of
respondents reporting a particular attack. The table
shows the primary types of attacks from our list above
that each of these real-world attacks touches. The intent
is to motivate the importance of all of the attacks listed
above, including some that may not have been consid-
ered very crucial in past work (such as revocation).

2.3 Core security primitives
Secure storage systems as proposed in research and com-
mercial systems implement a myriad of security features
to enable players to securely perform their functions.
Though the details of the schemes used differ, the core

frequency cost messages data

revoked 
user

denial 
of 

serviceattack

% of 
companies 
reporting

estimated 
damage 

($ millions) leak change leak change destroy

telecom eavesdropping 10 % 1 X – – – – – –
active wiretap 2 % n/m – X – – – – –
system penetration 40 % 19 X X X X X – –

laptop theft 64 % 9 – – X – X – –
theft of proprietary information 26 % 150 – – X – – X –
unauthorized access by insiders 49 % 6 – – X X – X –

sabotage 18 % 5 – – – – X – X
virus 94 % 45 – – – – X – –

denial of service 36 % 4 – – – – – – X

Table 1. Frequency and cost of attacks. The frequency of various attacks and their mapping into our framework. The % numbers are
as reported in a survey of five hundred system managers taken in Spring 2001, with almost all categories showing significant increases
over previous years [Power01]. The cost column gives the self-estimated damage to their businesses. Note that although over 75% of
respondents claimed that they had experienced some monetary damage due to the attacks reported, only 35% were able to estimate the
extent of the damage, which means the numbers shown are only low estimates. Industry estimates of the total damage to companies
worldwide from all attacks run into the billions of dollars. The boxes marked “X” show the primary damage caused by a particular
attack, although other damage is also possible in many cases. The intent is not to exhaustively enumerate the damage, but to motivate
each of the attacks in the framework as an important threat and give a very rough idea of relative importance.



set of security primitives can be abstracted into six types:
authentication, authorization, securing data on the wire,
securing data on the disk, key distribution, and revoca-
tion. As we show in Section 3, not all systems necessarily
provide support for all of these, and the choices made
directly affect the performance of the system and secu-
rity guarantees provided. In the rest of this section we
elaborate on each of these primitives and the important
choices in implementing them.

2.3.1 Authentication

The purpose of authentication is to establish the identity
of a particular player in order to authorize their actions.
Storage systems may implement authentication in one of
two general ways:

a) distributed authentication – owners explicitly
authenticate each player to authorize access to the
data they own (as in CFS, or the use of server
public keys in SFS).

b) centralized authentication – owners delegate re-
sponsibility for authentication and authorization
to a group server (as accomplished through
checks done by the file server in NFS or the file
manager in NASD).

In general, there are three mechanisms to achieve mutual
authentication: a public key infrastructure (PKI), a cen-
tralized scheme (e.g., Kerberos [Steiner88]), or a pass-
word-based scheme. The former two are quite similar.
Both need a trusted third party and differ in how often
this party is consulted. The latter one requires some pre-
exchanged shared secret, which can be difficult to main-
tain in a distributed environment.

The usual concern is about authentication of owners,
readers, and writers to storage servers or group servers,
but there may also be concern about authenticating serv-
ers to users to prevent improper service. Again, although
this is an important consideration, we do not consider it
a primary security requirement for this analysis

2.3.2 Authorization

The purpose of authorization is to allow the owner of
some data to delegate (partial) access to the data to
another player. The user is authenticated and the identity
checked against a known set of permissions determined
by data owners. Authorization can be done in one of two
general ways:

a) server-mediated – servers receive actions and
perform them on behalf of readers, writers, and
owners (as in NFS and AFS).

b) owner-handled – owners provide readers and
writers with keys that they can use to authorize or
perform actions (such as the capabilities in
NASD, and the server keys in SFS).

2.3.3 Securing data on the wire

Protocols for ensuring reliable and secure passing of
messages have been well studied. Several standard pro-
tocols have been proposed, including SSL to protect web
traffic, SSH to protect remote terminals, and IPsec to
protect Internet traffic more generally [Kent98]. A vari-
ant of such a system for storage is used in NASD
[Gobioff98]; a similar scheme is used in the self-certify-
ing file system [Mazieres00]; and IPsec has been pro-
posed as the security mechanism for iSCSI [Satran01].

To ensure data integrity on the wire some scheme involv-
ing keyed checksums (MACs) will always be needed,
irrespective of the design chosen. The MAC is used to tie
the checksum to a particular player, and the checksum is
used to tie the MAC to a particular set of data. A times-
tamped MAC also protects against replay or server
impersonation (man-in-the-middle) attacks [Gobioff98].

With the increasing deployment of protocols such as SSL
and IPsec, hardware solutions are becoming available
that offload the heavyweight cryptographic operations
from client or server processors. Such hardware may
support an entire protocol in its end-to-end form, or sim-
ply provide accelerated primitives that can be used in dif-
ferent ways by various systems. Once concerns over raw
encryption or checksum speed are removed, parameters
such as number of key changes and requirements for key
storage present further bottlenecks [Cravotta01].

2.3.4 Securing data on disk

The reasons one may want to encrypt data on the disk are
that the server is inherently untrusted or the server might
be compromised, such as a stolen disk or laptop. To guar-
antee that the data and metadata are not compromised,
they must be stored encrypted on disk. To accomplish
this encryption, two types of ciphers may be used:

a) symmetric cipher – a single private-key system,
such as DES or AES [Schneier95, Nechvatal00],
that is used to perform bulk data encryption and
decryption (such as the privacy option in NASD).

b) asymmetric cipher – a system using a pair of
keys, such as RSA [Schneier95], that is generally
used for authentication and to bootstrap the shared
keys to be used by the symmetric cipher (such as
the authentication protocols of IPsec).

Since computing asymmetric ciphers is much slower
than symmetric ciphers, these operations are used spar-
ingly, either for key exchange, or to protect stored sym-
metric keys in a lockbox (such as those used in Cepheus).

2.3.5 Key distribution

In a secure storage system that relies on encryption to
protect data, each piece of data has some associated keys
– either symmetric of asymmetric, depending on the



structure of the system – that are required to access it.
These keys may be used in one of two ways to:

a) directly encrypt data – the keys are used by
writers to encrypt and by readers to decrypt data
directly at the edges of the system (as in CFS).

b) prove authorization – possession of the keys is
used by readers and writers to prove that they
have the requisite authorization (such as the capa-
bilities in NASD).

Use of the keys to prove authorization requires the server
be trusted to accurately perform the necessary checks.
Direct encryption ensures that only readers or writers are
able to access the data or create valid new data. However,
it complicates revocation since readers and writers have
been given the keys themselves, rather than simply dele-
gated capabilities.

2.3.6 Key distribution

For either use of keys, any system with shared access to
files then requires some mechanism to distribute keys
among readers and writers. Current systems implement
this key distribution in one of two ways:

a) using a group-server – a centralized group server
maintains the keys to all files, and the access
control lists. If a user is in a particular list, then the
server provides the key to the corresponding file
(as in NFS, AFS, and Cepheus).

b) owner-handled – file owners themselves provide
readers and writers with keys that they can use to
perform actions. This typically complicates key
revocation if the readers and writers cache keys
(as in variants of CFS).

2.3.7 Revocation

Traditionally revocation is discussed in the context of
centralized services such as certificate authorities (CAs)
where it removes the association between the physical
identity of a player and a particular key. In the context of
secure storage, this is extended so that a player’s access
privileges to a particular piece of data can be revoked.
When a player is revoked (e.g., a user leaves a particular
workgroup) the keys to which this player had access
must be changed. In systems where data is stored
encrypted, this will require data to be re-encrypted,
which may be done as follows:

a) aggressive re-encryption – immediately after a
revocation, re-write data with a new key. Copies
of data distributed under the old key in the past
remain readable.

b) lazy re-encryption – delay re-encryption of the
file to the next time it is updated [Fu99] or read.
This saves encryption work for rarely-accessed
files, but leaves data vulnerable longer.

c) periodic re-encryption – change keys and re-
write data periodically to limit the window of vul-
nerability [Gobioff99a].

The distinction between aggressive and lazy re-encryp-
tion is a general consideration for secure storage. If a user
had access to particular data at one time, they may any-
way have copied it elsewhere, so protecting future
changes becomes most important.

2.4 Granularity of protection
To provide secure storage, a system bears the additional
overhead of the cryptographic operations discussed
above, and the key management. To limit the key over-
head, various systems implement different optimizations
including aggregation of players into groups to simplify
authorization, and trading off the security of short-lived
keys against the ease of management of long-term keys.

2.4.1 Group membership

The purpose of group membership is to compactly repre-
sent the permissions on a particular set of data by simply
verifying the membership of a player in a group, and then
authorizing access based on group permissions. There
are two ways to decide group membership, namely:

a) distributed group membership – owners
explicitly determine who is authorized to share
data and distribute the necessary keys (as in CFS).

b) centralized group membership – owners delegate
authorization to a group server that distributes
keys (as in NFS with NIS, NASD, and Cepheus).

Access control lists are a variant of group membership
that explicitly enumerate all the players, but these ACLs
must still be stored somewhere and essentially provide
the group membership function [Howard88, Hughes99].

2.4.2 Granularity of keys

The keys used to encrypt and decrypt a particular set of
data may be short-term or long-term. Short-term keys
reduce the vulnerability window by decreasing the
amount of data encrypted with the same key, whereas
long-term keys are easier to manage since there are fewer
of them, and they are exchanged less often.

a) short-term keys – typically last for the duration of
one player and one session (as in NASD, and
iSCSI with IPsec).

b) long-lived keys – typically last across sessions
and might be the same across multiple players (as
in CFS and SFS).

When using long-term keys, the granularity of data asso-
ciated with a single key greatly impacts the number of
keys required; the choices include a key per-file, per-
directory, per-user-group, or per-file-group.



Additional concerns arise when considering very long-
lived keys, such as digital signatures on documents that
must last for many years [Maniatis02], or for backup
tapes [Boneh96].

2.5 User inconvenience
In addition to security and performance, it is critical to
consider the level of inconvenience users are willing to
tolerate before they become sloppy and circumvent the
intent of the system:

a) convenient – single login password and tokens
derived from this.

b) inconvenient – compartmentalized access, multi-
ple passwords for different services, passwords
are re-entered frequently and changed regularly.

c) very inconvenient – resources are protected at a
very low level (e.g., password per document
opened or per application invocation).

Forcing users to remember long lists of passwords often
leads to poor password choices, or sloppy password
practices (e.g., post-it notes) [Adams99]. The problem is
exacerbated when users handle keys explicitly and make
encryption choices on their own [Whitten99].

Some of the password issues may be addressed by wide-
spread use of smart cards. The difficulty is that this
removes the main aspect of active user involvement in
maintaining security. Users must be aware of security in
some way, otherwise they will become complacent and
assume the system is infallible. The parameters of these
trade-offs are not yet well understood, but overall secu-
rity of data may well hinge on such usability issues
[Whitten99].

3  Secure storage systems
In this section we cast previously proposed designs for
secure storage onto the framework described in
Section 2. Where appropriate, we highlight the trust
assumptions made by each design, and mention specific
extensions proposed. Our intent is to evaluate each sys-
tem against a common set of criteria. For this reason, we
concentrate on those aspects that address the primary
functions of a secure storage system. This does not mean
that additional functions or characteristics of individual
designs are less important. The overall security of a sys-
tem must always be evaluated holistically: a system is
only as secure as its weakest link.

In this same vein, we also assume that issues of operating
system trust are dealt with separately. For all the discus-
sion in this paper, readers, writers and owners should be
thought of as the smallest possible trusted core surround-
ing a user [Dalton01]. If necessary, this may even be a

smart card or other protected device that handles all
encryption and key storage.

The comparison in Table 2 summarizes the characteris-
tics of each of the systems presented in this section, and
which attacks each system addresses.

3.1 CFS and similar systems
The first widely-known discussion of security for storage
systems is the Cryptographic File System (CFS)
[Blaze93]. In CFS a directory to be protected is
encrypted using a secret key. The underlying data is then
stored as a single file in the host file system and attached
as a cleartext directory under a /crypto mount point. This
allows the host file system to treat the encrypted data as
yet another file. Normal utilities such as backup function
without alteration; they never have access to the cleartext
data. The system is implemented as a user-level NFS
loopback mount, and files are decrypted when accessed.

CFS was designed as a secure local file system, so it
lacks features for sharing encrypted files among users.
The only way to share a protected file is to directly hand
out keys for protected directories to other users. How-
ever, CFS does protect against attacks where the bits on
disk are compromised, such as when a computer is sto-
len. The key characteristics of CFS are:

players
• owners, readers and writers are indistinguishable.

• the host file system acts as the storage server as
well as the group server, in authorizing file access.

• namespace traversal is handled by readers and
writers themselves.

trust assumptions
• the storage server is untrusted and does not access

the keys, protecting against leak and modify attacks
involving collusion with the storage server.

• the storage server is trusted to prevent destruction
of data.

security primitives
• owners handle authentication when distributing

keys to encrypted directories and files.

• authorization for read is done by passing keys to
readers and writers.

• the host file system verifies the authorization of
writers to overwrite existing data, but the validity
of these modifications is assured only by having the
proper key.

• writers encrypt data using a symmetric cipher
before storing it on disk.

• there is no provision to protect data while on the
wire, as CFS is essentially a local system.



• since CFS is designed for the local file system,
distribution of keys is done directly by the owners.

• revocation requires immediate re-encryption of
data, since a revoked user can collude with the
storage server to attack the data.

granularity
• the local file system aggregates users into groups to

authorize access, but there is no explicit decision on
aggregating the keys used to encrypt data.

• long-lived keys are used on a per-directory basis.

CryptFS [Zadok98] extends CFS to be more efficient by
building it as a stackable file system rather than a user
level server. It attempts to make the system more resilient
to attacks due to corruption of individual users by using
session IDs and user IDs to index into the key table,
rather than using only usernames. TCFS [Cattaneo97,
Cattaneo01] uses a lockbox to store a single key (rather
than per-directory keys), and encrypts only file data and
file names; directory structures and other metadata are
left un-encrypted. Beyond the implementation differ-
ences and varying key granularity, CryptFS, TCFS, and
CFS are identical with respect to our framework. All of
these systems are described for use on a local file system.
They could also be used as mounts over a remote file sys-
tem, with protection of the communication to the remote
server. We consider only the simple, local case here.

A later generation CFS [Blaze94] includes a key escrow
system. This is necessary to recover keys when they can-
not be obtained from the owner, for instance, after an
owner has left the organization. Truffles [Reiher93] uses
an alternative method of handling this problem by split-
ting keys such that any n members of a group can collude
to regenerate the key of a missing owner.

All of the above systems assume untrusted servers; keys
are known only to the owners, readers and writers, and
not trusted to the system itself. The key escrow system in
CFS depends on trusting the key database, but not trust-
ing the servers. Truffles distributes this trust so that a
group of owners are trusted instead of a single database.

There are several systems that encrypt data on entire
devices and transparently decrypt the data when it is
accessed. These include Secure Drive [Swank95],
Secure FileSystem [Gutmann96] and PGPdisk [NA98].
These systems are similar to CFS except that they them-
selves do not perform any authentication or authoriza-
tion; they rely on the operating system for these
primitives.

3.2 SFS
Most secure storage systems assume the servers to be
part of the trusted infrastructure and concentrate on guar-
anteeing that the users accessing the servers are properly
authenticated. The Secure File System (SFS)
[Mazieres99] addresses the problem of mutually authen-

adversary alone with storage server by revoked user other

system S#
message 
attacks leak change destroy leak change destroy leak change

subvert 
group 
server

denial 
of 

service
CFS & similar 3.1 – yes yes no yes yes no – – – no
SFS 3.2 yes yes yes yes no no no no no no no

SFS-RO 3.3 yes yes yes no yes yes no no – yes2 no
Cepheus 3.4 yes yes yes yes yes yes no yes1 yes no no
SNAD 3.4 yes yes yes yes yes yes no yes yes no no

NASD 3.5 yes yes yes yes no no no yes yes no no
iSCSI w/ IPsec 3.6 yes yes no no no no no yes yes – no
LUN security 3.7 no no no no no no no no no – no

AFS 3.8 yes yes yes yes no no no yes yes yes no
NFSv4 3.9 yes yes yes yes no no no yes yes no no
Windows EFS 3.10 – yes yes no yes yes no – – no no

PASIS/S4 3.11 – – – yes yes yes yes – – – no4

OceanStore 3.11 – yes yes yes yes no3 yes yes yes – no4

Table 2. Summary of security guarantees provided by different systems. A “yes” means that the system prevents that particular attack;
for instance, Cepheus prevents attacks that leak data by stealing the storage server because it encrypts on the media. A “no” means that
the system fails to handle that particular attack. A dash means the attack is not applicable to that system. (1) Cepheus uses lazy
revocation, which re-encrypts data only on the next update; this allows data to leak until is has been updated, making this a qualified
“yes”. (2) Subverting the group server does not open any additional vulnerabilities that are not already present from the adversary acting
alone. (3) Since only a single replica is used by each reader, a reader colluding with a single storage server could cause another reader
to see invalid modifications. (4) Although a request to a busy replica could be re-directed to other replicas, a combined attack on all the
replicas could still be mounted.



ticating the servers and users. Authentication of the
server is necessary to prevent an adversary spoofing the
server, for instance, when the servers are part of a public
infrastructure. One important tenet of SFS is that it is
independent of the key distribution and authentication
mechanisms. The characteristics of SFS are:

players
• owners, readers and writers are differentiated. 

• the storage server also functions as the group server
in authenticating users.

trust assumptions
• the storage server is trusted with the data and is

vulnerable to leak or modify attacks by an
adversary colluding with the server.

security primitives
• servers and users perform mutual authentication.

Servers are authenticated using self-certifying
pathnames to files. Self-certifying pathnames are
similar to mount points in traditional NFS, except
that they have the public key of the server
embedded in them.

• the group server uses NFS style user authorization.

• a session key is used to protect all communication
between the server and users.

• a distributed mechanism is used to obtain server
keys (through self-certifying pathnames).

• revocation of servers requires readers to check a
centralized revocation list of revoked servers.

granularity
• traditional UNIX style aggregation of users into

groups helps simplify authorization.

• uses a session key to protect all communication

3.3 SFS-RO
SFS was extended in SFS-RO [Fu00] to support storage
and retrieval of encrypted read-only data. This provides
a solution to securely distribute widely-accessed data
(such as application binary kits) over the Internet using
individually insecure mirrors as storage servers. SFS-RO
has the following characteristics:

players
• same as SFS except that there are no writers – only

owners can modify the data that they have created.

trust assumptions
• the storage server is not trusted with the data and

hence not vulnerable to leak or modify by the
adversary in collusion with the server.

security primitives
• same as in SFS, except that data is stored encrypted

on the disk. Data is signed and encrypted by the
owners when it is stored. Readers can verify the
integrity of data by verifying the signature.

granularity
• since the data is already encrypted on disk, there is

no need to encrypt it again before transmission.

3.4 Cepheus and SNAD
The Cepheus system [Fu99] builds on SFS to develop a
general purpose file system, while Secure Network-
Attached Disks (SNAD) [Miller02] combines the func-
tions of CFS and SFS. In particular, both systems keep
files encrypted on disk, and include the ability to share
and update the encrypted data. They differ only in a few
areas, and have the following characteristics:

players
• owners, readers and writers are differentiated via

specific authorization schemes for writes.

• Cepheus uses separate storage servers and a group
server that distributes lockboxes. SNAD relies on
public/private key pairs for groups and must use a
group server to distribute these, but stores
lockboxes directly on storage servers.

trust assumptions
• the storage server is not trusted with the data and

hence not vulnerable to leak or modify attacks by
an adversary in collusion with the server.

• the storage server holds file encryption keys in
lockboxes that are encrypted. In Cepheus, only
readers and writers hold the keys to lockboxes,
preventing attacks in collusion with the group
server. In SNAD, separate key pairs are used for
groups, so the group server for these is vulnerable.

• revoked users can continue to decrypt files until the
files are updated, at which point they are encrypted
with a new key (lazy revocation). Revoked users
cannot update or destroy data.

security primitives
• servers check user authentication and authorization

via the lockboxes.

• both systems use keyed HMACs stored with the
data to detect modify attacks.

• all data on the disk is encrypted by the users when
it is written. Both systems use symmetric keys,
making possible modify attacks where readers
collude with storage servers to write data.

• a session key and checksums are used to protect all
communication between the server and users.



• keys to lockboxes are distributed by the group
servers, and individual user public and private keys
are required via a public key infrastructure.

• Cepheus implements lazy revocation, where files
are re-encrypted only when they are next updated;
SNAD suggests use of a similar scheme.

optimizations
• though different keys encrypt different files in the

same group, they are kept in lockboxes locked with
the same group key, so users need only one key per
group.

• long-term keys encrypt all files.

• both systems use block-level encryption (8 KB
blocks for Cepheus, 4 KB for SNAD) to allow
updates of the individual parts of larger files.

A recent extension to Cepheus and SFS also assumes
untrusted servers, and further seeks to detect attacks by
the server on the integrity of stored data [Mazieres01].
For instance, one can detect when the server provides
different versions of the same file to different users.

3.5 NASD
Network-Attached Secure Disks (NASD) [Gobioff99a]
proposes a distributed network of intelligent disks with a
shared group server (that also handles metadata for direc-
tory traversals). Access for data objects on the disks is
authorized by the group server who hands a capability to
the user. The disk and group server share a key, and pre-
sented with the appropriate capability, the disk services
the request. Data is stored in the clear on the disks, but all
communication is encrypted. NASD has the following
characteristics:

players
• owners, readers, and writers are differentiated.

• the group server and namespace server is integrated
into a single metadata server (the file manager),
which is clearly distinct from the storage servers.

trust assumptions
• all messages on the wire are encrypted.

• since data is stored in the clear on the storage
servers, NASD is vulnerable to attacks in collusion
with the storage server. 

• since all authentication and authorization data is
present in the metadata server, NASD is vulnerable
to attacks in collusion with the metadata server.

security primitives
• the metadata server authenticates and authorizes

clients by handing them capabilities, which are
later verified by the storage server.

• data is encrypted on the wire, and integrity is
guaranteed using a MAC on checksums.

• the centralized metadata server makes revocation
fast.

trust assumptions
• owners delegate capability distribution to metadata

servers. The storage and metadata server are
assumed to be trusted; all data is stored in the clear. 

granularity
• checksums and keyed MACs ensure the integrity of

requests and data transfer between clients and
servers.

• introduces a scheme of pre-computed checksums
for stored data to reduce the computation of
generating checksums on each individual request.

NASD for the first time suggests that individual disk
drives directly participate in security protocols. This
requires at a minimum strong checksums and keyed
MACs for integrity, and optionally encryption and
decryption for privacy.

3.6 iSCSI 
iSCSI [Satran01] is a draft IETF standard to connect
hosts to SCSI devices using TCP as the transport. Since
devices may be used across the Internet, security is a
major concern. There is a draft proposal [Klein00] to
implement a security protocol within iSCSI to authenti-
cate hosts and protect the integrity of commands on the
wire. The main characteristics of this proposal are:

players
• there is no notion of individual users; readers,

writers and owners are all the same as the host on
which they operate. The protocol leaves the issue of
authenticating and authorizing individual users to
the host. 

• there is no group or namespace server, only a
storage server.

trust assumptions
• although the storage servers and hosts are mutually

authenticated, data is not protected from the server;
making it vulnerable to attacks involving collusion
with the server.

security primitives
• servers and hosts authenticate using a public and

private key mechanism.

• the server does not explicitly differentiate between
reads and writes.

• data and commands are encrypted while on the wire
using IPsec [Kent98].



• the key for authentication is distributed by an
external mechanism.

• revocation is achieved by changing the access
control list.

granularity
• session keys are negotiated on a per-login basis.

3.7 LUN security
Disk arrays aggregate the individual disks in the array
into logical units (LUNs), which are then accessed by
host systems through a host bus adapter (HBA). LUN
security proposes to control the access of particular
LUNs from different HBAs. This is facilitated by unique
IDs on the HBAs and world wide unique numbers which
identify them. The host operating system and device
driver are trusted not to forge or spoof IDs.

LUN security can be implemented either at the host
[HP01a], in the network switch [Brocade01], or at the
storage controller [HP01]. The following is true in gen-
eral of these solutions:

players
• there is no notion of individual users. One can

designate read-only permission to some hosts.

• there is no group or namespace server.

trust assumptions
• all players are trusted to identify themselves

correctly. The network and servers are also trusted.

security primitives
• typically, players are identified by their world wide

number, and this is used for authentication.

• authorization can be performed by maintaining an
access control list as follows:

– at the hosts, by setting up the set of storage 
controllers that the host may contact;

– on the wire, by controlling the port mapping 
at the network switches

– at the storage server, by setting up the list of 
HBAs allowed to access each LUN.

• no encryption is performed on the wire or on disk.

• revocation is achieved by changing the access
control list.

3.8 AFS
AFS [Howard88] is one of the first distributed file sys-
tems that specifically addressed security issues. AFS
assumes untrusted users, and uses Kerberos to authenti-
cate users to servers. At the beginning of a session, users
obtain tokens from a Kerberos server, which authorizes
them to access the storage servers. AFS servers verify the
tokens and then do appropriate authorization based on
group information maintained by a group server. A

secure version of RPC is used to protect communication,
though some questions have been raised regarding this
[Gobioff99a]. The key characteristics of AFS are:

players
• AFS servers act both as storage servers and group

servers; authentication is performed by a separate
Kerberos server.

• readers, writers, and owners are differentiated
based on access control lists at the storage server.

trust assumptions
• apart from the users and the network, all other

players are assumed to be trusted. AFS is
vulnerable to leak, modify, and destroy attacks in
collusion with any of the servers.

• if a user’s group information is changed (or
revoked) the user continues to have access to files
in that group until the user’s token expires.

security primitives
• Kerberos authentication is used.

• the servers maintain per-directory access control
lists to authorize accesses. The underlying UNIX
file permissions are also applied locally.

• AFS does not encrypt on the disk, but RPC
messages are secured.

• revocation is done by either changing the access
control list or making appropriate changes in the
Kerberos server.

security primitives
• though the authentication is centralized,

authorization is distributed to the storage servers.

• as in UNIX, users groups are used to simplify
authorization rules.

convenience
• single password login via Kerberos, tokens cached

for 24 hours by default, often set shorter
(e.g., 1 hour) for administrative accounts, or longer
(e.g., 30 days) for long-running applications.

3.9 NFS
There have been a number of proposals to build a secure
networked file system by providing a security layer on
top of NFS. These include proposals to secure the RPC
[Taylor86] and tunnelling NFS through SSH or SSL
[Gerraty99] to protect data on the wire. The security
assumptions and implications of these systems closely
match those of AFS and NASD.

The recent NFSv4 specification [Shepler00] explicitly
addresses the problem of securing the RPC mechanism.
Currently it proposes at least three security mechanisms:
one using Kerberos and two using a public key infra-



structure. All these essentially set up a secure communi-
cation channel and enable mutual authentication.
Interestingly, one of these mechanisms, low infrastruc-
ture public key mechanism - exploits the fact that the cli-
ent authentication can proceed after establishing a secure
channel, to reduce the PKI overhead. In this scheme only
the server needs to have a public/private pair which
authenticates the server and sets up a secure channel.
NFSv4 also greatly expands the use of ACLs for access
control, very similar to AFS ACLs.

3.10 Windows EFS
The Encrypting File System (EFS) for Windows is inte-
grated into NTFS and supports securing data similar to
CFS [Microsoft99]. To facilitate file sharing, EFS uses
lockboxes to hold the key of the encrypted file. This
lockbox contains the file encryption key protected by a
public/private key. EFS supports key escrow by includ-
ing a key recovery agent among the users allowed to
access any file. EFS encrypts and decrypts data just prior
to the disk, so some external network security solution is
required to secure the data on the wire to a remote server.
The characteristics of Windows EFS are as follows:

players
• owners, readers, and writers are differentiated.

• the operating system functions as the group,
storage, and namespace server.

security primitives
• Windows primitives are used for authenticating and

authorizing writes.

• data is stored encrypted on the disk.

• data is sent in the clear on the wire.

• a user’s private key is used to get the file encryption
key. Some external mechanism must exist to
distribute users’ public keys.

• revocation requires re-encrypting files with a new
encryption key and re-encrypting the lockbox.

• revocation is achieved by changing the access
control list

trust assumptions
• EFS is vulnerable to attacks on the wire if used

without an external secure network solution.

• EFS secures against leak and modify attacks
mounted in collusion with the server.

• if the private key of the key recovery agent is
compromised, all files in the system are protected
only by the server’s authentication and
authorization primitives.

optimizations
• user groups are used by the native Windows file

access control lists.

• files are encrypted using a long-term key.

3.11 Survivable storage
Addressing destroy attacks in collusion with storage
servers requires survivable storage, i.e., some mecha-
nism to recover from the total loss of a storage server by
keeping multiple copies of the data. Several projects cur-
rently underway attempt to address security and long-
term protection on a much wider scale (in space and in
time) than any existing system. PASIS considers storage
where data integrity is maintained in the face of the
destruction or compromise of some number of replicas
[Wylie00] and OceanStore considers a world-wide set of
encrypted replicas [Kubiatowicz00]. Another mecha-
nism for protecting data from unauthorized modifica-
tions is to use versioning on the storage servers so that
data can be reverted to a state before an intrusion, as pro-
posed by S4 [Strunk00]. The most powerful system to
protect against all types of destroy attacks might well use
a combination of these two schemes, as Carnegie Mellon
has proposed by using S4 as a file system on top of
PASIS storage.

4  Evaluation
This section explores the costs of implementing the var-
ious design choices discussed above, and the impact of
these choices on security. The purpose of presenting this
data is to compare the relative costs of the systems dis-
cussed in Section 3 using a trace from a real system. This
allows us to evaluate expensive operations such as full-
bandwidth encryption, key distribution, and key genera-
tion in practice.

The basis for our evaluation is a 10-day trace of all file
system accesses done by a medium-sized workgroup
using a 4-way HP-UX time-sharing server attached to
several disk arrays and a total of 500 GB of storage

12-hour 10-day
hours 12 240
requests 11.5 million 97.4 million

data moved 23 GB 129 GB
active users 23 32
user accounts 207 207

active files 111,000 969,000
total files 4.0 million 4.0 million
file systems 24 24

Table 3. Overview of file system trace used for evaluation.
The 10-day trace covers a period in late 2000 from a
Thursday to the following Saturday. The 12-hour subset
covers 8am to 8pm on the first trace day.



space. The trace was collected by instrumenting the ker-
nel to log all file system calls at the syscall interface.
Since this is above the file buffer cache, the numbers
shown will be pessimistic to any system that attempts to
optimize server messages or key usage based on repeated
access. Table 3 provides an overview of the trace.

Implementing each of these systems in the same environ-
ment, with the same users, in order to perform a con-
trolled experiment would be prohibitively expensive. We
use an analysis of the trace to estimate how the system
would behave and compare the relative operation costs.
This requires us to make some inferences about the
design of the various systems that are not always speci-
fied – we highlight these assumptions when they might
affect the comparison.

4.1 Security primitives
Table 4 shows the total number of cryptographic opera-
tions required for particular security primitives, depend-
ing on the granularity at which they are implemented.
This clearly illustrates the difference between the on-the-
wire and on-the-disk encryption systems. In NASD, the
server bears the cost of both the checksums and the
encryption (assuming the privacy security level). This
cost is reduced somewhat by the pre-computed check-
sums, but the encryption cost remains high. Since a ses-
sion key is computed for each client/server interaction,
the same file sent to multiple clients must be encrypted

each time. In CFS, on the other hand, data is encrypted
by the clients before ever being sent to the server. This
provides the same level of privacy when data is on the
wire, but requires only checksums and signatures at the
server, as shown for Cepheus.

4.2 Granularity of protection
The primary comparison among the encrypt-on-disk sys-
tems is the level of protection and complexity of key
management, and how keys are aggregated to objects.

Table 5 gives counts for the total number of keys used in
each of the three high-level classes of designs – using
per-session keys, per-file keys,or per-group keys. The
table shows the number of keys on a per-user basis for
several representative users and system userids during
the 12-hour trace period. The representative usernames
listed include the busiest users in terms of key use and
key distribution, as well as several system userids that
own substantial numbers of files. The first three columns
consider per-session keys as used in the encrypt-on-wire
systems. The middle four columns consider per-file keys
as a logical extreme. The last four columns consider a
per-group key scheme such as that used in Cepheus. The
table shows the number of keys each user would need to
obtain during the trace period if keys were created only
for each permission group of files (i.e., where all files
that have the same owner, group, and UNIX permissions
bits share a single key). We see that the number of keys

total ops (10 days) peak load (1 minute) NASD CFS SFS Cepheus

operation
messages
(1,000s)

bytes
(MB)

messages 
(req/s)

bandwidth 
(MB/s)

server - 
integrity

message signatures 97,400 n/a 6,600 n/a X – X X

checksums 37,300 129,000 6,600 12.5 – – X –
pre-computed cksums 14,600 n/a 1 n/a X – – X

server - 
privacy

encryption (reads) 22,700 77,700 780 6.4 X – – –

decryption (write) 14,600 51,400 740 6.1 X – – –
client - privacy encrypt/decrypt 37,300 129,000 1,520 12.5 X X X X

server - key 
exchanges

per request 97,400 – 6,600 – – – – –

per open/close 7,700 – 433 – X – X X
per logical volume 24 – 4 / min – – X – –

group server - 
key 
distribution

per file 11,100 – 1,100 – X X – –

per group 177 – 18 – – – – X
per logical volume 24 – 1 – – – X –

Table 4. Number of cryptographic operations at the server for each design. The total number of cryptographic operations performed
by the server over the course of the 10-day trace, and during the busiest 1 minute interval in the trace. Message signatures are calculated
for every request, checksums only for READ and WRITE requests. Checksums and encryptions/decryptions have a per-byte cost,
whereas key exchanges and distributions do not. When using pre-computed checksums, only WRITE operations incur server
checksumming. The peak load in terms of messages is an interval filled almost entirely with STAT requests; the peak load in terms of
bytes has a much smaller number of READ/WRITE requests. The main cost difference can be seen in the privacy rows. In the encrypt-
on-wire systems, both server and client work is required, whereas the encrypt-on-disk systems do not require the server work. The
granularity chosen for keys has a large effect on the number of messages required for key setup and for key distribution by the group
server, as shown in the last six rows. The values in the peak load column give the total streaming and per-message performance required
from the server and client processors, or by any hardware engine that might offload the cryptography. The final four columns specify
which systems bear which costs; an “X” means that the system uses the indicated cryptographic operation.
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required for the per-group scheme is orders of magnitude
lower than for the per-file scheme and several orders of
magnitude less than most of the per-session schemes. 

Considering the complexity for owners, as opposed to
readers and writers, Table 6 looks at the number of keys
that would have to be managed by data owners using per-
file or per-group keys. The table shows the total number
of keys needed by each owner. The “owned” column
gives a count of all the files in the entire file system
owned by the given user. The “distributed” numbers
show the number of keys a given owner would have had
to distribute during the time of the trace to readers and

writers of the files for which they are responsible. We can
see from these numbers that a system requiring direct
user involvement for key distribution would be prohibi-
tively cumbersome (imagine writing 7,500 keys from a
possible list of 50,000 on scraps of paper in the course of
several hours at your desk).

The two columns on the right are much more promising.
They show the number of keys required if we move to a
key-per-permission-group scheme. In this case, there is
not a separate key for each file, but a key for each class
of files, as described above. This produces a much more
manageable list with roughly 30 keys per owner, with 10
or 15 of them distributed during a 12 hour period, some-
thing that could even be done manually (using scraps of
paper) for maximum security. A graphical representation
of the difference is shown in Figure 1 where the potential
benefit of group keys is clear. An order of magnitude less
keys are required for the per-group scheme.

session keys per-file keys per-group keys

user
per 

request
per 

open/close
per 

filesys/lv total owner
non-

owner
newly 

created total owner
non-

owner
newly 

created
alice 85,100 6,130 6 203 6 197 85 29 1 28 0

bob 8,200 755 4 22 3 19 7 18 2 16 0
charlie 158,000 10,400 5 429 32 397 120 49 6 43 0
dick 46,500 2,360 3 475 62 413 3 24 8 16 0

erik 1,450,000 44,200 7 1,060 571 486 46 43 10 33 0
root 16,000,000 681,000 17 109,000 16,700 92,600 10,400 756 75 681 0
news 1,670,000 264,000 3 103,000 103,000 42 79,200 13 6 7 0

others 945,000 57,100 15 2,300 1,620 684 219 221 84 137 0

able 5. Key use by readers and writers. The number of keys needed if encryption is done on a per-session basis using three different
efinitions for session: a session per request, a session per open/close pair, and a single session per file system or logical volume (as in
ASD, SFS, and iSCSI); on a per-file basis (as in CFS); and on a per-group basis (as in Cepheus). The total number of per-file or per-
roup keys by username is separated into the total keys used, the number of those keys owned by the user, the number that would have
o be obtained from another owner, and the number of new keys created. The row for “others” contains the totals for the thirteen
dditional usernames active during the 12-hour trace. The rows for usernames “wilkes”, “frank” and “bin” that appear in the following
able are ommitted here since those users were not active during the 12-hour trace and the columns read 0 across the entire row.

per-file per-group

user
files 

owned
keys 

distributed
groups 
owned

keys 
distributed

wilkes 54,500 7,810 28 18

alice 19,400 31 13 5
bob 216,000 6,210 17 11
charlie 4,020 148 12 8

dick 13,700 114 13 9
erik 133,000 1,650 14 8
frank 64,900 23,000 32 17

bin 191,000 14,800 33 21
root 240,000 644 129 29
news 1,570,000 554 15 5

others 1,430,000 40,400 2,260 601

Table 6. Key distribution by owners. Assuming a system that
uses per-file keys, how many keys must a particular owner
send to other users. The “owned” columns show the totals for
all the files or groups that exist in the file system, and the
“distributed” columns show the number of keys sent out during
the 12-hour trace. The row for “others” contains the totals for
the approximately 200 additional usernames on the system.

Figure 1. Per-file vs. per-group keys. The data of Table 5 and
Table 6 presented graphically for several users. Using per-
group keys dramatically reduces both the number of keys used
by readers and writers and the number of keys that must be
distributed by owners. Here “average” is the per-user mean of
the “others” rows from the tables.
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Note that the numbers in the table are skewed high since
our analysis assumes users do not already have any keys
cached when the trace starts. In practice, or in a longer
trace, the number of keys to be distributed each day
would be even lower (e.g., when we consider the entire
10-day trace, the total number of per-group keys distrib-
uted is, on average, roughly double the numbers shown
for 12 hours). Another option would be per-directory
keys as used in CFS. These numbers are not shown, but
fall roughly between per-file and per-group keys.

4.3 Cost of revocation
The downside of using long-term keys for encryption is
the additional cost on revocation. When a user leaves a
group or organization and their access is to be removed,
the stored data that is encrypted with any keys that the
revoked user had access to must be re-encrypted to pre-
vent future unauthorized access. Table 7 gives details on
the cost of revocation when a user leaves a group. In a
system that uses the same key for a group of files based
on ownership or permissions, there is an additional revo-
cation that results when a user changes permissions on a
file (e.g., using chmod in UNIX), revocation for this rea-
son is rare in our trace and not covered in the table.

We simulate revocation in our 10-day trace as follows.
We choose a single user that will be revoked during this
period1 and track all the keys obtained by this user over
the 10-day trace. For aggressive, per-file re-encryption,
the number of files re-encrypted is simply all the files the
revoked user accessed in the past 10 days. In a system
with per-file keys, this is the total amount of data that
must be re-encrypted. For a system with per-group keys,
the cost includes the re-encryption of all the files in all
the file groups to which the user had access. For lazy
revocation systems, we assume that file data is re-

encrypted as it is read from or written to the system. Data
is re-encrypted and re-written whenever the file is
accessed for read or write. These values are shown in the
lazy revocation portion of the table.

For the lazy revocation scenario in Table 7, the volume
of data to be re-encrypted is nearly the same as the work
done by an encrypt-on-wire scheme (the server
encrypt/decrypt lines from Table 4). This gives further
evidence for the duality between encrypt-on-the-wire
and encrypt-on-disk schemes. In the encrypt-on-the-wire
systems, data is encrypted and decrypted each time it
crosses the network. In the encrypt-on-disk systems, data
is already encrypted and requires no further work by the
server. However, on revocation, the encrypt-on-disk sys-
tem requires extensive re-encryption. With lazy revoca-
tion, this re-encryption occurs whenever the file is read
or written, which makes the work done almost compara-
ble to the encrypt-on-the-wire system. The only remain-
ing difference is because encrypt-on-disk needs to
perform the encryption only once (until the next revoca-
tion), whereas encrypt-on-wire repeats the encryption
and decryption each time a file is transferred. The cost
differential between the two systems will come down to
the relative frequency of revocations, and the total
amount of data a particular revocation affects.

5  Conclusions
This paper has developed a common framework of the
core functions required for any secure storage system.
We have reviewed all the previously proposed systems
for storage security, and mapped them into this set of
components and design choices. For integrity of network
communication, any secure storage system must provide
some variant of signed message checksums that strongly
tie particular data to particular players. For privacy and
confidentiality, we have shown that the two main classes
of systems previously described are actually very simi-
lar: encrypt-on-wire (which solely protects the commu-
nication between servers and users) and encrypt-on-disk

1. We believe that a frequency of one revocation in 10 days
is reasonable. The turnover rate at Silicon Valley
companies in the late 1990s averaged around 18% per
year, which means that in a group of 200 people, a person
would leave about every 10 days.

granularity files bytes NASD CFS SFS Cepheus

aggressive revocation
per-file 3,700 2 GB – X X –
per-group 546,000 91 GB – – – –

lazy revocation
per-file 470 1/2 GB – – – –
per-group 121,000 43 GB – – – X

encrypt-on-wire per-session 969,000 129 GB X – – –

Table 7. The cost of revocation for each design. Note the explosion in the number of files that must be revoked when
a per-group system is used. Aggressive revocation assumes that all affected files are re-encrypted immediately. Lazy
revocation assumes that files are re-encrypted only the next time they are read or written, so the values show how
much of the data had been re-encrypted after 10 days. This number would increase over time, eventually closing the
window of vulnerable data and reaching the aggressive values. Note that even the aggressive, per-group scheme still
performs less total encryption work than the encrypt-on-wire scheme which is constantly changing the keys. The final
four columns specify which systems bear which costs, an “X” means that the system uses the indicated mechanism.



(which perform encryption and decryption only at user
endpoints, with untrusted servers in between). The latter
systems provide a form of pre-computed encryption for
optimizing the encryption work done by the former sys-
tems. We have also shown that encrypt-on-disk systems
with lazy re-encryption begin to have comparable
encryption and decryption costs to encrypt-on-the-wire
systems, even though these would seem to be completely
different approaches at first glance.

We have quantified the costs of the various systems using
a trace from a UNIX timesharing server and shown that
the choice made about granularity of keys greatly affects
both the complexity and encryption load – sometimes by
orders of magnitude. We have quantified a number of
design choices that affect security and performance:
owner-based key distribution, precomputed encryption,
the use of file groups, and lazy re-encryption. We have
briefly mentioned survivable storage systems, but not
analyzed their performance.

Our experience describing this framework has helped us
focus our thinking on to how to build a comprehensive
secure storage system that allows users to trade off their
level of security and system performance in a concrete,
sensible way. Our future work will follow these design
choices and a sequel to this paper will report on a system
that we are currently developing.
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