
1

A Framework for Event Composition in 
Distributed Systems

Christian Hälg,
15.6.2004

By Peter R. Pietzuch, Brian Shand, and 
Jean Bacon



2

Overview

� Introduction
� Events and Pub/Sub systems

� Example
� Motivation

� Composite Event Detection
� Model and composition language

� Mobile Composite Event Detectors
� Policies

� Conclusion



3

Introduction

� Events
� Something has happend

� Modelled as an object

� Publish/Subscribe Systems
� „Proxy“ for events
� Decoupling space, time and synchronization

� JMS, JORAM
� Gryphon (IBM)

� used at Sydney Olympics, US Tennis Open,…
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Introduction (2)

� Interface of a Pub/Sub System:



5

Example – Pub/Sub System

Sources: produce events
of type e,f and g.

Client A: subscribed for
events of type e,f,g and is
interested to know, 
whether they occured in a 
sequence c1 = (e ; f ; g)

Client B: subscribed for
events of type e and g and 
is interested to know, 
whether they occured
within a 5 minute time 
interval. c2 = (e,g)T=5min
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Example – Pub/Sub System (2)



7

Example – Pub/Sub System (3)

A lot of events are sent to the
clients over low bandwidth
connections.

Detection of patterns left to 
the client applications
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Example - Pub/Sub System
and CE detector (4)

Pub/Sub system is extended
with a Composite Event (CE) 
Detector

Client A: subscribes for CE 
c1 = (e ; f ; g) (Sequence) 

Client B: subscribes for CE 
c2 = (e, g)T=5min
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Example - Pub/Sub System
and CE detector (5)
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Example - Pub/Sub System
and CE detector (6)

Less traffic between Pub/Sub
System and the clients.

Client doesn‘t have to care
about detection of (probably) 
complex event-patterns.
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Motivation

� Abstraction of Events
� Composition of atomic events

� CE represented as a new atomic event
� Composition of CE

� Reduction of bandwidth usage
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Composite Event (CE) Detection

� Result: CE Detection Framework
� Regular language for CE specification

� Compiler translates the „core CE language“ 
into detectors

� Realised as finite automata

� Assumptions on infrastructure
1. An underlying Pub/Sub System
2. Events carry a timestamp, denoted by an 

time interval
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Composite Event (CE) Detection (2)

„strong“ order: 

„weak“ order:  321 ttt EE

Time Model:
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Composite Event (CE) Detection (3)
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Composite Event (CE) Detection (4)

Continue example:

Client A:  c1 = (e;f;g) (sequence of 3 events)

Transformation into automaton:
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Composite Event (CE) Detection (5)

Client B:  c2 = (e, g)T=5min

Transformation into automaton:
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Distributed Detection

� In the example: monolithic system for event
detection

� Distribute detectors over the network
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Mobile Composite Event Detectors

� Detectors move to „optimal“ site
� Tradeoff between bandwidth usage and 

latency

A Mobile Detector can…
factorize CE expressions

instantiate new detectors to reduce own load

migrate to another node to reduce bandwidth
usage at bottlenecks

destroy itself if no longer needed
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Distribution Policy

1. Determine location of a detector.
2. Decide on the degree of decomposition and 

distribution.
3. Decide on duplication of certain (often used) 

detectors.
� Optimization in terms of bandwidth usage

and latency.
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Detection Policy

� When can an input stream of events safely be
processed?

� Best Effort Detection: events in input stream
are consumed without delay.

� Guaranteed Detection: consumption of an 
event in the input stream, if event is stable.
� stable: An event is stable, if an event of the

same source arrived with a later timestamp.
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Detection Policy (2) – Problems

� What if a source is rarely publishing events?
� Publish dummy heartbeat events.

� Load on bandwidth.

� What if a source is disconnected?

� Research is done on a probabilistic stability
measure.
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Conclusion

� System tested on artifical office example
� Bandwidth usage can be brought down 

significantly
� But no „real world“ test yet

� Paper is sloppy concerning the formal 
definitions

� Composite event detection with FSMs isn‘t
really new (already done for database trigger
events)
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Conclusion (2)

� Contributions
� Idea of detection of composite events applied

to distributed systems
� Notion of mobile, decomposable and clonable

detectors
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Thank You

Questions?
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Appendix A – Time Model

� Events have a timestamp denoted by a time 
interval t = [tlow,thigh]

� Partial Order:

� Time intervals of event A and B do not overlap

� A < B iff

� strong order

� denoted by a solid arrow in the FSM

B
low

A
high tt <
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Appendix A – Time Model (2)

� Total Order

� Time intervals do overlap

� iff

� weak order

� denoted by a dashed arrow in the FSM
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Appendix B – Core CE Language

Atoms: Events {A,B,C,…} in input stream
Negation:
Concatenation: C1C2 (C1 weakly followd by C2)
Sequence: C1;C2 (C1 strongly followed by C2)
Iteration: C1*
Alternation: C1|C2

Timing: (C1,C2)T = timespec.

Parallelisation: C1||C2

]\[][ Σ⊆Σ≡Σ⊆¬ EE
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Appendix B – Core CE Language (2)

Brian enters the room followed by Peter

]][][[ BABB ⊆¬

Brian enters the room before Peter

Brian enters and Peter follows within an hour

Someone else enters the room when Brian is away

hTTPPB 11}])1,{[],([ =⊆

}],{[ PBB ⊆

][];[ PB
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Appendix C - Implementation

� Framework built on top of JORAM (Java 
Open Reliable Asynchronous Messaging), 
which is a open-source implementation of 
JMS (Java Message Service).

� Download at: http://joram.objectweb.org/
� Source of the framework not yet available for

download (but probably soon)


