
1

A Framework for Event Composition in
Distributed Systems

Christian Hälg,
15.6.2004

By Peter R. Pietzuch, Brian Shand, and
Jean Bacon

2

Overview

� Introduction
� Events and Pub/Sub systems

� Example
� Motivation

� Composite Event Detection
� Model and composition language

� Mobile Composite Event Detectors
� Policies

� Conclusion

3

Introduction

� Events
� Something has happend

� Modelled as an object

� Publish/Subscribe Systems
� „Proxy“ for events
� Decoupling space, time and synchronization

� JMS, JORAM
� Gryphon (IBM)

� used at Sydney Olympics, US Tennis Open,…

4

Introduction (2)

� Interface of a Pub/Sub System:

5

Example – Pub/Sub System

Sources: produce events
of type e,f and g.

Client A: subscribed for
events of type e,f,g and is
interested to know,
whether they occured in a
sequence c1 = (e ; f ; g)

Client B: subscribed for
events of type e and g and
is interested to know,
whether they occured
within a 5 minute time
interval. c2 = (e,g)T=5min

6

Example – Pub/Sub System (2)

7

Example – Pub/Sub System (3)

A lot of events are sent to the
clients over low bandwidth
connections.

Detection of patterns left to
the client applications

8

Example - Pub/Sub System
and CE detector (4)

Pub/Sub system is extended
with a Composite Event (CE)
Detector

Client A: subscribes for CE
c1 = (e ; f ; g) (Sequence)

Client B: subscribes for CE
c2 = (e, g)T=5min

9

Example - Pub/Sub System
and CE detector (5)

10

Example - Pub/Sub System
and CE detector (6)

Less traffic between Pub/Sub
System and the clients.

Client doesn‘t have to care
about detection of (probably)
complex event-patterns.

11

Motivation

� Abstraction of Events
� Composition of atomic events

� CE represented as a new atomic event
� Composition of CE

� Reduction of bandwidth usage

12

Composite Event (CE) Detection

� Result: CE Detection Framework
� Regular language for CE specification

� Compiler translates the „core CE language“
into detectors

� Realised as finite automata

� Assumptions on infrastructure
1. An underlying Pub/Sub System
2. Events carry a timestamp, denoted by an

time interval

13

Composite Event (CE) Detection (2)

„strong“ order:

„weak“ order: 321 ttt EE

Time Model:

B
low

A
high tt <

() ()B
low

A
low

B
high

A
high

B
high

A
high tttttt <∧=∨<

)31()21(tttt <∧<

14

Composite Event (CE) Detection (3)

0Σ

S0

Inital State

1Σ

Ordinary State

2Σ

A;B

Generative State

Generative Time State

T1

3Σ

(1 min)

strong order

transition

weak order

transition

)(E)(<

15

Composite Event (CE) Detection (4)

Continue example:

Client A: c1 = (e;f;g) (sequence of 3 events)

Transformation into automaton:

16

Composite Event (CE) Detection (5)

Client B: c2 = (e, g)T=5min

Transformation into automaton:

17

Distributed Detection

� In the example: monolithic system for event
detection

� Distribute detectors over the network

18

Mobile Composite Event Detectors

� Detectors move to „optimal“ site
� Tradeoff between bandwidth usage and

latency

A Mobile Detector can…
factorize CE expressions

instantiate new detectors to reduce own load

migrate to another node to reduce bandwidth
usage at bottlenecks

destroy itself if no longer needed

19

Distribution Policy

1. Determine location of a detector.
2. Decide on the degree of decomposition and

distribution.
3. Decide on duplication of certain (often used)

detectors.
� Optimization in terms of bandwidth usage

and latency.

20

Detection Policy

� When can an input stream of events safely be
processed?

� Best Effort Detection: events in input stream
are consumed without delay.

� Guaranteed Detection: consumption of an
event in the input stream, if event is stable.
� stable: An event is stable, if an event of the

same source arrived with a later timestamp.

21

Detection Policy (2) – Problems

� What if a source is rarely publishing events?
� Publish dummy heartbeat events.

� Load on bandwidth.

� What if a source is disconnected?

� Research is done on a probabilistic stability
measure.

22

Conclusion

� System tested on artifical office example
� Bandwidth usage can be brought down

significantly
� But no „real world“ test yet

� Paper is sloppy concerning the formal
definitions

� Composite event detection with FSMs isn‘t
really new (already done for database trigger
events)

23

Conclusion (2)

� Contributions
� Idea of detection of composite events applied

to distributed systems
� Notion of mobile, decomposable and clonable

detectors

24

Thank You

Questions?

25

Appendix A – Time Model

� Events have a timestamp denoted by a time
interval t = [tlow,thigh]

� Partial Order:

� Time intervals of event A and B do not overlap

� A < B iff

� strong order

� denoted by a solid arrow in the FSM

B
low

A
high tt <

26

Appendix A – Time Model (2)

� Total Order

� Time intervals do overlap

� iff

� weak order

� denoted by a dashed arrow in the FSM

BA E () ()B
low

A
low

B
high

A
high

B
high

A
high tttttt <∧=∨<

27

Appendix B – Core CE Language

Atoms: Events {A,B,C,…} in input stream
Negation:
Concatenation: C1C2 (C1 weakly followd by C2)
Sequence: C1;C2 (C1 strongly followed by C2)
Iteration: C1*
Alternation: C1|C2

Timing: (C1,C2)T = timespec.

Parallelisation: C1||C2

]\[][Σ⊆Σ≡Σ⊆¬ EE

28

Appendix B – Core CE Language (2)

Brian enters the room followed by Peter

]][][[BABB ⊆¬

Brian enters the room before Peter

Brian enters and Peter follows within an hour

Someone else enters the room when Brian is away

hTTPPB 11}])1,{[],([=⊆

}],{[PBB ⊆

][];[PB

29

Appendix C - Implementation

� Framework built on top of JORAM (Java
Open Reliable Asynchronous Messaging),
which is a open-source implementation of
JMS (Java Message Service).

� Download at: http://joram.objectweb.org/
� Source of the framework not yet available for

download (but probably soon)

