
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

A FRAMEWORK FOR FAULT-TOLERANCE IN HLA-BASED DISTRIBUTED SIMULATIONS

Martin Eklöf
Farshad Moradi

Swedish Defence Research Agency (FOI)

Dept. of Systems Modeling
SE-172 90 Stockholm

SWEDEN

 Rassul Ayani

Royal Institute of Technology (KTH)
Dept. of Microelectronics and Information Technology

SE-164 40 Stockholm
SWEDEN

ABSTRACT

The widespread use of simulation in future military sys-
tems depends, among others, on the degree of reuse and
availability of simulation models. Simulation support in
such systems must also cope with failure in software or
hardware. Research in fault-tolerant distributed simulation,
especially in the context of the High Level Architecture
(HLA), has been quite sparse. Nor does the HLA standard
itself cover fault-tolerance extensively. This paper de-
scribes a framework, named Distributed Resource Man-
agement System (DRMS), for robust execution of federa-
tions. The implementation of the framework is based on
Web Services and Semantic Web technology, and provides
fundamental services and a consistent mechanism for de-
scription of resources managed by the environment. To
evaluate the proposed framework, a federation has been
developed that utilizes time-warp mechanism for synchro-
nization. In this paper, we describe our approach to fault
tolerance and give an example to illustrate how DRMS
behaves when it faces faulty federates.

1 INTRODUCTION

Simulation models are increasingly being used as integral
parts of modern military command and control and deci-
sion support systems. The nature of many of today’s simu-
lation models, in terms of processing capacity required for
execution or decomposition to promote reuse and/or con-
nection of geographically dispersed units, shows the im-
portance of methodology for distributed simulation. In this
context the High Level Architecture (HLA) is a widely
used standard for distributed simulations. In HLA, a simu-
lation is referred to as federation, whereas an individual
simulation component is referred to as a federate. The de-
composition of a simulation system certainly has its merits,
but will typically lead to a higher failure rate (Kiesling
2003). In the perspective of a military decision support sys-
tem the failure of a critical simulation component is often

118
unacceptable, especially when time is a constraining factor.
Thus, support for fault-tolerant distributed simulation is
crucial in such systems. Thus, we need some mechanisms
for detecting errors in the simulation execution, as well as
measures for restoring an erroneous federation execution.

The HLA provides basic functionality for restoring an
unsuccessful simulation execution, through the save and re-
store features of the federation management services. How-
ever, no means of detecting an error, or automatically restor-
ing an erroneous simulation execution, are defined by the
HLA. Also, the save and restore facilities are used in the lo-
cal scope of a federate, meaning that a saved state is not
automatically distributed outside the node where the federate
resides. To cope with an unreliable host environment of a
federate, in terms of hardware crashes or lost network con-
nections, it is necessary to enable state saving at a “global”
level and resumption of a federate execution in a new host
environment. These functions are the fundament for what is
usually referred to as federate migration, i.e. the transfer of
federates between different host environments.

In our previous work we explored the possibilities for
migration of federates using the peer-to-peer-based Dis-
tributed Resource Management System (Eklöf, Sparf, and
Moradi 2004). However, in our previous work the decision
to migrate a federate was based on the willingness of work-
station owners to share their computing capacity for simu-
lation execution. Thus, the system did not consider detec-
tion of a failure and migrations of federates were based
upon user requests.

In this paper we present a revised architecture of the
DRMS and outline a partial implementation of the concept,
based on Web Services. More specifically, this paper will
address a mechanism for fault-tolerance in time-warp
based federations. The fault-tolerance mechanism does not
consider software errors, in terms of a simulation model
producing erroneous result, but handles cases where the
host environment of a federate crashes, the federate itself
crashes for some reason or the federate’s link to the RTI is
lost. Moreover, we assume that the federates executed

2

Eklöf, Ayani, and Moradi

within the scope of DRMS are transferable, meaning that
they are not bound to a specific piece of hardware and can
easily be migrated between different host environments.

2 BACKGROUND

As computers in a distributed simulation do not share a
common clock it is required that a virtual time, usually re-
ferred to as logical time, is introduced for each member of
the simulation. A time synchronization protocol is used to
maintain the logical time of members and ensures the
causal ordering of events.

2.1 Optimistic Synchronization in HLA

The time-warp approach to synchronization, proposed by
Jefferson (1985), is the most well known optimistic syn-
chronization protocol. In the time-warp protocol, logical
processes (LPs) are allowed to process events optimisti-
cally, which means that events may arrive that have a
smaller time-stamp than previously processed events. This
implies that LPs are also permitted to send messages opti-
mistically, which means that sent messages could later be
cancelled. The cancellation is performed by sending anti-
messages to the receivers of the original events. An inevi-
table aspect of the time-warp protocol is the ability of an
individual LP to restore to a previous state in its past. This
process is referred to as rollback. Rollback is triggered if
an LP receives a message in its past, or if a processed event
is annihilated by an anti-message.

The time-warp protocol has also been utilized in HLA-
based distributed simulation. The bulk of research in this
area addresses development of middleware that will shield
the developer of a federation from the often complex task
of implementing time-warp. In (Wang et al. 2004) the issue
of time-warp is investigated in the context of integrating
COTS simulation packages and the HLA. A middleware
for management of the rollback mechanism is presented
and evaluated. In (Yan, Sun, and Zhong 2003) a time man-
agement meta-level is introduced between the RTI and in-
dividual federates. This layer uses a computational reflec-
tion technique to free the developer of an optimistic
federate from the complex task of implementing the roll-
back mechanism. Huang et al. (2003) describes the addi-
tion of a middle layer, referred to as the Smart Time Man-
agement (STM), which aims at unifying various time
management schemes, such as time-stepped, event-driven
and optimistic time advancement approaches in the HLA.
In (Vardanega and Maziero 2001) a generic rollback man-
ager for optimistic HLA simulations, based on computa-
tional reflection techniques, is presented. The manager im-
plements state saving and manages rollback for optimistic
federates.
118
2.2 Fault-Tolerance in HLA

A distributed simulation, or distributed system for that mat-
ter, has a higher failure rate than a simulation, or system,
executed on a single machine. However, a failure in a dis-
tributed simulation is often partial, that is, one of the com-
ponents of the system fails. The failure may, or may not,
affect other components of the system. In the past, several
techniques for fault-tolerance in distributed systems have
been developed. These techniques can be classified into
two main categories; replication based and check-pointing
based (Damani and Garg 1998). In replication based ap-
proaches one or more copies of an LP is maintained in ad-
dition to the main LP. In case of failure, one of these repli-
cas will take the failed LP’s place. In check-pointing based
approaches, states of the individual LPs are saved on stable
storage. In case of failure, an LP is restarted using the last
stable state saved on stable storage.

According to Kiesling (2003) research in fault-tolerant
distributed simulation has been quite sparse. Work in ap-
plication of fault-tolerance techniques in the context of
HLA is even more abundant. However, there is some work
that aims in this direction. Lüthi and Berchtold (2000) pro-
vide a structured view of fault-tolerance in parallel and dis-
tributed simulations and possible solutions are presented.
In (Lüthi and Großmann 2001) a Resource Sharing System
(RSS) is presented that in a future extension could serve as
the basis for fault-detection, check-pointing and replication
of federates. In (Berchtold and Hezel 2001) a concept,
named R-FED (Replica Federate), in support of fault-
tolerant HLA federations is presented. As the name im-
plies, the approach is based on replication of individual
federates in a federation. Several papers address the issue
of federate migration, which is an important cornerstone in
designing an infrastructure for fault-tolerant distributed
simulation, see for example (Eklöf, Sparf, and Moradi
2004; Tan, Persson, and Ayani 2004; Bononi, D’Angelo,
and Donatiello 2003; Cai, Turner, and Zhao 2002; Lüthi
and Großmann 2001). However, these papers usually ad-
dress federate migration in the context of load-balancing
and do not explicitly address fault-tolerance.

The present version of HLA is IEEE 1516-2000. Cur-
rently, work is carried out to define the next version of
HLA, through the HLA Evolved (Möller, Karlsson, and
Löfstrand 2005). By the end of 2005, or early 2006, this
work is expected to be complete. An interesting aspect of
HLA Evolved is that fault-tolerance has been given more
focus than before. HLA Evolved will provide a common
semantics for failure and mechanisms for fault-detection.
At the core, two additions have been made to the Manage-
ment Object Model (MOM), namely federate lost and dis-
connected. These interactions provide the basic mecha-
nisms for signaling a fault from the context of a federation,
through federate lost, and from the perspective of a feder-
ate, through disconnected. Upon failure, the RTI has the
3

Eklöf, Ayani, and Moradi

responsibility to do resign on behalf of the lost federate us-
ing the Automatic Resign Directive. This line of develop-
ment is important for future realization of fault-tolerant
distributed simulations, based on the HLA.

3 DISTRIBUTED RESOURCE MANAGEMENT
SYSTEM – DRMS

In the following section the DRMS is presented in the con-
text of network-based M&S. Next, the mechanism for
fault-tolerance implemented in DRMS, to support robust
execution of time-warp based federations, is described.

3.1 Network-Based M&S

The DRMS provides computing capacity for reliable exe-
cution of simulations and is an essential part of a network-
based modeling and simulation environment, referred to as
NetSim, being developed at the Swedish Defense Research
Agency (Eklöf, Ulriksson, and Moradi 2003). NetSim sup-
ports collaborative simulation development and execution
within and between organizations and will thus promote
increased use and reuse of simulation models and also lead
to increased quality of work in the M&S development
process.

Figure 1 presents an overview of the service-oriented
architecture of NetSim. The uppermost layer comprises
various NetSim tools, dedicated to M&S-related tasks, for
instance tools for composition of federations by a single
user, or collaborative development of federations by a
number of users. The NetSim tools derive their functional-
ity from NetSim specific services, denoted DRMS, CC and
Repository in Figure 1. As stated above the DRMS pro-
vides computing capacity for reliable execution of simula-
tions. The CC (Collaboration Core) provides services for
collaborative work, whereas the Repository provides ser-
vices for look-up of available resources on a network. The
NetSim specific services are based on various overlay net-
work service technologies, such as Web Services, Grid
Services and the HLA RTI. These are just examples of
network technologies that could be deployed to achieve the
goals of the NetSim environment. Throughout all layers in
Figure 1, a common syntax and semantics for description
of resources is used to promote interoperability. Moreover,
security is considered an integral part of all layers.

Figure 1: Architecture of NetSim.
118
3.2 DRMS Concept

DRMS comprises two basic service types, namely a worker
service and a coordinator service. A worker is responsible
for execution of one or more jobs, whereas a coordinator is
responsible for the coordination of one or more workers in
managing a batch of jobs. In addition to these basic ser-
vices, the DRMS is dependant on a repository service. A
repository is used by a worker to advertise its presence on
the network and also its availability for execution of vari-
ous jobs. Furthermore, the repository is used by a coordina-
tor for localization of available workers. A repository also
contains advertisements of other resources available on the
network and is therefore used as entry point when worker
services fetch resource files and executable code.

3.3 Fault-Tolerance Approach

The main idea of our approach to fault-tolerance in time-
warp based federations is to use a check-pointing mecha-
nism to enable restoration of a federation upon failure. The
check-pointing is done by means of the RTI communica-
tion infrastructure, utilizing an extension to the Federation
Object Model (FOM). In this context, a checkpoint (CP)
represents the state of a federate at a specific point in time,
for example through a vector of state variables. The check-
points are saved in a stable storage component, which is
also a member of the federation execution. An important
feature of the check-pointing is to make sure that the indi-
vidual state represents a federate at a point in time that
could not suffer from rollback. This means that the federate
must report checkpoints to stable storage, which represent
the state of the federate at a point in time that is less than
the smallest timestamp of a message that could ever be de-
livered to the federate. In this way, it will always be safe
to use the check-point for restoration. The state-saving is
not synchronized throughout the federation, but federates
report their states to stable storage individually. The
mechanism for check-pointing is illustrated in Figure 2.

Figure 2: Check-Pointing Mechanism in the DRMS.
4

Eklöf, Ayani, and Moradi

First, the concerned federate uses the queryLITS
(Least Incoming Time-Stamp) method of its RTI ambassa-
dor to extract the timestamp of the next TSO (Time-Stamp
Order) message that it may have to process. The federate
uses this value to produce a checkpoint that could not be
invalidated in the future. The checkpoint can not be can-
celled since the federate can never be roll-backed prior to
this time and thus, it represents a safe state of the federate.
The LITS is used as timestamp when reporting the check-
point to the stable storage. When the stable storage re-
ceives a checkpoint, it calculates the minimum timestamp
of the checkpoints that have most recently been reported
from each federate in the federation. This minimum time-
stamp is then used by the stable storage for requesting ad-
vancement of time. Upon requesting flush of the RTI
queues, the individual federates will receive time ad-
vancement grants based on the timestamps of the supplied
checkpoints. The granted time represents the GVT (Global
Virtual Time) of the federation. Note that this time does
not represent the actual (local) time of a federate. GVT is
the boundary up to which the simulation execution is re-
garded as complete by all participants and is used to per-
form garbage collection of saved states to free memory
space.

The purpose of allowing the stable storage to control
advancement of GVT is crucial for migration purposes.
During the migration of a federate the GVT must not be
advanced beyond the time-stamp of the checkpoint that the
migrating federate will rely upon for its restoration. The
mechanism described above will make sure that this will
not occur.

3.4 Migration of Federates

Below, the process of migrating a federate upon failure is
described. When an individual federate is deployed in a
new host environment, the startup scheme differs slightly
from the normal case. This process is illustrated in Figure
3.

Figure 3: Federate Migration Process.

118
Initially, the federate requests the most up-to-date
checkpoint of its state from stable storage. The federate re-
stores its state based on this checkpoint. Then the federate
makes a request to all participants to resend all messages
whose timestamp is greater than GVT. Federates that have
produced messages to the concerned federate, resend these
messages. When the migrated federate requests flush of the
RTI queues, it will receive the missing messages and can
then resume the execution.

The described mechanism requires additional customi-
zation of participating federates and introduction of four
supplementary interactions to the FOM, namely reportCP,
requestCP, latestCP and requestResend. Extra interactions
required by the fault-tolerance mechanism are outlined in
Table 1.

Table 1: Interactions Added to the FOM to Support the
Fault-Tolerance Mechanism (P = Publish, S = Subscribe).

Interaction Description Federate Stable
Storage

reportCP Reports check-
point to Stable
Storage

P S

requestCP Requests latest
checkpoint from
stable storage

P S

latestCP Delivers latest
checkpoint to
migrated feder-
ate

S P

requestRe-
send

Requests resend
of messages
from GVT

P, S -

3.5 Services and Ontology

The DRMS concept presented in section 3.2 has been par-
tially implemented. The implementation is based on Web
Services, the Axis platform (Saleem 2004), and Semantic
Web technology, through use of the Jena toolkit (McBride
2002). In the following section the implementation is de-
scribed briefly. The following components of the imple-
mentation are described:

• DRMS ontology
• RemoteJobService
• ResourceRepositoryService
• ExecutionService.

To enable uniform and semantically rich descriptions

of resources within the environment, a DRMS ontology is
used. In near future, this ontology will be aligned with a
general NetSim ontology that is currently under develop-
ment. The DRMS ontology comprises constructs for de-
scription of simulation models and computing resources.
5

Eklöf, Ayani, and Moradi

The main purpose of the ontology is to promote a shared
view of information throughout the environment and facili-
tate localization and matching of resources. The chosen
language for its representation is the Web Ontology Lan-
guage (OWL) (McGuniess and van Harmelen 2004). The
expressiveness of OWL is sufficient for representation of
information required by the DRMS. The language also en-
ables inference over information, which is used to match
resources in the implementation.

The RemoteJobService implements a worker as de-
scribed in section 3.2. When deployed on a workstation,
this service announces its presence on the network by reg-
istering an announcement in a repository. The announce-
ment is represented by a meta-model, defining the features
of the RemoteJobService’s host environment. This includes
aspects such as the workstation’s hardware configuration,
OS type and version etc. The meta-model is an instance
based on the DRMS ontology. Table 2 outlines the service
interface of the RemoteJobService.

The ResourceRepositoryService is a simple implemen-
tation of a repository as described in section 3.2. This ser-
vice supports storage of meta-models, such as the meta-
model describing the RemoteJobService’s host environ-
ment. The interface of the ResourceRepositoryService in-
cludes methods for registering, deletion and lookup of
meta-models. The lookup can either respond with the entire
content of the ResourceRepositoryService, or a subset of
registered meta-models, defined by a search query. Table 2
outlines the service interface of the ResourceRepository-
Service.

The ExecutionService is an implementation of a coor-
dinator as described in section 3.2. An ExecutionService is
utilized by the NetSim environment when a single user, or
group, requests execution of a scenario (federation). The
main tasks of the ExecutionService are to automatically
setup a federation and to monitor the federation execution.
Table 2 outlines the service interface of the ExecutionSer-
vice. Figure 4 gives a schematic view of the interrelation of
DRMS services.

Table 2: Service Interfaces of the DRMS Implementation.

Service Method
RemoteJobService allocateJob(Meta-model)

 startJob(Id)
 stopJob(Id)
 getJobStatus(Id)

ResourceRepositoryService addModel(Meta-model)
 deleteModel(Meta-model)
 getModels()
 getSubset(Query)

ExecutionService requestExecu-
tion(Scenario)

 finalizeExecution(Id)
 getScenarioStatus(Id)

118

Figure 4: Interrelation of DRMS Services.

When the NetSim environment requests execution of a

federation, it feeds the ExecutionService with a scenario
description. The scenario description comprises meta-
models for all federates that are part of the federation. In
order to distribute the federates in the federation, to suit-
able nodes in the network, the ExecutionService fetches
meta-models, representing RemoteJobServices, from the
ResourceRepositoryService. Next, the ExecutionService
determines a suitable distribution of federates, by matching
meta-models of the federates with meta-models of avail-
able RemoteJobServices. The matching procedure utilizes
an inference engine and a set of pre-defined rules to find a
suitable distribution of federates over available Remote-
JobService nodes. If the allocation of one or more federates
is accepted by a RemoteJobService, it starts downloading
the required executable code and possible resource files.
The URLs to these files are defined in the meta-models
representing the federates in question. When the download
process is completed, the ExecutionService signals start-up
of the federation to concerned RemoteJobServices.

To enable fault-tolerant execution of the federation the
ExecutionService comprises a stable storage and a fault de-
tector component. These components are members of con-
cerned federation through a common federate. The stable
storage stores checkpoints reported from federates in the
federation, whereas the fault detector detects failed feder-
ates in the federation and initiates preventive measures to
resolve these errors. The error detector detects the failure
of a federate by means of the HLAfederate object of the
MOM, which is deleted if the link to the RTI is broken. As
an additional measure the error detector calculates the time
passed from the last reported checkpoint and if this value
6

Eklöf, Ayani, and Moradi

exceeds a pre-defined time, the federate is not longer con-
sidered active. When a federate crashes, or its network
connection is simply lost, the fault-detector initiates re-
distribution of the lost component in the inference engine.
The inference engine finds a new host environment for the
federate under consideration, given the requirements of the
federate as defined by its meta-model, and allocates the job
to the RemoteJobService node.

3.6 An Example

Below, we look at an example to illustrate how the DRMS
handles the occurrence of fault in a federation. In order to
test the proposed fault-tolerance approach, a simple time-
warp federation has been developed. This federation con-
sists of four federates, which form a fully connected net-
work, i.e. each federate is able to send messages to all
other federates. In the test federation, processing of a mes-
sage simply means updating a statistics object that de-
scribes the message exchange during a federation execu-
tion. Each federate randomly schedules events. This means
that at random points in time, a federate sends a message to
a randomly selected joined federate. The federates are ini-
tiated using disparate random seeds, causing the event
scheduling to be based on different random streams within
each federate. The federates process and produce events
optimistically, thus when a message is received in a feder-
ate’s past, a rollback is triggered. Similarly, when an anti-
message is received that will annihilate an already proc-
essed message, a rollback is also triggered. The rollback
mechanism relies on a record of locally saved check-
points. Advancement of GVT is used to garbage collect the
record.

Consider a federation comprising four federates, la-
beled A, B, C and D. Table 3 describes the state of the fed-
erates, in terms of their message queues, as GVT equals 10.
Grey cells represent messages that have been processed by
the federates, whereas the white cells represent unproc-
essed messages.

The process of federate migration, in case of failure,
resembles a rollback to GVT. However, in this case special
attention is required since the action is not coordinated. In
an ordinary rollback the concerned federates send anti-
messages to annihilate invalid messages. In case of failure
this is not possible and must be handled separately be each
federate. For instance, consider the case when federate A in
Table 3 crashes. When federate A is absent, federates B, C
and D continues their execution. However, since no check-
points are reported from federate A, the stable storage will
not request time advancement greater than 10. When the
fault detector has detected the lost federate, and a new host
environment has been identified by the inference engine,
the failed federate is deployed at a new node. Next, the mi-
grated federate fetches the latest saved state in stable stor-
age, as defined in section 3.4. When the federate has re-
1187
stored using the state from stable storage, it requests resend
of messages. This request also means that the non-migrated
federates must annihilate messages received from federate
A. In this case federate C must annihilate message A15 and
federate D message A17. This will trigger retraction of
message C21 in federate B, but no rollback will be initiated
since the message has not been processed yet.

 When the potential message annihilation is finalized
federate B, C and D resend messages destined for federate
A, whose time-stamp is greater than GVT. In this case,
given that the queue configurations do not change during
migration, federate B resends message A12 and A14. Next,
federate A reschedules the received events and the federa-
tion resumes normal execution.

Table 3: Message Queues in Federates of
Test Federation when GVT Equals 10; Grey
Cells Represent Processed Messages,
whereas White Cells Represent Unprocessed
Messages.

Federate IN OUT
A B12 C15
 B14 D17

B D9 A12
 C12 A14
 C21 -

C D11 B12
 A15 B21

D A8 C11
 A17 _-

4 DISCUSSION

As modeling and simulation is integrated in various envi-
ronments and used as a tool in the decision process, the re-
quirements on the supporting infrastructure will be high.
An important aspect in this is to enable fault-tolerant dis-
tributed simulation, since this ensures a robust execution
environment that can respond to user needs in a timely
fashion. The de facto standard for distributed simulation,
the HLA, which is widely used throughout the military
domain, does not treat fault-tolerance extensively. Nor has
this topic been treated by the research community compre-
hensively. Given this, it is crucial to develop efficient and
scalable methods for fault-tolerance in HLA-based distrib-
uted simulation.

Our approach is based on implementing fault-tolerance
mechanisms within the framework of the HLA, i.e. com-
munication related to the fault-tolerance mechanism is sent
over the RTI. This of course implies that individual feder-
ates conform to the requirements imposed by the fault-

Eklöf, Ayani, and Moradi

tolerance mechanism, in terms of publishing and subscrib-
ing to the interactions defined in Table 1. Currently, these
aspects must be implemented by each federate individu-
ally. In the long run, it is desirable to implement these fea-
tures in a generic fashion, through some kind of middle-
ware system, to simplify the deployment of federates
within the DRMS.

Introducing fault-tolerance mechanisms in M&S infra-
structures will impose a cost. Regardless of the approach
taken, replication based or check pointing based fault toler-
ance, the infrastructure must cope with increased network
traffic and consumption of more hardware resources. Thus,
it is important to evaluate the cost of having fault-tolerant
simulations to determine when the approach is beneficial.
Furthermore, aspects of fault-tolerance should be consid-
ered in the early phases of the FEDEP process. For in-
stance, it is important to determine what levels of fault-
tolerance are required by different components of the simu-
lation in the context of what degree of degradation is ac-
ceptable for a given target (Möller, Karlsson, and Löf-
strand 2005).

The proposition for a next version of the HLA stan-
dard, the HLA Evolved, will simplify the process of devel-
oping fault-tolerant federations. In this standard, a common
semantics for failure and mechanisms for fault detection
are provided. Still, there are others issues to resolve as
well. Given the failure of a critical component in a federa-
tion, whose original host environment is not accessible for
its restoration, a mechanism for deployment of the compo-
nent in a new host environment is required. This can be
solved through replication of the component, or through
utilization of check-pointing, at a global level. Our work
shows that it is feasible to use a check-pointing based
scheme, employing the RTI communication infrastructure,
to enable fault-tolerance in time-warp federations. How-
ever, it should be noted that this kind of check-pointing is
tightly coupled with the time synchronization protocol of
the federation. Other, or complementary, solutions have to
be provided for other synchronizations protocols, or cases
with mixed synchronization protocols. Also, the test fed-
eration used in this work comprises no complex issues of
ownership of objects in the federation. In more complex
federation types, the issue of transferring ownership of ob-
jects between federates, in case of failure, must be resolved
as well.

5 FUTURE WORK

In estimating the cost of fault-tolerant distributed simula-
tion, based on our approach, it is of interest to look at the
size of the check-points reported to stable storage and how
this potentially will degrade the simulation execution.
Also, the checkpoint interval used by each federate is of
importance in this perspective.
118
The overall time consumption and number of mes-
sages sent executing the federation, with and without fault-
tolerance, will be measured and compared. This will be
done to identify when the cost of having fault-tolerance
will inhibit the simulation execution rather than make it
more efficient, given a specific failure-rate of the federates.

It should also be noted that the effectiveness of the
fault-tolerance mechanism presented here is clearly cou-
pled with the mutual relations existing between federates.
During migration, federates that are joined to the federation
can still progress their execution. When the migrated fed-
erate joins, after being deployed in a new host environ-
ment, chances are that is has lagged behind the others, and
thus it may start to produce messages in their past. How-
ever, this depends on the nature of the migrated federate. A
federate publishing data of concern to a large audience will
of course affect the effectiveness of the execution more
than a federate producing data of less interest. In our test
federation the mutual relation between the federates is or-
ganized in a fully connected network, and messages send
to and from federates are completely randomized. In the
future it will be of interest to test other federation topolo-
gies to investigate how the relations between federates in-
fluence the performance of our fault-tolerant approach.

REFERENCES

Berchtold, C., and M. Hezel. 2001. An architecture for
fault-tolerant HLA-based simulation. In Proceedings
of the 15th European Simulation Multiconference, 616-
620. Prague, Czech Republic.

Bononi, L., G. D’Angelo, and L. Donatiello. 2003. HLA-
based adaptive distributed simulation of wireless mo-
bile systems. In Proceedings of the 17th Workshop on
Parallel and Distributed Simulation, 40-49. San
Diego, California.

Cai, W., S. Turner, and H. Zhao. 2002. A load manage-
ment system for running HLA-based distributed simu-
lations over the grid. In Proceedings of the 6th IEEE
International Workshop on Distributed Simulation and
Real-Time Applications, 7-14. Fort Worth, Texas.

Damani, O. P., and V. K. Garg. 1998. Fault-tolerant dis-
tributed simulation. In Proceedings of the 12th Work-
shop on Parallel and Distributed Simulation, 38-45.
Alberta, Canada.

Eklöf, M., M. Sparf, and F. Moradi. 2004. Peer-to-peer-
based resource management in support of HLA-based
simulations. Simulation 80: 181-190.

Eklöf, M., J. Ulriksson, and F. Moradi. 2003. NetSim: An
environment for network based modeling and simula-
tion. In Proceedings of the NATO RTO Symposium on
C3I and M&S Interoperability. Antalya, Turkey.

Huang, J., M. Tung, K. Wang, L. Hui, M. Lee, J. Wu, and
S. Wai. 2003. Smart time management: The unified
time management mechanism. In Proceedings of the
8

Eklöf, Ayani, and Moradi

2003 European Simulation Interoperability Workshop.
Stockholm, Sweden.

Jefferson, D. 1985. Virtual time. ACM Transactions on
Programming Languages and Systems 7: 404-425.

Kiesling, T. 2003. Fault-tolerant distributed simulation: A
position paper [online]. Available via
http://fakinf.informatik.unibw-muen-
chen.de/~tkiesling/documents/ftds-
position-paper.pdf [accessed March 21, 2005].

Lüthi, J., and S. Großmann. 2001. The resource sharing
system: Dynamic federate mapping for HLA-based
distributed simulation. In Proceedings of the 15th
Workshop on Parallel and Distributed Simulation, 91-
98. Lake Arrowhead, California.

Lüthi, J., and C. Berchtold. 2000. Concepts for dependable
distributed discrete event simulation. In Proceedings
of the 14th International European Simulation Multi-
Conference, 59-66. Ghent, Belgium.

McBride, B. 2002. Jena: A semantic web toolkit. IEEE
Internet Computing 6: 55-59.

McGuniess, D. L., and F. van Harmelen. 2004. OWL web
ontology language overview [online]. Available via
http://www.w3.org/TR/owl-features/

 [accessed March 21, 2005].
Möller, B., M. Karlsson, and B. Löfstrand. 2005. Develop-

ing fault tolerant federations using HLA evolved. In
Proceedings of the 2005 Spring Simulation Interop-
erability Workshop. San Diego, California.

Saleem, U. 2004. Developing java web services with AXIS
[online]. Available via
http://www.developer.com/java/web/ar
ticle.php/3443951 [accessed March 21, 2005].

Tan, G., A. Persson, and R. Ayani. 2004. HLA federate
migration. In Proceedings of the 38th Annual Simula-
tion Symposium, 243-250. San Diego, California.

Vardanega, F., and C. Maziero. 2001. A generic rollback
manager for optimistic HLA simulations. In Proceed-
ings of the 4th IEEE International Workshop on Dis-
tributed Simulation and Real-Time Applications, 79-
85. San Francisco, California.

Wang, X., S. J. Turner, M. Y. H. Low, and B. P. Gan.
2004. Optimistic synchronization in HLA based dis-
tributed simulation. In Proceedings of the 18th Work-
shop on Parallel and Distributed Simulation, 123-130.
Kufstein, Austria.

Yan, H., Y. Zhang, G. Sun, and L. Zhong. 2003. Research
on time warp mechanism in HLA. In Proceedings of
the 2nd International Conference on Machine Learning
and Cybernetics, 1092-1095, Xi-an, China.

AUTHOR BIOGRAPHIES

MARTIN EKLÖF is a research assistant at the Swedish
Defence Research Agency (FOI), Department of Systems
Modeling. He holds a Master of Science in Physical Geog-
1189
raphy from Lund University, Sweden, and is currently pur-
suing his PhD at the Royal Institute of Technology. His
research interests include distributed simulations, espe-
cially infrastructures for composition and fault-tolerant
execution of distributed simulations. His e-mail address is
martin.eklof@foi.se.

RASSUL AYANI is Professor of Computer Science at the
Department of Microelectronics and Information Technol-
ogy, Royal Institute of Technology (KTH), Stockholm,
Sweden. He received his BS degree from University of
Technology in Vienna (Austria), his MS from University
of Stockholm and his PhD from KTH in Stockholm. His
current research interests are in distributed systems, per-
formance analysis and distributed simulation. Dr. Ayani
has served as program chair and program committee mem-
ber at numerous international conferences. He is an associ-
ate editor of the ACM Transactions on Modelling and
Computer Simulation (TOMACS). His e-mail address is
rassul@imit.kth.se and his Web address is
www.imit.kth.se/~rassul.

FARSHAD MORADI is a senior research officer and
head of the Department of Systems Modelling at the Swed-
ish Defence Research Agency (FOI). He has been working
on modelling and simulation for the past seven years and
has led projects at FOI since August 2000. He holds a Mas-
ter of Science in Computer Science and Engineering from
Chalmers University of Technology, Gothenburg, Sweden,
and is pursuing his PhD at the Royal Institute of Technol-
ogy (KTH). His research interests are in the area of Dis-
tributed and Web-based Simulations, Computer Generated
Forces and Information Operations and Warfare. His e-
mail address is farshad.moradi@foi.se.

http://fakinf.informatik.unibw-muen-chen.de/~tkiesling/documents/ftds-position-paper.pdf
http://fakinf.informatik.unibw-muen-chen.de/~tkiesling/documents/ftds-position-paper.pdf
http://fakinf.informatik.unibw-muen-chen.de/~tkiesling/documents/ftds-position-paper.pdf
http://www.w3.org/TR/owl-features/
http://www.developer.com/java/web/article.php/3443951
http://www.developer.com/java/web/article.php/3443951
mailto:martin.eklof@foi.se
mailto:rassul@imit.kth.se
http://www.imit.kth.se/~rassul
mailto:farshad.moradi@foi.se

