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ABSTRACT 

The widespread use of simulation in future military sys-
tems depends, among others, on the degree of reuse and 
availability of simulation models. Simulation support in 
such systems must also cope with failure in software or 
hardware. Research in fault-tolerant distributed simulation, 
especially in the context of the High Level Architecture 
(HLA), has been quite sparse. Nor does the HLA standard 
itself cover fault-tolerance extensively. This paper de-
scribes a framework, named Distributed Resource Man-
agement System (DRMS), for robust execution of federa-
tions. The implementation of the framework is based on 
Web Services and Semantic Web technology, and provides 
fundamental services and a consistent mechanism for de-
scription of resources managed by the environment. To 
evaluate the proposed framework, a federation has been 
developed that utilizes time-warp mechanism for synchro-
nization. In this paper, we describe our approach to fault 
tolerance and give an example to illustrate how DRMS  
behaves when it faces faulty federates.  

1 INTRODUCTION 

Simulation models are increasingly being used as integral 
parts of modern military command and control and deci-
sion support systems. The nature of many of today’s simu-
lation models, in terms of processing capacity required for 
execution or decomposition to promote reuse and/or con-
nection of geographically dispersed units, shows the im-
portance of methodology for distributed simulation. In this 
context the High Level Architecture (HLA) is a widely 
used standard for distributed simulations. In HLA, a simu-
lation is referred to as federation, whereas an individual 
simulation component is referred to as a federate. The de-
composition of a simulation system certainly has its merits, 
but will typically lead to a higher failure rate (Kiesling 
2003). In the perspective of a military decision support sys-
tem the failure of a critical simulation component is often 
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unacceptable, especially when time is a constraining factor. 
Thus, support for fault-tolerant distributed simulation is 
crucial in such systems. Thus, we need some mechanisms 
for detecting errors in the simulation execution, as well as 
measures for restoring an erroneous federation execution. 

The HLA provides  basic functionality for restoring an 
unsuccessful simulation execution, through the save and re-
store features of the federation management services. How-
ever, no means of detecting an error, or automatically restor-
ing an erroneous simulation execution, are defined by the 
HLA. Also, the save and restore facilities are used in the lo-
cal scope of a federate, meaning that a saved state is not 
automatically distributed outside the node where the federate 
resides. To cope with an unreliable host environment of a 
federate, in terms of hardware crashes or lost network con-
nections, it is necessary to enable state saving at a “global” 
level and resumption of a federate execution in a new host 
environment. These functions are the fundament for what is 
usually referred to as federate migration, i.e. the transfer of 
federates between different host environments. 

In our previous work we explored the possibilities for 
migration of federates using the peer-to-peer-based Dis-
tributed Resource Management System (Eklöf, Sparf, and 
Moradi 2004). However, in our previous work the decision 
to migrate a federate was based on the willingness of work-
station owners to share their computing capacity for simu-
lation execution. Thus, the system did not consider detec-
tion of a failure and migrations of federates were based 
upon user requests.  

In this paper we present a revised architecture of the 
DRMS and outline a partial implementation of the concept, 
based on Web Services. More specifically, this paper will 
address a mechanism for fault-tolerance in time-warp 
based federations. The fault-tolerance mechanism does not 
consider software errors, in terms of a simulation model 
producing erroneous result, but handles cases where the 
host environment of a federate crashes, the federate itself 
crashes for some reason or the federate’s link to the RTI is 
lost. Moreover, we assume that the federates executed 
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within the scope of DRMS are transferable, meaning that 
they are not bound to a specific piece of hardware and can 
easily be migrated between different host environments. 

2 BACKGROUND 

As computers in a distributed simulation do not share a 
common clock it is required that a virtual time, usually re-
ferred to as logical time, is introduced for each member of 
the simulation. A time synchronization protocol is used to 
maintain the logical time of members and ensures the 
causal ordering of events.  

2.1 Optimistic Synchronization in HLA 

The time-warp approach to synchronization, proposed by 
Jefferson (1985), is the most well known optimistic syn-
chronization protocol. In the time-warp protocol, logical 
processes (LPs) are allowed to process events optimisti-
cally, which means that events may arrive that have a 
smaller time-stamp than previously processed events. This 
implies that LPs are also permitted to send messages opti-
mistically, which means that sent messages could later be 
cancelled. The cancellation is performed by sending anti-
messages to the receivers of the original events. An inevi-
table aspect of the time-warp protocol is the ability of an 
individual LP to restore to a previous state in its past. This 
process is referred to as rollback. Rollback is triggered if 
an LP receives a message in its past, or if a processed event 
is annihilated by an anti-message. 

The time-warp protocol has also been utilized in HLA-
based distributed simulation. The bulk of research in this 
area addresses development of middleware that will shield 
the developer of a federation from the often complex task 
of implementing time-warp. In (Wang et al. 2004) the issue 
of time-warp is investigated in the context of integrating 
COTS simulation packages and the HLA. A middleware 
for management of the rollback mechanism is presented 
and evaluated.  In (Yan, Sun, and Zhong 2003) a time man-
agement meta-level is introduced between the RTI and in-
dividual federates. This layer uses a computational reflec-
tion technique to free the developer of an optimistic 
federate from the complex task of implementing the roll-
back mechanism. Huang et al. (2003) describes the addi-
tion of a middle layer, referred to as the Smart Time Man-
agement (STM), which aims at unifying various time 
management schemes, such as time-stepped, event-driven 
and optimistic time advancement approaches in the HLA. 
In (Vardanega and Maziero 2001) a generic rollback man-
ager for optimistic HLA simulations, based on computa-
tional reflection techniques, is presented. The manager im-
plements state saving and manages rollback for optimistic 
federates. 
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2.2 Fault-Tolerance in HLA 

A distributed simulation, or distributed system for that mat-
ter, has a higher failure rate than a simulation, or system, 
executed on a single machine. However, a failure in a dis-
tributed simulation is often partial, that is, one of the com-
ponents of the system fails. The failure may, or may not, 
affect other components of the system. In the past, several 
techniques for fault-tolerance in distributed systems have 
been developed. These techniques can be classified into 
two main categories; replication based and check-pointing 
based (Damani and Garg 1998). In replication based ap-
proaches one or more copies of an LP is maintained in ad-
dition to the main LP. In case of failure, one of these repli-
cas will take the failed LP’s place. In check-pointing based 
approaches, states of the individual LPs are saved on stable 
storage. In case of failure, an LP is restarted using the last 
stable state saved on stable storage. 

According to Kiesling (2003) research in fault-tolerant 
distributed simulation has been quite sparse. Work in ap-
plication of fault-tolerance techniques in the context of 
HLA is even more abundant. However, there is some work 
that aims in this direction. Lüthi and Berchtold (2000) pro-
vide a structured view of fault-tolerance in parallel and dis-
tributed simulations and possible solutions are presented. 
In (Lüthi and Großmann 2001) a Resource Sharing System 
(RSS) is presented that in a future extension could serve as 
the basis for fault-detection, check-pointing and replication 
of federates. In (Berchtold and Hezel 2001) a concept, 
named R-FED (Replica Federate), in support of fault-
tolerant HLA federations is presented. As the name im-
plies, the approach is based on replication of individual 
federates in a federation. Several papers address the issue 
of federate migration, which is an important cornerstone in 
designing an infrastructure for fault-tolerant distributed 
simulation, see for example (Eklöf, Sparf, and Moradi 
2004; Tan, Persson, and Ayani 2004; Bononi, D’Angelo, 
and Donatiello 2003; Cai, Turner, and Zhao 2002; Lüthi 
and Großmann 2001). However, these papers usually ad-
dress federate migration in the context of load-balancing 
and do not explicitly address fault-tolerance. 

The present version of HLA is IEEE 1516-2000. Cur-
rently, work is carried out to define the next version of 
HLA, through the HLA Evolved (Möller, Karlsson, and 
Löfstrand 2005). By the end of 2005, or early 2006, this 
work is expected to be complete. An interesting aspect of 
HLA Evolved is that fault-tolerance has been given more 
focus than before. HLA Evolved will provide a common 
semantics for failure and mechanisms for fault-detection. 
At the core, two additions have been made to the Manage-
ment Object Model (MOM), namely federate lost and dis-
connected. These interactions provide the basic mecha-
nisms for signaling a fault from the context of a federation, 
through federate lost, and from the perspective of a feder-
ate, through disconnected. Upon failure, the RTI has the 
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responsibility to do resign on behalf of the lost federate us-
ing the Automatic Resign Directive. This line of develop-
ment is important for future realization of fault-tolerant 
distributed simulations, based on the HLA. 

3 DISTRIBUTED RESOURCE MANAGEMENT 
SYSTEM – DRMS 

In the following section the DRMS is presented in the con-
text of network-based M&S. Next, the mechanism for 
fault-tolerance implemented in DRMS, to support robust 
execution of time-warp based federations, is described.  

3.1 Network-Based M&S 

The DRMS provides computing capacity for reliable exe-
cution of simulations and is an essential part of a network-
based modeling and simulation environment, referred to as 
NetSim, being developed at the Swedish Defense Research 
Agency (Eklöf, Ulriksson, and Moradi 2003). NetSim sup-
ports collaborative simulation development and execution 
within and between organizations and will thus promote 
increased use and reuse of simulation models and also lead 
to increased quality of work in the M&S development 
process. 

Figure 1 presents an overview of the service-oriented 
architecture of NetSim. The uppermost layer comprises 
various NetSim tools, dedicated to M&S-related tasks, for 
instance tools for composition of federations by a single 
user, or collaborative development of federations by a 
number of users. The NetSim tools derive their functional-
ity from NetSim specific services, denoted DRMS, CC and 
Repository in Figure 1. As stated above the DRMS pro-
vides computing capacity for reliable execution of simula-
tions. The CC (Collaboration Core) provides services for 
collaborative work, whereas the Repository provides ser-
vices for look-up of available resources on a network. The 
NetSim specific services are based on various overlay net-
work service technologies, such as Web Services, Grid 
Services and the HLA RTI. These are just examples of 
network technologies that could be deployed to achieve the 
goals of the NetSim environment. Throughout all layers in 
Figure 1, a common syntax and semantics for description 
of resources is used to promote interoperability. Moreover, 
security is considered an integral part of all layers. 

 

 
Figure 1: Architecture of NetSim. 
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3.2 DRMS Concept 

DRMS comprises two basic service types, namely a worker 
service and a coordinator service. A worker is responsible 
for execution of one or more jobs, whereas a coordinator is 
responsible for the coordination of one or more workers in 
managing a batch of jobs. In addition to these basic ser-
vices, the DRMS is dependant on a repository service. A 
repository is used by a worker to advertise its presence on 
the network and also its availability for execution of vari-
ous jobs. Furthermore, the repository is used by a coordina-
tor for localization of available workers. A repository also 
contains advertisements of other resources available on the 
network and is therefore used as entry point when worker 
services fetch resource files and executable code. 

3.3 Fault-Tolerance Approach 

The main idea of our approach to fault-tolerance in time-
warp based federations is to use a check-pointing mecha-
nism to enable restoration of a federation upon failure. The 
check-pointing is done by means of the RTI communica-
tion infrastructure, utilizing an extension to the Federation 
Object Model (FOM). In this context, a checkpoint (CP) 
represents the state of a federate at a specific point in time, 
for example through a vector of state variables. The check-
points are saved in a stable storage component, which is 
also a member of the federation execution. An important 
feature of the check-pointing is to make sure that the indi-
vidual state represents a federate at a point in time that 
could not suffer from rollback. This means that the federate 
must report checkpoints to stable storage, which represent 
the state of the federate at a point in time that is less than 
the smallest timestamp of a message that could ever be de-
livered to the federate.  In this way, it will always be safe 
to use the check-point for restoration. The state-saving is 
not synchronized throughout the federation, but federates 
report their states to stable storage individually. The 
mechanism for check-pointing is illustrated in Figure 2. 
 

 
Figure 2: Check-Pointing Mechanism in the DRMS. 
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First, the concerned federate uses the queryLITS 
(Least Incoming Time-Stamp) method of its RTI ambassa-
dor to extract the timestamp of the next TSO (Time-Stamp 
Order) message that it may have to process. The federate 
uses this value to produce a checkpoint that could not be 
invalidated in the future. The checkpoint can not be can-
celled since the federate can never be roll-backed prior to 
this time and thus, it represents a safe state of the federate. 
The LITS is used as timestamp when reporting the check-
point to the stable storage. When the stable storage re-
ceives a checkpoint, it calculates the minimum timestamp 
of the checkpoints that have most recently been reported 
from each federate in the federation. This minimum time-
stamp is then used by the stable storage for requesting ad-
vancement of time. Upon requesting flush of the RTI 
queues, the individual federates will receive time ad-
vancement grants based on the timestamps of the supplied 
checkpoints. The granted time represents the GVT (Global 
Virtual Time) of the federation. Note that this time does 
not represent the actual (local) time of a federate. GVT is 
the boundary up to which the simulation execution is re-
garded as complete by all participants and is used to per-
form garbage collection of saved states to free memory 
space. 

The purpose of allowing the stable storage to control 
advancement of GVT is crucial for migration purposes. 
During the migration of a federate the GVT must not be 
advanced beyond the time-stamp of the checkpoint that the 
migrating federate will rely upon for its restoration. The 
mechanism described above will make sure that this will 
not occur. 

3.4 Migration of Federates 

Below, the process of migrating a federate upon failure is 
described. When an individual federate is deployed in a 
new host environment, the startup scheme differs slightly 
from the normal case. This process is illustrated in Figure 
3. 

 

 
Figure 3: Federate Migration Process. 
 

118
Initially, the federate requests the most up-to-date 
checkpoint of its state from stable storage. The federate re-
stores its state based on this checkpoint. Then the federate 
makes a request to all participants to resend all messages 
whose timestamp is greater than GVT. Federates that have 
produced messages to the concerned federate, resend these 
messages. When the migrated federate requests flush of the 
RTI queues, it will receive the missing messages and can 
then resume the execution. 

The described mechanism requires additional customi-
zation of participating federates and introduction of four 
supplementary interactions to the FOM, namely reportCP, 
requestCP, latestCP and requestResend. Extra interactions 
required by the fault-tolerance mechanism are outlined in 
Table 1. 

 
Table 1: Interactions Added to the FOM to Support the 
Fault-Tolerance Mechanism (P = Publish, S = Subscribe). 

Interaction Description Federate Stable 
Storage 

reportCP Reports check-
point to Stable 
Storage 

P S 

requestCP Requests latest 
checkpoint from 
stable storage 

P S 

latestCP Delivers latest 
checkpoint to 
migrated feder-
ate 

S P 

requestRe-
send 

Requests resend 
of messages 
from GVT 

P, S - 

3.5 Services and Ontology 

The DRMS concept presented in section 3.2 has been par-
tially implemented. The implementation is based on Web 
Services, the Axis platform (Saleem 2004), and Semantic 
Web technology, through use of the Jena toolkit (McBride 
2002). In the following section the implementation is de-
scribed briefly. The following components of the imple-
mentation are described: 

 
• DRMS ontology 
• RemoteJobService 
• ResourceRepositoryService 
• ExecutionService. 
 
To enable uniform and semantically rich descriptions 

of resources within the environment, a DRMS ontology is 
used. In near future, this ontology will be aligned with a 
general NetSim ontology that is currently under develop-
ment. The DRMS ontology comprises constructs for de-
scription of simulation models and computing resources. 
5
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The main purpose of the ontology is to promote a shared 
view of information throughout the environment and facili-
tate localization and matching of resources. The chosen 
language for its representation is the Web Ontology Lan-
guage (OWL) (McGuniess and van Harmelen 2004). The 
expressiveness of OWL is sufficient for representation of  
information required by the DRMS. The language also en-
ables inference over information, which is used to match 
resources in the implementation. 

The RemoteJobService implements a worker as de-
scribed in section 3.2. When deployed on a workstation, 
this service announces its presence on the network by reg-
istering an announcement in a repository. The announce-
ment is represented by a meta-model, defining the features 
of the RemoteJobService’s host environment. This includes 
aspects such as the workstation’s hardware configuration, 
OS type and version etc. The meta-model is an instance 
based on the DRMS ontology. Table 2 outlines the service 
interface of  the RemoteJobService. 

The ResourceRepositoryService is a simple implemen-
tation of a repository as described in section 3.2. This ser-
vice supports storage of meta-models, such as the meta-
model describing the RemoteJobService’s host environ-
ment. The interface of the ResourceRepositoryService in-
cludes methods for registering, deletion and lookup of 
meta-models. The lookup can either respond with the entire 
content of the ResourceRepositoryService, or a subset of 
registered meta-models, defined by a search query. Table 2 
outlines the service interface of  the ResourceRepository-
Service. 

The ExecutionService is an implementation of a coor-
dinator as described in section 3.2. An ExecutionService is 
utilized by the NetSim environment when a single user, or 
group, requests execution of a scenario (federation). The 
main tasks of the ExecutionService are to automatically 
setup a federation and to monitor the federation execution. 
Table 2 outlines the service interface of  the ExecutionSer-
vice. Figure 4 gives a schematic view of the interrelation of 
DRMS services. 

 
Table 2: Service Interfaces of the DRMS Implementation. 

Service Method 
RemoteJobService allocateJob(Meta-model) 

 startJob(Id) 
 stopJob(Id) 
 getJobStatus(Id) 

ResourceRepositoryService addModel(Meta-model) 
 deleteModel(Meta-model) 
 getModels() 
 getSubset(Query) 

ExecutionService requestExecu-
tion(Scenario) 

 finalizeExecution(Id) 
 getScenarioStatus(Id) 
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Figure 4: Interrelation of DRMS Services. 

 
When the NetSim environment requests execution of a 

federation, it feeds the ExecutionService with a scenario 
description. The scenario description comprises meta-
models for all federates that are part of the federation. In 
order to distribute the federates in the federation, to suit-
able nodes in the network, the ExecutionService fetches 
meta-models, representing RemoteJobServices, from the 
ResourceRepositoryService. Next, the ExecutionService 
determines a suitable distribution of federates, by matching 
meta-models of the federates with meta-models of avail-
able RemoteJobServices. The matching procedure utilizes 
an inference engine and a set of pre-defined rules to find a 
suitable distribution of federates over available Remote-
JobService nodes. If the allocation of one or more federates 
is accepted by a RemoteJobService, it starts downloading 
the required executable code and possible resource files. 
The URLs to these files are defined in the meta-models 
representing the federates in question. When the download 
process is completed, the ExecutionService signals start-up 
of the federation to concerned RemoteJobServices. 

To enable fault-tolerant execution of the federation the 
ExecutionService comprises a stable storage and a fault de-
tector component. These components are members of con-
cerned federation through a common federate. The stable 
storage stores checkpoints reported from federates in the 
federation, whereas the fault detector detects failed feder-
ates in the federation and initiates preventive measures to 
resolve these errors. The error detector detects the failure 
of a federate by means of the HLAfederate object of the 
MOM, which is deleted if the link to the RTI is broken. As 
an additional measure the error detector calculates the time 
passed from the last reported checkpoint and if this value 
6
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exceeds a pre-defined time, the federate is not longer con-
sidered active. When a federate crashes, or its network 
connection is simply lost, the fault-detector initiates re-
distribution of the lost component in the inference engine. 
The inference engine finds a new host environment for the 
federate under consideration, given the requirements of the 
federate as defined by its meta-model, and allocates the job 
to the RemoteJobService node. 

3.6 An Example 

Below, we look at an example to illustrate how the DRMS 
handles the occurrence of fault in a federation. In order to 
test the proposed fault-tolerance approach, a simple time-
warp federation has been developed. This federation con-
sists of four federates, which form a fully connected net-
work, i.e. each federate is able to send messages to all 
other federates. In the test federation, processing of a mes-
sage simply means updating a statistics object that de-
scribes the message exchange during a federation execu-
tion. Each federate randomly schedules events. This means 
that at random points in time, a federate sends a message to 
a randomly selected joined federate. The federates are ini-
tiated using disparate random seeds, causing the event 
scheduling to be based on different random streams within 
each federate. The federates process and produce events 
optimistically, thus when a message is received in a feder-
ate’s past, a rollback is triggered. Similarly, when an anti-
message is received that will annihilate an already proc-
essed message, a rollback is also triggered. The rollback 
mechanism relies on a record of locally saved check-
points. Advancement of GVT is used to garbage collect the 
record. 

Consider a federation comprising four federates, la-
beled A, B, C and D. Table 3 describes the state of the fed-
erates, in terms of their message queues, as GVT equals 10. 
Grey cells represent messages that have been processed by 
the federates, whereas the white cells represent unproc-
essed messages. 

The process of federate migration, in case of failure, 
resembles a rollback to GVT. However, in this case special 
attention is required since the action is not coordinated. In 
an ordinary rollback the concerned federates send anti-
messages to annihilate invalid messages. In case of failure 
this is not possible and must be handled separately be each 
federate. For instance, consider the case when federate A in 
Table 3 crashes. When federate A is absent, federates B, C 
and D continues their execution. However, since no check-
points are reported from federate A, the stable storage will 
not request time advancement greater than 10. When the 
fault detector has detected the lost federate, and a new host 
environment has been identified by the inference engine, 
the failed federate is deployed at a new node. Next, the mi-
grated federate fetches the latest saved state in stable stor-
age, as defined in section 3.4. When the federate has re-
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stored using the state from stable storage, it requests resend 
of messages. This request also means that the non-migrated 
federates must annihilate messages received from federate 
A. In this case federate C must annihilate message A15 and 
federate D message A17. This will trigger retraction of 
message C21 in federate B, but no rollback will be initiated 
since the message has not been processed yet. 

 When the potential message annihilation is finalized 
federate B, C and D resend messages destined for federate 
A, whose time-stamp is greater than GVT. In this case, 
given that the queue configurations do not change during 
migration, federate B resends message A12 and A14. Next, 
federate A reschedules the received events and the federa-
tion resumes normal execution. 

 
Table 3: Message Queues in Federates of 
Test Federation when GVT Equals 10; Grey 
Cells Represent Processed Messages, 
whereas White Cells Represent Unprocessed 
Messages. 

Federate IN OUT 
A B12 C15 
 B14 D17 
   

B D9 A12 
 C12 A14 
 C21 - 
   

C D11 B12 
 A15 B21 
   

D A8 C11 
 A17 _- 

  

4 DISCUSSION 

As modeling and simulation is integrated in various envi-
ronments and used as a tool in the decision process, the re-
quirements on the supporting infrastructure will be high. 
An important aspect in this is to enable fault-tolerant dis-
tributed simulation, since this ensures a robust execution 
environment that can respond to user needs in a timely 
fashion. The de facto standard for distributed simulation, 
the HLA, which is widely used throughout the military 
domain, does not treat fault-tolerance extensively. Nor has 
this topic been treated by the research community compre-
hensively. Given this, it is crucial to develop efficient and 
scalable methods for fault-tolerance in HLA-based distrib-
uted simulation. 

Our approach is based on implementing fault-tolerance 
mechanisms within the framework of the HLA, i.e. com-
munication related to the fault-tolerance mechanism is sent 
over the RTI. This of course implies that individual feder-
ates conform to the requirements imposed by the fault-



Eklöf, Ayani, and Moradi 

 
tolerance mechanism, in terms of publishing and subscrib-
ing to the interactions defined in Table 1. Currently, these 
aspects must be implemented by each federate individu-
ally. In the long run, it is desirable to implement these fea-
tures in a generic fashion, through some kind of middle-
ware system, to simplify the deployment of federates 
within the DRMS. 

Introducing fault-tolerance mechanisms in M&S infra-
structures will impose a cost. Regardless of the approach 
taken, replication based or check pointing based fault toler-
ance, the infrastructure must cope with increased network 
traffic and consumption of more hardware resources. Thus, 
it is important to evaluate the cost of having fault-tolerant 
simulations to determine when the approach is beneficial. 
Furthermore, aspects of fault-tolerance should be consid-
ered in the early phases of the FEDEP process. For in-
stance, it is important to determine what levels of fault-
tolerance are required by different components of the simu-
lation in the context of what degree of degradation is ac-
ceptable for a given target (Möller, Karlsson, and Löf-
strand 2005). 

The proposition for a next version of the HLA stan-
dard, the HLA Evolved, will simplify the process of devel-
oping fault-tolerant federations. In this standard, a common 
semantics for failure and mechanisms for fault detection 
are provided. Still, there are others issues to resolve as 
well. Given the failure of a critical component in a federa-
tion, whose original host environment is not accessible for 
its restoration, a mechanism for deployment of the compo-
nent in a new host environment is required. This can be 
solved through replication of the component, or through 
utilization of check-pointing, at a global level. Our work 
shows that it is feasible to use a check-pointing based 
scheme, employing the RTI communication infrastructure, 
to enable fault-tolerance in time-warp federations. How-
ever, it should be noted that this kind of check-pointing is 
tightly coupled with the time synchronization protocol of 
the federation. Other, or complementary, solutions have to 
be provided for other synchronizations protocols, or cases 
with mixed synchronization protocols. Also, the test fed-
eration used in this work comprises no complex issues of 
ownership of objects in the federation. In more complex 
federation types, the issue of transferring ownership of ob-
jects between federates, in case of failure, must be resolved 
as well.  

5 FUTURE WORK 

In estimating the cost of  fault-tolerant distributed simula-
tion, based on our approach, it is of interest to look at the 
size of the check-points reported to stable storage and how 
this potentially will degrade the simulation execution. 
Also, the checkpoint interval used by each federate is of 
importance in this perspective.  
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The overall time consumption and number of mes-
sages sent executing the federation, with and without fault-
tolerance, will be measured and compared. This will be 
done to identify when the cost of having fault-tolerance 
will inhibit the simulation execution rather than make it 
more efficient, given a specific failure-rate of the federates. 

It should also be noted that the effectiveness of the 
fault-tolerance mechanism presented here is clearly cou-
pled with the mutual relations existing between federates. 
During migration, federates that are joined to the federation 
can still progress their execution. When the migrated fed-
erate joins, after being deployed in a new host environ-
ment, chances are that is has lagged behind the others, and 
thus it may start to produce messages in their past. How-
ever, this depends on the nature of the migrated federate. A 
federate publishing data of concern to a large audience will 
of course affect the effectiveness of the execution more 
than a federate producing data of less interest. In our test 
federation the mutual relation between the federates is or-
ganized in a fully connected network, and messages send 
to and from federates are completely randomized. In the 
future it will be of interest to test other federation topolo-
gies to investigate how the relations between federates in-
fluence the performance of our fault-tolerant approach.  
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