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Abstract—FPGAs make it practical to speed up a program
by defining hardware functional units that perform calcu-
lations faster than can be achieved in software. Specialised
digital circuits avoid the overhead of executing sequences of
instructions, and they make available the massive parallelism
of the components. The FPGA operates as a coprocessor
controlled by a conventional computer. An application that
combines software with hardware in this way needs an interface
between a communications port to the processor and the signals
connected to the functional units. We present a framework that
supports the design of such systems. The framework consists
of a generic controller circuit defined in VHDL that can be
configured by the user according to the needs of the functional
units and the I/0 channel. The controller contains a register file
and a pipelined programmable register transfer machine, and
it supports the design of both stateless and stateful functional
units. Two examples are described: the implementation of
a set of basic stateless arithmetic functional units, and the
implementation of a stateful algorithm that exploits circuit
parallelism.

Keywords-FPGA; interface;

I. INTRODUCTION

Many programs perform large numbers of timeconsuming
operations. One way to run such programs faster is to split
them into several tasks to be executed in parallel on different
processor cores. Another approach is to make the basic
operations themselves faster using hardware accelerators.
One example of this is to provide floating point operations
in hardware, rather then performing them in software.

Many computations can be performed faster by a spe-
cialised digital circuit than by a general purpose circuit (i.e.
processor) running a program.

There are two fundamental reasons that circuits may
be faster. The first is that the actual computation that is
needed can be performed directly, without also requiring the
overheads of fetching instructions, decoding them, and so on.
For highly repetitive calculations, this can make hardware
significantly faster than a corresponding program, and the
hardware is relatively easy to design.

An even more fundamental factor is that digital circuits
contain an extraordinary degree of parallelism. All the com-
ponents operate in parallel, although the useful parallelism
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in a synchronous circuit is limited by the critical path depth.
The ratio between the number of components and the critical
path depth may be between 103 to 10°. With careful circuit
design, much of this large factor can be converted into useful
parallelism.

Particular programs may require specialised operations,
and it is impossible to support all of these in fixed hardware
coprocessors. FPGAs offer the programmer the ability to
define new hardware implementations of key operations used
in a program. This makes it possible to use efficient hardware
to avoid the overhead of executing sequences of instructions,
and it offers an extremely high degree of parallelism.

Reconfigurable circuits, such as FPGAs, allow specialised
circuit designs to be implemented quickly and cheaply [1]
[2]. They offer the possibility of supporting slow operations
in hardware at speeds much higher than can be achieved
using standard processors. Reconfigurable hardware gives
much of the benefit of fabricating a new circuit design at a
much lower cost.

In order to use an FPGA to speed up a program, it is
necessary first to identify a set of operations to be performed
in hardware. These must be implemented as digital circuits,
called functional units. Finally, an interface needs to be
constructed that allows the processor to communicate with
the new circuit.

Designing the interface is a significant challenge. It has
to communicate with a processor, using an input/output
channel, and it also has to communicate with a set of
circuits via digital signals. The interface must handle the
handshaking protocols required by the processor, as well
as the buffering and timing requirements of the circuit. In
some cases, it is useful for the interface to coordinate the
operation of the functional units, treating them as microop-
erations in order to perform a larger calculation. To meet
all these requirements, it is useful to organise the interface
as a programmable register transfer machine (essentially a
small RISC processor) with a register file. Furthermore, the
interface cannot be a fixed circuit: parts of it need to be
changed as the application circuits change.

This paper presents the design of a generic interface that



addresses these challenges. The interface is a digital circuit,
defined in VHDL, that can be embedded on an FPGA along
with functional units designed by a programmer to accelerate
key operations. The interface circuit is a programmable
register transfer machine, which can collect data from the
processor, buffer it, run the functional units, obtain their
results, and deliver them back to the processor. The work
aims to improve portability, by providing a generic controller
that can be adapted to a wide variety of computer systems.

The paper also discusses two distinct methods for using an
FPGA: implementing stateless functional units, and imple-
menting data parallel operations where the functional units
hold persistent data in a state. We show how both methods
are supported by the controller, and give an example of each.

The architecture of the controller is specified as a set of
generics in VHDL. It contains several subsystems; some can
be used without modification, while others are templates
that will generate the actual circuits, under the control of
parameters supplied by the user.

The controller and the case studies have been imple-
mented and tested on an Altera Cyclone FPGA [3], using
VHDL to specify the circuits. A complete description of the
system, including full documentation of the interface and
protocols, as well as the case studies, appears in Koltes’
dissertation [4]. The dissertation also contains the VHDL
code, and provides the information needed to use the system
for practical applications.

Our results do not make the use of hardware accelerators
as easy as ordinary programming. The user still needs to be
able to design circuits as well as to write software. However,
the work presented here does make the task significantly
easier and more portable.

Several previous systems have used FPGAs to provide
new operations to enhance a system’s instruction set. Eisen-
ring and Platzner present a theoretical model for describ-
ing such systems [5]. The CHIMAERA system [6] uses
a processor tightly coupled to a reconfigurable array that
implements operations used by the instruction set. The main
difference with our work is that CHIMAERA is not a generic
framework aimed at portability.

Wirthlin and Hutchins show how to use partial reconfigu-
ration of an FPGA to allow an instruction set to be modified
dynamically [7]. This is useful when the functional unit
circuits require too much space to fit simultaneously in an
FPGA, although the time required to load a new instruction
(i.e. to read an functional unit circuit into the FPGA) is
substantial. Related approaches are described in [8], [9] and
[10].

One of the strengths of the framework presented here
is its flexibility: it can work with a broad spectrum of
microcontrollers and interconnection systems, and this does
not require any modification to the processor architecture
itself, while allowing custom instructions to be introduced
directly into the microcontroller.

CPU #1

CPU #m

Figure 1. High level organisation. The main program is written in C or
any other programming language, and runs in one or more CPUs which
communicate via the interface with a set of functional units. The interface
and the functional units are programmed using VHDL. The Interface
comprises VHDL modules described in this paper, and the Functional Units
communicate with the Interface according to protocols. The Interface can
be configured by editing its VHDL definition.

Section II gives an overview of the system, discussing how
the FPGA, the interface, and the CPU fit together. Section
IIT describes the central component of the architecture, a
Register Transfer Machine. This is a RISC processor that
provides a register file and a simple instruction set. Section
IV then discusses how the programmer can develop an
application, for both stateless and stateful functional units.
Section V concludes.

II. OVERVIEW OF THE FRAMEWORK

The programmer identifies a set of operations suitable for
hardware implementation. These should have the following
characteristics: they require a relatively long sequence of
ordinary instructions to perform; they can be performed
much more quickly using circuit techniques (e.g. by exploit-
ing the parallelism inherent in circuits); they are executed
frequently. The programmer then designs a dedicated cir-
cuit, called a functional unit, that implements each of the
operations. Each functional unit is designed to interact with
the central interface using a standard signal protocol, which
is defined by the framework.

The aim is to speed up a program running on one or
more processors by augmenting the processors with a set of
functional units. A functional unit is a circuit that performs
some computation significantly faster than can be done in
software. The entire solution consists of a software compo-
nent running in the processors and a hardware component
comprising the functional units. Figure 1 shows the high
level organisation of the system; the CPUs are in a standard
computer while the functional units and the interface are
embedded in an FPGA. The interface is generic, making it
reusable across projects.

The interface needs to be able to execute instructions that



control the functional units. It also needs to retain informa-
tion, enabling a sequence of functional unit operations to be
performed, and to package operands and results according
to the communications protocols.

These requirements are satisfied by organising the in-
terface as a register transfer machine. This is a simple
programmable datapath that contains a register file, and that
has an instruction set for communications.

The entire system is controlled by the host computer. To
perform an accelerated operation, the host sends one or more
packets of data to the controller on the FPGA. The controller
then coordinates the execution of the operations and returns
the final results to the processor. From the processor’s
point of view, the FPGA acts like a coprocessor comprising
one or more functional units. The host computer can send
instructions to be performed on any of the functional units.
Within the FPGA, the instructions may be executed out of
order, but the stream of results returned to the processor
will be consistent with the stream of instructions that were
issued. This is similar to the effect of out-of-order execution
within a sequential superscalar processor.

The register transfer machine communicates with the
host processor using a transceiver circuit. There are many
different physical interfaces that the FPGA might need
to interact with. In some cases a predefined transceiver
interface module may be available, and this can be combined
with the VHDL definition of the controller. Depending on
the system, it may be necessary to create a new transceiver
circuit.

The controller is a digital circuit which is specified in
VHDL, an industry standard language for designing digital
circuits. The interface is customisable, and contains parame-
ters that can be modified easily. For example, the word size
used for the register file is adjustable, so the interface can
meet the requirements of the functional units while requiring
as small a portion of the FPGA as possible.

The system contains several units: the interface to the
CPUs, the central control of the FPGA (a Register Transfer
Machine), and the functional units (Figure 2).

Figure 3 shows the structure of the interface from the pro-
grammer’s point of view. To use the system, the programmer
needs to

« Partition the algorithm into a software part, to run in

the processor(s);

o Define the specialised operations and implement them

as functional units, using VHDL;

o Configure the interface framework by specifying size

parameters for the register file, and selecting the ap-
propriate transmitter and receiver modules.

III. REGISTER TRANSFER MACHINE

The core of the interface is a register transfer machine
(RTM). This is a microcontroller with a RISC style archi-
tecture, based on register files and instructions that act on
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Figure 2.  Structure of the system. The subsystems shown in this figure

are specified in VHDL and run on the FPGA chip. The interface circuitry
is a low level transceiver that communicates directly with the port pins on
the chip. Incoming and outgoing messages go via hardware buffers to the
central Register Transfer Machine, which controls the functional units.

Receiver
(from COTS library)

Functional
unit#1

Functional
unit#2 |

Fixed components of

coprocessor framework

Transmitter
(from COTS library)

Functional
Unit #n ]

Interface components (reusable)

|

VHDL top-level module

Figure 3. Top level VHDL module. The main components of the system are
shown from the programmer’s point of view. The receiver and transmitter
come from libraries. The main Register Transfer Machine is a fixed VHDL
definition, although it has a number of size parameters. The functional units
are specific to the application.

the registers. The architecture contains two register files.
The main register file holds data, and its word size is
configurable in multiples of 32 bits. There is a secondary
register file holding vectors of flags, which are often useful
for controlling the functional units. The RTM instructions
may have up to three operands to be fetched from the register
file, and up to two results may be loaded into the register
file.

The RTM interacts with the host computer through a
message buffer for input and a message serialiser for output,
and it interacts directly with the functional units using digital
signals). The message buffer and serialiser communicate
with the host using standard FPGA circuits from a COTS
library.

The register transfer machine executes instructions using a
pipeline (Figure 4), in order to attain concurrency among the
instructions and to reduce the clock period. The pipeline was
designed with most registers at the end of the pipeline stages,
because most FPGAs have their registers after the function
generators. Handshaking is used to control transmission of
data between pipeline stages. This allows local control to
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Figure 4.  Organisation of Register Transfer Machine. The RTM is a
RISC processor with a pipeline (the column on the left side of the figure)
comprising a decoder, dispatcher, and execution stage. The processor keeps
state in a register file, which provides a source and sink for data transmitted
to the functional units.

stall the transmission when necessary; there is no global
control for stalling the pipeline. The pipeline contains the
following stages:

o Message buffer. The first stage receives data from the
FPGA input port connected to the host processor, and
converts it to a form usable by the decoder. This stage
needs to be implemented according to the communica-
tion protocol used by the host processor.

e Decoder. The current instruction is decoded into a
vector of signals that control the execution stage.

o Dispatcher. Reads from the register file take place in
the dispatcher stage, and instructions that initiate a
functional unit operation transmit data to the functional
unit through a register in this stage.

o Execution. Instructions that operate on the state of the
RTM are executed.

o Message encoder. There are several types of message
that can be sent from the RTM to the host, including
data records and flag vectors, and these are multiplexed
into a single standard vector of signals.

e Message seraliser. The signal vector is converted to the
form required by the communication port to the host,

and is transmitted on the port.

The speed of the system is determined by two factors: the
latency of the communication interface to the host computer,
and the clock speed of the FPGA. Our implementation used a
prototyping board which is intended for experimentation and
software development, but not for high speed. In particular,
only a very slow connection from the FPGA board to the
processor was available. However, this is not a limitation
of the approach: there are FPGAs that are tightly integrated
with processors, offering extremely high transfer rates. In
such a system, the main limitation on performance would
be the speed of the circuit on the FPGA.

The generic controller is designed to minimise the clock
period; this is achieved by pipelining, so the critical path
in the controller is short. In general, FPGAs have slower
clocks than processors, and the RTM controller should allow
the fastest clock speed that the FPGA allows. The main
limitation on performance will be the functional unit circuits.

IV. DEVELOPING AN APPLICATION

The main task for the programmer is to design the func-
tional units. They must interact with the controller according
to the framework’s protocol, but apart from that requirement,
the designer has complete freedom in the internal structure
of a functional unit.

Figure 5 shows the architecture of a minimal stateless
functional unit. The purpose of the unit is to perform a
calculation, which is implemented by a black box circuit.
The unit interacts with the controller according to the
protocol, which is documented in detail in [4].

An application program running on a host computer uses
the FPGA, with its functional units, similarly to the way it
would use any conventional coprocessor, such as a dedicated
floating point unit. Naturally there will not be an instruction
in the processor’s instruction set that uses the newly created
operation. Typically the FPGA would be treated as a fast
I/O device. The mechanism for executing an operation in
a functional unit depends on the system, but in general it
would be the same as for any other coprocessor operation.

The interface framework allows several functional units
to be incorporated on the FPGA, and these units may have
different designs. Thus it is possible to provide a set of
operations.

Each functional unit interacts with the register transfer
machine according to a protocol expressed as a finite state
machine (an example is shown in Figure 6). The register
transfer machine has an instruction set that is used by the
programmer to control transmission of data between the
registers to the functional units.

There are two major classes of functional units: stateless
and stateful, discussed in more detail in the following
sections.
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Figure 6. Example of a finite state machine for functional unit. Each
functional unit communicates with the RTM controller according to a fixed
protocol, which is implemented within the functional unit by a finite state
machine. The FSM coordinates the transmission of data, and may also
control the datapath within the functional unit.

A. Stateless functional units

A stateless unit computes a pure function of its operands.
Once it transmits its result to the controller, the unit contains
no memory that will affect future computations. Examples of
stateless functional units are arithmetic units, trigonometric
function calculators, etc.

As a simple example, consider a set of functional units
to perform a family of arithmetic operations on integers.
(The full details appear in [4].) This example is chosen
for simplicity, and to test and measure the system; in a
real application it would be worthwhile designing functional
units only for operations that are significantly more time

consuming.

The programmer needs to decide on the set of operations,
design the functional units, and specify a set of instructions
for the RTM controller to perform the operations. For this
example, the hardware design is straightforward; the circuits
are standard, and VHDL can synthesise them from standard
notation, much as a compiler can generate machine language
from similar notation. For more complex operations, it
may be challenging to design the functional units, just as
programming may be challenging for hard problems.

Figure 7 shows the instruction set architecture for a
stateless functional unit. The instructions follow the formats
allowed by the RTM controller, and are similar to arithmetic
instructions on a typical RISC processor. Each instruction
specifies the operation, the operand registers, and the result
registers.

B. Stateful functional units

A stateful unit has a local persistent memory. Operations
performed by the unit may depend on data in the memory,
may modify it, and may return part of it to the controller.
Examples of stateful functional units are histogram calcu-
lators, pseudorandom number generators, and associative
memories.

We have developed an application that uses a stateful
functional unit to implement an algorithm that performs
simple computations in parallel on every element of a data
structure. With conventional data structures, the processor
performs operations on one element at a time, leaving the
remainder of the data structure inert. The approach used
here is to use circuit parallelism to provide a richer set of
primitive operations.

The spplication is an implementation of the x-sort suite
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Figure 7. Instruction set architecture for stateless functional units.
The instructions shown here follow the instruction format for the RTM
controller. To execute the instructions, the controller obtains the operands
from the register file, dispatches the operations to suitable functional
units, receives the results, and places the results into the register file. The
operations (addition, subtraction, etc.) correspond to the functions computed
by the functional units.

[11], which performs selection and sorting using using an
array represented with index intervals. With ordinary arrays,
an element is identified by a index. With the index-interval
representation, an approximate index can be specified. An
element with index interval (p,q) belongs in the array at
some index ¢ such that p < 7 < ¢. An initial array represents
the complete lack of knowledge of where the elements
belong by assigning each element an index interval (0, n—1).

In sequential algorithms the data structures can be mod-
ified only one element at a time as the processor executes
load and store instructions. With circuit parallelism, data
structures can be active. Each element of the array is stored
in a small processor called a cell, which is implemented as
small circuit in the FPGA. Cells contain combinational logic
as well as storage; thus cells are a form of “smart memory”.
This capability enables the y-sort algorithm to recalculate
the index interval of every data item in parallel, at clock
speeds.

The x-sort algorithm executes in the Register Transfer
Machine, which issues microinstructions to a stateful func-
tional unit, whose organisation is shown in Figure 8. The
functional unit is a tree network with leaf cells containing
persistent memory, and interior node circuits that provide
communications and support parallel folds and scans on
associative operators.

The cell circuit contains a small amount of storage,
enough to hold one data element and its index interval.
The cell also contains a simple arithmetic circuit that can
perform comparisons and additions. The entire set of cells
form a smart memory that implements a microinstruction set
specifically targeted at the y-sort algorithm. The RTM im-
plements operations (e.g. performing a selection operation)
by issuing a set of microinstructions to the cells. Figure 9
shows the implementation of the cell circuit.

Circuit parallelism enables y-sort to execute significantly
faster than can be achieved with software on a conventional
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Figure 8. Organisation of stateful functional unit for the XI algorithm.

The functional unit is organised as a binary tree of interior node circuits
and leaf cell circuits. The persistent state is distributed across the cells,
while computations are performed in both the cells and the nodes. The
leaf “cell” processors provide permanent storage and perform comparisons
on indices; the interior nodes do not have persistent state, but they do
contain simple combinational logic functions that implement parallel scans
and folds required by the algorithm.

processor. Each operation takes a fixed number of clock
cycles with the FPGA; with a CPU each operation requires
an iteration that takes time proportional to the number of
data elements.

The algorithm has been implemented on an Altera FPGA,
a small scale system intended for prototyping and software
development with a clock speed of approximately S0Mhz.

V. CONCLUSION

Several factors make it challenging to use FPGAs in
ordinary programming. The solution requires circuit design
skills as well as programming skills, an overall structure
has to be found for the FPGA circuit, an infrastructure is
required for holding data on the FPGA and delivering it to
the functional units.

We have presented a framework that addresses the inter-
facing issues in using FPGAs. It provides an efficient register
transfer machine for coordinating the data transfers and con-
trolling the functional units, relieving the programmer from
reinventing a significant amount of circuitry. The framework
is implemented in VHDL, with full documentation. To use it,
the programmer needs to configure the interface (by making
some VHDL definitions) and to define the functional units.

The most complex details of the interfacing are provided
by the framework; the programmer’s task is to design the
core logic of the functional unit (hardware design, using
VHDL) and to program the controller (which is software
design, and considerably simpler than it would be to design
a dedicated interface from the ground up).



eioek T

[
i A B R T
MUXTXN
e satavol [N
data0N,0] | (o0l
MUX1xN sel
I s L datatxiN.0] fesulN 0]
S data0dN..0)
sel
S =
s )
oz
RegisterNE
gt
oS S —
IN..0)
$—D clock v
ey N0 e O]
[m—— M fenae 0 2
T rog g
RegisterNE
o7
IN..0]
$—D ciock v
O o i BaidFtarAL BT 0]
enable a0l
[ g Tower_ e
g
i RegisterNE
[ o7
o N.0]
: ppoock e G B 10T
g enable
T og TpT_BoT
S
Registert
o]
e Lt
$-—D clock | e Seciat
enable
rog ST
Registere
aaaaaa T B R L eta B
clock
| B e e
enable .
[ T
T e
W g U B
<l
L L Bz
= <l
L 1
= B =Sl
g 8 ) )
2 2 -f=2
LORNXNX
i
i
l MUX1xN
data .0
data0x|N. 0] el
Sel
o s 3 S

Figure 9. Cell circuit for XI algorithm. A cell corresponds to a word of memory, but it contains a small amount of computatational hardware as well
as storage. There is an array of cells, providing a memory that can hold an array. The entire set of cells comprises an extremely fine grain data parallel
architecture, which is targeted specifically to the x-sort algorithm. The programmer begins by defining the behaviour of the high level operations in the
algorithm; these perform the same operation simultaneously in every cell. Next, a circuit is designed that provides both the storage and computation required
for every data element. Finally, this circuit is specified using VHDL. The figure shows the low level layout defined in the VHDL design.

The largest remaining challenge is the expertise required
to define new functional units. Much progress has been made
in high level hardware description languages and hardware
synthesis, but for the foreseeable future it will be harder
and require more knowledge to put part of an algorithm into
an FPGA rather than treating it as pure software. However,
the efficiency and parallelism offered by digital circuits are
very large, so this effort is likely to be justified for many
demanding applications.
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