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Abstract. To be accepted, a cryptographic scheme must come with
a proof that it satisfies some standard security properties. However,
because cryptographic schemes are based on non-trivial mathematics,
proofs are error-prone and difficult to check. The main contributions
of this paper are a refinement of the game-based approach to security
proofs, and its implementation on top of the proof assistant Coq. The
proof assistant checks that the proof is correct and deals with the mun-
dane part of the proof. An interesting feature of our framework is that our
proofs are formal enough to be mechanically checked, but still readable
enough to be humanly checked. We illustrate the use of our framework
by proving in a systematic way the so-called semantic security of the
encryption scheme Elgamal and its hashed version.
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1 Introduction

Information security is nowadays an important issue. Its essential ingredient is
cryptography. To be accepted, a cryptographic scheme must come with a proof
that it satisfies some standard security properties. However, because crypto-
graphic schemes are based on non-trivial mathematics such as number theory,
group theory or probability theory, this makes the proofs error-prone and difficult
to check. Bellare and Rogaway even claim that “many proofs in cryptography
have become essentially unverifiable” [5]. In particular, proofs often rely on as-
sumptions that are not clearly stated. This is why they advocate the usage of
sequences of games (a.k.a. game-playing technique or game-hopping technique).

This methodology is explicitly presented in [5] and [20] but has been used in
various styles before in the literature. It is a way to structure proofs so as to make
them less error-prone, more easily verifiable, and, ideally, machine-checkable. A
proof starts with the initial game which comes from the definition of the security
property to be proved. This can be seen as a challenge involving the attacker
and oracles. Attacker and oracles are efficient probabilistic algorithms (usually
modeled as probabilistic polynomial-time algorithms). Oracles model services
provided by the environment. For example an oracle might provide signed mes-
sages in order to model the spying of signed messages circulating on a network.
A testing oracle checks whether an attack is successful of not. There are also
encryption and decryption oracles. From the initial game, one builds a sequence
of games such that the last one is simple enough to reason on directly. The result
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is then backtracked to the initial game. This is possible because transformations
result either in an equivalent game or introduce small enough and quantified
changes.

Our contributions. Recently, Halevi [15] has advocated the need for a software
which can deal with the mundane part of writing and checking game-based
proofs. In order to aim at such goal, we present a refinement of the game-based
approach to security proofs, and its implementation1 on top of the proof assistant
Coq2. A proof assistant can indeed check that a proof is correct and deal with its
mundane part. Of course, human interaction is still needed in order to deal with
the creative part of the proof. But, when using a proof assistant, two things
are necessary. First, all the intermediate lemmas must be explicited; some of
those lemmas are not stated by cryptographers in their proofs because they
are considered too obvious in the context of security proofs. Second, a precise
mathematical meaning must be given to games; in papers, this is usually either
left implicit or informally explained in English. This is why we need to refine the
game-based approach. We base our formalization on [20] where games are seen
as probability distributions. Our aim is to have a framework in which proofs are
formal enough to be mechanically checked, and readable enough to be humanly
checked.

The approach to game-based proofs by Shoup [20] differs from the one by
Bellare and Rogaway [5]: In the latter, games are seen as syntactic objects. An
interest in founding our formalization on this latter approach would be the pos-
sibility for more automation because game transformations would be syntactic.
But each syntactic transformation should then be proved correct with respect
to a precise semantics in terms of probability distributions. However in [5] the
semantics is left implicit. They provide arguments for their syntactic transfor-
mations, but they cannot be directly formalized in a proof assistant due to the
lack of semantics.

We illustrate the use of our framework by proving in a systematic way the so-
called semantic security of the encryption scheme ElGamal and its hashed version
[12]. It is a widely-used asymmetric key encryption algorithm. It is notably used
by GNU Privacy Guard software, recent versions of PGP and other cryptographic
software. Under the so-called Decisional Diffie-Hellman (DDH) assumption [10],
it can be proved semantically secure [21]. To the best of our knowledge, this is
the first time a cryptographic scheme is fully machine-checked. This is not the
case in related work (see Section 2).

Outline. We start with related work in Section 2. In Section 3, we introduce
our mathematical framework. In Section 4, we formalize some security notions.
In Section 5, we show how to prove semantic security for the encryption scheme
ElGamal and its hashed version. Implementation issues in Coq are addressed in
Section 6.

1 A link to the source code is provided on Cryptology ePrint Archive together with
the full version of this paper [18].

2 See http://coq.inria.fr/

http://coq.inria.fr/
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2 Related Work

A lot of work has been done in direction of automatic discovery of proofs. It
is essentially based on the Dolev-Yao model [11] which requires a high-level of
abstraction, and is thus far from the view usually adopted by cryptographers. In
this paper, we are not considering automatic discovery of proofs, but instead we
want to facilitate the writing and checking of actual proofs by cryptographers.

The so-called generic model and random oracle model have been formalized
in Coq and applied to ElGamal [3]. In contrast to our approach, it is not based
on sequences of games which had not yet been popularized by [5] and [20].

CryptoVerif is a software for automated security proofs with sequences of
games [6]. It is in particular illustrated with a proof of the Full-Domain Hash
(FDH) signature scheme [4]. However this proof relies on certain equivalences
that have to be introduced by the user. Those non-trivial equivalences are proved
manually in Appendix B of [7]. These are difficult parts of the proof that cannot
be handled by CryptoVerif. Moreover this tool consists of 14800 lines of non-
certified O’Caml codes. On the other hand, our tool is certified: all our game
transformations have been proved correct in the proof assistant Coq.

A probabilistic Hoare-style logic has been proposed (but not implemented)
in [9] to formalize game-based proofs. This logic allows for rigorous proofs but
those proofs differ from game-based proofs by cryptographers. Indeed, because
their language allows for while loops and state variables, they are led to use a
Hoare-style logic. They illustrate their logic by proving semantic security of the
non-hashed version of ElGamal. In our approach, logical reasoning is closer to
the one used by cryptographers: we avoid while loops and state variables, and
thus do not have to use a Hoare-style logic. It is possible because the variables
used in [20] are mathematical variables in the sense that they are defined once
and only once whereas the value of a state variable can change in the course
of execution. By the way, the property that a variable is defined once and only
once is also enforced in CryptoVerif. Moreover, while loops, if used, would have
to be restricted because their unrestricted use might break the hypothesis that
the attacker and the oracles are efficient algorithms. Our games are probability
distributions which are easily defined in our framework. In the case of ElGamal,
we finally obtain a more natural proof of semantic security than the one in [9].

In [16] a process calculus is defined (but not implemented) which allows to
reason about cryptographic protocols using bisimulation techniques. Contrary
to our approach it is not game-based and differs from usual proofs by cryptog-
raphers. It is illustrated by a proof of semantic security for ElGamal.

An encoding of game-based proofs in a proof assistant has been proposed very
recently in [1]. It is dedicated for proofs in the random oracle model while our
work focuses on the standard model. Up to now the implementation by [1] has
only been used to prove the PRP/PRF switching lemma, but not yet a full-
fledged cryptographic scheme. Compared to them, we have been very careful in
making our design choices such that our implementation remains light. This is an
important design issue in formal verification because formal proofs grow quickly
in size when one tackles real-world use-cases. For illustration, one can compare
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the size of our implementation with theirs: their complete implementation con-
sists of 7032 lines of code (compare with our 3381 lines) and their proof of the
switching lemma consists of 535 lines (compare with our 160 lines for proving
both correctness and semantic security of ElGamal).

3 Mathematical Framework

In this section we recall a few mathematical bases on which rely security proofs:
probabilities, cyclic groups and properties relating them. We formulate them in
a way suitable for formalization in the proof assistant Coq. In particular, we use
the elegant notion of monad stemming from category theory [17] and functional
programming [22]3.

3.1 Probabilities

Oracles and games are probabilistic algorithms. We model them as functions
returning finite probability distributions. A probabilistic choice is a side effect.
A standard way to model side effects is with a monad [17,22]. And indeed prob-
ability distributions have a monadic structure [2,19]. In our case we only need
to consider the simpler case of finite probability distributions. In their defini-
tion we use the notion of multiset (sometimes also called a bag) which is a set
where an element may have more than one occurrence. For example, the multi-
sets {1, 2, 2} and {1, 2} are different; and the union of {1, 2, 2, 3} and {1, 4, 4} is
equal to {1, 1, 2, 2, 3, 4, 4}.

Definition 3.1 (Finite probability distribution). A finite probability dis-
tribution δ over a set A is a finite multiset of ordered pairs from A×R such that∑

(a,p)∈δ p = 1. We write ΔA for the set of finite probability distributions over
a set A.

From now on, we will use the word distribution as an abbreviation for finite prob-
ability distribution. Games and oracles are distributions defined by using three
primitive operations: [a] is the distribution consisting of only one value a with
probability 1; let x ⇐ δ in ϕ(x) consists of selecting randomly one value x
from the distribution δ and passes it to the function ϕ; and

⊕
{a1, . . . , an} is the

uniform distribution of the values a1, . . . , an. Before giving their formal meaning
in the definition below, we need to define the ponderation of a distribution by a
real number p:

p · {(a1, p1), . . . , (an, pn)} =def {(a1, p · p1), . . . , (an, p · pn)}

Definition 3.2 (Operations)

[a] =def {(a, 1)} (1)

let x ⇐ δ in ϕ(x) =def

⋃

(a,p)∈δ

p · ϕ(a) (2)

3 No knowledge of category theory or functional programming is assumed.
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⊕
{a1, . . . , an} =def {(a1,

1
n

), . . . , (an,
1
n

)} (3)

It is easily seen that those three operations above produce well-defined
distributions.

In the rest of this paper, we use the following abbreviations:

(i) let x ← a in ϕ(x) for let x ⇐ [a] in ϕ(x), and
(ii) let x

R← A in ϕ(x) for let x ⇐
⊕

A in ϕ(x).

In (i) we choose ramdomly a value from a distribution with only one value: it is
a deterministic assignment. (ii) is a notation for choosing a uniformly random
value from a list of values.

It might seem surprising that our distributions are multisets instead of sets.
If we were to take sets, our definition of let would be more tricky as it would
involve a phase of normalization. Let us see why on an example. Consider the
distribution defined by let x

R← {1, 2} in [x ?= x] where ?= is the function that
returns the boolean true if its two arguments are equal, or false otherwise. The
above defined distribution is equal to the multiset {(true, 1

2 ), (true, 1
2 )}. If distri-

butions were sets, we would have to define let in such a way that it returns what
might be called the normal form {(true, 1)}.

The following theorem states that we have indeed defined a (strong) monad.

Theorem 3.3 (Monad laws)

let x ← a in ϕ(x) = ϕ(a) (4)
let x ⇐ δ in [x] = δ (5)

let y ⇐ (let x ⇐ δ in ϕ(x)) inψ(y) = let x ⇐ δ in let y ⇐ ϕ(x) in ψ(y) (6)

In order to ease notations we assume that the operator let . . . in is right-associative:
this means that, for example, the right-hand side expression of Equation (6) above
should be understood as

let x ⇐ δ in (let y ⇐ ϕ(x) in ψ(y)).

Equation (4) allows for propagating constants. Equation (6) states associativ-
ity which allows for getting rid of nested let.

Based on our notion of distribution, we can now define the probability that
an element chosen randomly from a distribution satisfies a certain predicate.

Definition 3.4 (Probability). The probability Pr
⎧
⎩P (δ)

⎫
⎭ that an element

chosen randomly in a distribution δ satisfies a predicate P is given by:

Pr
⎧
⎩P (δ)

⎫
⎭ =def

∑

(a,p)∈δ s.t. P (a)

p

We write Prtrue

⎧
⎩ δ

⎫
⎭ for Pr

⎧
⎩(x �→ x = true) (δ)

⎫
⎭ where x �→ x = true is the

predicate that holds iff its argument x is equal to the boolean value true.
The following proposition tells us how to compute the probability for a dis-

tribution defined by a let.
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Proposition 3.5. For all P , δ and ϕ,

Pr
⎧
⎩P (let x ⇐ δ in ϕ(x))

⎫
⎭ =

∑

(a,p)∈δ

p · Pr
⎧
⎩P (ϕ(a))

⎫
⎭

The following corollary shows how to compute the probability of a successful
equality test between a random value and a constant.

Corollary 3.6. For any finite set A, for any a ∈ A,

Prtrue

⎧
⎪⎪⎪⎪⎩

let x
R← A in

[x ?= a]

⎫
⎪⎪⎪⎪⎭ =

1
|A|

The following corollary allows for rewriting under a let.

Corollary 3.7. For all sets A and B, for any distribution δ ∈ ΔA, for all func-
tions ϕ and ψ from A to ΔB, if ∀a ∈ A · Pr

⎧
⎩P (ϕ(a))

⎫
⎭ = Pr

⎧
⎩P (ψ(a))

⎫
⎭

then Pr
⎧
⎩P (let x ⇐ δ in ϕ(x))

⎫
⎭ = Pr

⎧
⎩P (let x ⇐ δ in ψ(x))

⎫
⎭

As another corollary, we obtain a mean to replace a randomly uniform choice in
a goal by a universal quantifier4.

Corollary 3.8. For all P , A, ϕ and p,

(∀x ∈ A · Pr
⎧
⎩P (ϕ(x))

⎫
⎭ = p) ⇒ Pr

⎧
⎩P

(
let x

R← A in ϕ(x)
)⎫
⎭ = p

The reverse implication is not true. We can see that on a counterexample:
if the reverse implication was true, from Corollary 3.6 we would deduce that
∀x ∈ A · Prtrue

⎧
⎩ [x ?= a]

⎫
⎭ = 1

|A| . This is not true. Here x is either equal or
not to a: in case of equality the probability is 1; in case of non-equality the proba-
bility is 0. It shows us a fundamental difference between universal quantification
and random choice.

The following proposition allows for moving around independent random
choices in the definitions of games. In the proposition below, independent means
that the variable x is not used in the expression δ2 and the variable y is not used
in the expression δ1.

Proposition 3.9. For all finite sets A, B and C, for any δ1 ∈ ΔA, for any
δ2 ∈ ΔB , for any ϕ : A × B → ΔC , if δ1 and δ2 are independent, then:

Pr

⎧
⎪⎪⎪⎪⎪⎩P

⎛

⎝
let x ⇐ δ1 in
let y ⇐ δ2 in
ϕ(x, y)

⎞

⎠

⎫
⎪⎪⎪⎪⎪⎭ = Pr

⎧
⎪⎪⎪⎪⎪⎩P

⎛

⎝
let y ⇐ δ2 in
let x ⇐ δ1 in
ϕ(x, y)

⎞

⎠

⎫
⎪⎪⎪⎪⎪⎭

4 We assume here a backward reasoning as in the proof assistant Coq where we start
from the goal and go backward to the hypothesis. For example, if our goal is Q and
we have a theorem stating that P ⇒ Q, applying this theorem leaves us with P as
a new goal.
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3.2 Cyclic Groups

A group (G, ∗) consists in a set G with an associative operation ∗ satisfying certain
axioms. We write a−1 for the inverse of a. We write ai for a ∗ · · · ∗ a︸ ︷︷ ︸

i times

. A group (G, ∗)

is finite if the set G is finite. In a finite group G, the number of elements is called
the order of G. A group is cyclic if there is an element γ ∈ G such that for each
a ∈ G there is an integer i with a = γi. Such γ is called a generator of G. The
following permutation properties of cyclic groups will allow us below to connect
probabilities with cyclic groups. Let G be a finite cyclic group.

Proposition 3.10. If the order of G is q, then {γi | 0 ≤ i < q} = G

Proposition 3.11. For any b ∈ G, {a ∗ b | a ∈ G} = G

The set of bit strings of length l equipped the the bitwise exclusive disjunction ⊕
forms a commutative group (not cyclic) where the following proposition holds:

Proposition 3.12. For any s′ ∈ {0, 1}l,
{
s ⊕ s′ | s ∈ {0, 1}l

}
= {0, 1}l

3.3 Probabilities over Cyclic Groups

The following theorem and its corollaries make explicit a fundamental relation
between probabilities and cyclic groups. They are important properties used im-
plicitly by cryptographers but never explicitly stated because they are considered
too obvious in the context of security proofs. However it is necessary to explicit
them when using a proof assistant.

Let G be a finite cyclic group of order q and γ ∈ G be a generator. We write
Zq for the set of integers {0, . . . , q − 1}.

Theorem 3.13. for all sets A, B and C, for any bijective function f : A → B,
for any function g : B → C, for any predicate P on C,

Pr

⎧
⎪⎪⎪⎪⎩P

(

let x R← A in
[g(f(x))]

)⎫
⎪⎪⎪⎪⎭ = Pr

⎧
⎪⎪⎪⎪⎩P

(

let y R← B in
[g(y)]

)⎫
⎪⎪⎪⎪⎭

Corollary 3.14. for any set A, for any function f from G to A, for any pred-
icate P on A,

Pr

⎧
⎪⎪⎪⎪⎩P

(

let x
R← Zq in

[f(γx)]

)⎫
⎪⎪⎪⎪⎭ = Pr

⎧
⎪⎪⎪⎪⎩P

(

let m
R← G in

[f(m)]

)⎫
⎪⎪⎪⎪⎭

Proof. By Proposition 3.10 and Theorem 3.13. �

Corollary 3.15. for any set A, for any function f from G to A, for any pred-
icate P on A, for any m′ ∈ G,

Pr

⎧
⎪⎪⎪⎪⎩P

(

let m
R← G in

[f(m ∗ m′)]

)⎫
⎪⎪⎪⎪⎭ = Pr

⎧
⎪⎪⎪⎪⎩P

(

let m
R← G in

[f(m)]

)⎫
⎪⎪⎪⎪⎭
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Proof. By Proposition 3.11 and Theorem 3.13. �

Corollary 3.16. for any set A, for any function f from {0, 1}l to A, for any
predicate P on A, for any s′ ∈ {0, 1}l,

Pr

⎧
⎪⎪⎪⎪⎩P

(

let s
R← {0, 1}l in

[f(s ⊕ s′)]

)⎫
⎪⎪⎪⎪⎭ = Pr

⎧
⎪⎪⎪⎪⎩P

(

let s
R← {0, 1}l in

[f(s)]

)⎫
⎪⎪⎪⎪⎭

Proof. By Proposition 3.12 and Theorem 3.13. �

In Section 3.3 of [20] the proof of semantic security for the encryption scheme
ElGamal uses implicitly such corollaries. Shoup writes: “by independence, the
conditional distribution of δ is the uniform distribution on G, and hence from
this, one sees that the conditional distribution of ζ = δ · mb is the uniform dis-
tribution on G”. The “by independence” part corresponds to our corollary 3.14,
while the “one sees that” part corresponds to our corollary 3.15. It is perfectly
legitimate not to state precisely things that are anyway obvious to the reader.
But for our implementation on top of the proof assistant Coq it was necessary
to state such theorems explicitly and formally.

4 Formal Security

In this section we formalize in our framework some security notions which are
fundamental in cryptography: the Decisional Diffie-Hellman assumption (DDH),
entropy smoothing and semantic security.

4.1 The Decisional Diffie-Hellman Assumption

Let G be a finite cyclic group of order q and γ ∈ G be a generator5.
The DDH assumption [10] for G states that, roughly speaking, no efficient al-

gorithm can distinguish between triples of the form (γx, γy, γxy) and (γx, γy, γz)
where x, y and z are chosen randomly in the set Zq. More formally, there ex-
ists a negligible upper-bound εDDH such that for any efficient algorithm ϕ from
G × G × G to Δ{false, true}:

∣
∣
∣
∣
∣
∣
∣
∣
∣

Prtrue

⎧
⎪⎪⎪⎪⎪⎪⎪⎩

let x
R← Zq in

let y
R← Zq in

ϕ(γx, γy, γxy)

⎫
⎪⎪⎪⎪⎪⎪⎪⎭

− Prtrue

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

let x
R← Zq in

let y
R← Zq in

let z
R← Zq in

ϕ(γx, γy, γz)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∣
∣
∣
∣
∣
∣
∣
∣
∣

≤ εDDH

As will be seen in Section 5, security proofs in our framework mainly consist
in game transformations. Thus, as in [9], we do not need to define precisely the

5 We do not assume that q is prime. However most groups in which DDH is believed
to be true have prime order [8].
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terms efficient and negligible. However they can be given precise definitions in
terms of polynomials.

4.2 Entropy Smoothing

A family (Hk)k∈K , where each Hk is a hash function from G to {0, 1}l, is entropy
smoothing iff there exists a negligible upper-bound εES such that for any efficient
algorithm ϕ from K × {0, 1}l to Δ{false, true}:

∣
∣
∣
∣
∣
∣
∣
Prtrue

⎧
⎪⎪⎪⎪⎪⎪⎪⎩

let k
R← K in

let m
R← G in

ϕ(k, Hk(m))

⎫
⎪⎪⎪⎪⎪⎪⎪⎭

− Prtrue

⎧
⎪⎪⎪⎪⎪⎪⎪⎩

let k
R← K in

let h
R← {0, 1}l in

ϕ(k, h)

⎫
⎪⎪⎪⎪⎪⎪⎪⎭

∣
∣
∣
∣
∣
∣
∣

≤ εES

Roughly speaking, it means that no efficient algorithm can distinguish between
(k, Hk(m)) and (k, h) where k, m and h are chosen randomly.

4.3 Semantic Security

The notion of semantic security was introduced by Goldwasser and Micali [13].
They later showed that it is equivalent to indistinguishability under Chosen
Plaintext Attack (IND-CPA) [14]. We use this latter formulation which is nowa-
days the most commonly used.

We assume two oracles: a key generation oracle keygen which generates a pair
of public and private keys; and an encryption oracle encrypt which encrypts a
given plaintext with a given public key. Because oracles are probabilistic algo-
rithms, they are modeled as functions returning distributions. The attacker is
modeled as two deterministic efficient algorithms A1 and A2 that take among
other input a random seed r taken for some non-empty set R.

The semantic security game SSG(keygen, encrypt, A1, A2) consists in calling
the oracle keygen, then passing the generated public key and a random seed to
A1 which returns a pair of messages m1 and m2. One of the messages is chosen
randomly and encrypted by the oracle encrypt which returns the corresponding
ciphertext. This ciphertext is passed to A2 which tries to guess which of the two
messages was encrypted. In our framework, it is defined by:

let (kp, ks) ⇐ keygen() in

let r
R← R in let (m1, m2) ← A1(r, kp) in

let b
R← {1, 2} in let c ⇐ encrypt(kp, mb) in

let b̂ ← A2(r, kp, c) in

[b̂ ?= b]

Definition 4.1 (Semantic security). An encryption scheme with key genera-
tion algorithm keygen and encryption algoritm encrypt is semantically secure iff
for all deterministic efficient algorithms A1 and A2,

∣
∣
∣
∣Prtrue

⎧
⎩SSG(keygen, encrypt, A1, A2)

⎫
⎭ − 1

2

∣
∣
∣
∣ is negligible.



328 D. Nowak

5 Application to the ElGamal Encryption Scheme

In our implementation, we illustrate the use of our framework by proving in a
systematic way the so-called semantic security of the encryption scheme ElGamal
[12] and its hashed version. In this paper, due to lack of space, we only show the
hashed version.

The simplest version of ElGamal does not use hash functions. However, in
practice, it is more convenient to consider messages which are bit strings (say
of length l) instead of elements of a cyclic group. The hashed version of the
ElGamal encryption scheme allows for this. We assume that we are given an
entropy-smoothing family of hash functions (Hk)k∈K , each Hk being a function
from G to {0, 1}l. The ElGamal encryption scheme consists in the following
probabilistic algorithms:

– The key generation algorithm keygen():
let x

R← Zq in let k
R← K in [((γx, k), (x, k))]

– The encryption algorithm encrypt((α, k), m):
let y

R← Zq in [(γy, Hk (αy) ⊕ m)]
– The decryption algorithm decrypt((x, k), c):

[Hk(π1(c)x) ⊕ π2(c)]
where π1 and π2 denote the first and second projections of an ordered pair.

Messages are elements of {0, 1}l; public keys are elements of G × K; secret keys
are elements of Zq × K; ciphertexts are elements of G × {0, 1}l.

Theorem 5.1. The hashed ElGamal encryption scheme is semantically secure.

Proof. In this proof we implicitly apply Corollaries 3.7 and 3.8, and Proposi-
tion 3.9. In particular the reader will notice that the order of variable definitions
varies along the game transformations as allowed by Proposition 3.9.

Let us fix A1 and A2. We proceed by successive game transformations.

G0. By definition of semantic security, we must prove that:
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Prtrue

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

let (kp, ks) ⇐ keygen() in

let r
R← R in let (m1, m2) ← A1(r, kp) in

let b
R← {1, 2} in let c ⇐ encrypt(kp, mb) in

let b̂ ← A2(r, kp, c) in

[̂b ?= b]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

− 1
2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

is negligible

G1. Knowing that εDDH and εES are negligible, we are led to prove that:
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Prtrue

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

let (kp, ks) ⇐ keygen() in

let r
R← R in let (m1, m2) ← A1(r, kp) in

let b
R← {1, 2} in let c ⇐ encrypt(kp, mb) in

let b̂ ← A2(r, kp, c) in

[̂b ?= b]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

− 1
2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

≤ εDDH + εES
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G2. We unfold definitions of oracles and apply associativity of let (by Theo-
rem 3.3 (6)).

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Prtrue

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

let x
R← Zq in

let k
R← K in

let(kp, ks) ← ((γx, k), (x, k)) in

let r
R← R in

let (m1, m2) ← A1(r, kp)
let b

R← {1, 2} in

let y
R← Zq in

let c ← (γy, Hπ2(kp)(π1(kp)y) ⊕ mb) in
let b̂ ← A2(r, kp, c) in

[̂b ?= b]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

− 1
2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

≤ εDDH + εES

G3. We propagate definitions of kp, ks , m1, m2, c and b̂ (by Theorem 3.3 (4)).
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Prtrue

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

let x
R← Zq in

let y
R← Zq in

let k
R← K in

let r
R← R in

let b
R← {1, 2} in

[A2(r, (γx, k), (γy , Hk(γxy) ⊕ πb(A1(r, (γx, k))))) ?= b]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

− 1
2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

≤ εDDH+εES

G4. According to DDH assumption, we have that:
∣
∣
∣
∣
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∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Prtrue

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

let x
R← Zq in

let y
R← Zq in

let k
R← K in

let r
R← R in

let b
R← {1, 2} in

[A2( r, (γx, k), (γy,
Hk(γxy)⊕
πb(A1(r, (γx, k))))) ?= b]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

−Prtrue

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

let x
R← Zq in

let y
R← Zq in

let z
R← Zq in

let k
R← K in

let r
R← R in

let b
R← {1, 2} in

[A2( r, (γx, k), (γy,
Hk(γz)⊕
πb(A1(r, (γx, k))))) ?= b]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

≤ εDDH

where the left-hand side game is the one from G3. We are thus left to prove
that6:
∣
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∣
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∣
∣
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∣
∣
∣
∣

Prtrue

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

let x
R← Zq in

let y
R← Zq in

let k
R← K in

let r
R← R in

let b
R← {1, 2} in

let z
R← Zq in

[A2( r, (γx, k), (γy, Hk(γz) ⊕ πb(A1(r, (γx, k))))) ?= b ]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

− 1
2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

≤ εES

6 Indeed, for all r1, r2, r3, r1,2, r2,3, in order to prove that |r1 − r3| ≤ r1,2 + r2,3, it is
sufficient to prove that |r1 − r2| ≤ r1,2 and |r2 − r3| ≤ r2,3.
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G5. We replace the randomly uniform choice of z and the computation γz with
a random choice of an element of G (by Corollary 3.14).
∣
∣
∣
∣
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∣
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∣
∣

Prtrue

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

let k
R← K in

let mz
R← G in

let x
R← Zq in

let y
R← Zq in

let r
R← R in

let b
R← {1, 2} in

[A2( r, (γx, k), (γy, Hk(mz) ⊕ πb(A1(r, (γx, k))))) ?= b ]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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∣

≤ εES

G6. According to the entropy-smoothing assumption, we have that:
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∣

Prtrue

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

let k
R← K in

let mz
R← G in

let x
R← Zq in

let y
R← Zq in

let r
R← R in

let b
R← {1, 2} in

[A2( r, (γx, k), (γy,
Hk(mz)⊕
πb(A1(r, (γx, k))))) ?= b]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

−Prtrue

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

let k
R← K in

let h
R← {0, 1}l in

let x
R← Zq in

let y
R← Zq in

let r
R← R in

let b
R← {1, 2} in

[A2( r, (γx, k), (γy,
h⊕
πb(A1(r, (γx, k))))) ?= b]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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≤ εES

which is G5 except that
1
2

is replaced by the probability of another game.

We are thus left to prove that this probability is equal to
1
2
:

Prtrue

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

let k
R← K in

let x
R← Zq in

let y
R← Zq in

let r
R← R in

let b
R← {1, 2} in

let h
R← {0, 1}l in

[A2( r, (γx, k), γy, h ⊕ πb(A1(r, (γx, k))) ?= b ]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=
1
2

G7. We delete the right operand of ⊕ (by Corollary 3.16):

Prtrue

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

let k
R← K in

let x
R← Zq in

let y
R← Zq in

let r
R← R in

let h
R← {0, 1}l in

let b
R← {1, 2} in

[A2( r, (γx, k), γy , h) ?= b ]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=
1
2

This is true by Corollary 3.6. �
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6 Implementation in the Proof Assistant Coq

The proof assistant Coq. Coq is a goal-directed proof assistant. This means that
if we are trying to prove that a formula Q (the goal) is true, and we have a
theorem stating that P1 & P2 implies Q, then we can apply this theorem. Coq
will replace the goal Q by two subgoals P1 and P2. We proceed this way until
we finally reach goals that are either axioms or are true by definition. On the
way, Coq builds a so-called proof term. The critical part of Coq is its kernel
which takes a proof term as an input and checks whether it is correct or not.
On top of that there is a script language which allows users to state theorems
and build their proofs interactively. This script language includes predefined
tactics to prove automatically some mathematical statements such as tautologies,
Presburger arithmetic statements, linear inequations over real numbers. . . Users
can also define their own tactics.

Our framework in Coq. Our current implementation consists of the following
Coq files:

CoqLib.v addendum to the Coq standard library
Distrib.v distributions, probabilities and necessity
Equiv.v equivalence modulo a negligible probability
DistribAuto.v automatically generated properties of distributions
Group.v basic group theory, cyclic groups
GroupProba.v probabilities over cyclic groups
BitString.v bit strings
Challenge.v correctness and security games
DDH.v the DDH assumption
Hash.v hash functions, entropy smoothing
Tactic.v support for automation
CryptoGames.v the main file including the full library
ElGamal.v correctness and semantic security for ElGamal
HashedElGamal.v correctness and semantic security for hashed ElGamal

Our library consists of 3381 lines of Coq and O’Caml code. The O’Caml part
is a program which generates automatically 5923 other lines of Coq code. By
using our library, the proofs of correctness and semantic security for ElGamal
and hashed ElGamal consists respectively of only 160 lines and 209 lines of
Coq code. This shows that our framework, while allowing for fully formal and
readable security proofs, is scalable. Therefore, we believe that it can be further
extended and applied to much more involved security proofs.

We write games as Coq functions and reason on them using the full logic of
Coq: this is a so-called shallow embedding. We use Coq notations which allow for
games and formulas to be written in a syntax close to the one used in this paper.
For example, the game G1 in the proof of Theorem 5.1 appears in Coq as:
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mlet k <~ keygen in
mlet r <$ seed in
mlet mm <- A1 r (fst k) in
mlet b <$ [true; false] in
mlet c <~ encrypt (fst k) (if b then fst mm else snd mm) in
mlet b’ <- A2 r (fst k) c in
[[eqb b’ b]]

Probabilistic choices occurring in games are modeled with a monad. A similar
encoding of randomized algorithms was given in [2]. However our encoding is
much simpler due to the fact that it is enough for our purpose to consider
distributions which are finite.

We provide automated tactics which can move deterministic assignments, ran-
dom choices and calls to oracles from one place to another inside the game, and
prove automatically that this transformation leads to an equivalent game. Those
tactics are defined in the file Tactic.v. In the file Distrib.v we also define a tac-
tic which automatically reduces the correctness of a cryptographic scheme into
an equation which is then trivially proved. For example, in the case of ElGamal,
it generates the following equation: m = γxy ∗m∗ (γyx)−1. For hashed ElGamal,
we get m = Hk(γxy) ⊕ (Hk(γyx) ⊕ m).
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