
A framework for generating and analyzing movement
paths on ecological landscapes
Wayne M. Getza,b,1 and David Saltzc

aDepartment of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720-3114; bMammal Research Institute, University
of Pretoria, Pretoria 0002, South Africa; and cBen-Gurion University of the Negev, Be’er Sheva 84105, Israel

Edited by Ran Nathan, The Hebrew University of Jerusalem, Jerusalem, Israel, and accepted by the Editorial Board June 2, 2008 (received for review
February 26, 2008)

The movement paths of individuals over landscapes are basically

represented by sequences of points (xi, yi) occurring at times ti.

Theoretically, these points can be viewed as being generated by

stochastic processes that in the simplest cases are Gaussian random

walks on featureless landscapes. Generalizations have been made of

walks that (i) take place on landscapes with features, (ii) have

correlated distributions of velocity and direction of movement in each

time interval, (iii) are Lévy processes in which distance or waiting-time

(time-between steps) distributions have infinite moments, or (iv)

have paths bounded in space and time. We begin by demonstrating

that rather mild truncations of fat-tailed step-size distributions have

a dramatic effect on dispersion of organisms, where such truncations

naturally arise in real walks of organisms bounded by space and, more

generally, influenced by the interactions of physiological, behavioral,

and ecological factors with landscape features. These generalizations

permit not only increased realism and hence greater accuracy in

constructing movement pathways, but also provide a biogeographi-

cally detailed epistemological framework for interpreting movement

patterns in all organisms, whether tossed in the wind or willfully

driven. We illustrate the utility of our framework by demonstrating

how fission–fusion herding behavior arises among individuals en-

deavoring to satisfy both nutritional and safety demands in hetero-

geneous environments. We conclude with a brief discussion of

potential methods that can be used to solve the inverse problem of

identifying putative causal factors driving movement behavior on

known landscapes, leaving details to references in the literature.

fission–fusion � GPS � landscape matrices � random and Lévy walks �

dispersal � movement ecology

The movement of all organism, but especially sentient animals,
is a complex process that depends on both an individual’s

ability to perform various tasks and the nature of the landscape
through which it moves (1–6). These tasks include the individ-
ual’s intrinsic ability to move in different ways (e.g., a horse
walks, trots, canters, and gallops), the individual’s internal state
to perform certain activities (e.g., forage, head home, flee, and
seek a mate), and the individual’s ability to sense its environ-
ment, remember landmarks, construct mental maps, and process
information (7). Landscape variables that influence movement
include topography, abiotic variables (8, 9), location of resources
(10), conspecifics by gender and age, and heterospecific com-
petitors and predators.

Emerging digital and communications technologies have re-
fined our ability to measure movement at the resolution of
fractions of seconds with concomitant spatial precision (11),
while kinematical (e.g., acceleration), physiological (e.g., heart
beat and temperature), and behavioral (e.g., vocalizations) in-
formation are simultaneously recorded. The internal state driv-
ing movement, however, remains largely hidden: in animals, for
example, states of hunger, thirst, and fear are either inaccessible
or, at best, only indirectly inferable.

The sampling frequency of movement data affects our ability
to detect short-duration fundamental movement elements

(FME) (6), such as a lunge versus a step taken at normal speed.
Such fine-scale events are generally unrecoverable from sam-
pling movement at intervals coarser than the duration of these
events (12) [see supporting information (SI) Fig. S1]. Further-
more, activities such as foraging or heading home involve a mix
of FMEs such as being stationary, ambling, and walking; and
these activities may differ only in the way the FMEs are strung
together. If a string of normal steps interspersed with stationary
periods, for example, is on the order of minutes for both foraging
and heading to a target, then movement paths sampled every 10
min during either of these two activities can be distinguished only
if they produce different characteristic ‘‘distance moved in each
sampling interval’’ distributions. This suggests that to appropri-
ately characterize movement components of an individual’s path
over time, we should endeavor to identify canonical activity
mode (CAM) distributions that emerge from the mix of FMEs
that characterize the activity in question: i.e., CAMS are com-
posites of the FMEs (Fig. S1), and their characteristic step size
and direction of heading distributions will depend on the length
of sampling intervals (Fig. S2) and scale of analysis (13).

Ideally, if one assumes that FMEs are characterized purely by
a fixed speed (because they relate to biomechanical traits of
individuals), then one could mechanistically construct a move-
ment path by specifying a sequence of FMEs with a direction of
heading according to know distributions of sequence lengths and
correlated heading directions for particular activities. Alterna-
tively, at fixed points in time one could specify the next location
of an individual by drawing ‘‘distance moved’’ and ‘‘heading
direction’’ from empirical step-size and heading distributions (1,
6, 14–17). To date, such distributions are invariably derived from
sampling intervals considerably longer than the shortest FME.
Thus, with most current data, it is not possible to construct
distributions in terms of strings of FMEs, but only in terms of
longer-lasting CAMs. Consequently, CAMs are currently the
preferred place to start developing a framework for movement
analysis, despite the fact that any set of CAMs is unlikely to
account for all of an individual’s time. In many cases, however,
a reasonable tradeoff may exist in defining several CAMS that
account for most of an individual’s time.

Movement Paths on Featureless Landscapes

Kinds of Data. The most basic set of data that can be collected
on the movement path of an individual is a sequence of positions
(xi, yi) at points ti, i � 0, 1, 2, . . . , n: that is, the set D �
{u0, . . . , un} with ui � (xi, yi), where xi � x(ti) and yi � y(ti). For
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convenience, we set t0 � 0 but do not necessarily require all of
the time intervals �i � [ti�1, ti] to be of equal length. In fact, in
some analyses, the focus is on the distribution of waiting times
�i associated with the events of first being in position (xi�1, yi�1)
and then next in position (xi, yi) (14). These data can be
transformed into polar coordinates (6) to obtain a set of vectors
zi � (ti, di, �i) with

di � ��xi � x0�
2 � �yi � y0�

2

and

�i � arctan�y i � y0

x i � x0
� .

A considerable body of diffusion and stochastic process theory
exists to analyze such data in the context of featureless land-
scapes, including uncorrelated and correlated random walks
(14–17) and super- and subdiffusive Lévy walks (18–21) and
Lévy modulated correlated walks (22).

Brief Review of Random Walks and Diffusion. Consider the distri-
bution of waiting times �i, velocities vi, and absolute displace-
ments di associated with a set of displacement data D. If the
distributions of both waiting times and velocities have finite
mean and variance, then the stochastic process associated with
the data is said to be diffusive. From theory (16–20), this implies
that over an ensemble of K sets Dk, k � 1, . . . , K, where each set
is one realization of the same stochastic process, the mean-
square displacement (msd) �i of the series dik averaged over all
K sets is asymptotically linear, that is �i � (1/K)¥k�1

K dik
2 � t. By

contrast, if upon plotting this relationship we find that �i � tp for
p � 1 or � 1, then the walk is respectively referred to as
superdiffusion or subdiffusion. As we demonstrate below, using
simulated data drawn from a modified Pareto power law distri-
bution (23) (Fig. S3) and plotted on a log–log scale, such plots
can be misleading if time is not sufficiently large. The reason is
that, initially, the relationship is affected by the fact that the
distance moved in the first sampling interval is controlled by the
actual step-size distribution, but from the second step onwards
the distance moved from the origin is now also affected by
turning angles.

Movement Pathways and Diffusion. Over the past decade, analyses
of the movement paths of several organisms, including albatrosses
(24) and spider monkeys (14), have concluded that the associated
movement processes are superdiffusive, although a re-analysis of
these data refute this finding (ref. 1, but see ref. 25). A possible
source of error in estimating p in the msd relationship �i � tp (Fig.
1) is t must be sufficiently large for the asymptotic value to emerge.
Another source of error is that superdiffusion predicts fractal
looking movement paths (14, 20, 24). Using one of several different
methods to estimate the fractal dimension (26) of such paths, some
organisms have been pronounced as superdiffusive (14). In these
organisms, however, repeated fractal patterns occur at no more
than two or three particular scales and are more a feature of the way
resources are distributed across the landscape than of a genuine
superdiffusive process. Thus, it is important to understand how
animal movement is influenced by landscape features and to assess
the extent to which step-size distributions are modified by landscape
heterogeneity.

We note here that because all bounded step-size distributions
produce Gaussian random walks when turning angles are un-
correlated, critical information in the step-size distribution, such
as multimodality arising from mixed distributions of FMEs, is
lost when using the statistics of emergent global characteristics
such as msd as a function of time. This stresses the importance
of knowing the actual step-size distributions when deconstruct-

ing movement paths and trying to understand the causal pro-
cesses creating local path structures.

Movement Paths on Structured Landscapes

FMEs and CAMs. The framework presented here is formulated in
the context of a group of N known individuals indexed by k. This
specificity allows us to account for the following: (i) species,
gender, and age-specific differences; (ii) unique memory and
knowledge of landscape; and (iii) cues and vectors individuals
use to select a new position on the landscape. Further, we assume
that each individual has nm

k FMEs (Table 1), each with its own
characteristic speed sj

k, j � 1, . . . , nm
k , from which its movement

track is generated. The set of FMEs constitute the basic motion
capacity �k (7). Furthermore, in any segment of the movement
path (Fig. S1), these FMEs are mixed in various proportions to
constitute a set of Ar

k CAMs (Table 1), r � 1, . . . , na
k best

characterized by distributions of speeds (equivalently distances)
with means and standard deviations s�r and ��r for each r (Fig. S2).
We note, however, that when the sample intervals �i

k � �k are
fixed over all intervals i, for reasons discussed below only the
standard deviation (and not the mean) depends on sampling
frequency 1/�k.

As an example, �k in horses has been defined in terms of five
FMEs or gaits (27) of increasing speeds: stationarity (s1 � 0),
walking (a four beat gait with s2 � 4 mph), trotting (a two beat gait
with s3 � 8 mph on average), cantoring (a three beat gait for which
s4 � s3), and galloping (a four beat gait for which s5 � 25–30 mph,
varying across horses). Beyond these natural gaits, some horses have
been bred to implement so-called ‘‘ambling gaits’’ that provide a
smoother ride, but not all horses can execute these, thereby

Fig. 1. The logarithm of mean-square displacements (msd) � versus the

logarithm of time t average over 10,000 simulations are plotted for a random

walk with step lengths drawn from modified Pareto distributions (Upper Left,

q � 2; Upper Right, q � 1.5; Lower Left, q � 1) and directions for each step

completely random. From the lines inserted by ‘‘eye’’ (red, small t; blue, large

t), Upper Left represents diffusion (P � 1 for large t), and Upper Right and

Lower Left represent super diffusion (respectively, P � 1.15 � 1 and P � 2 for

large t). In Lower Right, for the case q � 1, the length of these excursions are

truncated at a step size of 100 (biologically, an upper bound is set by the

maximum velocity of the organism multiplied by the length of the time

interval), which is far out in the tails of the distribution (two orders of

magnitude beyond the mode; see Fig. S3). In this case, the noisy superdiffusive

behavior is completely tamed even though, initially, it looks superdiffusive

(� � t1.4 for t � 2).
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providing an example of selection at work on the motion capacity
component 	 of our guiding conceptual model (7).

For each of the na
k, CAMs associated with individual k, the

distribution of speeds (equivalently distances or ‘‘step sizes’’)
associated with a particular CAM is affected by the value of �:
if � is small an individual will generally be in one movement mode
or another in the mix that constitutes the activity, whereas if � is
large an individual will more likely be executing some mix of
modes over one interval (Fig. S2). Thus, even though the
proportion of different movement mode events used to construct
the movement tracks may be quite stable with regard to a specific
activity, the directions of heading from one event to the next
make the relationship between the length of a track and dis-
placement quite complicated. Only for very simple cases, such as
tracks generated from one type of FME, is the relationship
between length-of-track and displacement easily cracked by
analytical methods. For the rest, the easiest way to generate the
distribution of speeds (distances) A�r(s) as a function of sample
interval size � is to use Monte Carlo simulation.

The proportions of FMEs in a particular CAM is likely to vary
with changes in landscape. For example, the mix of stationary,
walking, and running modes used by a foraging African antelope
will differ in an open savannah compared with thick bushveld.
This problem can be dealt with by assuming that the parameters
of a CAM distribution depend on external landscape factors in
addition to the frequency of sampling along a movement path.

Internal States and Goals. One of the goals in an analysis of
empirical data is to see how cleanly a set of CAM distribution of
step-size FMEs can be extracted from the movement track to
explain the actual activity producing different segments of the
movement track. Some segments may reflect a pure activity (e.g.,
foraging) while others are a mix of activities (e.g., foraging and
resting) or even a compromise between competing activities such
as an individual foraging as it heads to a known water source or
home. To be able to account for such mixed activities, as well as
assess factors that may lead to an individuals switching from one
CAM to another, we must infer that the individual has a
multidimensional internal state that drives the behavior (7). The
current state of this driver can in turn be associated with a goal
emerging from an individual’s internal state, which in general
will vary with time. The relationship between an individual’s
internal state (i.e., the vector w—see Fig. S4) and its current goal
state can be treated in various ways. One way is to construct a
mapping of a continuous n-dimensional vector space to a discrete
space of g goals. Another is to consider the internal state as a
weighting vector

wi
k � �w i1

k , w i2
k , · · · , wn

a
k

k
�

that produces a goal-modified ‘‘ideal’’ distribution G�i
k (s) of

speeds (distances) s for individual k at time ti � i� with the
weighted sum of its na

k CAMs: i.e.,

G�i
k �s� � �

r�1

na
k

w ir
k A�r

k �s� .

In the case of organisms that have no internal mechanism for
generating goals (e.g., plants), the internal state may, for exam-
ple, represent elements controlling dehiscence of seed dispersal
structures.

Spatial Explication. The spatial information embedded in the
distribution G�i

k (s) needs to be made explicit before other
relevant spatially explicit geographical and biological informa-
tion can be incorporated into the movement process. The
distribution G�i

k (s) is defined on s � [0, smax]. On a flat struc-
tureless landscape—that is, in the absence of all cues and other
directional biasing factors beyond the context of a correlated
walk—an individual is equally likely to move in any direction.
Thus, the ideal (i.e., featureless landscape) distribution G�i

k (s)
can be given an explicit spatial dimension by rotating it around
the point [0, 0] on a plane parameterized by coordinates (	, 
)
to obtain a radially symmetric distribution G�i

k (	, 
) that has a
top-half-of-a-donut-like structure (Fig. S5). The distribution can
now be relocated so that its center of symmetry is the current
point of location ui

k � (xi
k, yi

k) of organism k.

Landscape Raster. We incorporate landscape features into each
individual’s goal as follows. First, we cover the landscape with a
raster of rectangular cells C	
. Second, we locate the position ui

k �
(xi

k, yi
k) of each individual within the cell containing this point: in

general, this allows several individuals of one or more types to be
located in each cell. Also, we associate an nc-dimensional external
state to account for all factors relevant to the movement of each of
the N individuals on the landscape, including other individuals.
Third, the one-dimensional CAM distributions A�r

k (s) are used, as
described above, to generate two-dimensional radially symmetric,
but discretized, distributions A�r

k (	, 
) � 0 with ¥(	,
)A�r
k (	, 
) � 1

for all k and r � 1, . . . , na
k. Fourth, we incorporate the landscape

effects through a set of na
k landscape modifier matrices (LMM) Lir

k

(i.e., specific to individual k, their activity r, and time i�) with
elements �ir,	


k constructed from those elements of the external
state vector that are applicable for the activity in question. These
elements �ir,	


k are used to modify the CAM distributions to reflect
the preference that each individual has for each of the landscape
cells while involved in one of its CAMs (e.g., one cell may be the
most desirable from a foraging point of view, whereas another is
desirable as a target when heading for water). These LMMs are
used to modify the movement distribution G�i

k (	, 
) to account for

Table 1. Definition of parameters and variables

Frames (indices) Mathematical objects Descriptions

Time (i ) ti �i � Current time, variable and fixed inter-interval size

Random walks di �i �i Step size, heading, mean-square displacement (msd)

vi wi Linear and radial velocities at time ti

Dataset Dk of individuals (k) N ui
k � (xi

k, yi
k) Number, Cartesian location for each k updated each ti

Fundamental movement elements (FMEs) ( j ) nm
k sj

k 	k Number, characteristic speed, 
capacity
 for each k

Canonical activity modes (CAMs) (r) na
k A�r

k A�r
k Number, 1D and 2D distance distributions

Internal state of individual k wi
k wir

k Vector and elements (r � 1,���, na
k) updated each ti

Landscape grid C	
 (	 rows, 
 columns) ci
	
 � �c i1

	
, . . . ,c inc

	
 �� Vector state of grid cell (	, 
) updated each ti

Landscape modifier matrices (LMMs) Lir
k

�ir,	

k Modifier matrix and elements on (	, 
) updated each ti

Ideal movement distributions (fixed �) G�i
k (s) G�i

k (	, 
) Continuous 1D and binned 2D representations

Realized movement distributions (fixed �) M�i
k (	, 
) 2D histograms for each k updated each ti

19068 � www.pnas.org�cgi�doi�10.1073�pnas.0801732105 Getz and Saltz

http://www.pnas.org/cgi/data/0801732105/DCSupplemental/Supplemental_PDF#nameddest=SF2
http://www.pnas.org/cgi/data/0801732105/DCSupplemental/Supplemental_PDF#nameddest=SF4
http://www.pnas.org/cgi/data/0801732105/DCSupplemental/Supplemental_PDF#nameddest=SF5


the state of the landscape, as well as individual specific information
that inter alia relates to the location of places [remembered, sensed,
and inferred through landscape cues, including the earth’s magnetic
field (28)] associated with heading activities, the distribution of
resources across the landscape, and the location of other individuals
on the landscape; and hence the elements of these matrices must be
updated each time step.

The simplest way to incorporate this landscape information
into the movement process is to use the activity-specific LMM
elements �ir,	


k (Table 1) as a way to weight the terms in the
idealized goal determined movement distribution G�i

k (s) to pro-
duce a composite realized movement distribution, with spatial
matrix elements

M�i
k �	, 
� �

1

M�i
k �

r�1

na
k

w ir
k

� ir,	

k

��r
k �	 , 
�

for all 	, 
, i, and k � 1, where

M�i
k � �

	,


�
r�1

na
k

w ir
k

� ir,	

k

��r
k �	 , 
�

normalizes the discrete elements of the probability distribution
over the cells C	
 for each individual k and all time i.

Decision Mechanism. The final component of the movement
process is how the organism selects the particular cell (	, 
)
that will determine its next position ui�1

k � (xi�1
k , yi�1

k ) at time
t � (i � 1)�. The simplest rule is for an organism to move to cell
(	, 
) with largest value M�i

k (	, 
), effectively without making any
interim decision on its way to the new cell. For the case of an
organism driven purely by stochastic landscape processes (such
as wind), movement to the next cell can be regarded as random
with the probability of selecting a particular cell (	, 
) equal to
the values M�i

k (	, 
). A third possibility is to select cells with a
probability that is proportional to some power of M�i

k (	, 
), a
solution that is intermediate between the first two if this power
is �1. If this power is �1, the solution is intermediate between
the second mechanism and a purely random solution that gives
no weight to the relative values M�i

k (	, 
).

Food, Safety, and Fission–Fusion Dynamics

The following example illustrates the application of our frame-
work to simulating the movement of a herd of social ungulates
foraging on a heterogeneous landscape with conflicting needs to
both assuage hunger and remain safe by staying close to other
individuals.

In social ungulates, the existence of groups is presumably the
result of safety offered by the group (29). However, membership
in a group comes at a cost, namely competition for limited
resources (usually food). These conflicting needs presumably
drive the observed fission–fusion dynamics typical of many social
ungulates (30). Thus, the goal for each individual is feeding while
remaining near conspecifics, and the main internal states for this
goal are levels of hunger and safety, with each individual seeking
to assuage hunger while remaining safe. The CAM in this
example is pure foraging, and the FMEs allow either moving
between patches constrained by a maximum distance traversed
in each time set, or remaining in the current patch while feeding
(see SI Text). Navigation in our example is relatively simple:
individuals move directly using visual information to a cell
selected within a fixed radius interpreted as the observable
range. The distribution of food patches and the location of other
herd members represent the external states that a given herd-
member responds to in its choice of direction. The external states

are combined by using LMMs to obtain the realized movement
distribution from which an individual selects its next target.

Our model is spatially explicit with each grid cell, in this particular
case roughly the size of an individual. For each time step an animal
may perform one of three activities: (i) moving toward a selected
patch (one cell per time step), (ii) feeding in a patch (consuming
one unit per time step), or (iii) resting in a patch when it has a
full gut. There are two matrices, each representing one of the
external states: a food (vegetation) matrix and a safety matrix
(Fig. 2 Upper). The vegetation matrix is static and is generated at
the start of each simulation by using a combination of random
procedures to create a patchy heterogeneous landscape (see Ma-
terials and Methods and SI Text). The safety matrix is a function of
the spatial location of all group members (Fig. 2), risk does not vary
with landscape features, and there are no visible predators. In each
time step, a safety score is calculated to each cell as the sum of the
inverse of the distance of all herd members to that cell (see Materials
and Methods). The LMM is a weighted sum of the vegetation and
safety matrices, where the weightings 	 and (1 � 	) depend on the
internal driver (state) 	 � [0, 1] reflecting the current priorities to
the individual in trading safety against hunger. When an animal
stays within a patch to feed, its value of 	 increases and when it
moves its value of 	 decreases so that the relative importance of
food to safety oscillates up and down as the animal approaches
satiation or becomes increasingly hungry (see Materials and Meth-
ods and SI Text).

By playing around with simulation parameters, it is possible to
test how various movement-related questions—such as fission–
fusion dynamics, subgroup structure, and trajectory patterns—
are affected by patch size, gut size, and feeding strategies. For
example, we explored how patch density affects fission–fusion
and subgroup structure as follows: 20 animals with equal gut
sizes were initially spread randomly over a 20 
 20 cell section
of a 220 
 1,100 cell grid, with movement rules detailed in SI
Text. We assumed that the vegetation in each cell is not

Fig. 2. Each of the five panels is an extract from a much larger mapping of

the values of elements in the landscape modifier matrices (LMMs) for the

vegetation and safety landscapes of the realized discretized movement dis-

tributions constructed from these matrices. The focal individual is represented

by the small red squares in each of the five panels, with the positions of its

conspecifics represented by other small squares in Upper Left and Lower. In

the distributions represented in Lower, the most attractive areas are the

lighter areas (but ignoring the small dark blue squares, which are just con-

specific position markers for reference). The relative weighting of safety over

resources ranges from safety being the only consideration (Lower Left), safety

and resources being equally important (Lower Center), and resources being

the only consideration (Lower Right). Imposed upon Lower is a circle repre-

senting the maximum possible movement displacement in one time step.
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renewable, so that depleted patches act as repulsive regions. The
narrow landscape channels the herd into a directional movement
along the long axis, but the short axis is sufficiently wide to
enable fission events (Fig. 3).

The simulation was repeated with the same starting locations
with two different vegetation matrices, each with a mean patch size
of 38 cells. The first, representing ‘‘good’’ habitat, produced a
landscape where �75% of the cells were positive (Fig. 3), whereas
the second, representing ‘‘poor’’ habitat, produced a landscape with
�65% positive cells. We ran each simulation for 10,000 time steps.
Group structure was analyzed every 500 steps, starting with the
1,000th step, using cluster analysis with a two-group restriction (see
SI Text). We then calculated the mean individual distance for the
entire herd and for each subgroup. We considered a ratio of 0.5,
between the sum of the two subgroup mean distances to the mean
distance of the entire herd, as an indicator of fission. Simulating the
herd’s movement by using the ‘‘poor’’ habitat matrix produced three
fission events compared with none for the ‘‘good’’ habitat (Fig. 3).
All fissions were followed by fusion after 1,000–1,500 time steps.
We note that the herd was generally cohesive, with fission and
fusion events emerging rather than explicitly constructed, despite
that fact that the movements of the individuals themselves were
completely deterministic. Our approach highlights the importance
of quantifying the internal drivers in understanding animal move-
ments. In the context of our specific simulation, empirical data on
giving-up densities (31) appear to be a good tool for quantifying
internal drives and understanding movement patterns.

Conclusion

The framework presented here provides a mathematically detailed
exposition of the conceptual model developed by Nathan et al. (7)
that can be used for both the construction and deconstruction of the
pathway of organisms on structured landscape, the former through
simulations and the latter through state-space methods (32) for
fitting parameters. We have not dealt in any detail with the problem
of movement mode identification that is the key to the deconstruc-
tion component other than stressing that the frequency with which
data are collected limits our ability to identify CAMs and their
underlying FMEs (12). To undertake such an analysis is not a trivial
problem: it requires computationally complex methods that can
only be successfully applied to high-resolution data, but a start has
been made (33–35).

Before automated GPS data collection, VHF telemetry posi-
tion data were typically collected too infrequently and were also

not sufficiently accurate to be useful for reconstructing path-
ways; but these data were suitable for constructing home ranges
or types of utilization distributions at a seasonal scale, using both
parametric (36–38) and nonparametric (39, 40) kernel methods
as the preferred methodology. Since the mid-1990s (24) move-
ment data have been fitted to Lévy models to evaluate the extent
to which this movement is superdiffusive with, as we have
discussed, mixed success (1) and also to assess the degree to
which path characteristics can be fitted by correlated random
walks (17) or mixtures of random walks (4), but these analyses
do not explicitly incorporate landscape structure or factors.

In terms of general methods for deconstructing movement
pathways, various time series and frequency domain techniques
can be brought to bear on the problem under the rubric of
exploratory data analysis (EDA) (41). Furthermore, stochastic
differential equation methods (42) can be used to construct
vector fields from data on the contemporaneous movement of
many individuals, and then thin plate splines can be used to fit
potential fields to these vector fields to identify regions on the
landscape that are either repealing or attracting the individuals
at a particular time of day (2). Recently, techniques new to the
field of movement ecology, such as wavelet analysis (33) and
artificial neural networks (34), are being applied to obtain
insights into the effects that the internal and environmental
states of a system have on movement paths. Beyond these, as the
resolution of movement and landscape data improves dramati-
cally over the next decade, we should expect to see the appli-
cation of state-space estimation methods (32) that can take
advantage of formulations such as ours, because our formulation
permits the inclusion of detailed landscape information.

Materials and Methods
Details are elaborated on in SI Text.

The Vegetation Matrix. This matrix is the only component in the model that has

stochastic elements. It consists of a series of patches set up using Monte Carlo

methods, with a parameter controlling patch density and a beta distribution

controlling patch size. The quality of resources in the center of each patch was

then assigned a number at random between 1 and 10 with values declining to

the edge of the patch. The resource value of each cell was reduced by a set

amount in each time step for which the patch was occupied by a feeding

individual. Fig. 2 Upper Left depicts the result of one such construction.

The Safety Matrix. For each of the cells containing an individual (i.e., focal

individual), a matrix of values for all of the remaining cells was constructed.

The values associated with each of these remaining cells is based on the sum

of the inverse distances of all of the remaining organisms to these cells. Thus,

cells of highest values are those closest in an integrative sense to the organisms

as a group that excludes the focal individual (see Fig. 2 Upper Right).

The Navigation Matrix. All points within a fixed distance of an individual (and

only these points) were regarded as selectable targets to move to next (circles

in Fig. 2). An individual then moves toward the cell that has the highest value

of a weighted sum of the vegetation and safety matrix values for that cell.

Feeding and Energetics. Each animal has an energy bank that determines its

level of hunger and, hence, its weighting of vegetation and safety matrix

values. During each time step, an animal can either feed and increase its

energy bank or move and decrease its energy bank. Once an individual has

consumed the vegetation locally, it moves to a patch within navigation range

that maximizes its current tradeoff for resources versus safety.
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1. Edwards AM, et al. (2007) Revisiting Lévy flight search patterns of wandering alba-

trosses, bumblebees and deer. Nature 449:1044–1048.

2. Preisler HK, Ager AA, Johnson BK, Kie JG (2004) Modeling animal movements using

stochastic differential equations. Econometrics 15:643–657.

Fig. 3. Simulation of fission–fusion behavior as a function of vegetation

quality. Open squares, high quality; filled diamonds, low quality. Population

defined to be in a two-herd (one herd) state when the fission index is �0.5

(�0.5). See main text and SI Text for details.

19070 � www.pnas.org�cgi�doi�10.1073�pnas.0801732105 Getz and Saltz

http://www.pnas.org/cgi/data/0801732105/DCSupplemental/Supplemental_PDF#nameddest=STXT
http://www.pnas.org/cgi/data/0801732105/DCSupplemental/Supplemental_PDF#nameddest=STXT
http://www.pnas.org/cgi/data/0801732105/DCSupplemental/Supplemental_PDF#nameddest=STXT


3. Zhang X, Johnson SN, Crawford JW, Gregory PJ, Young IM (2007) A general random

walk model for the leptokurtic distribution of organism movement: Theory and

application. Ecol Modell 200:79–88.

4. Morales JM, Haydon DT, Frair JL, Holsinger KE, Fryxell JM (2004) Extracting more out

of relocation data: Building movement models as mixtures of random walks. Ecology

85:2436–2445.

5. Morales JM, Fortin D, Frair JL, Merrill EH (2005) Adaptive models for large herbivore

movements in heterogeneous landscapes. Landsc Ecol 20:301–316.

6. Root RB, Kareiva PM (1984) The search for resources by cabbage butterflies (pieris-

rapae)—Ecological consequences and adaptive significance of Markovian movements

in a patchy environment. Ecology 65:147–165.

7. Nathan R, et al. (2008) A movement ecology paradigm for unifying organismal

movement research. Proc Natl Acad Sci USA 105:19052–19059.

8. Mandel JT, Bildstein KL, Bohrer G, Winkler DW (2008) The movement ecology of

migration in turkey vultures. Proc Natl Acad Sci USA 105:19102–19107.

9. Revilla E, Wiegand T (2008) Individual movement behavior, matrix heterogeneity, and the

dynamics of spatially structured populations. Proc Natl Acad Sci USA 105:19120–19125.

10. Wright SJ, et al. (2008) Understanding strategies for seed dispersal by wind under

contrasting atmospheric conditions. Proc Natl Acad Sci USA 105:19084–19089.

11. Cooke SJ, et al. (2004) Biotelemetry: A mechanistic approach to ecology. Trends Ecol

Evol 19:334–343.

12. Jerri AJ (1977) The Shannon sampling theorem—Its various extensions and applica-

tions: A tutorial review. Proc IEEE 65:1565–1596.

13. Fryxell JM, et al. (2008) Multiple movement modes by large herbivores at multiple

spatiotemporal scales. Proc Natl Acad Sci USA 105:19114–19119.

14. Ramos-Fernández G, Mateos JL, Miramontes O, Cocho G (2004) Lévy walk patterns in
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SI Text

This text contains details of the simulation methods used to
generate results pertaining to Figs. 2 and 3.

The Vegetation Matrix. The vegetation matrix was set up to
provide a high level of f lexibility in its design so habitat structure
could be easily changed for future analyses. It is the only
component in the model that has stochastic elements. However,
the matrix is formed at the onset of the model and, except for
depletion due to consumption by the animals, it remains un-
changed throughout a given model run (i.e., there is no plant
regrowth). The vegetation matrix consists of a series of patches
and its attributes include patch density, patch size, patch quality,
edge effect (i.e., reduced quality of cells at the edges of the
patch), and some level of randomization in cell quality within the
patch.

Patch location was probabilistic based on a predetermined
density. Each cell could become a center of a patch using a
Monte Carlo draw. In our case, the probability of a cell becoming
a center of a patch was 0.02 (i.e., in a matrix of 1,000 cells, the
expected number of patches would be 50) in the ‘‘good quality’’
habitat as opposed to 0.017 in the ‘‘poor quality’’ habitat. Patches
were square with the side of the square ranging from 1 to 10 cells
drawn from a beta distribution with parameters � � 2.3 and � �
1.5 on the interval [0, 10]. In this manner, patches with 7- to
8-unit sides were the most common (�35%), followed by sides
of 3–6 units (�25%). Small (1–2 units on the side) and large
(9–10 units on the side) patches were rare (accounting for a total
of �15%).

Patch quality was determined randomly assigning a value
ranging from 1 to 10 (drawn from uniform distribution) to the
center cell. These values reflect units of energy that could be
consumed by the feeding animals. The quality of the remaining
cells around the center cell declined as a function of the distance
from it. Specifically, this was calculated as one minus the
proportion of the distance from the maximum possible distance
in a specific patch with an exponent of 0.3. Thus, the decline in
quality of the cells relative to the center of the patch was sharp
at the edges whereas the more central cells were relatively
similar. To generate within-patch variability, the actual quality
assigned to each cell was then multiplied by a random number
generated from a beta distribution with � � 100 and � � 1, so
that most cells received values very near their original one
(�0.95) but on rare occasion could drop by as much as 15%.

Patches could overlap, and cells falling within more than one
patch received the values generated for the last patch being
constructed in the code. The vegetation grid was surrounded by
a 40-cell-wide band with zero values. In this manner, individuals
did not bounce off of the edge but rather simply avoided it
because of lack of resources.

The Time Step. Time in this model is not explicitly defined and can
be viewed as a sampling time step (�). The time step is short and
represents points at which the individual may make decisions. In
each time step, an animal could: move, feed, or remain standing.
The decision the animal makes between these three behaviors
depends on the animal’s energetic status, its location, and the
location of other group members (see below). However, in this
specific model, after a target is selected and the animal decides
to move there, the decision remains unchanged until the animal
arrives at that target—i.e., the animal can make only one choice

and then continue moving in the same direction until arrival at
the selected target. However, a decision between several choices
in each movement step easily can be incorporated (e.g., reas-
sessing the target after other herd members have changed their
position).

Feeding and Energetics. Each animal has an energy bank that has
an upper limit (Es). This upper limit may vary between individ-
uals, although in the our example all animals were assigned the
same upper limit of 100 units. For each time step, an animal loses
a given percentage of its energy reserves (i.e., a basal cost) set
in our case to 0.006Es. When moving, there is an additional
energetic cost of Em � 0.003Es per time step. When feeding,
uptake is constant at a rate of one unit of energy per time step.

Animals consider the value of the vegetation in patches of 3 �
3 cells. An animal arriving at a cell in a given patch remains in
that cell and in each time unit consumes one vegetation unit
from the total number of units in the 3 � 3 cell matrix
surrounding it. If its energy bank is full, the animal remains in
place but does not feed. Each time step a given proportion
(0.006Es) of the energy bank is emptied. Thus, an animal in a
patch with a full energy bank (gut) will alternate between feeding
and resting in consecutive time steps.

Movement Rules. Once the nine cells around a given individual are
consumed, the animal checks its surroundings within a given
perception radius and selects a new target to move to. This is
done by the animal evaluating both the vegetation and the safety
matrices (the latter, as described in the main text, is a score for
each cell calculated as the sum of the inverse of the distance of
all herd members to that cell—see definition of Sp below)
provided by each cell within the radius, based on the animals’
energetic status (i.e., the realized movement distribution—see
Fig. 2). In this model, each cell of the realized movement matrix
receives a score reflecting the vegetation content (i.e., energetic
value) of the 3 � 3 cell patch around it (Ep), the level of safety
(Sp) offered by the cell in terms of its spatial location relative to
other herd members, and the cost of moving to the new cell based
on the distance to it (Dp) and the cost of movement (Em). Sp is
given in terms of the distances Di is the distance from the cell to
herd member i (i covers all members of the herd excluding the
one currently evaluating the patch) by the formula

SP� �
i�1

# ind� 1

D i
� x

,

where the exponent x modifies the shape of the safety curve as
a function of distance from an individual from a sharp decline
for x � 1, to a more gradual decline for x � 1. In our specific
model, this value was fixed to 1 but can be used as a function of
the level and type of risk. Only one animal can feed in a cell at
any one time, and the cell and the eight cells surrounding it are
not accessible to other members of the group.

We then weighted the vegetation quality and safety values for
each cell by the internal drivers to produce the actual scores for
the realized movement distribution (see below). In our case,
there are two drivers, hunger and safety. Hunger (�) is that
proportion of the bank of energy reserves that is empty. The
drive for safety is determined as 1 � �.
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The score of each cell of the realized movement distribution
within the perception range of individual i is calculated as

Score�(EP�Em � DP) � ��SP � (1��).

Thus, a satiated animal has a zero hunger drive and is interested
only in safety. As the amount of reserves decline, the animal is
driven more by hunger and less by safety.

Once a target is selected, the animal moves toward it on a
straight line one cell each time step traveling along the imaginary
line from the center of the cell the animal currently occupies to
the center of the selected target. During movement, the animal
does not feed and does not consider new targets.

We note that to keep our simulation simple, we have not made
explicit use of step size distribution Ak(s) for the two activities of
foraging within a patch (k � 1) and foraging between patches
(k � 2). Rather, the distributions Ak(s) are implicitly embedded
in our movement rules that keep individuals within a 3 � 3 block
of cells (a patch) until the patch is depleted or must be exited
according to the rules specified, and then an individual must
move to a new patch that may be as close as contiguous with the

current patch or as far as the edge of circle defined by the
perceptual radius centered on middle cell of the current patch.
In essence, we have not specified the landscape matrices and
movement distributions separately, but we have combined the
quantities

�ri,��
k

��r
k ��, �	

through a single definition, and some computational effort, not
required for our simulations, is needed to separate movement
distributions from the landscape matrices.

Cluster Analysis. The (x, y) locations at the given time step were run
through cluster analysis limited to two groups. Clusters were
identified by using the ‘‘clusdata procedure’’ in MATLAB with the
default setting of Euclidean distance among points. Once points
had been assigned to a cluster, the mean distance among points in
a cluster was calculated as well as the mean distance among all
20-group members of the entire herd. The sum of the two means
for the subgroups divided by the mean for the entire herd was then
calculated and plotted as the ratio (y-axis) in Fig. 3.
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Fig. S1. An idealized movement track consists of an ordered sequence of events selected from a set of fundamental movement elements (FMEs). A canonical

activity mode (CAM) is a mixture of FEMs. Sample points ti, i � 0, 1, 2, . . . , are typically independent of event start and stop times and intervals �i�1 � [ti�1, ti]

may mix parts of two or more CAMs.
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Fig. S2. These distribution illustrate how the same canonical activity mode distribution made up of two fundamental movement elements, one stationary

element s1 � 0 and one with a characteristic speed s2 � 4, changes when the sampling interval is several times longer (Left) or an order of a magnitude shorter

(Right) than the characteristic lengths of individual movement mode events. (Note the different vertical scales because the area below both curves is 1.)
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Fig. S3. The modified Pareto power-law distributions we used:

f�x	 � � � 2q

2 � q
x� on 
0, 1�

� 2q

2 � q
x�q�1� on 
1, �	

with q � 2 (more peaked: blue) and q �

1 (less peaked: red).
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Fig. S4. An illustrative example of the different layers and flows of information needed to construct goal-modified movement distributions and analyze

movement data. The yellow arrows relate to movement path constructions, beginning with an identification of goal states based on the internal state w of the

individual and the landscape matrices incorporating the external state r and the navigation capacity � discussed in ref. 1. These goal states, in turn, determine

a mix of CAM distributions that are modified (weighted) using the values in the associated landscape matrix (representing a distribution of landscape values

across a covering of cells). The CAM distributions are themselves constructed from FMEs—constituting the motion capacity 
 introduced in the general

conceptual model (1)—in a way that depends on the simulation time step (Fig. S2). In terms of data analyses, state space (2), exploratory data (3), and other

suitable methods may be used to identify segments of movement tracks that are generated under different CAMs and mixes of CAMs.
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Fig. S5. A unimodel one-dimensional step-size distribution G�i
k (s) on [0, smax] is rotated through 360° to convert it to a spatially explicit two-dimensional

distribution G�i
k (�, �) defined over a featureless landscape grid C�� [i.e., all grid cells (a, b) have the same neutral state in terms of ci

�� being defined to reflect a

completely neutral landscape structure].
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