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ABSTRACT:

Modern data acquisition with active or passive photogrammetric imaging techniques generally results in 3D point clouds. Depend-

ing on the acquisition or processing method, the spacing of the individual points is either uniform or irregular. In the latter case,

the neighbourhood definition like for digital images (4- or 8-neighbourhood, etc.) cannot be applied. Instead, analysis requires a

local point neighbourhood. The local point neighbourhood with conventional k-nearest neighbour or fixed distance searches often

produce sub-optimal results suffering from the inhomogeneous point distribution. In this article, we generalize the neighbourhood

definition and present a generic spatial search framework which explicitly deals with arbitrary point patterns and aims at optimizing

local point selection for specific processing tasks like interpolation, surface normal estimation and point feature extraction, spatial

segmentation, and such like. The framework provides atomic 2D and 3D search strategies, (i) k-nearest neighbour, (ii) region

query, (iii) cell based selection, and (iv) quadrant/octant based selection. It allows to freely combine the individual strategies to

form complex, conditional search queries as well as specifically tailored point sub-selection. The benefits of such a comprehensive

neighbourhood search approach are showcased for feature extraction and surface interpolation of irregularly distributed points.

1. INTRODUCTION

Point clouds are sets of 3D points (xyz), which may poten-

tially feature additional attributes. Following the definition of

(Otepka et al., 2013) not all points do necessarily have the same

attributes. As the point cloud constitutes an unordered set, no

explicit spatial topology exists in general. This is different to

triangulations of point clouds or grids of 3D points. Today,

3D point clouds are commonly accepted as a prime product of

both active and passive photogrammetry. Also data acquired

with other measurement methods, e.g. multi beam echo sound-

ing, is being treated as point cloud (Held and Schneider von

Deimling, 2019). While point clouds were long regarded as an

intermediate product, e.g., for the derivation of digital surface

and terrain models (DSM/DTM) or 3D models (e.g. in build-

ing information modeling, BIM), they represent a stand-alone

product today and play an important role in visualization, data

processing, and GIS. Accordingly, also data structures for point

clouds gained importance in research. A fundamental step for

processing point clouds is the extraction of information in the

vicinity of a point. Such a point can be, but is not required to be,

part of the given point cloud. Finding neighbours is therefore

of paramount importance in point cloud processing.

Dense Image Matching applied to aerial nadir images, for in-

stance, produces a homogeneous point pattern as 3D points are

generated for every image pixel. In contrast, point clouds ob-

tained from feature based matching exhibit an irregular struc-

ture. The same applies to laser scanners employing oscillat-

ing mirrors or rotating bevelled scan wedges (Palmer scanners).

In this case the center part of the swath often exhibits uni-

form point spacing along and across track, whereas the strip

boundaries feature a much higher point density in one direc-

tion. Also terrestrial laser scanning (TLS) features a decreasing

point density with increasing distance from the scanner. In a

block of TLS scans, the combined point cloud exhibits multiple

high point density clusters with complex patterns of decreased

density in between.

Localized processing of point clouds imperatively requires an

appropriate neighbourhood definition. The results of feature

extraction and interpolation tasks depend on the algorithm and

its parameters, but also on the neighbourhood definition itself.

A few algorithms imply a certain neighbourhood definition,

as e.g. the natural neighbour interpolation (Bobach and Um-

lauf, 2006) or the Delaunay triangulation (de Berg et al., 2000).

But for most algorithms, the spatial neighbourhood definition

can be defined independently which is an important concept

for designing a generic spatial search framework. Neverthe-

less, processing algorithms may presume certain constraints for

the spatial search. E.g., moving planes interpolation or local

normal estimation require at least three neighbouring points

for successful computation. Those constraints can be formal-

ized within the proposed framework for spatial search in point

clouds.

The most common neighbour definitions can be categorized

into (i) nearest neighbour, (ii) region queries or (iii) a combina-

tion of both. We concentrate on these definitions, because they

cover a wide variety of neighbourhoods that were reported in

literature. Definitions not covered by the above categories in-

clude (i) neighbourhoods that require some optimization (e.g.

barycentric neighbourhood, slope adaptive neighbourhood) or

(ii) more complex steps of preprocessing (e.g. surface recon-

struction for measuring distance along this surface). For data

with nearly isotropic and homogeneous point distributions it

is largely irrelevant if either nearest neighbour or region quer-

ies are applied (assuming matching query parameters). Never-

theless, some processing algorithms require certain properties

of the neighbour definition to work correctly. E.g. the res-

ult of region growing is only independent of seed points and

data order if symmetrical coherence predicates and symmetrical
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neighbour definitions are used. Since k-nearest neighbour quer-

ies (kNN) are non-symmetrical in general, symmetric region

queries are preferred for those applications. ‘Symmetry’ means

that points are mutually neighbours under a constant neighbour-

hood definition. On the other hand, k nearest neighbour quer-

ies can compensate for varying point densities resulting in a

constant count (= k) of neighbours which is why it is used in

many processing strategies. However, in some situations a con-

stant neighbour count is disadvantageous, e.g. for interpolating

high quality surface models. There, regions with larger data

gaps should not be bridged by the interpolation since the result

might be erroneous. Models that do not close gaps are often

preferred (at least as intermediate result) for further analyses.

The situation gets even more difficult, if the point distribution

is inhomogeneous. If the spacing of LiDAR points in scan line

direction substantially differs from the spacing between scan

lines, the k nearest neighbours may result from one scan line

only. This can lead to extrapolation and artefacts in the results.

On the other hand, a fixed distance region definition either leads

to data gaps or unnecessary smoothing if the distance is chosen

too small or too large.

The proposed framework allows applying and combining dif-

ferent spatial search strategies to avoid extrapolation in a very

generic way that is separated from the actually processing al-

gorithm. Flexibility, however, does not come without costs.

Obviously, a highly optimised tool which combines a specific

spatial query and processing algorithm within an atomic unit,

will outperform a generic framework. On the other hand, such

an optimization might be usable for certain sensor data only

or it might require additional pre- or post-processing steps re-

ducing or even consuming a possible performance advantage.

Based on the enormous measurement rates (> 1Mhz) of mod-

ern laser scanners, as well as, Dense Image Matching of images

using today’s aerial cameras, tremendous point clouds can be

produced. While the authors acknowledge the importance of

processing performance, the focus of this paper is not on effi-

cient implementation, but rather on defining a generic frame-

work for spatial search in point clouds.

The specific contributions of this article are:

• Definitions of atomic neighbourhoods in a common no-

menclature. ‘Atomic’ means that such a neighbourhood

definition is of a specific type, which cannot be subdivided

further.

• Introduction of a ‘cell-based’ neighbourhood.

• A framework to combine the atomic neighbourhoods using

union or intersection operations.

• A new incremental neighbourhood definition, which

gradually expands an initial region until a condition is met

or the maximum region size is reached.

The remainder of this article is structured as follows: Sec-

tion 1.1 briefly reviews related literature. Section 2 describes

the basic neighbourhood atoms and the framework for combin-

ing the atoms, as well as, the data sets used for testing the ap-

proach. The results of the different neighbourhood definitions

applied to the test data sets are presented and discussed in Sec-

tion 3. The article ends with a summary of the main findings

and conclusions in Section 4.

1.1 Related work

An overview on neighbourhoods used in point cloud processing

is given in (Otepka et al., 2013). The neighbourhoods k-nearest

neighbour and fixed distance search are described there by geo-

metric definitions. Also (Filin and Pfeifer, 2005) review dif-

ferent neighbourhoods defined in point clouds and develop a

2-step approach to define a neighbourhood of a point, which is

specifically tailored to the application of point cloud segment-

ation. Frequently, neighbourhood at different spatial scales is

applied, in order to extract multi-scale features at each point

(Weinmann et al., 2015). In classification tasks it is possible to

either use machine learning strategies and features at different

scales directly or to locally select the most relevant scale using

entropy analyses. Therefore, a generic spatial search frame-

work needs to support adaptive neighbourhood definitions as

well. From a conceptional point of view adaptive neighbour-

hood scales can be realised by either incrementally increasing

the spatial queries or, by retrieving the maximum neighbour-

hood first and then sub-selecting the relevant data. Which of

the two methods result in higher performance depend on several

parameters and the data itself. Nevertheless, the latter strategy

can only be utilized, if a maximum neighbourhood scale is

given. For situations where this is not the case, so called all

nearest neighbour algorithms can be applied. (Sankaranaray-

anan et al., 2007) presented an efficient out-of-core all nearest

neighbour algorithm which can handle huge point clouds that

do not fit into memory.

Neighbourhood definitions based on 2D or 2.5D surface repres-

entations like Delaunay triangulations can effectively prevent

extrapolation. Assuming a point lies within the convex hull of

the triangulation, at least one triangular face can be found that

contains or touches the point (Devillers et al., 2001). Hence,

it is straightforward to query neighbouring points that surround

the current query point, i.e. the convex hull of the neighbours it-

self contains the query point. The downside of a surface repres-

entation is the algorithmic and computational complexity, es-

pecially for huge and complex 3d point clouds. (Isenburg et

al., 2006) presented a streaming Delaunay triangulation that is

capable of triangulating huge point clouds that are many times

larger than the available memory. It makes use of the fact that

point cloud data always have some sort of spatial order. Based

on the Delaunay criterion and the given spatial order, the al-

gorithm only maintains changing parts of the triangulation in

memory when streaming through the data. Finalised triangles

are dropped from the triangulation and further processed by,

e.g., an interpolation module. This concept, however, has two

major drawbacks which make it difficult to apply within a gen-

eric spatial framework. First, the triangle stream does not cor-

respond with the point cloud stream or any raster tile structure

and therefore, it is always necessary to sort or post-process the

outcomes for the final result. Secondly, the triangulation is con-

ceptual a 2D structure and thus, inappropriate for complex 3D

scenes. Nevertheless, it would be possible to extend the al-

gorithm to a 3D tetrahedral triangulation.

In the early days of Laser Scanning computers and processing

tools were often overburdened by the sheer amount of 3D data

which is why simple sampling strategies like processing only

every nth point were regularly utilized. A large variety of

sampling methods have been developed which are commonly in

use for increasing the processing performance e.g. (Schaer and

Skaloud, 2010), (Blaszczak-Bak et al., 2020), as well as, for

homogenizing the data distribution (Puttonen et al., 2013). If

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2021 

XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 

https://doi.org/10.5194/isprs-annals-V-2-2021-35-2021 | © Author(s) 2021. CC BY 4.0 License.

 

36



point clouds show a large inhomogeneity it is difficult to select

appropriate processing parameters and a suitable neighbour-

hood definition. Therefore, many interactive point cloud pro-

cessing software packages provide different sampling strategies

to overcome those issues (CloudCompare Development Team,

2021), (MeshLab Development Team, 2021). In certain situ-

ations the processing is not only faster but even better results

can be achieved if only a well selected sub-sampling point set

is processed. (Glira et al., 2015) present and evaluate differ-

ent sampling strategies for correspondences selection in ICP to

improve the estimation of orientation parameters.

Classification and segmentation tasks often rely on features that

are extracted from the point cloud (Niemeyer et al., 2012).

From the well-known 3D structure tensor in combination with

the principal component analysis (PCA) a variety of valuable

features can be computed, such as, the local normal vector,

linearity, planarity, etc. which reflect the shape of the current

neighbourhood (Weinmann et al., 2015). In case the points are

arranged along a linear structure the linearity measure will be

high, whereas high planarity values result if the points are dis-

tributed along two axes. In case of inhomogeneous data distri-

butions the neighbourhood definition must be carefully chosen,

otherwise those features only reflect the data distribution rather

than the captured object. The proposed spatial search frame-

work provides a large variety of sampling and neighbourhood

definitions that even difficult data distributions can be reason-

ably processed.

2. MATERIALS AND METHODS

2.1 Datasets

To demonstrate the flexibility of the proposed framework, four

sample data sets from four different LiDAR sensors using dif-

ferent scan patterns (see Fig.1) were selected. The data prop-

erties range from very homogeneous in point density and point

distribution to pronounced inhomogeneities of point distances

along and across the scan lines. To exhibit the scanner pat-

tern as clearly as possible, the data represent a single strip or

single channel only. As it will be shown, computational arte-

facts are highly correlated with scan patterns. In real-world pro-

jects, the situation is typically more complex due to multi chan-

nel or multi strip coverage. However, the inhomogeneous point

distribution will never be completely resolved and in some re-

gions the inhomogeneity can even increase. Details of the data

sets are given in Table 1 and height color coded 3D views are

presented in Fig. 2.

To quantify the homogeneity of the data sets, the inhomogeneity

factor f introduced by (Pfeifer et al., 2021) is used. For each

point, the nearest neighbour per quadrant is computed. The dis-

tances to the four neighbours are sorted in ascending order and

named d1 − d4. f is then defined as f = d4/d1. For scan pat-

terns featuring an equal point spacing within and across the scan

lines, f is close to 1. If the point density is, e.g., twice as high

in scan line direction, a factor of 2 will yield. In (Pfeifer et al.,

2021), this measure is applied to data which is expected to lie

in a plane, whereas the data studied here is distributed in 3D. In

case of (nearly) vertical surfaces an adapted selection strategy is

required. As the test data sets investigated in the study at hand

only exhibit a low number of points on vertical surfaces, this

issue can simply be neglected, by selecting the median f from

all points.

In the four test sets, the number of points span from 61K to

around 80k . The average point density ranges from 0.3-

3104 pts/m2 and the median of f is between 1.2 and 14.8. Due

to the high variation of inhomogeneity factors, the data sets are

an ideal test case for the proposed framework.

v

v

(a) Rotating Polyhedron

v

v

(b) Rotating Wedge

LRF

v

(c) Palmer scanner

v

(c) Palmer Scanner

v

LRF
v

v

(d) Oscillating Mirror

Figure 1. Most common scan mechanics and their scan pattern

on a horizontal planar surface; v indicating the direction of

motion, LRF is the Laser Rang Finder element

(a) ALS-PAL (clipped) (b) ALS-OSC

(c) ALS-ROT (d) MSL-360

Figure 2. Height color coded 3D view of the test data
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Label Sensor name Type Points Avg. point density of Median of Interpolation
all echos [pts/m2] inhomogeneity grid size [m]

ALS-PAL Optech CZMIL Nova Palmer scanner 66701 0.31 2.1 2.000

ALS-OSC Leica ALS50 system oscillating mirror 61112 5.52 5.8 0.500

ALS-ROT Riegl VQ-880-G rotating polyhedron 63108 6.32 1.2 0.250
MLS-360 Z+F Profiler 9012 rotating wedge 79785 3103.7 14.8 0.025

Table 1. Data overview; 1only one of seven channels used, 2single strip only

2.2 Framework

In this section the spatial selection framework and the supported

queries are described. As mentioned before, nearest neighbour

and region queries are the most common ones when processing

3D point clouds. Fixed distance queries, a term which is of-

ten found in literature, relates to a circular and spherical region

in 2D and 3D, respectively. Hence, fixed distance queries are

an isotropic subset of region queries as defined in the proposed

framework. For the sake of completeness, it should be men-

tioned that circular regions correspond to infinite vertical cylin-

ders in 3D. Since the framework also supports finite cylinders as

search region, we use the terms circular region for infinite cylin-

ders and cylindrical region for finite cylinders to avoid naming

confusions. Furthermore, the framework supports 2D window

and 3D box region queries as well. Such rectangular neighbour

definitions are relevant for analysis over the full domain avoid-

ing overlapping neighbourhoods.

Accordingly, the framework supports the following group of

basic neighbourhood definitions:

• 2D and 3D k-nearest neighbour queries and

• region queries in 2D and 3D, such as, circle, sphere, cylin-

der, window and box regions

Whereas k-nearest neighbours can compensate varying point

densities, unfavorable neighbour selection will occur for in-

homogeneous point distributions. There, neighbours are not

located symmetrical but rather on one side of the search point,

which will lead to extrapolation artefacts. Increasing the num-

ber of neighbours k will also increase the chance of retrieving

neighbours that fully surround the search point. However, a lar-

ger number of neighbours entails undesired smoothing. One

method to overcome this issue is to introduce a quadrant or oct-

ant based selection of nearest neighbours representing a genera-

tion based neighbour definition. When searching, e.g., 8 neigh-

bours in quadrant selection mode, the framework searches for

the two closest points in each quadrant independently, as shown

in Fig. 3. If one quadrant is not occupied, only 6 neighbours

will be found, two empty quadrants results in 4 neighbours, etc..

Such an adapted kNN strategy avoids extrapolation with a small

set of neighbours.

Beside the basic neighbourhood definitions, the proposed

framework also supports advanced neighbour definitions,

namely:

• the combination of basic neighbourhood definitions (inter-

section or union) and

• incremental queries; Starting from a minimal region, the

search area is incrementally increased until a certain con-

dition is fulfilled or the maximum search region is reached.

Mode: standard

search location data point selected data point

first generation

Mode: quadrant

second generation
furthest distance

Figure 3. Different selection modes for querying eight nearest

neighbours

The intersection of kNN and region queries is, e.g., useful to

limit the kNN query to a maximum search distance in order to

avoid bridging large gaps. From an implementation point of

view, the maximum search distance can also be used to speed

up the kNN algorithm, if the search dimension of both quer-

ies matches. It allows neglecting nodes of the spatial index if

the distance between the node’s bounding box and the search

point exceeds the maximum search distance. The situation is

different when joining kNN and region queries. Such union

queries can be useful when the data set contains a significant

number of small clusters with a lot of points that do not repres-

ent the true point density of the overall data set (e.g. caused by

merging data from multiple sensors with largely different res-

olution). Hence, one might use the kNN query in general but

wants to get all neighbours within the expected overall resolu-

tion. Thus, in locations close to or within clusters, all cluster

points will be returned as neighbours. In contrast to the inter-

section case, direct optimisation of the different queries is not

possible for the union case. In the worst case, the kNN and the

region queries have to be performed separately and the resulting

set of neighbours have to be merged. However, assuming a data

set with individual point clusters as described above, the neigh-

bours of the kNN query will usually exceed the region query,

so the region query can be omitted. Only if all kNN neighbours

are located within the search region, the region query needs to

be performed and the result sets needs to be merged. Under

this assumption the join query will achieve nearly the same per-

formance as a standard kNN query.

The most complex spatial neighbourhood definition within the

proposed framework are incremental queries. Starting from a

minimal search region, the region is increased incrementally

until a certain neighbour condition is fulfilled or the maximum

search region is reached. The central idea of this query type is

a neighbourhood definition ’as small as possible, but as large as

necessary’. As stop criterion, e.g., the number of found neigh-

bours or a minimum number of occupied quadrants or octants,

is repetitively checked. In that sense it is similar to a kNN

query with the corresponding selection mode (cf. Fig. 3), but

based on an isotropic neighbourhood definition. As an efficient

approximation of such an incremental query, we implemented

this query type via a cell based approach. Starting from a min-
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imum set of core cells, further cells around the core are added in

each incremental pass with the cell size as discretisation inter-

val. This implements a generation based neighbourhood defin-

ition as shown in Fig. 4.

As mentioned in Sec. 1.1, sampling strategies are used for re-

ducing as well as for homogenising the data set. In the pro-

posed framework, a cell based approach in 2D or 3D is utilized

which further allows implementing an efficient incremental re-

gion query. The selection of a single or multiple representative

points per cell can be controlled by three different methods (see

Fig. 4):

• select all points per cell

• select a single point based on a certain condition like, min,

max, nthmin, nthmax, mode, closest-to-centre, etc.

• compute an aggregated cell point located in the centre of

gravity of all cell points based on an accumulative statist-

ical feature such as mean, quantile, variance, rms, etc.

For feature computation either a certain coordinate (x, y, z) or

an arbitrary attribute of the point can be used. Compared to tra-

ditional sampling strategies, the proposed framework computes

the sampling on-the-fly and does not store the results in general.

As it turns out, there is no single sampling strategy that is op-

timal for all different processing tasks. E.g., when interpolating

a DSM the highest cell point is favorable, whereas for a DTM

lower lying points are preferred. For other processing tasks at-

tribute based selections might by more appropriate. E.g., for

computing road segments, points with low amplitude are most

relevant. In this case, one would select the point with the min-

imum amplitude in each cell. In case of large inhomogeneity,

aggregative features can be beneficial to compute a stochastic-

ally independent point distribution. In case of very dense point

clusters the assumption that each measurement is independ-

ent typically doesn’t hold, especially for scanners based on the

phase-shift principle. Averaging points in cells can result in

more appropriate input for a subsequent optimisation algorithm.

selected pointdata point empty cells

3rd generation

1st generation

2nd generation

search location

Selective feature Aggregated feature

aggregated point

…

Figure 4. Sampling based on selective and aggregative features

In general, spatial queries do not return the found points in a

specific order, except for kNN. Since sorting points by their

distance to the search point is an integral part of any kNN al-

gorithm, the returned neighbours are always sorted according to

the used dimension. Hence, for a 2D kNN query points will be

sorted by the 2D distance and for the 3D case by 3D distances,

respectively. If the processing algorithm requires a specific or-

der of the neighbours, it cannot rely on a distance based sorting

since the neighbourhood definition is decoupled from the pro-

cessing algorithm. To avoid unnecessary sorting operations, the

proposed framework provides an additional option so sort the

neighbours by distance (2D or 3D), coordinates or attributes. If

the requested sorting is directly given by the spatial query, the

additional sorting step is omitted.

The proposed framework does not only support constant val-

ues as parameters within the queries (k, region extents) but also

features local adaptions based on the attributes of the current

search point. Thus, the neighbourhood definition can be con-

trolled by parameters like the local point density. This concept

is inherently linked to the handling of point attributes. A de-

tailed description of this feature is beyond the scope of this pa-

per.

2.3 Evaluation

To demonstrate the flexibility and power of the proposed frame-

work, the following typical processing tasks are performed for

all test data sets: (i) interpolation of a regular grid using mov-

ing least-squares and (ii) computation of surface normal vectors

including calculation of linearity and planarity derived via prin-

ciple component analysis (PCA) of the 3D structure tensor.

To calculate the grids, the following three neighbourhood defin-

itions and the grid size reported in Table 1 were used:

• standard kNN with 12 neighbours (label: kNN12)

• quadrant based kNN with 8 neighbours (label:

quadkNN8)

• incremental circle query (r = {2, 4, 6, 8, 10} ∗ cellSize)

based on closest-to-centre sampling with a cell size of half

the grid size (label: incCirc)

For visual inspection a hill shading of each grid model is com-

puted. Hill shadings clearly reveal interpolation artefacts, be-

cause they depend on the first derivative of the surface.

For surface normal and planarity/linearity feature extraction the

following two neighbourhood definitions are applied:

• a standard kNN with 16 neighbours (label: kNN16)

• kNN with 16 neighbours based on closest-to-centre

sampling with a cell size that is half the grid size (label:

sampkNN16)

A qualitative analysis of the results will be given in the next

section.

3. RESULTS AND DISCUSSIONS

When visually inspecting the results, one has to keep in mind

the different data set properties and the different scan patterns.

ALS-ROT was captured with a scanner operating a rotating

polyhedron, which results in a very homogeneous point cloud

(f=1.2). The next data set, regarding homogeneity, is ALS-PAL

acquired by a Palmer scanner (f=2.1). After that, ALS-OSC us-

ing an oscillating mirror is ranked (f=5.8). Finally, MLS-360

employing a 360° rotating wedge features the largest inhomo-

geneity (f=14.8). Hence, we expect ALS-OSC and MLS-360

to be problematic for processing. Please note that the presented

point density and inhomogeneity factors are not generally ap-

plicable to the scanner models itself, since the point distribution

is effected by the chosen scanner parameters, the travel velocity,
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Figure 5. Shading results of data sets; Strong interpolation artefacts are visible in the left column marked by the red circle;

Interpolation methods from left to right: kNN16, quadkNN8 and incCir; Data set from top to bottom: ALS-PAL, ALS-OSC,

ALS-ROT and MLS-360

Figure 6. Normals of a roof of data set ALS-OSC. The selected

house is marked by a green rectangle in Fig. 5. Left: kNN16,

right: sampkNN16. Because of the large inhomogeneity poor

normals will result for a standard kNN

measuring distance, multi channel or multi strip coverage, etc.

Nevertheless, the scan pattern itself will stay unchanged.

The grid interpolation results are presented as hill shadings in

Fig. 5. From left to right, the following neighbourhood defin-

itions are used: kNN with 12 neighbours (kNN12), quadrant

based kNN with 8 neighbours (quadkNN8), and incremental

circular query (incCir) based on a closest-to-centre sampling

(see Sec. 2.3 for further details). The red circles mark interpol-

ation artefacts for kNN12 (left column) in data set ALS-OSC

(row 2) and MLS-360 (row 4). The other two neighbourhood

definitions show no, or very little artefacts. Fig. 5 shows that the

surface models obtained by quadkNN8 (middle column) appear

slightly sharper than the others (cf., ships in harbour, ridge lines

of buildings, etc.). This can be attributed to the fact that only 8

compared to 12 neighbours are used. On the other hand, still a

slight sinuous pattern is visible on the road of MLS-360 (bot-

tom centre picture). This pattern practically vanishes using the

incCir neighbourhood (bottom right picture).

The feature extraction results are presented in Fig. 6 and Fig. 7.

The features were computed based on k-nearest neighbours

(k = 16) with either standard kNN (kNN16) or closest-to-

centre sampling (sampkNN16). The linearity and planarity fea-

tures are shown in Fig. 7. For ALS-PAL (first row) and ALS-

ROT (third row), all three neighbourhood definitions resulted

in nearly the same hill shading. In contrast, differences are

visible for the calculated linearity and planarity. The points in
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Figure 7. The linearity and planarity feature is highly influenced by the scan pattern if not compensated by the neighbourhood

definition. This is visible in row 2 and 4. Left column: kNN16, right column: sampkNN16; Data set from top to bottom: ALS-PAL,

ALS-OSC, ALS-ROT and MLS-360

the regions marked with red ellipses (top left picture) exhibit a

high local linearity value. Identifying those regions within the

hill shading, it can be seen that the surface is actually planar.

Hence, the high linearity is an artefact of the overlapping circu-

lar scan pattern. In the top picture of the second column, the ad-

vanced neighbourhood definition (sampkNN16) was used and

there, the points in the same regions exhibit much lower linear-

ity values. For both features, the influence of the point distribu-

tion is pronounced for ALS-OSC (second row) and MLS-360

(fourth row). The upper (northern) half of ALS-OSC features

high linearity and low planarity values using kNN16 although

most of the areas are planar. It can be seen that sampkNN16

can largely compensate the influence of the scan pattern. The

same situation arises in the MLS-360 data set (fourth row). The

north western part of the test area is a road. Consequently, the

points should have low linearity and high planarity values. But

again, this only holds for sampkNN16.

Finally, we demonstrate that also normal vectors are affected

by inhomogeneous point distributions. Fig. 6 shows a 3D view

including normal vectors of a roof. The selected roof is marked

with a green rectangle in Fig. 5. The normal vectors were

derived by kNN16 (left) and sampkNN16 (right) neighbour-

hood. The kNN16 neighbourhood leads to incorrect normals

for a considerable number of points, although the 3D points

are nicely aligned with the roof surface. In contrast, using

sampkNN16 neighbourhood of the proposed framework, cor-

rect normal vectors can be derived.

4. CONCLUSIONS

In this manuscript a spatial search framework is proposed that

supports a variety of different atomic search strategies in 2D

and 3D. Furthermore, those basic search strategies can be ex-

tended and flexibly combined to sophisticated neighbourhood

definitions. In conjunction with a powerful cell sampling

concept, even inhomogeneous 3D point clouds from many dif-

ferent sensors or acquisition techniques, respectively, can be

processed in an appropriate manner.

Based on an inhomogeneity measure, the isotropy of the point

distribution of four different test data sets were quantified. In
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general, it can be stated that for homogeneous point distribu-

tions the choice of the neighbour definition is uncritical. How-

ever, the larger the inhomogeneity the more computational arte-

facts can be observed. Such data sets require carefully chosen

neighbourhood definitions. For the typical applications of sur-

face interpolation and feature extraction we could demonstrate

that the framework can cope with demanding data sets where

standard neighbourhood definition fail to achieve satisfactory

results. As shown, feature extraction is more sensitive to in-

homogeneous data than surface interpolation.

The problem of inhomogeneous point distribution at strip bor-

ders for ALS scanners using oscillating mirrors is well known.

Often those border points are simply dropped to avoid prob-

lems within the processing pipeline. Nevertheless, those edge

points do contain valuable information which is, e.g., of partic-

ular relevance for quality control and strip adjustment. With the

use of the proposed framework, stripping of those points can be

omitted and their information is preserved.

The investigations have also revealed a shortcoming of the cur-

rent cell based sampling approach. If the grid lines of the

sampling structure are nearly parallel to the scan lines of in-

homogeneous data (as is the case for ALS-OSC), moiré patterns

can be observed. Those patterns can be seen in the linearity and

planarity feature of ALS-OSC (second row of Fig. 7) using the

sampkNN16 neighbourhood (second and fourth column). To

resolve this issue, either the data or the sampling grid struc-

ture need to be temporarily rotated by e.g. 45°. In future work,

the framework should be also evaluated on additional data sets,

like single photon LiDAR and photogrammetric point clouds.

While dense image matching of nadir images results in a very

homogeneous point distribution, point clouds derived from ob-

lique images are of specific interest in this context.

To sum up the central idea of the framework: By decoup-

ling data processing algorithms from the actual neighbour-

hood definition and spatial neighbour selection, new processing

chains can be adapted faster and the complexity of the program

code stays low. As such, it facilitates point cloud processing and

enables scientists to concentrate on the actual research problem

rather than keeping the impact of unfavourable point distribu-

tions on the final results under control.
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