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Abstract—This paper presents a framework for hand gesture
recognition based on the information fusion of a three-axis ac-
celerometer (ACC) and multichannel electromyography (EMG)
sensors. In our framework, the start and end points of meaningful
gesture segments are detected automatically by the intensity of
the EMG signals. A decision tree and multistream hidden Markov
models are utilized as decision-level fusion to get the final results.
For sign language recognition (SLR), experimental results on the
classification of 72 Chinese Sign Language (CSL) words demon-
strate the complementary functionality of the ACC and EMG
sensors and the effectiveness of our framework. Additionally,
the recognition of 40 CSL sentences is implemented to evaluate
our framework for continuous SLR. For gesture-based control,
a real-time interactive system is built as a virtual Rubik’s cube
game using 18 kinds of hand gestures as control commands.
While ten subjects play the game, the performance is also ex-
amined in user-specific and user-independent classification. Our
proposed framework facilitates intelligent and natural control in
gesture-based interaction.

Index Terms—Acceleration, electromyography, hand gesture
recognition, hidden Markov models (HMMs).

I. INTRODUCTION

AND gesture recognition provides an intelligent, natu-

ral, and convenient way of human—computer interaction
(HCI). Sign language recognition (SLR) and gesture-based
control are two major applications for hand gesture recognition
technologies [1]. SLR aims to interpret sign languages auto-
matically by a computer in order to help the deaf communicate
with hearing society conveniently. Since sign language is a
kind of highly structured and largely symbolic human gesture
set, SLR also serves as a good basic for the development of
general gesture-based HCI. In particular, most efforts [7]-[10]
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on SLR are based on hidden Markov models (HMMs) which
are employed as effective tools for the recognition of sig-
nals changing over time. On the other hand, gesture-based
control translates gestures performed by human subjects into
controlling commands as the input of terminal devices, which
complete the interaction approaches by providing acoustic,
visual, or other feedback to human subjects. Many previous re-
searchers [2]-[4], [11], [12] investigated various systems which
could be controlled by hand gestures, such as media players,
remote controllers, robots, and virtual objects or environments.

According to the sensing technologies used to capture ges-
tures, conventional researches on hand gesture recognition can
be categorized into two main groups: data glove-based and
computer vision-based techniques [1], [2]. In the first case, data
gloves equipped with bending sensors and accelerometers are
used to capture the rotation and movement of the hand and
fingers. Fang et al. [9] reported a system using two data gloves
and three position trackers as input devices and a fuzzy decision
tree as a classifier to recognize Chinese Sign Language (CSL)
gestures. The average classification rate of 91.6% was achieved
over a very impressive 5113-sign vocabulary in CSL. However,
glove-based gesture recognition requires the user to wear a
cumbersome data glove to capture hand and finger movement.
This hinders the convenience and naturalness of HCI [1]. In
the later case, computer vision-based approaches can track
and recognize gestures effectively with no interference on the
user [7], [8], [10]. Starner et al. [7] developed an impressive
real-time system recognizing sentence-level American Sign
Language generated by 40 words using HMMs. From a desk-
mounted camera, word accuracies achieved 91.9% with a strong
grammar and 74.5% without grammar, respectively. Shanableh
et al. [8] employed a spatiotemporal feature extraction scheme
for the vision-based recognition of Arabic Sign Language
(ArSL) gestures with bare hands. Accuracies ranging from 97%
to 100% can be achieved in the recognition of 23 ArSL-gestured
words. Nevertheless, the performance of this technology is
sensitive to the use environment such as background texture,
color, and lighting [1], [2]. In order to enhance the robust
performance of vision-based approaches, some previous studies
utilized colored gloves [7] or multiple cameras [33] for accurate
hand gesture tracking, segmentation, and recognition. The use
conditions limit their extensive applications, particularly in
mobile environment.

Unlike the approaches mentioned earlier, the accelerometer
(ACC) and electromyography (EMG) sensor provide two po-
tential technologies for gesture sensing. Accelerometers can
measure both dynamic accelerations like vibrations and static
accelerations like gravity. The ACC-based techniques have
been successfully implemented in many consumer electronics
models for simple and supplementary control application [2],
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[3], [17], [37]. For instance, the hand gesture recognition
system of Mintyjdrvi et al. [2] was studied as an interesting
mobile interaction for media player control based on a three-
axis accelerometer. The EMG, which measures the electrical
potentials generated by muscle cells, can be recorded using
differential pairs of surface electrodes in a nonintrusive fashion,
with each pair of electrodes constituting a channel of EMG
[4], [5]. Multichannel EMG signals which are measured by
EMG sensors placed on the surface skin of a human arm
contain rich information about the hand gestures of various
size scales. EMG-based techniques, which provide us with
the significant opportunity to realize natural HCI by directly
sensing and decoding human muscular activity [12], are capable
of distinguishing subtle finger configurations, hand shapes,
and wrist movements. For over three decades, EMG has been
used as means for amputees to use residual muscles to control
upper limbed prostheses [5], [18], [19]. Recently, the EMG-
based hand gesture interaction for common users in daily life
has attracted more and more attentions of most researchers.
Costanza et al. [4] investigated EMG-based intimate interfaces
for mobile and wearable devices. Their study demonstrated
the feasibility of using isometric muscular activities as inputs
to discreetly interact with devices in an unobtrusive manner.
Wheeler et al. [11] described gesture-based control using EMG
taken from a forearm to recognize joystick movement for
virtual devices. Saponas ef al. [12] used ten sensors worn in
a narrow band around the upper forearm to differentiate the
position and pressure of finger presses. Although previous stud-
ies on EMG-based HCI have attained relatively good results, it
has a significant distance from commercial applications for fine
control due to some problems, including the separability and
reproducibility of EMG measurements [5].

Since each sensing technique has its own advances and
capabilities, the multiple sensor fusion techniques can widen
the spread of potential applications. Many previous studies
indicated that the combined sensing approach could improve
the performance of hand gesture recognition significantly [13],
[14]. Sherrill et al. [6] have compared the performance of
ACC-based and EMG-based techniques in the detection of
functional motor activities for rehabilitation and provided evi-
dence that the system based on the combination of EMG and
ACC signals can be built successfully. Our pilot study [15]
demonstrated that ACC and EMG fusion achieved 5%-10%
improvement in the recognition accuracies for various wrist and
finger gestures. More recently, Kim ef al. [32] examined the
complementary functionality of both sensors in German Sign
Language recognition for seven isolated words. Kosmidou and
Hadjileontiadis [34] successfully applied the intrinsic mode en-
tropy on ACC and EMG data acquired from the dominant hand
to recognize isolated 60 Greek Sign Language signs. Aside
from the information complementary characteristics, ACC and
EMG sensors have some common advantages such as the low-
cost manufacture and high portability for hand gesture capture.
They can be easily worn on the forearm when used for HCI
implementation. However, the ACC and EMG fusion technique
for hand gesture recognition is still in the initial stage, and there
is great potential for exploration.

As for intelligent interaction, it is important to automati-
cally specify the start and end points of a gesture action [1].
However, most of the previous work has taken this for granted
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or accomplished it manually [2], [14], [17]. When performing
gestures, the hand must move from the end point of the previous
gesture to the start point of the next gesture. These intergesture
transition periods are called movement epenthesis. The detec-
tion of movement epenthesis within a continuous sequence
of gestures is often regarded as one of the main difficulties
in continuous gesture recognition [35]. It is easy and natural
to detect muscle activation with EMG sensors, which help to
indicate meaningful gestures. In our method, the start and end
points of gestures are detected automatically by the intensity
of EMG signals, and then, both ACC and EMG segments are
acquired for further processing.

The main contributions of this paper that significantly dif-
fer from others are as follows: 1) proposing a framework of
hand gesture recognition using decision trees and multistream
HMMs for the effective fusion of ACC and EMG sensors;
2) automatically determining the start and end points of mean-
ingful gesture segments in the signal streams of multiple sen-
sors based on the instantaneous energy of the average signal
of the multiple EMG channels, without any human interven-
tion, that can facilitate the relatively natural and continuous
hand gesture recognition; and 3) conducting CSL recognition
experiments with sentences formed by a 72-sign vocabulary and
creating a prototype of an interactive system with gesture-based
control to evaluate our proposed methods.

The remainder of this paper is organized as follows.
Section II presents the framework for hand gesture recognition.
Section III provides the experimental study on the recognition
of CSL words and sentences to examine the proposed frame-
work in continuous SLR. In Section IV, experiments on a vir-
tual Rubik’s cube game for gesture-based control are presented.
The conclusions and future work are given in Section V.

II. METHODOLOGY

Fig. 1 shows the block diagram of our hand gesture recog-
nition method using both multichannel EMG and 3-D ACC
signals. The processing of the two signal streams is carried out
in the following steps.

A. Data Segmentation

The multichannel signals recorded in the process of the hand
gesture actions which represent meaningful hand gestures are
called active segments. The intelligent processing of hand ges-
ture recognition needs to automatically determine the start and
end points of active segments from continuous streams of input
signals. The gesture data segmentation procedure is difficult
due to movement epenthesis [35]. The EMG signal level rep-
resents directly the level of muscle activity. As the hand move-
ment switches from one gesture to another, the corresponding
muscles relax for a while, and the amplitude of the EMG
signal is momentarily very low during movement epenthesis.
Thus, the use of EMG signal intensity helps to implement data
segmentation in a multisensor system. In our method, only the
multichannel EMG signals are used for determining the start
and end points of active segments. The segmentation is based
on a moving average algorithm and thresholding. The ACC
signal stream is segmented synchronously with the EMG signal
stream. Thus, the use of EMG would help the SLR system to
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Fig. 1. Block diagram of proposed framework for hand gesture recognition.
automatically distinguish between valid gesture segments and
movement epenthesis from continuous streams of input signals.

The detection of active segments consists of four steps based
on the instantaneous energy of the average signal of the multiple
EMG channels.

1) Computing the average value of the multichannel EMG
signal at time ¢ according to (1), where c is the index of
the channel and V.. is the number of channels

Ne
EMGayg(t) =Y  EMG.(t). (1)
c=1

2) Applying the moving average algorithm with a window
size of W = 60 samples on the squared average EMG
data to calculate the moving averaged energy stream

Era(t) according to

t
1 .
EMA(t):W > EMG2, ().
i=t—W+1

2)

3) Detecting active segments using two thresholds, the onset
and offset thresholds. Typically, the offset threshold is
lower than the onset threshold. The active segment begins
when F)s4(t) is above the onset threshold and continues
until all samples in a 100-ms time period are below the
offset threshold. The higher onset threshold helps to avoid
false gesture detection, whereas the lower offset threshold
is for preventing the fragmentation of the active segment
as Eps4(t) may vibrate near the onset threshold during
the gesture execution.

As the final step, abandoning the segments whose lengths
are less than a 100-ms time period as measurement noise.

4)

Hence, active gesture segments for both EMG and ACC
signals are determined by the same boundaries.

B. Feature Extraction

1) Feature for ACC: The 3-D accelerometer measures the
rate of change of velocity along three axes (z,y,z) when
hand gestures are performed. Since the acceleration signals
changing with time can directly represent patterns of hand
gesture trajectories, the 3-D ACC active segments are scaled

Hierarchical Decision Tree Classification

and extrapolated as feature vector sequences. The amplitude
of the 3-D data in an active segment is scaled using a linear
min—-max scaling method. Then, the scaled ACC active segment
is linearly extrapolated to 32 points so that the temporal lengths
of all the 3-D ACC data sequences are the same. These two
steps normalize the variations in the gesture scale and speed
and thus improve the recognition of the type of the gesture [2],
[17]. Normalized ACC active data segments are regarded as
3-D feature vector sequences as such.

In addition to the time-domain feature vector sequences
as calculated earlier for ACC signals, we further extracted
some statistical features, such as the mean value and standard
deviation (SD) of each ACC axis. These simple features will be
used by the following classifiers in a decision tree.

2) Feature for EMG: Various kinds of features for the clas-
sification of the EMG have been considered in the literature
[23], [24]. These features have included a variety of time-
domain, frequency-domain, and time—frequency-domain fea-
tures. It has been shown that some successful applications
can be achieved by time-domain parameters [19], for example,
zero-crossing rate and root mean square (rms). The autore-
gressive (AR) model coefficients [25] of the EMG signals
with a typical order of 4-6 yield good performance for my-
oelectric control. Many time—frequency approaches, such as
short-time Fourier transform, discrete wavelet transform, and
wavelet packet transform, have been investigated for EMG fea-
ture extraction [18]. However, time—frequency-domain features
require much more complicated processing than time-domain
features. Considering our pilot study [26], the combination of
mean absolute value (MAV) and fourth-order AR coefficients as
a feature set is chosen to represent the patterns of myoelectric
signals with high test-retest repeatability.

In active segments, the EMG stream is further blocked into
frames with the length of 250 ms at every 125 ms utilizing
an overlapped windowing technique [19]. Each frame in every
EMG channel is filtered by a Hamming window in order to
minimize the signal discontinuities at the frame edges. Then,
each windowed frame is converted into a parametric vector
consisting of fourth-order AR coefficients and MAV. Hence,
each frame of an n-channel EMG signal is presented by a
4n-dimensional feature vector, and the active EMG segments
are represented by 4n-dimensional vector sequences of varying
length. Additionally, the duration of the active segment is also
regarded as an important statistical feature, which will be used
by the following classifiers in a decision tree.
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Fig. 2. Structure of decision tree for hand gesture recognition.

C. Tree-Structure Decision

A decision tree is a hierarchical tree structure consisting of
a root node, internal nodes, and leaf nodes for classification
based on a series of rules about the attributes of classes in
nonleaf nodes, where each leaf node denotes a class [9]. The
input sample data, including the value of different attributes,
are initially put in the root node. By the rules in nonleaf
nodes, the decision tree splits the values into different branches
corresponding to different attributes. Finally, which class the
input data belong to is assigned at the leaf nodes.

Decision trees are simple to understand and interpret.
Their ability for diverse information fusion is well suited
for pattern classification with multiple features. They also
take advantage of their sequential structure of branches so
that the searching range between classes for classification
can be reduced rapidly. Decision trees are robust for good
performance with large data in a short time [9], which is
the significant advantage to realize real-time classification
systems.

Fig. 2 shows the structure of the proposed four-level de-
cision tree for hand gesture recognition, where each nonleaf
node denotes a classifier associated with the corresponding
gesture candidates and each branch at a node represents one
class of this classifier. All the possible gesture classes form
the gesture candidates of the root node, and then, the gesture
candidates of a nonleaf node are split into the child nodes by
the corresponding classifier of the parent node. For hand gesture
recognition, unknown gesture data are first fed into a static or
dynamic classifier, then into a short- or long-duration classifier,
further into a hand orientation classifier, and, at last, into the
multistream HMM classifier to get the final decision. The
classifiers in each level of the decision tree are constructed as
follows.

1) Static or Dynamic Gesture Classifier: The gestures can
be static (a hand posture with a static finger configuration and
an arm keeping a certain pose without hand movement) or
dynamic (hand movement with a certain trajectory and finger
motion). The three-axis SD of the ACC active segment can
reflect the intensity of the hand or arm movements. Therefore,
the rms value of the three-axis SD of the ACC active segment is
compared with a certain threshold: If the value is lower than the
threshold, it is considered a static hand gesture, and if higher, a
dynamic gesture. The threshold is determined by the training
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samples of typical static gestures, such as the word “you,”
“good” in CSL, and hand grasping without arm movements.
Usually, the threshold is assigned as the maximum of the rms
value of the three-axis SD in these training samples.

After all the training samples are classified, the candidate
gestures associated with static or dynamic gestures are gen-
erated, which will be used by the following short- or long-
duration classifier.

2) Short- or Long-Duration Classifier: The time durations
of gesture performance can be short (a simple posture) or long
(a relatively complex posture or motion trajectory), which is
a useful indicator to distinguish different gestures. A short-
or long-duration classifier can be used as the supplementary
classification of hand gestures with various attributes. Similar
to the static or dynamic gesture classifier, the time-duration
feature extracted from the EMG active segment is compared
with a certain threshold: If the value is less than the threshold
for the short, on the contrary, it is more than the threshold for
the long. The threshold is determined by the training samples
of typical short gestures, such as the word “good,” “bull” in
CSL, and hand grasping without arm movements. Usually, the
threshold is assigned as the maximum of the time-duration
value in these training samples of short gestures. However,
those gestures that cannot be robustly determined will appear
in both the candidate gestures of short gestures and those of
long gestures.

3) Hand Orientation Classifier: The orientation of the hand
can be described as the following two terms: 1) the direction
toward which the hand and the arm are pointing and 2) the
facing of the palm [9]. Since different hand orientations can
cause the projection of gravity with different component values
along three axes of the accelerometer, which is usually placed
on the forearm near the wrist, the mean values of three-axis
ACC active segments can effectively reflect the orientation
of the hand for static hand gesture. Although the three-axis
ACC mean features can be varied due to different movement
patterns of dynamic hand gestures, these features for the same
gesture are still consistent. Thus, in our method, the fuzzy
K-means clustering and linear discriminant classifier (LDC)
are proposed for the training and classification of the hand
orientation classifier. The algorithms of the hand orientation
classifier are described as follows.

Fuzzy K-means Clustering: In fuzzy clustering, each ele-
ment has a degree of belonging to clusters, called as fuzzy
membership degree, rather than completely belonging to just
one cluster [27]. In statistical pattern recognition, fuzzy
K -means clustering is a method of cluster analysis which aims
to partition several finite elements into K clusters in which
each element belongs to the cluster with the highest fuzzy
membership degrees.

Given a set of elements (g, g2 - - - &, ), Where each element
is a three-axis ACC mean feature vector and n is the number of
all the training samples, for each element g;, there is a fuzzy

membership degree of being in the kth cluster P(wy|g;)

(1/dye;) /=D
S (1/diy) Y/ (D)

where wy, denotes the kth cluster, dj.; denotes the Euclidean dis-
tance between the element g; and the centroid of the kth cluster

3)

P(Wk|gj) =
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ti: dij = |lg; — mll, and the free parameter b is chosen to
normalize and control the fuzzy degree of the algorithms. In
our method, b is kept constant to the value of 1.5 for allowing
each pattern to belong to multiple clusters. Then, the sum of
those fuzzy membership degrees for any g; is defined to be 1

K
Vg;, > Plulgy) =1. (4)
k=1

The centroid of a cluster is the mean of all points, weighted
by their degree of belonging to the cluster

Z?:1 p(wk\gj)bgj

My, = (&)

In the clustering approach, the initial centroids are randomly
selected from the basic hand orientations determined by the
experts from the hand gesture dictionary. Then, the fuzzy
K-means clustering algorithm is employed to update the cen-
troids in the training set according to (3) and (5). A set of new
centroids is obtained after iterating the aforementioned process
until the centroids of all clusters are not changed. Hence, the
three-axis ACC mean features of all the training samples are
assigned to the cluster whose fuzzy membership is the highest.
Each resulting cluster denotes one pattern branch which indi-
cates a kind of hand orientation, respectively. The candidate
gesture set associated with each corresponding pattern is gen-
erated as the classes which the training samples in the cluster
belong to. The candidate gesture set of each pattern branch will
be used by following the multistream HMM classifier.

LDC Training: In order to determine the pattern branch of
input data, the LDC is used in this low-dimensional space for
hand orientation classification after the clustering process. The
LDC is a probabilistic classifier based on applying Bayes’s
theorem with strong independence assumptions [28]. The prob-
ability model for the LDC is a conditional model in which an
a posteriori probability function of wy, given an input three-axis
ACC mean feature g is defined as

P(g|wk)P(wk).

P(wilg) = Plg)

(6)

The training of the LDC involves the estimation of the con-
ditional probability density function for each class (or cluster).
In our method, the within-class densities are modeled as normal
distributions

1
Pliton) =) 2150 e ) 25 )
(7

where p;, and ¥ are the mean vector and covariance matrix
of class wy, respectively. In our method, p,, is directly assigned
as the centroid of the kth cluster, and ¥, is calculated by the
training samples belonging to the kth cluster after the fuzzy
K-means clustering

X = 1 Z (85 — 1) (g — p1)' ®)

g Wk
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where ny is the number of training samples belonging to the
kth cluster.

LDC Classification: The maximum a posteriori decision rule
for the LDC is

r=argmax {P(glwr) Plwr)} g €wr ©

The element g is classified to w, of whom an a posteriori
probability given g is the largest among all the other classes.
Hence, the unknown input gesture is classified into the corre-
sponding pattern branch through the LDC.

4) Multistream HMM Classifier: Along the branch assigned
by the hand orientation classifier, the unknown gesture sample
is fed into the multistream HMM classifier with its ACC and
EMG feature vector sequences. The final decision is determined
among the candidates of this multistream HMM node.

Multistream Formalism: The multistream structure has the
advantage that it can effectively combine several information
sources, namely, feature streams, using cooperative Markov
models. According to the multistream formalism [36], a hand
gesture to be recognized is represented by an observation se-
quence O, which is composed of K input streams O*). More-
over, each hypothesized model \ is composed of K models A\(*)
attached to each of the K input streams. For the information
fusion, the K stream models are forced to recombine using
some proper recombination strategies.

Based on the Bayes theorem, the recognition problem can be
directly formulated as the one of finding the gesture model \*
that achieves the highest likelihood for the given observation
sequence O

A" = argmax P(O|\)
XSG

(10)

where 6 is the set of all possible gesture hypotheses.

In order to determine the best gesture model A\* that maxi-
mizes P(O|\), three recombination strategies have been inves-
tigated in the literature [36].

1) Recombination at the HMM state level: Assuming that
strict synchrony exists among the streams, it does not
allow for asynchrony or different topologies of the stream
models. In this case, the observation log-likelihood at
each state is often calculated as the sum (or weighted
sum) of the stream observation log-likelihoods [21], [22],
[30], [31].

2) Recombination at the stream model level: Assuming that
each stream is independent, it can allow for asynchrony
or different topologies of the stream models. The streams
are forced to be synchronous at the end of the gesture
models [36]. It is really simple to perform a standard
HMM algorithm to build each stream model separately
based on single-stream observations.

3) Recombination by the composite HMM: It can be re-
garded as the integration of the aforementioned two
strategies. Each state of the composite HMM is generated
by merging a k-tuple of states from the K stream HMMs
[36]. The topology of this composite model is defined
so as to model multiple streams as a standard HMM.
However, it requires an additional processing to build the
composite HMM. When dealing with multiple streams,
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Fig. 3. Example of two gesture models with ACC and EMG streams.

the number of composite states increases significantly.
That may cause much computational complexity [36].

In this paper, we choose to use the recombination strategy at
the stream model level due to the assumption that the ACC and
EMG streams representing different aspects (posture and tra-
jectory) of the hand gesture are independent of each other. With
this choice, each gesture model likelihood can be computed as
depicted in

K

PO = [T P (0% [x®) (1n
k=1

where wy, is the stream weight factor of the kth stream with the

following restriction:

K
wp >0, 1<k<K, Zwkzl.
k=1

(12)

Most of the approaches use a linear weighted combination
function of log-likelihood as follows:

K
log P(O|A) = 3wy log P (o<’€> ‘A(’“) ) .
k=1

13)

Multistream HMM Algorithm: The multistream HMM is
implemented based on multiple single-stream HMMs, which
independently model each stream between two synchroniza-
tion points. The synchronization points are often the gesture
boundaries to avoid the mistake of misalignment during recog-
nition. In our method, a pair of synchronization points is
predetermined as the start and end points of the active segment
corresponding to the gesture. Due to the data segmentation
procedure, the continuous gesture recognition can be simplified
as the concatenated recognition of every isolated gesture (see
Fig. 3).

For the information fusion of both ACC and EMG, each ges-
ture class (or control command) is represented by a multistream
HMM consisting of ACC and EMG stream models, denoted as
A4 and A\(P) | respectively. Equation (13) can be rewritten as

log P(O[\) = wlog P (0<A> ’A<A>)
+(1—w)log P (0<E> ‘ME)) (14)
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where O(Y) and O®) are observed feature sequences from
both the ACC and EMG streams and w is the stream
weight factor. The stream model likelihoods P(O®)|X\(F)) and
PO |A(D) can be calculated using the forward—backward
algorithm [29]. Thus, the recognition result for an unknown
gesture observation O can be determined according to (10).

Training the multistream HMM in this paper consists of
two tasks. The first task is the training of its ACC and EMG
stream HMMs. All the stream models are trained in parallel
using the Baum—Welch algorithm applied on gesture samples.
In our method, we utilize continuous density HMMs, where the
observation data probability is modeled as a multivariate Gaus-
sian distribution. Good results have been obtained in earlier
studies [9], [17] by using left-to-right HMMs with five states
and three mixture components. It has also been reported that
these parameters do not have a significant effect on the gesture
recognition results [17]. The same parameters for models are
chosen here because of better recognition performance and less
computational complexity. The second task is the estimation of
appropriate stream weights, which is described hereinafter.

Stream Weight Estimation: The multistream HMM proposed
earlier consists of ACC and EMG feature streams, and the final
decision is generated from the summation of logarithmic likeli-
hoods of ACC and EMG models weighted by stream weights.
These stream weights should be determined properly in order to
improve the classification performance. However, they cannot
be estimated based on the HMM training approach. In recent
years, a great interest has been devoted to the determination
of stream weights for multimodal integration, including for the
audiovisual automatic speech recognition (AV-ASR) system.
Various criteria have been employed to optimize stream weights
with limited training data sets, for example, the maximum
entropy criterion and the minimum classification error criterion
investigated by Gravier et al. [30] and the likelihood-ratio max-
imization criterion and the output likelihood normalization cri-
terion proposed by Tamura et al. [31]. The visual information is
often regarded as a supplement in most previous AV-ASR sys-
tems, particularly in low SNR environments. However, in our
method, the ACC and EMG streams are of the same importance
for hand gesture recognition, although there are differences
between the two stream models in many fields, such as the input
feature sequences extracted from two heterogeneous sensor
data, the model topologies, and the parameters. The output log-
likelihoods of two stream models may vary even in magnitude.
If the output likelihood of one stream is significantly larger than
that of the other stream, the contribution to the classification of
the other stream will be ignored when the equal weights are
used. Therefore, the stream weight estimation in our methods
focuses on the balance of the two streams’ contribution to the
classification.

Our stream weight adaptation approach consists of evaluat-
ing the differential log-likelihoods for each stream and normal-
izing them as stream weights. The differential log-likelihoods
of the gesture class ¢ (¢ = 1,2,...,C) for the ACC and EMG
streams are defined, respectively

Diff =0 Y logP (0<A> )Agm)
Oel.

_ (A ] ()
;logP<O ‘)\C ) (15)
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TABLE 1
LIST OF 72 SELECTED CSL WORDS

No.  Word Meaning No. Word Meaning No.  Word Meaning No.  Word Meaning
1 IR you 19 /58 good 37 BT dead 55 HE push
2 s I, me 20 ", full 38 A equal sign 56 H for
3 11 everybody 21 1R very 39 EZ many 57 ifE who
4 S sir 22 D 10, not 40 ik turn over 58 ] Wuxi city
5 1 Han (surname) 23 & or 41 BeA scope, range 59 VI same
6 1101 fish 24 EH where 42 MR intentionally 60 T down
7 IiF shrimp 25 i China 43 = thick 61 B3/pan now
8 & pig, pork 26 i) also 44 7N bad 62 BN circulate
9 /|- bull, beef 27 i thanks 45 il plus 63 = take, need
10 e vegetable, food 28  FH L bye 46 fL1F trick 64 —3%€  definite, must
11 % soup 29 izl think, want 47 N child 65 =94 meaning
12 i wine 30 XM here 48 Fr pull 66 VH oil
13 A eat 31 WE avenge 49  KERE wall 67 ¥ instruct
14 Py drink 32 B glass 50 L soft 68 A self
15 * 20 33 hiF perhaps 51 i 4 comfort 69 ki brown
16 EEl have, exist 34 # wipe 52 7K water 70 WK yesterday
17 A not have 35 1l hit 53 k4 morning 71 th mountain
18 = yes, be 36 5, political party 54 R lift 72 41 town

Diff* =C'Y logP (0<E> ‘Ag@)
Oel,
~YlogP (0<E> ]Ag@) . (16) {)3
5 [ —
(a) (b)

Their values denote the degree of distinguishing the class ¢
from the other classes for each stream. Moreover, the stream
weight w in (14) can be calculated as

S Dif ¥
T S D £y DB

7)

Thus, with the stream weight inversely proportional to the
differential logarithmic likelihoods, the ACC and EMG streams
can play the same important role in hand gesture recognition.

III. SLR
A. Data Collection

In order to evaluate the performance of the hand gesture
recognition method based on the information fusion of the
ACC and EMG, the experiments on CSL recognition were
conducted. Seventy-two CSL single-hand words were selected
as pattern classes to form the gesture dictionary, as shown in
Table 1. Fig. 4 also specifies the actual movements correspond-
ing to five typical words by example. Forty kinds of sentences
were constituted by the aforementioned 72 CSL words. The
practicality of the gesture segmentation and recognition method
was tested by these sentences with continuous word streams.

The ACC and EMG signal measurements were made with
our self-made sensor system. The three-axis accelerometer
built by MMA7361 (Freescale Semiconductor, Inc., Austin,
TX) was placed on the back of the forearm near the wrist to
capture the information about hand orientations and trajectories
(see Fig. 4). In each EMG sensor, there are two silver bar-
shaped electrodes with a 10 mm x 1 mm contact dimension
and a 10-mm electrode-to-electrode spacing. The differential

Fig. 4. Five examples of CSL words. (a) “You.” (b) “Good.” (c) “Bull.”
(d) “Also.” (e) “Go.”

= —
&9

Surface EMG Sensor,

Fig. 5. Sensor placement of three-axis ACC and five-channel EMG. The
anatomical pictures of the forearm muscles are adapted from [38].

EMG signals in each channel pass through a two-stage am-
plifier, which is formed by AD8220 and AD8698 (Analog
Devices, Inc., Norwood, MA) with a total gain of 60 dB
and a bandpass filtering of 20 to 1000 Hz bandwidth. Five-
channel surface EMG sensors were located over five sites on the
surface of the forearm muscles: extensor digiti minimi, palmaris
longus, extensor carpi ulnaris, extensor carpi radialis, and
brachioradialis, respectively, as shown in Fig. 5. The sampling
rate for data collection was 1 kHz.
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Fig. 6. Illustration of data segmentation.

Two right-handed subjects, male (age 27) and female (age
25), participated in the data collecting experiments. They were
both healthy, had no history of neuromuscular or joint diseases,
and were informed of the associated risks and benefits specific
to the study. Each subject was required to participate in the
experiments for more than 5 times (5 days with 1 experimen-
tal session per day). In each session, the subjects performed
the selected 72 CSL words in a sequence with 12 repeti-
tions per motion, and then, they further performed the defined
40 sentences with 2 repetitions per sentence. Both of the ACC
and EMG signals were recorded as data samples for CSL
recognition. The data set for experimental analysis consisted
of 8640 CSL word samples and 800 sentence samples in total.

B. Experimental Results and Analysis

1) Data Segmentation Results: Fig. 6 illustrates the double-
threshold principles of the data segmentation method. The
three-axis ACC and five-channel EMG signals recorded when
a subject was continuously performing the three CSL words
“J-Wy- 71 (which means “I drink soup” in English) are shown
with the moving averaged energy stream F s 4(t) below them
in Fig. 6. The stream Es 4 (t) rising above the onset threshold
denotes the start point, and Eys4(t) falling down the offset
threshold denotes the end point of the active segment. The three
active segments corresponding to the three CSL words are suc-
cessfully marked on the figure. For effective data segmentation,
many factors should be considered to choose the values of the
onset and offset thresholds, such as the strength that the user
exerts when performing hand gestures and the environmental
noises. We think that the noise is the dominant factor. If the
noise level increases, the corresponding thresholds should also
be adjusted higher to avoid the false detection caused by noises.
Fortunately, the data collecting environment in our experiments
is favorable so that we choose the onset threshold as 2% of the
Enra(t) recorded by the experts when the user performs the
hand grasping at maximum volume contraction (MVC), and
the offset threshold is usually set as 75% of the onset threshold.

2) CSL Word Classification: The data collection experi-
ments for each subject in five different sessions can generate
five groups of data sets, respectively. The user-specific clas-
sification of 30 CSL words was carried out using the fivefold
cross-validation approach. Four group data samples from four
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Fig. 7. Average recognition time consumption of the methods.

sessions for each subject were used as the training samples, and
the other remaining group data were referred to as the testing
samples.

According to the classification method presented in
Section III, the multistream HMM (represented by MSHMM)
classifiers are the special part of the proposed decision tree
(represented by TREE). The performances on 72-CSL-word
classification with MSHMM and TREE are tested, respectively,
which means that only multistream HMMs are used to recog-
nize CSL words in the MSHMM condition for comparison (the
signal processing and gesture recognition procedure marked
with the thick dash in Fig. 1).Table II shows the test results of
the MSHMM and TREE.

In Table II, the TREE approach achieved the average recog-
nition accuracies of 95.3% for Subl and 96.3% for Sub2,
and the MSHMM approach obtained the average recognition
accuracies of 92.5% and 94.0%, respectively. On the basis of
the MSHMM, the decision tree increased the overall recog-
nition accuracy by 2.56% (p = 1.068E — 6 < 0.001) for the
two subjects. This may be attributed to two factors. One is the
different additional features utilized through different classifiers
in the nonleaf nodes of the decision tree which provided more
information that enhanced the seperability. The other is that the
decision tree reduced the searching range between word classes
level by level, and some easily confused words that could cause
recognition error might be excluded from the set of candidate
words.

The recognition time consumptions of the MSHMM and
TREE were also investigated for the approach of the cross-
validation test. All the tests were realized on a PC (Intel ES300
at a 2.6-GHz CPU with a 2-GB RAM) using Matlab R2007a
(The Mathworks, Inc., Natick, MA). As shown in Fig. 7, the
average time consumption of the MSHMM was 0.366 second
per word (s/w) for Subl and 0.368 s/w for Sub2. In contrast,
the TREE approach obtained the average time consumption
of 0.0704 and 0.0726 s/w, respectively. Experimental results
indicated that the TREE approach could reduce the recognition
time consumption significantly. The classifiers in the top of the
TREE with effective classification rules but low computational
complexity were applied prior to the MSHMM to exclude
the most impossible word classes. Consequently, the searching
range of the MSHMM, as well as the recognition time con-
sumption, can be reduced effectively.

For a further investigation on the information complementar-
ity of the EMG and ACC, five words (see Fig. 4) are selected
from the 72 CSL words for classification in three conditions:
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TABLE 1I
LIST OF 72 SELECTED CSL WORDS

Conditions 1st Test (%) 2nd Test 3rd Test (%) 4th Test (%) Sth Test (%) Overall (%)

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

Sub1(MSHMM) 90.5 19.8 91.1 17.1 929 17.7 932 17.3 94.9 11.7 9.5 14.7

Subl(Tree) 934 15.5 94.4 9.89 96.1 9.17 95.7 10.5 97.0 7.70 95.3 9.44

Sub2(MSHMM) 912 16.7 94.4 17.1 933 13.2 93.5 17.2 973 10.5 94.0 11.6

Sub2(Tree) 93.8 12.4 97.1 9.19 95.6 10.1 96.6 13.5 98.2 8.18 96.3 8.25
TABLE III TABLE V

CONFUSION MATRIX FOR CLASSIFICATION IN ACC-ONLY CONDITIONS

you good  bull also 20 Accuracy
you 65 55 0 0 0 54.2%
good 25 95 0 0 0 79.2%
bull 0 0 120 0 0 100.0%
also 0 0 0 120 0 100.0%
20 0 0 0 0 120 100.0%
TABLE 1V

CONFUSION MATRIX FOR CLASSIFICATION IN EMG-ONLY CONDITIONS

you good  bull also 20 Accuracy
you 103 6 4 0 7 85.8%
good 0 119 1 0 0 99.2%
bull 0 2 79 36 3 65.8%
also 0 0 1 109 10 90.8%
20 0 0 9 43 68 56.7%

ACC-only, EMG-only, and fusion of ACC and EMG. In the
ACC-only or EMG-only condition, only one stream HMM and
features of the ACC or EMG are used in the decision tree
for classification. Tables III-V show the composite confusion
matrices of the fivefold cross-validation classification of five
words for both Subl and Sub2 in three conditions, respectively.
The total number of each word is 120. The words “you” and
“good” are both static gestures with the same hand orien-
tation (arm toward the front and palm toward the left) and
different hand postures, index finger extension for “you” and
thumb extension for “good,” so these two words cannot be
distinguished effectively using only ACC signals, whereas the
EMG can overcome this. Since the word “bull” is also a static
gesture but with a different hand orientation (arm toward up)
from that of the word “you” or “good,” the ACC can provide
a relatively high confidence in its recognition. Contrarily, the
words “bull,” “also,” and “go” are performed with the same
hand posture (thumb and little finger extension), and different
trajectories cannot be distinguished in EMG-only conditions
without the supplement of ACC features. All the words can
be classified successfully with high accuracies in the condition
of ACC and EMG fusion. In addition to these five words, the
complementary effect could be observed for all the words in
our experiments. The aforementioned five words were selected
as typical and intuitive examples. The complementary function-
ality of both ACC and EMG signals has been also examined by
Kim et al. [32]. This paper expanded it for CSL recognition
with a relatively larger vocabulary based on our own fusion
strategy.

3) CSL Sentence Recognition: This experiment is to test the
recognition performance on the CSL sentences using the pro-
posed continuous hand gesture recognition approaches. For the
user-specific classification, all the five groups of data samples

CONFUSION MATRIX FOR CLASSIFICATION IN FUSION CONDITIONS

you good bull also go  Accuracy
you 115 5 0 0 0 95.8%
good 0 120 0 0 0 100.0%
bull 0 0 120 0 0 100.0%
also 0 0 0 120 0 100.0%
20 0 0 0 0 120 100.0%
TABLE VI

RECOGNITION RESULTS OF CSL SENTENCES FOR TWO SUBJECTS

Dataset N D I S Ps Pw P
Subl 1930 18 8 101 98.7% 93.4% 74.0%
Sub2 1930 17 9 113 98.7% 92.8% 71.0%

Overall 3860 35 17 214 98.7% 93.1% 72.5%

for each subject were used to train classifiers, and the collected
sentence samples from the same subject were tested one by one.
The output of the well-trained classifiers was the recognized
CSL words in a sequence of detected active segments in a signal
stream of each sentence. The sentence recognition results for
Subl and Sub2, respectively, are listed in Table VI, where the
word segment detection rate P and the word recognition rate
P,, are computed through the following equations:

D+1
Pi=1—-—r 18
N (1%)
D+S+1
P,=1- 19
N (19)

where D is the number of deletions, S is the number of
substitutions, I is the number of insertions, and [NV is the total
number of words which constitute all the sentences in the test
set. The sentence recognition rates P are then calculated as the
percentage of the correctly recognized sentences to the total
sentence number, which is defined the same as in [10].

The sentence samples collected from each subject were
constituted by 1930 CSL words. The word segment detection
rate was 98.7% for both the two subjects. That means that the
performed CSL word segments within a continuous sequence
of gestures can be mostly detected with few deletions and
insertions through the proposed data segmentation step. The
word recognition rate was 93.4% for Subl and 92.8% for Sub2.
The accuracy in the sentence recognition was lower than that
of the word classification due to the signal variation of the
words in the sentences. For collecting CSL word samples,
each word was repeated 12 times one by one, but for sentence
collection, the subjects were required to continuously perform
a sequence of various words. The overall recognition rate of
the total 800 sentences was 72.5% because of the stringent
statistical criteria that the correctness of a sentence entails the
correct recognition of all the words constituting the sentence
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without any insertions, substitutions, or deletions. The errors
of word segment detection and recognition were scattered in
many sentences. That was the main factor that caused the low
sentence recognition rates. We did not do any optimization in
the CSL sentence recognition according to the grammar and
syntax. If the factors mentioned earlier were considered, the
performance of CSL sentence recognition could be improved.
Exploring this remains future work.

IV. GESTURE-BASED CONTROL OF
VIRTUAL RUBIK’S CUBE

In this section, an interactive system was established to evalu-
ate our framework for hand gesture recognition with application
to gesture-based control. In contrast with SLR in Section III, the
system processes both ACC and EMG signals in real time, and
the recognized gestures are translated into control commands.
A virtual Rubik’s cube was built in our interactive system to
demonstrate the advantages of EMG and ACC fusion by provid-
ing multiple degrees of freedom in control. The experimental
setups, including the principles of the Rubik’s cube game and
gesture control schemes, are introduced hereinafter.

A. Experimental Setups

1) Virtual Rubik’s Cube Interface: Rubik’s cube is a me-
chanical puzzle. In a standard 3 x 3 x 3 cube, each of the
six faces is covered by nine stickers, and they are colored
with different solid colors (traditionally being white, yellow,
orange, red, blue, and green). Each face is able to be turned
independently, thus mixing up the color stickers inside the
faces. For the puzzle to be solved, each face must be made of
one solid color.

2) Selected Hand Gestures: Utilizing the complementary
sensing characteristics of EMG and ACC signals, the selected
hand gestures include three basic hand postures and six circular
hand movements. Since any arbitrary transformation of the
cube can be achieved by a series of steps of rotating the six
external faces of the cube, we defined 12 circular gestures to
rotate the six cube faces by 90° clockwise or counterclockwise,
as illustrated in the left subgraph of Fig. 8. When these gestures
are being performed, either the thumb or little finger needs to
be extended for determining which side is to be rotated: the
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(Left) Twelve circular gestures to turn the six planar faces of the cube. (Right) Six circular gestures to rotate the entire cube.

TABLE VII
NAME ABBREVIATION OF GESTURES USED TO CONTROL THE CUBE

Posture Direction Plane
H Hand grasp CW  Clockwise H Inleft-front plane
T  Thumb cc Counter- V  Intop-left plane
1. Little finger Clockwise S In front-top plane

top or bottom, front or back, and left or right; moreover, the
direction of the hand circles determines in which direction
the side is turned. Since the interface screen can only show three
faces (e.g., the top, front, and left as in Fig. 8) of the cube at the
time, six gestures with hand grasping (as shown in the right
subgraph of Fig. 8) are used for rotating the entire cube by 90°
clockwise or counterclockwise around three axes so that all six
faces of the virtual cube can be brought into the front view.

Each gesture defined is named by a four-letter abbreviation.
These names indicate gesture meanings which are described in
Table VII. It is intuitive to comprehend the gesture controls
of the virtual Rubik’s cube. For example, the gesture TCWH
means thumb extension and hand circles drawn clockwise in
the left-front plane. This gesture makes the topmost face of the
virtual Rubik’s cube turn clockwise.

3) Sensor Placement: The sensor placement in this exper-
iment was similar to that of the SLR in Fig. 5. A three-axis
accelerometer and only three-channel EMG sensors (CH3—CHS
in Fig. 5) were utilized in game control. The three EMG sensors
were attached to the inner side of a stretch belt for convenient
sensor installation.

4) Testing Schemes: Ten users, five males and five females,
aged from 21 to 27, participated into the gesture-based control
experiments. In contrast with the aforementioned SLR ex-
periment only conducted in user-specific classification, which
means that the classifiers were trained and tested indepen-
dently on data from each user, the gesture-based control ex-
periments consisted of two testing schemes: user-specific and
user-independent classification.

In the user-specific classification, each of the ten subjects
participated into the experiments for three times (three days
with one experimental session per day). In each session, the
subjects performed the defined 18 kinds of hand gestures in a
sequence with ten repetitions per motion and recorded training
data samples firstly. Then, the system loaded the data recorded
in the current session to train the classifiers, and the subjects
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Fig. 9. User-specific classification accuracies of 18 kinds of hand gestures.

further performed ten testing samples per gesture for classifica-
tion to evaluate the system performance.

The experiment in the user-independent classification was
proposed to evaluate the generality of our interactive system
based on the fusion of ACC and EMG. For this testing scheme,
we used the leave-one-out method: The training data from nine
users in all three sessions were mixed and loaded together to
train the classifiers, which then were applied to recognize the
gestures performed by the remaining user to test the results.
Additionally, all users participated into the experiments in the
way that they were playing an entertaining Rubik’s cube game:
The cube was initialized with each face randomly disordered as
a puzzle; then, the subjects were required to sort the faces of
the cube into a solid color as fast as possible to solve the puzzle
using the defined gesture commands.

B. Experimental Results and Analysis

1) User-Specific Experiments: Fig. 9 shows the average
classification accuracies of the 18 kinds of hand gestures in
three sessions for each subject separately. The mean classi-
fication accuracy for all the subjects reached a 97.6% (SD:
1.45%) average accuracy. According to these satisfying results,
the experiments can also be regarded as a practical example to
demonstrate the feasibility of building a gesture-based control
system using ACC and EMG signals.

2) User-Independent Experiments: To extend the user-
specific classification results, we explored the system perfor-
mance in user-independent classification. Every subject found
it fun to play the virtual Rubik’s cube game for puzzle solv-
ing. All the gesture commands were defined in pairs. If an
occasional recognition error occurred, it seldom influenced
the game: Users could easily perform the gesture controlling
the counteraction of the error command and continue to play.
Table VIII shows the statistical results for ten subjects to solve
the Rubik’s cube puzzle in user-independent classification.

The recognition results achieved with our system were satis-
factory as the overall accuracy was 90.2%. It is not unexpected
that the recognition rates in the user-independent classification
are lower than that in the user-specific classification. Due to
the individual differences of the biosignal-like EMG, there
exist great challenges to establish user-independent EMG-
based recognition and interaction systems. Although previous
researchers have realized various outstanding prototypes with
EMG-based interfaces, few studies on user-independent classi-
fication have been reported, and the limited testing results are
not satisfying [12], [16], [32]. Our experimental results also
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TABLE VIII
STATISTICAL RESULTS FOR TEN SUBJECTS TO SOLVE RUBIK’S
CUBE PUZZLE IN USER-INDEPENDENT CLASSIFICATION

Subject Gesture Correctly Accuracy Time Commands
Performed Recognized (%) Consumption per Minute
Sub 1 32 29 90.6 135~ 20.2
Sub 2 27 24 88.9 1°47” 15.1
Sub 3 27 26 96.3 1°26” 18.8
Sub 4 33 28 84.8 2°08” 15.5
Sub 5 24 20 83.3 123~ 17.3
Sub 6 26 23 88.5 1733~ 16.8
Sub 7 29 28 96.5 17327 18.9
Sub 8 21 18 85.7 1227 15.4
Sub 9 19 18 94.7 1°09” 16.5
Sub 10 27 25 92.6 1°44” 15.6
Overall 265 239 90.2 1539~ 16.9

indicate another advantage of the fusion of ACC and EMG
sensors that the ACC and EMG information fusion technique
not only enhances the performance of a gesture-based control
system with high accuracies but also reduces the burden of a
single sensor. To some extent, the main task of the EMG in our
system was to distinguish three hand postures in 18 kinds of
hand gestures so that it is easy to achieve relatively robust user-
independent classification in our system. The average input rate
for gesture commands was about 16/min. These figures indicate
that the proposed gesture-based control method is efficient.

For the realization of natural gesture-based HCI, the sub-
jects recruited in the experiments were asked to perform ges-
tures in a way that felt natural to them. Consequently, how
hard they performed the tasks could not be accurately quan-
tified. Generally, each subject performed every hand gesture
at 10%-20% of the MVC. The strength of performing hand
gestures varied in subject due to the different personal habits,
which were also attributed to individual differences and could
affect the EMG amplitudes. In this paper, the performance of
the user-independent classification suffered from the strength
variation, whereas the user-specific classification was relatively
insensitive to this factor because of the consistency of the
strength exerted by the same subject. From the experiments
on real-time gesture recognition, it was also observed that
some subjects could adjust their strength to perform gestures in
order to achieve higher classification rates in user-independent
classification with the instantaneous visual feedback. We call
this phenomenon as “user self-learning,” which could partly
support our idea that the strength for different subjects is a
major factor of the individual difference that could influence the
performance of hand gesture recognition in user-independent
classification.

V. CONCLUSION AND FUTURE WORK

This paper has developed a framework for hand gesture
recognition which can be utilized in both SLR and gesture-
based control. The presented framework combines information
from a three-axis accelerometer and multichannel EMG sensors
to achieve hand gesture recognition. Experimental results on
the classification of 72 CSL words show that our framework is
effective to merge ACC and EMG information with the average
accuracies of 95.3% and 96.3% for two subjects. On the basis
of multistream HMM classifiers, the decision tree increases the
overall recognition accuracy by 2.5% and significantly reduces
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the recognition time consumption. The ability of continuous
SLR by our framework is also demonstrated by the recognition
results of 40 kinds of CSL sentences with an overall word
accuracy of 93.1% and a sentence accuracy of 72.5%. The
real-time interactive system using our framework achieves the
recognition of 18 kinds of hand gestures with average rates
of 97.6% and 90.2% in the user-specific and user-independent
classification, respectively. We have shown by example of game
control that our framework can be generalized to other gesture-
based interaction.

There are further potential advantages of the combination of
EMG and ACC signals. With the supplementary ACC data, the
recognition system may effectively overcome some problems
typical to EMG measurements, such as individual physiological
differences and fatigue effects. Furthermore, EMG is capable
of sensing muscular activity that is related to no obvious
movement [4]. Such gestures are useful in mobile use contexts
where the discretion of the interaction is an important issue. On
all accounts, the combination of EMG and ACC measurements
can enhance the functionality and reliability of gesture-based
interaction.

Although we have researched into an effective fusion scheme
for the combination of ACC and EMG sensors with success-
ful applications, there are still some problems to be further
studied.

1) The utilization of two hands and other useful parame-
ters in sign language. The CSL recognition experiment
in this paper only utilized some single-hand words to
evaluate our proposed framework. Investigating the two-
hand information fusion and other useful parameters in
sign language, including gaze, facial expression, motion
of head, neck, and shoulder, and body posture, is a further
direction.

2) The effortless and fast customization of robust gesture-
based interaction. In our experiments, the training data
samples were collected by many subjects who were
required to perform each predefined hand gesture with
abundant repetitions in multiple sessions. This approach
was the important factor to achieve relatively satisfac-
tory results in this paper. Since hand gestures should
be customizable, easy, and quick to train to meet the
requirement of most common users, our future work will
focus on enhancing the robustness of the system to enable
effortless customization and extending our methods to
other types of applications, for example, to gesture-based
mobile interfaces. In addition, the design of tiny, wireless,
and flexible sensors that are better suited for common
users in real applications is another goal of our research.
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