
A Framework for Handling Inconsistency in
Changing Ontologies

Peter Haase1, Frank van Harmelen2, Zhisheng Huang2, Heiner Stuckenschmidt2,
and York Sure1

1 Institute AIFB, University of Karlsruhe, Germany
{haase, sure}@aifb.uni-karlsruhe.de

2 Department of Computer Science, Vrije Universiteit Amsterdam, The Netherlands
{frankh, huang, heiner}@cs.vu.nl

Abstract. One of the major problems of large scale, distributed and evolving on-
tologies is the potential introduction of inconsistencies. In this paper we survey
four different approaches to handling inconsistency in DL-based ontologies: con-
sistent ontology evolution, repairing inconsistencies, reasoning in the presence of
inconsistencies and multi-version reasoning. We present a common formal ba-
sis for all of them, and use this common basis to compare these approaches. We
discuss the different requirements for each of these methods, the conditions un-
der which each of them is applicable, the knowledge requirements of the various
methods, and the different usage scenarios to which they would apply.

1 Introduction

Ontologies in real-world applications are typically not static entities, they evolve over
time. One of the major problems of evolving ontologies is the potential introduction
of inconsistencies as a result of applying changes. Previous related work includes the
definition of evolution strategies to handle inconsistencies for evolving ontologies in a
centralized setting (cf. [14]) and for the handling of ontology changes in a distributed
setting (cf. [9]). However, such approaches rely on different assumptions, including
different ontology models (in particular they do not consider DL-based ontologies), use
different notions for ontology change and inconsistency and typically cover a specific
use case.

When dealing with changing ontologies we found four major use cases which re-
quire methods for dealing with inconsistencies. First, changing an initially consistent
ontology potentially introduces inconsistencies. This typically occurs in settings where
one is in control of changes and needs support for maintaining consistency during evo-
lution. Second, re-using ontologies in open settings such as the Web might include the
retrieval of inconsistent ontologies that should be fixed before usage. While these use
cases typically occur during the development of ontologies, handling of inconsisten-
cies is also relevant during runtime of ontology-based applications as illustrated in the
following. Third, in some cases consistency cannot be guaranteed at all and inconsisten-
cies cannot be repaired, still one wants to derive meaningful answers when reasoning.
Often this is the case when schema-level and instance-level of ontologies are evolved
separately without synchronizing the changes continuously. Fourth, when applying an

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 353–367, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

354 P. Haase et al.

ontology one faces the challenge to decide whether the usage of other, e.g. newer, ver-
sions of this ontology might lead to inconsistencies in an application, or, in other words,
whether the versions are compatible with respect to certain aspects. While the former
use cases typically occur during the development of ontologies, the latter ones illustrate
the handling of inconsistencies during the runtime of ontology-based applications.

In this paper we define a framework for combining currently separate methods for
inconsistency-handling in changing ontologies. This framework is based on formally
defined notions including ontology change and inconsistency for DL-based ontologies,
thus being in line with the state-of-the-art representation formalism for ontologies OWL
[10]. To meet the requirements of the above mentioned use cases our framework con-
sists of the following main components: consistent ontology evolution guarantees the
continuous consistency of ontologies in the presence of changes by applying evolu-
tion strategies; repairing inconsistencies fixes ontologies that are already inconsistent;
reasoning with inconsistent ontologies returns meaningful query results for queries to
inconsistent ontologies; finally, multi-version reasoning considers not only the latest
version of an ontology, but all previous versions as well to deal with inconsistencies
that arise from the interaction of the ontology with its environment in terms of instance
data and applications.

Core decisions which had to be taken during the definition of our framework include
syntactic vs. semantic definitions for ontology changes, functional vs. non-functional
notion of change, language dependent vs. language independent definitions and whether
one only considers logical properties or also other forms like structural, data, etc.

The main benefit of our framework consists of the identification of typical kinds
of problems one actually has when having to deal with inconsistent ontologies and the
provision of methods and implementations to deal with the problems. The framework
has been implemented (to large extents) as part of the EU project SEKT1.

The paper is structured as follows. In the next Section 2 we present a general
overview of the framework and describe the core decisions which had to be taken dur-
ing the design of our framework. In Section 3 we describe basic definitions underlying
the framework such as the notion of ontology change. The following Section 4 then
describes on top of these definitions each of the components for handling of incon-
sistencies in detail. We compare the different approaches to help identifying which
component can be applied in which situation. Before concluding we present related
work.

2 General Overview

The study of ontology change management covers a very broad spectrum [11,9,14]. It
encompasses methods and techniques necessary to support modifications to ontologies.
One important aspect that must be dealt with in a comprehensive treatment of ontol-
ogy change is handling of inconsistencies. While we may distinguish various forms of
inconsistencies (c.f. [2], in this work, we consider ontologies as logical theories. We
therefore focus on logical inconsistencies in ontologies. We discuss four different ap-
proaches to ontology change, and the different implications each of these has for the
management of inconsistencies arising from the changing ontologies:

1 http://www.sekt-project.com/

http://www.sekt-project.com/

A Framework for Handling Inconsistency in Changing Ontologies 355

Consistent Ontology Evolution is the process of managing ontology changes by pre-
serving the consistency of the ontology with respect to a given notion of consistency.
The consistency of an ontology is defined in terms of consistency conditions, or invari-
ants that must be satisfied by the ontology.

Repairing Inconsistencies involves a process of diagnosis and repair: first the cause
(or: a set of potential causes) of the inconsistency needs to be determined, which can
subsequently be repaired.

Reasoning with Inconsistent Ontologies does not try to avoid or repair the inconsis-
tency (as in the previous two approaches), but simply tries to “live with it” by trying to
return meaningful answers to queries, even though the ontology is inconsistent.

Ontology Versioning manages the relations between different versions of an ontol-
ogy, and a notion of compatibility with such versions. One such compatability relation
is inconsistency: even though two versions of an ontology may each be consistent in
themselves, they might derive some opposite conclusions, and would then be mutually
inconsistent.

In order to find a common ground for these different approaches to dealing with
inconsistencies in changing ontologies, a number of choices have to be made concerning
this common ground. We outline the most important of these choices here.

Syntactic or semantic. An obvious essential question is what we count as a change in
an ontology? Do we count every syntactic modification to an ontology, or only those
syntactic modifications that affect the semantics of the ontology. A simple example to
illustrate the difference is to consider the ontology (using DL syntax, c.f. Section 3):

C1 � C2, C1(x), C2(x)

Removing the third statement is clearly a syntactic change, but not a semantic one (the
set of models of the ontology does not change, since the removed statement is also
implied by the remaining two). This choice boils down to that of defining an ontology
as a set of axioms (a syntactic object), or as a set of models (a semantic object, typically
captured by finite set of axioms). In this paper, we have chosen to define an ontology as
a set of axioms, allowing us to capture any syntactic modification to an ontology. We
consider the syntactic approach most suitable as the same logical theory can be encoded
by different sets of axioms that have different computational properties that are also
important in applications (e.g. many ontologies that are formally in OWL-Full can be
rephrased into an equivalent ontology in OWL-DL). The syntactic approach enables us
to distinguish between these two encodings. This choice is in line with other studies of
changing ontologies, e.g. [9,11,14].

Language dependent vs. language independent. A second important choice is the re-
striction of our definitions to a specific ontology language. It is now commonly accepted
that any ontology language should have its foundation on logic. While the approaches
we present are in general applicable to any ontology language based on a (monotonic)
logic, we pay special attention to the OWL ontology language. As the OWL ontol-
ogy language has been standardized by the W3C consortium, we will adhere to the
underlying OWL ontology model. In particular, we consider the language OWL-DL
(which includes sublanguages such as OWL-Lite). OWL-DL is a syntactic variant of
the SHOIN (D) description logic [5]. In the following we will therefore use the more
compact, traditional description logic syntax.

356 P. Haase et al.

Functional or non-functional change. A final important decision is whether we regard
ontology change as a deterministic or non-deterministic operation: does any operation
on an ontology result in a single well-defined result, or in a set of possible outcomes.
Our earlier choice for a syntactic view of ontology change makes it plausible to limit
change to a deterministic, functional operation.

3 Basic Definitions

This section describes the basic definitions which involve ontology change and incon-
sistency processing. Some of these basic definitions may be so obvious or well-known
that they may be considered to be trivial. Those terminologies are usually found under
different contexts and theories with different meanings and implications. In this paper,
we would like to provide a unique framework to define those definitions formally, which
can serve as a solid foundation for the theory of ontology change to avoid unnecessary
ambiguities on the definitions and minimize the disagreement among the researchers.

In general, an ontology language can be considered to be a set that is generated by a
set of syntactic rules. Namely, an ontology can be viewed as a formula set, alternatively
called axioms, which involves a set of vocabulary.

Definition 1 (Ontology). We use a datatype theory D, a set of concept names NC , sets
of abstract and concrete individuals NIa and NIc , respectively, and sets of abstract and
concrete role names NRa and NRc , respectively.

The set of SHOIN (D) concepts is defined by the following syntactic rules, where
A is an atomic concept, R is an abstract role, S is an abstract simple role, T(i) are
concrete roles, d is a concrete domain predicate, ai and ci are abstract and concrete
individuals, respectively, and n is a non-negative integer:

C → A | ¬C | C1 � C2 | C1 � C2 | ∃R.C | ∀R.C | ≥ n S | ≤ n S | {a1, . . . , an}
| ≥ n T | ≤ n T | ∃T1, . . . , Tn.D | ∀T1, . . . , Tn.D | 	 | ⊥

D → d | {c1, . . . , cn}
A SHOIN (D) ontology O is a finite set of axioms of the form2: concept inclusion
axioms C � D, transitivity axioms Trans(R), role inclusion axioms R � S and T � U ,
concept assertions C(a), role assertions R(a, b), individual (in)equalities a ≈ b, and
a �≈ b, respectively.

The semantics of the SHOIN (D) description logic is defined via a model-theoretic
semantics, which explicates the relationship between the language syntax and the model
of a domain: An interpretation I = (I , ·I) consists of a domain set I , disjoint from
the datatype domain I

D, and an interpretation function ·I , which maps from individ-
uals, concepts and roles to elements of the domain, subsets of the domain and binary
relations on the domain, respectively3. An interpretation I satisfies an ontology O, if it
satisfies each axiom in O. Axioms thus result in semantic conditions on the interpreta-
tions. Consequently, contradicting axioms will allow no possible interpretations. This
leads us to the definition of a consistent ontology:

2 For the direct model-theoretic semantics of SHOIN (D) we refer the reader to [6].
3 For a complete definition of the interpretation, we refer the reader to [5].

A Framework for Handling Inconsistency in Changing Ontologies 357

Definition 2 (Consistent Ontology). An ontology O is consistent iff O is satisfiable,
i.e. if O has a model.

To be able to define queries against ontologies, we rely on the notion of entailment:

Definition 3 (Entailment). Given a logical language L, an entailment |= states a re-
lation between an ontology O and an axiom α ∈ L. Namely, an entailment is a set of
pairs 〈O, α〉. We use O |= α to denote that the ontology O entails the axiom α. Alterna-
tively, we say that α is a consequence of the ontology O under the entailment relation
|=. The entailment relation is said to be a standard one iff α always holds in any model
in which the ontology O holds, i.e., for any model M , M |= O ⇒ M |= α.

Usually we use |= and |≈ to denote a standard entailment and a non-standard entail-
ment respectively if it does not cause any ambiguity. A standard entailment is explo-
sive, namely, any formula is a consequence of an inconsistent ontology. Namely, if an
ontology O is not consistent, then for any axiom α, O |= α.

A general goal of the approaches proposed in this paper is to obtain consistent query
answers. Thus, we have the following definitions.

Definition 4 (Query). A query with respect to an entailment relation |= is a pair of an
ontology O and an axiom α, written ’O |= α?’.

Definition 5 (Query Answer). An answer to a query ’O |= α?’ is a value in the set
{true, false} as O |= α and O �|= α respectively.

When we talk about inconsistency, we usually assume that the existence of a negation
operator ¬ which can be used to denote the negation of an axiom4.

Definition 6 (Consistent Query Answer). For an ontology O and an entailment rela-
tion |≈, an answer ’O |≈ α’ is said to be consistent if O �|≈ ¬α.

Proposition 1 (Consistent Ontology and Consistent Query Answer). For a consis-
tent ontology O, its query answer is always consistent under a standard entailment.
Namely, the consequence set {α : O |= α} is consistent.

To be able to deal with inconsistent ontologies, the following two definitions are useful:

Definition 7 (Maximal consistent subontology). An ontology O′ is a maximal consis-
tent subontology of O, if O′ ⊆ O and O′ is consistent and every O′′ with O′ ⊂ O′′ ⊆ O
is inconsistent.

Intuitively, this definition states that no axiom from O can be added to O′ without losing
consistency. In general, there may be many maximal consistent subontologies O′.

Definition 8 (Minimal inconsistent subontology). An ontology O′ is a minimal incon-
sistent subontology of O, if O′ ⊆ O and O′ is inconsistent and every O′′ with O′′ ⊂ O′

is consistent.

4 In the considered description logic, there exists no universal negation operator. However, nega-
tion can be simulated, e.g. to express the negation of the role assertion ¬R(a, b) we can write
¬(∃R.{b})(a).

358 P. Haase et al.

Finally, we formalize changes to ontologies. As we have argued in the previous
section, in the paper we will focus on functional ontology changes. Thus, we have:

Definition 9 (Ontology Change Operation). An ontology change operation oco is a
function oco : O → O.

There might exist many different ontology change operations. In this paper, we will not
discuss a list of possible ontology changes. Instead, we consider the two atomic change
operations of adding and removing axioms. Other change operations can be defined in
terms of those two atomic change operations with different sequences of the executions.
The semantics of the sequence is the chaining of the corresponding functions: For some
atomic change operations oco1, ..., ocon we can define ococomposite(x) = ocon ◦ ... ◦
oco1(x) := ocon(...(oco1))(x).

As we have argued in the previous sections, in this paper, we consider only func-
tional and syntactic-based change operations. Accordingly we define the semantics of
the change operations: O+̇α := O ∪ {α} and O−̇α := O \ {α}.

4 Handling Inconsistencies of Changing Ontologies

In Section 2 we have already presented a general overview of the different strategies
for handling the problem of inconsistencies in changing ontologies. In the following,
we describe these different strategies in terms of the notions introduced in the previous
section and provide a comparison.

4.1 Consistent Ontology Evolution

The goal of consistent ontology evolution is to maintain the consistency of ontology in
the presence of changes. There are strong forms of guaranteeing consistency that strictly
forbid change operations that can lead to an inconsistent ontology. A radical approach is
to forbid the use of logical operators that potentially introduce inconsistency (i.e. nega-
tion, but also other constructs). The drawback is a substantial loss of expressive power.
The strategy that we consider here is to define a semantics of change that ensures con-
sistency by (1) detecting potential inconsistencies caused by changes and (2) generating
additional changes for a transition into another consistent state [2]. We can summarize
the approach of consistent ontology evolution as follows: For a consistent ontology O
and a change operation oco, the task of consistent ontology evolution is to generate a
change operation oco′ such that O′ = oco′(oco(O)) results in a consistent ontology O′.

Please note that because of the monotonicity of the considered logic, an ontology
can only become logically inconsistent by adding axioms: If a set of axioms is satisfi-
able, it will still be satisfiable when any axiom is deleted. Therefore, we only need to
check the consistency for ontology change operations that add axioms to the ontology.

Effectively, if O ∪ {α} is inconsistent, in order to keep the resulting ontology con-
sistent some of the axioms in the ontology O have to be removed. In this sense, the
add-operation and the remove-operation are similar to the belief revision operation and
the belief contraction operation in the theories of belief revision [1].

In the following, we will present strategies to ensure logical consistency. The goal of
these strategies is to determine a set of axioms to remove to obtain a logically consistent
ontology with “minimal impact” on the existing ontology, e.g. based on Definition 7 of a

A Framework for Handling Inconsistency in Changing Ontologies 359

maximal consistent subontology. The main idea is that we start out with the inconsistent
ontology O ∪ {α} and iteratively remove axioms until we obtain a consistent ontology.
Here, it is important how we determine which axioms should be removed. This can be
realized using a selection function. The quality of the selection function is critical for
two reasons: First, as we have potentially have to search all possible subsets of axioms
in O for a maximal consistent ontology, we need to prune the search space by trying
to find the relevant axioms that cause the inconsistency. Second, we need to make sure
that we remove the dispensible axioms.

The first problem of finding the axioms that cause the inconsistency can be tar-
geted by considering that there must be some “connection” between these problematic
axioms. We formalize this notion with the following definition.

Definition 10 (Connectedness). A connection relation C is a set of axiom pairs,
namely, C ⊆ L × L.

A very simple, but useful connection is that of the direct structural connection relation:

Definition 11 (Direct Structural Connection). Two axioms α and β are directly struc-
turally connected – denoted with connected(α, β) –, if there exists an ontology entity
e ∈ NC ∪ NIa ∪ NIc ∪ NRa ∪ NRc that occurs in both α and β.

In the following, we present an algorithm (c.f. Algorithm 1) for finding (at least) one
maximal consistent subontology using the definition of structural connectedness (c.f.
Definition 11): We maintain a set of possible candidate subontologies Ω, which initially
contains only O ∪ {α}, i.e. the consistent ontology O before the change and the added
axiom α. In every iteration, we generate a new set of candidate ontologies by removing
one axiom β1 from each candidate ontology that is structurally connected with α or an
already removed axiom (in O \ O′), until at least one of the candidate ontologies is a
consistent subontology.

The properties of the algorithm (efficiency, completeness) will depend on the prop-
erties of the connectedness relation. The above definition of structural connectedness
provides good heuristics to efficiently find a maximal consistent subontology, but is
not complete for the case where axioms causing an inconsistency are not structurally
connected at all.

Algorithm 1. Determine consistent subontology for adding axiom α to ontology O

Ω := {O ∪ {α}}
repeat

Ω′ := ∅
for all O′ ∈ Ω do

for all β1 ∈ O′ \ {α} do
if there is a β2 ∈ ({α} ∪ (O \ O′)) such that connected(β1, β2) then

Ω′ := Ω′ ∪ {O′ \ {β1}}
end if

end for
end for
Ω := Ω′

until there exists an O′ ∈ Ω such that O′ is consistent

360 P. Haase et al.

Example 1. We will now show how Algorithm 1 can be used to maintain consistency.
As a running example, we will consider a simple ontology modelling a small research
domain, consisting of the following axioms:
O1 = {Employee � Person, Student � Person, PhDStudent � Student,
Employee � ¬Student,5 PhDStudent(peter)}.

Now consider a change operation oco1 that adds the axiom α = PhDStudent �
Employee. oco1(O1) results in an inconsistent ontology.

Algorithm 1 starts with O1 +̇α as element of the set of potential ontologies. In the
first iteration, a set of new potential ontologies is created by removing one of the axioms
that are structurally connected with the α. These axioms are: PhDStudent(peter),
Employee � ¬Student, PhDStudent � Student and Employee � Person.

The removal of either PhDStudent(peter), PhDStudent � Student or
Employee � ¬Student will result in a maximal consistent subontology. For the deci-
sion which axiom should be removed from the ontology, one can rely on further back-
ground information indicating the relevance of the axioms, or on interaction with the
user. For the following examples, we assume that the resulting ontology O2 is created
by removing the axiom Student � ¬Employee, i.e. O2 = O1 +̇ PhDStudent �
Employee −̇ Student � ¬Employee.

4.2 Repairing Inconsistencies

The most straightforward approach to inconsistencies is to repair them when they are
detected [13]. Repairing an inconsistency actually consists of two tasks: Locating In-
consistencies and Resolving Inconsistency. The task of repairing inconsistencies can
thus be defined as: For an inconsistent ontology O we generate a change operation oco
such that O′ = oco(O) results in a consistent ontology O′.

Locating Inconsistencies As a first step, the source of the inconsistency has to be de-
tected. Normally, the source is a set axioms that when being part of the model at the
same time make it inconsistent.

An algorithm to find a subontology which leads to an unsatisfiable concept (adopted
from [13]) can use similar ideas like those for consistent ontology evolution. The main
difference is that the latter assumes that the intended minimal inconsistent ontologies
would contain an added axiom α, whereas the former has no such requirement but
starting with an unsatisfiable concept C for the connection checking6. Algorithm 2
uses the increment-reduction strategy to find a minimal subontology for an unsatisfiable
concept. Namely, the algorithm finds a subset of the ontology in which the concept is
unsatisfiable first, then reduces the redundant axioms from the subset.

Based on those detected subsets for all unsatisfiable concepts, we can find minimal
subsets of the ontology O which leads to all unsatisfiable concepts[13]. That can be
used for knowledge workers to repair the ontology to avoid all unsatisfiable concepts.

5 Stating that employees cannot be students.
6 In order to do so, we extend the directly structral connection relation on concept sets, so that

we can say something like an axiom β is connected with a concept c, i.e., connected(β, C).
It is easy to see that it does not change the definition.

A Framework for Handling Inconsistency in Changing Ontologies 361

Algorithm 2. Localize a minimal subset of O in which a concept C is unsatisfiable
Ω := ∅
repeat

for all β1 ∈ O \ Ω do
if there is a β2 ∈ Ω such that connected(β1, β2) or connected(β1, c) then

Ω := Ω ∪ {β1}
end if

end for
until c is unsatisfiable in Ω
for all β ∈ Ω do

if c is unsatisfiable in Ω − {β} then
Ω := Ω − {β}

end if
end for

Resolving Inconsistency Once the source of an inconsistency has been found, the con-
flict between the identified set of axioms has be to resolved. This task again is difficult,
because in most cases there is no unique way of resolving a conflict but a set of al-
ternatives. Often, there are no logical criteria selecting the best resolution. A common
approach is to let the user resolve the conflict after it has been located.

Example 2. We again use the running example introduced in Example 1. Assume that
we start out with the inconsistent ontology O3 = {Employee � Person, Student �
Person, PhDStudent � Student, Employee � ¬Student, PhDStudent �
Employee, PhDStudent(peter)}.

In this example the concept PhDStudent is unsatisfiable. Starting with this un-
satisfiable concept the algorithm finds the connected set O31 = {PhDStudent �
Student, PhDStudent � Employee, PhDStudent(peter)}. The concept
PhDStudent is still safisfiable in O31. Extending O31 with the connection relation the
algorithm gets O3. Reducing the redundant axioms, the algorithm finds the set O32 =
{PhDStudent � Student, Employee � ¬Student, PhDStudent � Employee}.
Since PhdStudent is the only unsatisfiable concept in this example, the knowledge
workers can focus on the set O32 to repair O3.

The approach proposed in this subsection is similar those in diagnosis[12]. There
is a relativly well studied method for diagnosis, with a straightforward definitions: di-
agnosis is the smallest set of axioms that need to be removed to make the ontology
consistent. These diagnoses can be calculated relatively easily on the basis of the mini-
mal inconsistent subontologies. So, this covers the two parts of localizing and repairing
inconsistencies (repairing an incoherent model by removing the minimal diagnoses).

4.3 Reasoning with Inconsistent Ontologies

In some cases it is unavoidable to live with inconsistencies, if consistency cannot be
guaranteed and inconsistencies cannot be repaired. Nevertheless, there is still a need to
reason about ontologies in order to support information access and integration of new
information. We can summarize the task of reasoning with inconsistent ontologies: For
a possibly inconsistent ontology O and a query q, the task of inconsistency reasoning is
to return a meaningful query answer.

362 P. Haase et al.

As shown above, the standard entailment is explosive, namely, any formula is a
logical consequence of an inconsistent ontology. Therefore, conclusions drawn from
an inconsistent ontology by classical inference may be completely meaningless. For
an inconsistency reasoner it is expected that is able to return meaningful answers to
queries, given an inconsistent ontology. In the case of a consistent ontology O, classi-
cal reasoning is sound, i.e., a formula φ deduced from O holds in every model of O.
This definition is not preferable for an inconsistent ontology O as every formula is a
consequence of O using a standard entailment |=. However, often only a small part of
O has been incorrectly constructed or modelled, while the remainder of O is correct.
Therefore, we propose the following definition of meaningfulness:

Definition 12 (Meaningfulness). A query answer to a query O |≈ α? is meaningful iff
the following two conditions are satisfied:

1. soundness: the answer is a consequence of a consistent subontology of O under the
standard entailment |=,

2. consistency: the answer is a consistent query answer under the entailment |≈.

Algorithm 3. Linear extension strategy for the evaluation of query O |≈ α

Ω := ∅
repeat

Ω′ := {β1 ∈ O \ Ω : there exists a β2 ∈ Ω ∪ {α} such that connected(β1, β2)}
if Ω′ = ∅ then

return O �|≈ α
end if
Ω := Ω ∪ Ω′

if Ω inconsistent then
Ω′′ := maximal consistent subontology(Ω)
if Ω′′ |= α then

return O |≈ α
else return O �|≈ α

end if
end if

until Ω |= α
return O |≈ α

The general strategy for processing inconsistent ontologies is: given a connec-
tion/relevance relation (c.f. Definition 10), we select some consistent subontology from
an inconsistent ontology. Then we apply standard reasoning on the selected subontol-
ogy to find meaningful answers. If a satisfying answer cannot be found, the relevance
degree of the selection function is made less restrictive thereby extending the consis-
tent subontology for further reasoning. If an inconsistent subset is selected, we call the
over-determined processing(ODP)[8]. One of the ODP strategies is to find the set of
the maximal consistent subontologies of the selected set. If there exist contradictory
answers from those maximal consistent subontologies, the algorithm will return ’un-
known’. A linear extension strategy with an ODP for the evaluation of a query ’O |≈ α?’
is described in Algorithm 3. We can prove the following property[8]:

A Framework for Handling Inconsistency in Changing Ontologies 363

Proposition 2 (Meaningfulness of Linear Extension Strategy). The answers which
are obtained by the linear extension strategy are meaningful.

Example 3. Consider the inconsistent ontology O3 = {Employee � Person,
Student � Person, PhDStudent � Student, PhDStudent � Employee,
Employee � ¬Student, PhDStudent(peter)}.

Assume now we wanted to ask the query O3. |≈ Student(peter)?. Using stan-
dard entailment we would obtain no meaningful answer, as both Student(peter) and
¬Student(peter) are entailed by the ontology. By the linear extension on the con-
nection relation with Student(peter), the algorithm will construct the ontology Ω =
{PhDStudent(peter), PhDStudent � Employee, PhDStudent � Student}.
This ontology Ω is consistent, and Ω |= α. Thus, the algorithm concludes that
O3 |≈ Student(peter).

4.4 Multi-version Reasoning

Multi-version reasoning is an approach that tries to cope with possible inconsistencies
in changing ontologies by considering not only the latest version of an ontology, but
all previous versions as well. This approach mostly applies in cases where the problem
is not so much an inconsistency in the ontology itself, but inconsistencies that arise
from the interaction of the ontology with its environment in terms of instance data
and applications. We consider the sequence of ontologies O1 ≺ · · · ≺ On where the
ordering relation is defined as:

Oi ≺ Oj ⇔ ∃ococomposite : ococomposite(Oi) = Oj

Intuitively, On is the current version of the ontology. O1, · · · , On−1 are older ver-
sions of the same ontology that have been created from the respective previous ontology
in terms of a composite change action. We can assume that each of the ontologies is
consistent. Further, we assume that an application expresses its requirements for com-
patibility as an expectation α, for which there is an ontology Oi in the sequence such
that Oi ∪ {α} is consistent.

Based on these assumptions, the task of ensuring consistency reduces to the task
of finding the right version Oi of the ontology in the sequence of versions. This task
requires the ability to determine the satisfiability of certain expressions across the dif-
ferent versions of the ontology. This can be done using an extension of the ontology
language called L+ with the operator PreviousVersionφ, which is read as ’φ holds
in the previous version’, the operator AllPriorVersionsφ, which is read as ’φ holds
in all prior versions’, and the operator SomePriorVersionφ, which is read as ’φ
holds in some prior versions’.

Using these basic operators, we can define a rich set of query operators for asking
specific questions about specific versions of the ontology and relations between them.
In the case where On ∪ {α} is inconsistent, we can for example check whether the
previous version can be used (PreviousVersionα) and whether there is a version
at all that can be used instead (SomePriorVersionα). For the formal semantics of
these operators we refer the reader to [7].

Example 4. Consider we have an ordered relation of ontologies O1 ≺ O2, using the
ontologies from Example 1. Now assume a compatibility criteria that has to fulfilled

364 P. Haase et al.

for compatibility: α = Employee(peter), i.e. a knowledge base in which Peter is
an employee. The latest version O2 is compatible with the compatibility criteria α as
O2 ∪ {α} is consistent. However, O1 does not meet the compatibility requirements, as
O1∪{α} is inconsistent (It still contained the axiom stating the disjointness of students
and employees). In fact, it holds that AllPriorVersions¬Employee(peter).

5 Comparison and Evaluation

We are going to compare the four approaches dealing with inconsistency, and make an
evaluation on them. By the evaluation, we want to suggest several guidelines for system
developers to know under which circumstance which approach is more appropriate.

5.1 Different Functionality

A first major difference that is revealed by the formal analysis in the previous section
is the fact that the different methods for dealing with inconsistent ontologies actually
have very different functionality (their input/output-relations are rather different). Con-
sequently, they solve rather different tasks, and are suited for different use-cases. The
situation is summarised in Table 1.

Table 1. Comparison of Approaches

Approach Applied At Input Output

Consistent Evolution Development Consistent Ontology, Change Consistent Ontology
Inconsistency Repair Development Inconsistent Ontology Consistent Ontology
Inconsistency Reasoning Runtime Consistent Ontology, Query Meaningful answer
Multi-version reasoning Runtime Versions of Ontologies, Query Consistent Answer

Dependence on query. First, this table shows that two of the methods depend on which
user-query is given to the ontology (reasoning with inconsistency and multi-version
reasoning). Consequently, these two methods are only applicable at runtime, when a
user interacts with the ontology. The other two methods (ontology evolution and in-
consistency repair) are independent of user-queries, and can thus already be applied at
ontology development time.

Known or unknown change. The two methods that are applicable at ontology devel-
opment time are actually very similar (as is apparent from sections 4.1 and 4.2). A
crucial difference is that the first of these (ontology evolution) requires knowledge of
the change that caused the ontology to become inconsistent: algorithm 1 requires the
change α to be known, which is not the case with 2. This is clearly a restriction on
the applicability of ontology evolution, which comes in exchange for the benefit of a
simpler algorithm.

Known or unknown history. The two query-dependent approaches also differ in their
respective input-requirements: multi-version reasoning requires a history of ontology-
versions to be available, which is a very strong demand, often not feasible in many
settings, in particular in combination with its runtime usage.

A Framework for Handling Inconsistency in Changing Ontologies 365

5.2 Other Aspects

Heuristics. Another difference between the various approaches is the extent to which
they employ heuristics: in reasoning with inconsistency, one heuristically chooses a
consistent subontology that is good enough to answer the query (it need not be minimal,
just small enough to be consistent, and large enough to answer the query). In contract,
both Evolution and Repair aim at the smallest impact on the inconsistent ontology.

Efficiency. Finally, one would expect the various approaches to differ drastically in
their computational efficiency. Some observations can be made immediately: the Evo-
lutionary approach exploits the knowledge about the cause of the inconsistency, and
can therefore be more efficient then Repair, which does not have access to this informa-
tion. However, the cost of all of the algorithms described in this paper are dominated by
untractable operations such as checking the unsatisfiability of a concept or the inconsis-
tency of an entire ontology. Consequently, worst-case complexity analysis is not going
to tell us anything interesting here. Instead, work will have to be done on average-case
complexity analysis and experiments with realistic datasets to gain more insight into
the relevative costs of each of the approaches.

Knowledge Requirements. Finally, the approaches differ in the knowledge that is re-
quired to operate them:

– the repair approach requires the ontology developers to have sufficient domain
knowledge to decide which part of the ontology should be removed to recover con-
sistency. On the other hand, once done, it needs no additional expertise from the
ontology users.

– Reasoning with inconsistencies on the other hand emposes no knowledge require-
ments on the developers, but requires some (weak) knowledge from the users to
determine whether a query answer is acceptable.

– Ontology versioning places again a heavy knowledge requirement on the user in
order to decide which version is most suitable for their application.

6 Related Work

The evolution of ontologies has been addressed by different researchers by defining
change operations and change representations for ontology languages. Change opera-
tions have been proposed for specific ontology languages. In particular change oper-
ations have been defined for OKBC, OWL [9] and for the KAON ontology language
[14]. All approaches distinguish between atomic and complex changes. Different ways
of representing ontological changes have been proposed: besides the obvious represen-
tation as a change log that contains a sequence of operations, authors have proposed to
represent changes in terms of mappings between two versions of an ontology [11].

The problem of preserving integrity in the case of changes is also present for on-
tology evolution. On the one hand the problem is harder here as ontologies are often
encoded using a logical language where changes can quickly lead to logical inconsis-
tency that cannot directly be determined by looking at the change operation. On the
other hand, there are logical reasoners that can be used to detect inconsistencies both
within the ontology and with respect to instance data. As this kind of reasoning is often

366 P. Haase et al.

costly, heuristic approaches for determining inconsistencies have been proposed [9,15].
While deciding whether an ontology is consistent or not can easily be done using exist-
ing technologies, repairing inconsistencies in ontologies is an open problem although
there is some preliminary work on diagnosing the reasons for an inconsistency which
is prerequisite for a successful repair [13].

The problem of compatibility with applications that use an ontology has received
little attention so far. The problem is that the impact of a change in the ontology on the
function of the system is hard to predict and strongly depends on the application that
uses the ontology. Part of the problem is the fact that ontologies are often not just used as
a fixed structure but as the basis for deductive reasoning. The functionality of the system
often depends on the result of this deduction process and unwanted behavior can occur
as a result of changes in the ontology. Some attempts have been made to characterize
change and evolution multiple versions on a semantic level [3,4]. This work provides
the basis for analyzing compatibility which currently is an open problem.

7 Conclusion

Unlike work in traditional knowledge engineering, knowledge intensive applications on
the Web will not be able to ignore the issue of inconsistent knowledge in general, and of
inconsistent ontologies in particular. This has been recognised in various contributions
to the literature that propose different ways of dealing with inconsistent ontologies.
These approaches differ both in the machinery they use, and in the way they propose to
deal with inconsistent ontologies, ranging from avoiding inconsistencies, to diagnosing
and repairing the inconsistencies, to trying to reason in the presence of the inconsisten-
cies, and to tracking the inconsistencies over the development history of an ontology.

In this paper, we have rephrased four existing approaches to dealing with inconsis-
tent ontologies in terms of a set of elementary definitions. This allowed us to compare
these rather different approaches on an equal footing. This comparison revealed among
other things that what originally seemed to be different approaches to the same problem
(namely dealing with inconsistent ontologies) are actually solutions that apply in very
different settings: at ontology-development time or at ontology-use time, and requir-
ing different pieces of information (the cause of the inconsistency, or the history of the
ontology changes). For the respective approaches, we provide implementations,
which are available at http://www.aifb.uni-karlsruhe.de/WBS/pha/
owlevolution/.

Acknowledgements. Research reported in this paper has been partially financed by EU
in the IST projects SEKT (EU IST-2003-506826) and Knowledge Web (EU IST-2003-
507482).

References

1. Giorgos Flouris. Belief change in arbitrary logics. In HDMS, 2004.
2. P. Haase and L. Stojanovic. Consistent evolution of OWL ontologies. In Proceedings of the

Second European Semantic Web Conference, Heraklion, Greece, 2005, MAY 2005.
3. J. Heflin. Towards the Semantic Web: Knowledge Representation in a Dynamic, Distributed

Environment. Phd thesis, University of Maryland, 2001.

http://www.aifb.uni-karlsruhe.de/WBS/pha/
owlevolution/

A Framework for Handling Inconsistency in Changing Ontologies 367

4. J. Heflin and J. Z. Pan. A model theoretic semantics for ontology versioning. In Third
International Semantic Web Conference, pages 62–76, Hiroshima, Japan, 2004. Springer.

5. I. Horrocks and P. F. Patel-Schneider. Reducing OWL Entailment to Description Logic Sat-
isfiability. Journal of Web Semantics, 1(4), 2004.

6. I. Horrocks, U. Sattler, and S. Tobies. Practical Reasoning for Very Expressive Description
Logics. Logic Journal of the IGPL, 8(3):239–263, 2000.

7. Z. Huang and H. Stuckenschmidt. Reasoning with multiversion ontologies: a temporal logic
approach. In Proceedings of the 2005 International Semantic Web Conference (ISWC’05),
2005.

8. Z. Huang, F. van Harmelen, and A. ten Teije. Reasoning with inconsistent ontologies. In
Proceedings of the International Joint Conference on Artificial Intelligence(IJCAI’05), pages
254–259, 2005.

9. M. Klein. Change Management for Distributed Ontologies. Phd thesis, Vrije Universiteit
Amsterdam, 2004.

10. D. McGuinness and F. van Harmelen. OWL Web Ontology Language. Recommendation,
W3C, 2004. http://www.w3.org/TR/owl-features/.

11. N.F. Noy and M.A. Musen. The prompt suite: Interactive tools for ontology merging and
mapping. International Journal of Human-Computer Studies, 59(6):983–1024, 2003.

12. R. Reiter. A theory of diagnosis from first principles. Artif. Intelligence, 32(1):57–95, 1987.
13. S. Schlobach and R. Cornet. Non-standard reasoning services for the debugging of descrip-

tion logic terminologies. In Proceedings of the International Joint Conference on Artificial
Intelligence - IJCAI’03, Acapulco, Mexico, 2003. Morgan Kaufmann.

14. L. Stojanovic. Methods and Tools for Ontology Evolution. Phd thesis, University of Karl-
sruhe, 2004.

15. H. Stuckenschmidt and M. Klein. Integrity and change in modular ontologies. In Proceed-
ings of the International Joint Conference on Artificial Intelligence - IJCAI’03, Acapulco,
Mexico, 2003. Morgan Kaufmann.

	Introduction
	General Overview
	Basic Definitions
	Handling Inconsistencies of Changing Ontologies
	Consistent Ontology Evolution
	Repairing Inconsistencies
	Reasoning with Inconsistent Ontologies
	Multi-version Reasoning

	Comparison and Evaluation
	Different Functionality
	Other Aspects

	Related Work
	Conclusion

