
A FRAMEWORK FOR HARDWARE CELLULAR GENETIC ALGORITHMS:
AN APPLICATION TO SPECTRUM ALLOCATION IN COGNITIVE RADIO

Pedro Vieira dos Santos, José Carlos Alves, João Canas Ferreira

INESC TEC (formerly INESC Porto)
Faculdade de Engenharia, Universidade do Porto

Porto, Portugal
email: pedro.vieira.santos@fe.up.pt, jca@fe.up.pt, jcf@fe.up.pt

ABSTRACT

The genetic algorithm (GA) is an optimization metaheuristic

that relies on the evolution of a set of solutions (population)

according to genetically inspired transformations. In the vari-

ant of this technique called cellular GA, the evolution is done

separately for subgroups of solutions. This paper describes a

hardware framework capable of efficiently supporting custom

accelerators for this metaheuristic. This approach builds a

regular array of problem-specific processing elements (PEs),

which perform the genetic evolution, connected to shared

memories holding the local subpopulations. To assist the

design of the custom PEs, a methodology based on high-

level synthesis from C++ descriptions is used. The proposed

architecture was applied to a spectrum allocation problem

in cognitive radio networks. For an array of 5×5 PEs in

a Virtex-6 FPGA, the results show a minimum speedup of

22× compared to a software version running on a PC and a

speedup near 2000× over a MicroBlaze soft processor.

1. INTRODUCTION

Genetic algorithms (GAs) have been widely used for solv-

ing complex optimization problems with proven success in

a wide range of applications [1]. This class of algorithms

mimics the natural evolution of living species by iteratively

applying genetically inspired operations to a population of

solutions with the goal of evolving towards good, but not

necessarily optimal, solutions. However, the large number of

iterations usually required represents a drawback when target-

ing embedded systems, particularly if real-time constraints

apply.

In the last few years, cellular genetic algorithms (cGAs)

have become a promising area of research in the field of

This work has been partially funded by National Funds through the FCT

- Fundaçao para a Ciência e a Tecnologia (Portuguese Foundation for Science

and Technology) through the Ph.D scholarship SFRH/BD/41259/2007, and

by the bilateral cooperation between FCT and Deutscher Akademischer

Austausch Dienst (DAAD) through the project FCT/DAAD 2010/2011 under

reference daad124412622223295.

evolutionary algorithms [2], exhibiting interesting opportu-

nities for parallel custom computing. This variant of GAs

spreads the solutions over a regular grid, and constrains the

application of the genetic interactions among the solutions to

local subpopulations. This leads to a natural parallelization

of the algorithm, as the evolution of the overall population

can be handled in parallel by independent processors, each

one dealing with its local subpopulation.

The goal of the work presented in this paper is to build

custom hardware accelerators for cGAs. Besides building

application-specific units capable of efficiently performing

the genetic operations, we also exploit the inherent paral-

lelism of cGAs to accelerate the optimization process. This

is done by spreading the evolutionary process over a regular

array of problem-specific processing elements (PEs) that op-

erate on partially overlapped sub-sets of the population. The

proposed architecture is built around a scalable and parame-

terized generic array framework that implements the memory

system, the communication and control infrastructure, and

a set of problem-specific PEs that are specified in C++ and

translated to hardware by high-level synthesis (HLS).

This architecture and design methodology have been eval-

uated with an implementation of a cGA for solving a spec-

trum allocation problem in cognitive radio networks. An em-

bedded system with a MicroBlaze attached to the cGA array

has been implemented in a Xilinx Virtex-6 FPGA. A 25 node

processor array has shown significant speedups compared

to a software version running on a PC. The final optimiza-

tion results have better quality than the ones obtained by a

heuristic procedure.

This work makes the following contributions: (a) De-
scribes a scalable and parameterized processor array for the

execution of cGAs, including a distributed control and com-

munication infrastructure to access the array components

from an host processor; (b) Presents implementation and

execution results for an NP-hard problem. Moreover, a high-

level design development methodology for creating the cGA

processing element is presented, which eases the implemen-

tation of other optimization problems.

978-1-4799-0004-6/13/$31.00 ©2013 IEEE

2. STATE OF THE ART

The genetic algorithm is a population-based optimization

metaheuristic inspired by the evolutionary refinement of liv-

ing beings [1]. A pool of solutions (the population) evolves
iteratively by replacing existing solutions with new ones that

are created by operations like selection, crossover and muta-
tion. With an appropriate encoding of solutions and genetic

operators, and using replacement strategies based on the eval-

uation of an objective function (or fitness), the GA has proven

to be an effective optimization metaheuristic for a variety of

NP-hard problems.

When a single population exists and any solution can

interact with any other, the GA is called panmictic [2]. The

work reported in [3] proposes a general-purpose GA engine

where several parameters can be specified together with an

interface to a custom fitness function. The work is based on

the generational GA, where a new complete population is

created at each generation completely replacing the existing

one. Another approach is the steady-state GA, where the

population is evolved by generating a single solution per

iteration to replace an existing one. This approach requires

less memory than the generation GA, and it can lead to

efficient pipelined architectures [4].

In contrast to the panmictic GA, a structured GA divides

its population into smaller subpopulations. Two main classes

of structured GAs are usually considered: the distributed
GA (dGA) and the cellular GA (cGA) [2]. In the dGA the

population is divided into separate subpopulations, which

evolve independently with sporadic interaction among them.

In [5] a dGA is proposed with 2 processing units (each one

implemented in different FPGAs) for solving the set cov-

ering problem. The results show a speedup of two times

when compared to a single processor. The work developed

in [6] integrates 4 GA processors in an Altera Cyclone FPGA

device for solving a traveling salesman problem.

In the cGA, solutions are distributed in a regular array

and one solution can only be combined with others residing

in the vicinity. This shows an interesting potential for accel-

eration with coarse-grain parallel processing architectures, as

several solutions can be evolved simultaneously. In previous

work we validated the concept of the proposed array archi-

tecture with the traveling salesman problem [7]. In this paper

we propose a flexible and scalable hardware framework for

supporting this category of GAs and present implementation

and execution results for a relevant optimization problem.

3. THE CGA HARDWARE ARCHITECTURE

3.1. General cGA array architecture

The cellular GA hardware architecture proposed in this work

is depicted in Figure 1. A basic cell formed by a PE attached

to two dual-port memories is replicated to build a 2D regular

PE

MEM

M
EM PE

MEM

M
EM PE

MEM

M
EM PE

MEM

M
EM

PE

MEM

M
EM PE

MEM

M
EM PE

MEM

M
EM PE

MEM

M
EM

cGA cell

Fig. 1. Hardware architecture of the cellular genetic algo-
rithm array.

array. The whole population handled by the algorithm is

spread over multiple memories (subpopulations). A single

PE has only direct access to its four local memories and each

memory is shared by two adjacent PEs.

The architecture exhibits a regular structure and it can

thus be constructed as a rectangular array with varying num-

ber of PEs and different aspect ratios. By connecting the op-

posite sides of the array (both for top-bottom and left-right)

the architecture acquires a toroidal shape. In alternative, non-

toroidal 2D shapes can be easily built by including additional

memories so that all PEs connect to four memories.

3.2. Interface and control

The proposed cGA array is intended as a peripheral of an

embedded processor that controls the algorithm setup and

execution. Figure 2 shows the overall architecture of such

system, consisting of an embedded processor, a cGA con-

troller unit, and the cGA array itself. The control unit is

mainly responsible for the interface between the software

part (the processor) and the cGA array.

PE interface: To enable the access to each cGA cell by

the host processor, a network infrastructure that traverses all

the array is included. The network uses a simple routing

mechanism, using as address the row/column indexes of

each PE. The network enables sending commands to each

PE for controlling its execution state and accessing its local

memories, and also receiving status information.

Subpopulation memory access control: As simultane-

ous accesses from two neighboring PEs to the same memory

region (holding one solution) can occur, read and write oper-

ations must guarantee memory coherency. This is done by

a dedicated collision avoidance circuit associated with each

subpopulation memory; it is responsible for tracking which

solutions are being used by each PE and for informing them

if a conflicting access occurs.

Global RNG: The operation of the genetic algorithm

relies on random numbers. To avoid the replication of random

number generators (RNGs) in all the PEs, a global RNG feeds

a dedicated 1-bit network that traverses all the PEs. A shift-

Embedded
Microprocessor

cGA
Controller

cGA

Global
RNG

Fig. 2. cGA hardware overall architecture.

register, local to each PE, acquires the necessary random

numbers for the operation of the algorithm.

4. HARDWARE DESIGN FLOW

The customization of this architecture for a new problem

includes two main phases: configuring the array size and

shape, and creating the PE and the cGA array controller.

The organization of the cGA array is defined by a small set

of parameters that configure a synthesizable Verilog RTL

model. The PE must be designed for each new problem,

as the behavior of the operations of the genetic algorithm

(selection, crossover, mutation and fitness evaluation) are

highly specific of each particular application.

In order to simplify the design task of the PE, a high-level

synthesis from C++ design flow was adopted. It starts from

a template that matches the interface between the PE and

the surrounding memories and control infrastructure. This

template also includes a set of C++ classes for accessing

the PE local memories and the control bus, manage mem-

ory collisions and access the global RNG. This way, a PE

functionality is described in C++ where a set of methods are

called when needed to perform the subpopulation memory

access control and to access the control bus and the global

RNG. The high-level synthesis tool used was Catapult com-

bined with RTL synthesis by Precision RTL. The result of

this process is a netlist that is included in a ISE/EDK project

previously created for a given FPGA-based platform.

5. CASE STUDY: SPECTRUM ALLOCATION
PROBLEM

The spectrum allocation problem consists of finding an opti-

mal assignment (satisfying some criteria) of the available ra-

dio spectrum channels to secondary users (e.g., smartphones,

laptops), while a set of primary users already have assigned

radio channels. In the model adopted in this work, a set of N
secondary users try to access M non-overlapping orthogonal

channels. Each secondary user can utilize any channel, but

limited by interference constraints among all users as defined

by two binary matrices L and C. The spectrum assignment

problem consists in finding the best channel assignment bi-

nary matrix A. The constraints of the problem are defined as:

an,m ≤ ln,m, ∀n < N,m < M (1)

Table 1. Results for different spectrum allocation instances

with a cGA of 5×5 PEs.

cGA hardware Speedup

instance
CSGC
fitness

best fitness
time for 106

generations
Micro-
Blaze

Intel
PC

5 6 1130 1130 0.086 s 1937 22

8 16 6090 6129 0.149 s 3036 44

16 16 6959 6985 0.350 s 2847 43

16 32 15197 15220 0.384 s 4423 74

20 24 11209 11278 0.498 s 3708 56

32 32 22882 22978 1.023 s 4115 64

an,m + ak,m ≤ 1, if cn,k,m = 1, ∀n, k < N,m < M (2)

and the objective of the problem is to maximize a given utility

function:

Usum =
N−1∑

n=0

M−1∑

m=0

an,m · bn,m (3)

where the matrix B represents a channel quality metric. Fur-

ther details of this mathematical model can be found in [8].

6. IMPLEMENTATION AND RESULTS

The proposed cGA array hardware architecture together with

the methodology described in Sec. 4 has been configured to

solve the spectrum allocation problem.

A solution of the problem is encoded with a N×M bitmap

representing the channel assignment matrix A. By design,

we decided to use a single BRAM of the target Virtex-6

FPGA per subpopulation memory and constrain N and M
to a maximum of 32. Additionally, each memory uses half

of the space to keep all the data necessary to configure a

spectrum allocation problem, while the other half keeps the

solutions of the population.

Two binary tournaments are performed to select two so-

lutions as parents. These go through uniform crossover and

mutation (bit-flip with probability < 5%) to generate a new

solution. A random solution is chosen that will be replaced

by the new one if it is better than the one selected for replace-

ment. The crossover and mutation operations may generate

solutions that do not satisfy the problem constraints defined

by equations 1 and 2. In this case a set of corrections are

performed to eliminate the unfeasibility.

Catapult HLS version 2010a (University Version) and

Precision RTL 2010a were used to synthesize the PE and

cGA controller, and Xilinx ISE and EDK 13.4 to implement

the complete embedded system. The global RNG has been

implemented with a cellular automata ring network as in [7].

The target device is a Xilinx Virtex-6 FPGA (XC6VLX240T-

1) on a ML605 board.

Six instances of the problem have been created, based on

the pseudo code provided in [8]. The cGA hardware speedup

is measured by comparison with a software version of the

Table 2. Results for different cGA configurations for the

20 24 instance.

cGA
array

solutions
per subpop.

population
size

best fitness
time for 106

generations

2×2 16 192 11205 3.10 s

3×3 8 192 11221 1.38 s

4×4 5 200 11246 0.78 s

5×5 3 180 11248 0.50 s

same algorithm coded in C and executed on a PC and on

the MicroBlaze processor. Additionally, the quality of the

solutions found is compared with the results of an heuristic

named colour-sensitive graph colouring (CSGC) [8].

Table 1 presents the results obtained for a cGA hardware

configuration of 5×5 PEs with non-toroidal shape. The

instances are named N M and each subpopulation mem-

ory accommodates 8 solutions, resulting in a population of

480 individuals. Results are averaged over 100 independent

runs. The results show that the best averaged fitness obtained

with the cGA surpasses the existing CSGC heuristic. Re-

garding execution time, the hardware cGA array achieves

a speedup ranging from 22 to 74× over a PC with an Intel

T8100 processor at 2.1GHz; compared to the MicroBlaze

processor running at 150MHz the speedup exceeds 1937×.

Table 2 presents the results of running instance 20 24 with

different cGA array configurations, ranging from 2×2 to

5×5. The results were obtained with the same procedure,

but now considering a population with approximately 200

solutions. The number of PEs ranges from 4 to 25 and the

results show a throughput (number of generations per time

unit) that increases linearly with the number of PEs.

The proposed cGA hardware architecture can be tailored

by choosing the number of PEs, impacting not only on the

execution time, but also on the hardware resources needed.

Table 3 shows the FPGA resources used for different ar-

ray configurations, including the MicroBlaze processor with

MMU and FPU. The designs were implemented for a Micro-

Blaze clock frequency of 150MHz, with the cGA hardware

running at 75MHz.

The same problem is addressed for an instance 5 5 in [9],

where the generation of a single solution takes an average

time of 547 μs (0.093 s reported for running 10 generations
with 17 solutions each) running on a PC at 1.66GHz in

Matlab. With our 5×5 cGA array and a slightly larger 5 6
instance, the average time for generating one solution is only

86 ns, which represents a 6360× speedup over the reported

implementation.

7. CONCLUSIONS

This paper presents a flexible framework for implement cel-

lular genetic algorithms in custom hardware. The array is

formed by problem-specific processing elements that imple-

Table 3. Characteristics of the cGA implementations on a

Virtex-6 (XC6VLX240T-1) for different array sizes.

Parameter 2×2 3×3 4×4 5×5

Registers
35848

(11%)

47092

(15%)

62807

(20%)

83111

(27%)

LUTs
36266

(24%)

51664

(34%)

72653

(48%)

100790

(66%)

Slices
15782

(41%)

21949

(58%)

31262

(82%)

35507

(95%)

BRAMs
49

(11%)

61

(14%)

77

(18%)

97

(23%)

ment the genetic evolution on a subpopulation stored in a set

of local memories, shared by adjacent PEs. By specifying the

functionality of the PEs and a controller module, the cGA ar-

chitecture can be easily customized for different optimization

problems. To ease the development of a PE, its algorithmic

behavior is specified in C++ and a high-level synthesis design

flow is used. The results obtained by building a specific cGA

array for a spectrum allocation problem in cognitive radio

networks have shown significant speedups. For an array with

5×5 PEs, a minimum speedup of 22× was measured, when

comparing to a C code for the same algorithm running on a

PC, and near 2000× compared to the embedded MicroBlaze

processor running at 150MHz.

8. REFERENCES

[1] J. Holland, Adaptation in Natural and Artificial Systems. MIT
Press, 1992.

[2] E. Alba and B. Dorronsoro, Cellular Genetic Algorithms.
Springer Verlag, 2008, vol. 42.

[3] P. Fernando, S. Katkoori, D. Keymeulen, R. Zebulum, and
A. Stoica, “Customizable FPGA IP core implementation of a
general-purpose genetic algorithm engine,” IEEE Trans. Evol.
Comput., vol. 14, no. 1, pp. 133–149, 2010.

[4] P. Santos and J. Alves, “FPGA based engines for genetic
and memetic algorithms,” in Proc. Field-Program. Logic Appl.
IEEE, 2010, pp. 251–254.

[5] Y.-H. Choi and D. J. Chung, “VLSI processor of parallel genetic
algorithm,” in Proc. Second IEEE Asia Pacific Conf. ASICs,
2000, pp. 143–146.

[6] T. Tachibana, Y. Murata, N. Shibata, K. Yasumoto, and M. Ito,
“General architecture for hardware implementation of genetic
algorithm,” in 14th Annual IEEE Symp. Field-Program. Custom
Comput. Machines, 2006, pp. 291–292.

[7] P. V. dos Santos, J. C. Alves, and J. C. Ferreira, “A scalable
array for cellular genetic algorithms: TSP as case study,” in Int.
Conf. on Reconfigurable Computing and FPGAs. IEEE, 2012,
pp. 1–6.

[8] C. Peng, H. Zheng, and B. Y. Zhao, “Utilization and fairness in
spectrum assignment for opportunistic spectrum access,” Mo-
bile Networks and Applicat., vol. 11, no. 4, pp. 555–576, 2006.

[9] Z. Zhao, Z. Peng, S. Zheng, and J. Shang, “Cognitive radio spec-
trum allocation using evolutionary algorithms,” IEEE Trans.
Wireless Commun., vol. 8, no. 9, pp. 4421–4425, 2009.

