
A Framework for High-Level Feedback to

Adaptive, Per-Pixel, Mixture-of-Gaussian

Background Models

Michael Harville

Hewlett-Packard Laboratories
1501 Page Mill Rd. ms 3U-4, Palo Alto, CA 94304, United States

harville@hpl.hp.com

Abstract.

Copyright 2002 Springer-Verlag. Published in the 7th European Conference on Com-
puter Vision (ECCV-2002), May 28-31, 2002, Copenhagen, Denmark. Personal use
of this material is permitted. Permission to reprint/republish for advertising or pro-
motional purposes or for creating new collective works for resale or redistribution to
servers or lists, or to reuse any copyrighted component of this work in other works,
must be obtained from Springer-Verlag.

Time-Adaptive, Per-Pixel Mixtures Of Gaussians (TAPP-
MOGs) have recently become a popular choice for robust modeling and
removal of complex and changing backgrounds at the pixel level. How-
ever, TAPPMOG-based methods cannot easily be made to model dy-
namic backgrounds with highly complex appearance, or to adapt promptly
to sudden “uninteresting” scene changes such as the re-positioning of a
static object or the turning on of a light, without further undermin-
ing their ability to segment foreground objects, such as people, where
they occlude the background for too long. To alleviate tradeoffs such as
these, and, more broadly, to allow TAPPMOG segmentation results to
be tailored to the specific needs of an application, we introduce a gen-
eral framework for guiding pixel-level TAPPMOG evolution with feed-
back from “high-level” modules. Each such module can use pixel-wise
maps of positive and negative feedback to attempt to impress upon the
TAPPMOG some definition of foreground that is best expressed through
“higher-level” primitives such as image region properties or semantics of
objects and events. By pooling the foreground error corrections of many
high-level modules into a shared, pixel-level TAPPMOG model in this
way, we improve the quality of the foreground segmentation and the per-
formance of all modules that make use of it. We show an example of using
this framework with a TAPPMOG method and high-level modules that
all rely on dense depth data from a stereo camera.

1 Introduction and Motivation

Many computer vision and video processing applications, in domains ranging
from surveillance to human-computer interface to video compression, rely heav-
ily on an early step, often referred to as “foreground segmentation” or “back-
ground removal”, that attempts to separate novel or dynamic objects in the scene
(“foreground”) from what is normally observed (“background”). Recently, meth-
ods employing Time-Adaptive, Per-Pixel Mixtures Of Gaussians (TAPPMOGs)
have become a popular choice for modeling scene backgrounds at the pixel level
[4–6, 8, 10, 12, 15, 16, 20]. In these methods, the time series of observations at a
given image pixel is treated as independent of that for all other pixels, and is
modeled using a mixture of Gaussians. The per-pixel models are updated as new

observations are obtained, with older observations losing influence over time. At
each time step, a subset of the Gaussians in each per-pixel model is selected as
representative of the scene background, and current observations that are not
well-modeled by those Gaussians are designated as foreground.

We refer to a TAPPMOG as a “pixel-level” foreground segmentation method
because it classifies the current scene image as foreground or background at each
pixel using only image information that has been collected at or near that pixel
over time. Many other pixel-level foreground segmentation techniques exist, but
TAPPMOG methods have gained favor because, unlike most others, they possess
the following combination of attributes:

• TAPPMOGs slowly adapt their background model to persistent scene appear-
ance modifications such as the insertion or removal of an object, the moving
of an object such as a rolling swivel chair from one static position to another,
and the change in global illumination that occurs when a light is turned on or
when the sun passes behind clouds. While such changes may be of temporary
interest, in some applications and hence may be an acceptable part of the
foreground for some period of time, it is usually not desirable to pay special
attention to them indefinitely.

• TAPPMOGs are relatively proficient at modeling the largely repetitive scene
appearance changes associated with dynamic objects such as moving foliage,
ocean waves, or rotating fans. Although many applications are interested in
dynamic objects, most would also like to disregard those whose behavior, when
observed over long periods of time, does not seem to vary much.

• TAPPMOGs are suitable for real-time software implementation. For applica-
tions such as interactive human-computer interfaces and long-running activity-
monitoring systems, it is critical that the foreground segmentation process
does not require excessive computational resources or time.

Other proposed methods of pixel-level background modeling, such as ones
based on Wiener prediction filtering [17] and Bayesian decision-making with
normalized histogram probability representations [11], can be argued to also
possess the above attributes. Little work has been done in comparing the pixel-
level results of such methods with those of TAPPMOGs for the same input video
sequences, but informal comparison of published results suggests that none of
the alternatives perform significantly better than the best TAPPMOG variants.

Nevertheless, the foreground produced by TAPPMOGs still falls far short of
the ideal for many applications. TAPPMOGs struggle with performance tradeoffs
in two areas in particular:

Learning rate: The speed with which a TAPPMOG’s Gaussian mixtures be-
gin to reflect more recent observations in favor of older ones is controlled by
a parameter called the “learning rate”. A high learning rate allows the TAPP-
MOG to adapt its background model more quickly to sudden, persistent scene
appearance changes, such as those caused by the turning on of a light or the
re-positioning of a chair, that are foreground distractions to applications con-
cerned with analyzing the activities of people, automobiles, animals, or other

dynamic, purposeful objects. Such distractions can severely compromise overall
system performance if they are not accurately detected and compensated for by
further - and often computationally expensive - processing. Unfortunately, a high
learning rate also causes people who do not move enough to fade more quickly
into the background. When a person is expected to remain in roughly the same
location relative to the camera for extended time periods, as is the case in many
vision-based human-computer interface applications, background adaptation is
an especially challenging problem. Also, at a “high-traffic” scene location, such
as at a busy retail store doorway, where many different foreground objects (in
this case, people) frequently pass, a high learning rate will cause the background
model to degrade more quickly into a reflection of some average properties of
the passing foreground objects.
Background model inclusivity: Although we may wish to treat as background
those dynamic objects, such as foliage in wind, that exhibit somewhat recurrent
patterns of motion, it becomes increasingly difficult to model these objects as
their motion patterns include a greater number of significant frequency com-
ponents, or as their visual textures, even when the objects are static, grow
more complex. In such cases, TAPPMOGs usually require more Gaussians to
adequately model the distribution of observations produced by the object at a
single pixel over time. As more Gaussians are included in the background model,
however, it becomes more likely that some representing the desired foreground
will also be selected, thereby resulting in erroneous foreground omissions. For
instance, it is difficult to determine, using only local image statistics, whether a
small number of observations, modeled by one Gaussian, correspond to a fore-
ground person who passed by quickly or to an occasionally recurring motion
dynamic of a background object.

One might attempt to address these tradeoffs through modifications of the
basic TAPPMOG methods, or by choosing an entirely different framework for
pixel-level background modeling. It seems likely, however, that TAPPMOGs al-
ready approach the limit of what can reasonably be accomplished through con-
sideration of local information alone. Each of a TAPPMOG’s per-pixel Gaussian
mixtures can, with sufficient components, accurately describe the appearance
statistics of arbitrarily complex backgrounds, and can be modified very quickly
or very slowly, as needed, by simple, well-principled processes. What is lacking
is more intelligent guidance of the mixtures’ evolution, and it would seem wise
to drive this guidance with analysis that operates on “higher” levels of infor-
mation, such as image regions or entire frames, or object and event semantics.
Put another way, in applications for which the definition of the ideal foreground
segmentation depends on concepts such as region cohesiveness, frame-wide illu-
mination changes, or object classification, we should not expect to produce this
segmentation by relying solely on methods that consider each pixel in isolation.

In this paper, therefore, we extend TAPPMOGs in a general way to incorpo-
rate corrective guidance from analysis concerned with higher level primitives such
as image regions, image frames, or object semantics. This “high-level feedback”
allows for many significant improvements in background modeling, including:

1. The rapid incorporation into the background model of appearance changes as-
sociated with events that are uninteresting to the application. The definition
of “uninteresting” can be application-dependent: some may want to ignore
rapid, global illumination changes, while others may want to ignore an auto-
mobile after its driver has stopped and exited it. Almost any such definition
can be accomodated through feedback from an appropriate high-level module.

2. Good segmentation of foreground objects of interest, even when they stop
moving or occlude the background for indefinitely long times. Again, the defi-
nition of what foreground is “interesting” may be application-dependent, and
most definitions can be serviced with a proper choice of high-level feedback.

3. Much better exclusion from the foreground of dynamic objects that move in
repetitive ways. Higher levels of processing can detect the basic TAPPMOG
methods’ failures to model such objects, and then feed back information on
how to adjust the pixel-level model to prevent re-occurrence of the problems.

More broadly, feedback enables higher levels of processing to tailor the general-
purpose pixel-level segmentation produced by TAPPMOGs to the specific defin-
ition of “foreground” pertinent to an application. This, in turn, should improve
the performance of all high-level modules that depend on the TAPPMOG seg-
mentation, whether or not those modules are providing feedback.

A number of other methods, including those of [2, 10, 13, 17], can be inter-
preted as using high-level feedback to guide pixel-level foreground segmentation.
All of these methods, however, modify their pixel-level background modeling
only in response to specific types of high-level processing, such as the detection
of people or illumination changes. None describe how to generalize the feed-
back influence to arbitrary forms of high-level analysis. Furthermore, with the
exception of [10, 17], they use pixel-level statistical models that are too simple
to represent complex, dynamic backgrounds. We believe our method represents
a novel and appealing combination of powerful, per-pixel background modeling
with a flexible, general-purpose mechanism for enhancement via high-level input.

In Section 2, we describe a particular variant of the basic TAPPMOG method
in greater detail, and provide examples of its successes and shortcomings on a
challenging test sequence. In Section 3, we discuss our framework for augmenting
basic TAPPMOG methods with corrective feedback from high-level processing
modules. Finally, in Section 4, we illustrate how several specific types of feedback
can dramatically improve pixel-level foreground segmentation results.

2 Background removal at the pixel level

Harville et. al. [8] have recently described a TAPPMOG-based method that, un-
der the assumption of a static camera, seeks to segment novel objects in a scene,
as well as non-novel objects that begin behaving in novel ways. It attempts to
ignore phenomena such as illumination changes, shadows, inter-reflections, per-
sistent scene modifications, and dynamic backgrounds. This definition of “fore-
ground” is consistent with a wide variety of vision applications, and hence the
method is of broad utility. By modeling the scene in the combined feature space
of per-pixel depth and luminance-normalized color, the method better adheres to

this definition than most other choices for pixel-level background removal, and it
better avoids foreground omissions due to color “camouflage” (similarity of ap-
pearance between a novel object and the background behind it). The method’s
reliance on dense (per-pixel) depth has become more practical in recent years as
hardware and software for stereo cameras has become much faster and cheaper
[9, 14, 18].

We briefly review the method of [8] here, and show some example results.
The results contain many successes, but also the types of failures discussed in
Section 1 that motivate our use of high-level feedback.

2.1 On-line clustering of observations

The pixel-level background modeling method of [8] regards the time series of
observations at each pixel as an independent statistical process. Each pixel ob-
servation consists of a color and a depth measurement. Color is represented in
the YUV space, which allows for separation of luminance and chroma. Depth
measurements, denoted as D, are produced by a real-time stereo camera imple-
mentation, but could also be computed by methods based on active illumination,
lidar, or other means. The observation at pixel i at time t can be written as
Xi,t = [Yi,t Ui,t Vi,t Di,t].

The history of observations at a given pixel, [X i,1, . . . , Xi,t−1], is modeled
by a mixture of K Gaussian distributions. K is the same for all pixels, typically
in the range of 3 to 5. The probability of the current observation at pixel i, given
the model built from observations until the prior time step, can be estimated as

P (Xi,t|Xi,1, . . . , Xi,t−1) =

K∑

k=1

wi,t−1,k ∗ η(X i,t, µi,t−1,k, Σi,t−1,k) (1)

where η is a Gaussian probability density function, where wi,t−1,k is the weight
associated with the kth Gaussian in the mixture at time t − 1, , and where
µi,t−1,k and Σi,t−1,k are the mean Y UV D vector and covariance matrix of this
kth Gaussian. The weights wi,t−1,k indicate the relative proportions of past ob-
servations modeled by each Gaussian. A diagonal covariance matrix is used. For
notational simplicity, we will denote the kth Gaussian of a mixture as ηk.

To update a pixel’s mixture model as new observations are obtained over
time, an on-line K-means approximation similar to that of [16] is used. When
a new observation Xi,t at a given pixel is received, an attempt is made to find
a match between it and one of the Gaussians ηk for that pixel. If a matching
ηk is found, its parameters are adapted using the current observation; if not,
one of the Gaussians is replaced with a new one that represents the current
observation. The matching process is carried out by first sorting the Gaussians
in a mixture in order of decreasing weight/variance, and then selecting as a
match the first ηk whose mean is sufficiently near X i,t. A match between Xi,t

and ηk is allowed if each squared difference between corresponding components
of Xi,t and the mean µi,t−1,k of ηk is less than some small multiple β of the
corresponding ηk component variance. The parameter β is typically chosen to
be about 2.5, so that the boundary of the matching zone in YUVD-space for

ηk encompasses over 95% of the data points that would be drawn from the true
Gaussian probability density.

This basic matching method is modified, however, to account for the possi-
bility of unreliable, or “missing”, chroma or depth data. At low luminance, the
chroma components (U and V) of the color representation become unstable, so
chroma information is not used in comparing the current observation Xi,t with
the mean of Gaussian ηk when the luminance of either falls below a threshold
Ymin. Similarly, because stereo depth computation relies on finding small area
correspondences between image pairs, it does not produce reliable measurements
in regions of little visual texture and in regions, often near depth discontinuities
in the scene, that are visible in one image but not the other. Most stereo depth
implementations attempt to detect such cases and label them with one or more
special values, which can be denoted collectively as invalid. If the depth of Xi,t

is invalid, or if too many (more than some fraction ρ) of the observations that
contributed to the building of ηk, as described below, had invalid depth, depth
is omitted in comparing Xi,t and ηk.

If no mixture Gaussian is found to match Xi,t, the Gaussian ranked last
in weight/variance is replaced by a new one with mean equal to Xi,t, a high
variance, and a low weight. Otherwise, the parameters of the matching Gaussian
ηk are recursively adapted toward Xi,t. The mean is updated as follows:

µi,t,k = (1 − α)µi,t−1,k + αX i,t (2)

The variances are updated analogously, using the squared differences between
corresponding components of Xi,t and µi,t,k. Variances are not allowed to fall
below some minimum value, so that matching does not become unstable in scene
regions that are static for long time periods. The parameter α can be interpreted
as the learning rate discussed in Section 1: as α is made smaller, the parameters
of ηk will be perturbed toward new observations in smaller incremental steps.

The weights for all Gaussians are updated according to

wi,t,k = (1 − α)wi,t−1,k + αMi,t,k (3)

Mi,t,k is 1 (true) for the ηk that matched the observation and 0 (false) for all
others, so (3) causes the weight of the matched ηk to increase and all other
weights to decay.

Shadows and other illumination effects are specifically addressed in two ways.
First, the variances for the luminance components of the Gaussians are not al-
lowed to decrease below a substantial floor level. Since the luminance compo-
nent of an object’s apparent color is typically more impacted than its chroma by
shadows and other illumination changes, representation of this luminance with
a higher variance allows it to be matched to current observations of the object
under a wider variety of lighting conditions. Second, where the current depth
observation and the depth statistics of some Gaussian ηk are both reliable and
are a match, the color matching criterion is relaxed by increasing the matching
tolerance β. This helps in ignoring phenomena such as strong shadows, for which
the shape of the background matches the current observations, but for which the
color is significantly different. This second technique also helps model dynamic

background objects, like video displays and moving foliage, whose color is highly
variable but whose shape, at least at a coarse level, remains relatively constant.

Finally, the learning rate α is greatly reduced at all pixels at which a scene
“activity” level A is above a threshold H . A is computed independently at each
pixel as a temporally-smoothed inter-frame luminance difference:

Ai,t,k = (1 − λ)Ai,t−1,k + λ |Yi,t − Yi,t−1| (4)

This helps reduce the influence of dynamic foreground objects such as people on
the model of the observation history, without slowing adaptation of the model
to persistent changes such as a moved chair or increased lighting.

2.2 Background model estimation and foreground segmentation

At each time step, one or more of the Gaussians in each per-pixel mixture are
selected as the background model, while any others are taken to represent fore-
ground. The current observation at a pixel is designated as foreground if it was
not matched to any of the ηk in the pixel’s current background model.

Background Gaussians are selected at each pixel according to two criteria.
First, among the Gaussians with reliable depth statistics (those for which the
fraction of observations modeled that have valid depth exceeds a threshold ρ)
and whose normalized weight w′

k = wk/ (
∑

k wk) exceeds a low threshold TD,
the ηk with the largest depth mean is selected. This criterion is based on the idea
that, in general, one does not expect to be able to see through the background.
The threshold TD discourages the selection of a background Gaussian ηk based
on spurious or transient observations. TD is typically set around 0.1 to 0.2, so
that an ηk representing the true background may be selected even when this
background is usually occluded or has not been visible for an extended time.

At pixels where the true background usually does not produce reliable depth
data, no Gaussian will satisfy the above criterion. For correlation-based stereo,
this commonly occurs for walls and floors in the scene, which tend to have low
visual texture. Furthermore, for dynamic background objects, the background
is often best represented by multiple Gaussians, not just the one selected by
the above criterion. The second criterion for selecting background Gaussians ad-
dresses both of these issues by adding ηk, in order of decreasing weight/variance,
to the background model until the total weight of all selected Gaussians exceeds
a second threshold T . This second criterion is typically the sole criterion used
by TAPPMOG methods that have no access to depth data, and it favors the se-
lection of Gaussians representing consistent, frequently observed modes of scene
appearance. The parameter T helps determine the level of “background model
inclusivity” discussed in Section 1: as T is increased, more of a pixel’s observation
history Gaussians are likely to be selected as background.

2.3 Experimental results

The performance of the pixel-level foreground segmentation method of [8] was
evaluated on a challenging color-and-depth test sequence captured by the Tyzx
stereo camera head [18]. The camera head makes use of special-purpose hard-
ware, based on [19], for computing depth by correlation of Census-transformed
images [21]. The camera can produce spatially-registered, 320x240-resolution

2min, 16sec 5min, 38sec 7min, 53sec 9min, 7sec 9min, 39sec

Fig. 1. Comparison of results for the pixel-level segmentation method of [8] (bottom
row) to those for a common alternative (middle row) that uses an RGB input space
rather than YUVD. Input color (top row) and depth (not shown) were captured using
the Tyzx real-time stereo camera head [18]. Locations of several of the test sequence
challenges are indicated with text in middle row images. Parameter values were K =
4, α = 0.0006, β = 2.5, ρ = 0.2, Ymin = 16, T = 0.4, TD = 0.2, λ = 0.09, H = 5.
Small, isolated foreground regions, and small holes within foreground, were removed
by applying an area threshold to the results of connected-components analysis.

color and depth images at rates up to 60Hz; the test imagery was saved to files
at a rate of 15Hz.

The test sequence is 10 minutes long, with no image devoid of “foreground”
people. It contains several dynamic background objects, namely several video
displays (toward the upper left of the images) and a sign rotating about a vertical
axis at about 0.5Hz (upper middle of images, sitting on oval-shaped table).
During the first half of the sequence, two displays (“display1” and “display2”)
are active and one (“display3”) is off, while two people walk around the room.
Near the sequence midpoint, the chair in the lower left of the image is moved to
a new floor position, “display2” is switched off, “display3” is switched on, and
several more people enter the scene. One of these people stands in the middle
back part of the room for the rest of the sequence, sometimes shifting his weight
or moving his arms. The other new people walk around continuously in the lower
right part of the images, creating a “high-traffic” area.

Figure 1 compares results for the method of [8] with those for a more standard
TAPPMOG technique that uses an RGB input space rather than YUVD. The
depth-aided method better eliminates shadows, and better excludes the video
displays and rotating sign from the foreground. Segmentation of people in the
high-traffic area is improved because Gaussians representing the floor are usu-
ally selected as background, on the basis of depth, despite the more frequently
observed, but closer, people. Finally, depth allows better segmentation of peo-
ple colored like the background, resulting in fewer foreground holes due to color
camouflage.

Still, the results of this pixel-level method are far from perfect. Although the
video displays and rotating sign do not appear in the result frames in Figure 1,
they fail to be excluded from the foreground in a significant fraction of other
frames. The relatively static person at the back of the room contains substan-
tial foreground holes after he been there for about 3 minutes. It is difficult to
extend this time without further compromising the modeling of the dynamic
background objects in the scene. Adaptation to the moving of the chair requires
about 2 minutes, and cannot be shortened without causing all of the above prob-
lems to worsen. A rapid illumination change would cause almost all of the scene
to appear as foreground until adaptation occurs. Hence, there remains great mo-
tivation for improvement of the method, and we believe this is best achieved by
incorporating, as presented in the following sections, analysis that is concerned
with more than just spatially local, per-pixel statistics.

3 Feedback for background correction

We extend the TAPPMOG modeling framework to make use of a wide variety
of feedback computed by modules that consider image regions or frames, classify
objects, or analyze other scene properties above the per-pixel level. Each module
computing this feedback must satisfy two requirements. First, it must have some
ability to detect foreground segmentation successes and/or failures according to
some definition in terms of “higher” concepts than pixel-level statistics. The
module’s detection ability does not have to be perfect, and the module’s defini-
tion of foreground does not need to encompass the entire application demands.
Second, the module must be able to provide maps that designate which pixels
in a given input frame are responsible for cases that satisfy this definition.

We make use of two types of feedback: 1) positive feedback, which serves
to enhance correct foreground segmentations, and 2) negative feedback, which
aims to adjust the pixel-level background model in order to prevent the re-
occurrence of detected foreground mistakes. The feedback interface between the
TAPPMOG background model and the higher levels consists of two bitmaps,
representing pixels where positive and negative feedback, respectively, should be
applied. We denote these maps as P and N , respectively.

In a system that uses multiple high-level modules to generate feedback maps,
we will need some mechanism for combining these maps and resolving conflicts
between them in order to produce the two bitmaps. We would like to take an
approach that allows strong positive evidence to override negative evidence (or
vice versa), permits individual modules to generate both positive and negative
feedback, enables mutiple forms of relatively weak feedback to support each
other when none are convincing in isolation, and allows us to refine the feedback
bitmaps by cancelling out portions of them where conflicting information exists.

We achieve this by implementing each high-level module so that it generates
not a feedback bitmap, but rather a map of real numbers, where positive numbers
reflect confidence that the segmented pixel should be part of the foreground,
and negative numbers reflect the opposite. We then pixel-wise add together the
feedback maps generated by all high-level modules, and threshold the summation
map twice at 1 and -1 to produce P and N . This method allows us to factor

TAPPMOG

modeling of

observation history

TAPPMOG

modeling of

foreground

inclusion errors

Person-

detector and

tracker

Non-person

detector

Rapid global

illumination

change

detector

High-level modules

supplying feedback

Camera

input

+

Background

Gaussian selection

and foreground

estimation

feedback map

feedback map(s)

feedback mapfeedback map

total

feedback

positive

feedback

bitmap

negative

feedback

bitmap

threshold

at +1

threshold

at -1

invert

foreground

pixels

high-level analysis

results, sent to

other modules

and/or applications

N

P

Standard TAPPMOG

process

Fig. 2. Overview of framework for guiding TAPPMOG with high-level feedback.

the relative confidences associated with various high-level decisions into the final
choice of corrective action to take at each pixel.

The methods by which positive and negative feedback influence pixel-level
background modeling are different, and are discussed in the subsections below.
These methods are suitable for use not just with the TAPPMOG modeling
scheme described in Section 2, but with most other TAPPMOG-based methods.
Figure 2 summarizes the feedback process.

3.1 Positive feedback
The goal of positive feedback is to prevent observations associated with correctly
segmented foreground from being incorporated into the pixel-level background
model. In the test sequence described in section 2.3, the two cases for which this
would be most helpful are those of the relatively static person toward the back
of the room, and the high-traffic area in the lower right of the frame.

Our implementation of positive feedback is quite simple. First, one or more
high-level modules detect correct foreground segmentation results, by one or
more definitions, and contribute positive feedback at all pixels responsible for
these results. This feedback propagates to the bitmap P as described above.
Next, for all pixels at which P = 1, we do not use the current pixel observation
to update the Gaussian mixture model of the observation history. This results in
no change in the background model at those pixels, and prevents the foreground
objects from becoming part of the background over time.

It is relatively unimportant that P be precise at the pixel level. Pixels mistak-
enly omitted from P cause some portions of true foreground to be incorporated
into the observation history model. Extra pixels included in P cause the true
background to be learned slightly more slowly. In both cases, the same error
must repeat many times before the effect is significant.

3.2 Negative feedback
An erroneous inclusion in the segmented foreground is, by definition, something
that we would prefer to be well-described by the background model. The goal of
negative feedback, therefore, is to adjust the background model so that it better
describes such errors, without disrupting its ability to describe other aspects of
the background. We achieve this with a combination of two processes:

TAPPMOG error modeling: We model the distribution of observations as-
sociated with foreground errors at each pixel using almost exactly the same
TAPPMOG process, described in Section 2.1, that is employed for modeling the
full observation history. We denote the two TAPPMOG models of the observa-
tion history and the foreground errors as O and E , respectively. As described
above, O receives the camera input directly, except where positive feedback, as
indicated by P , occurs. E , on the other hand, receives only the portions of the
camera input thought to be associated with foreground inclusion errors (back-
ground modeling failures), as indicated by the negative feedback bitmap N . No
update of E occurs at pixels for which N contains a zero. A TAPPMOG is used to
model foreground errors because the distribution of observations associated with
errors at a given pixel can, at worst, be as complex as observation distributions
for highly dynamic, variable backgrounds.
Model merging: We periodically merge the error model E into the observation
history model O, in the hope that changes in O will propagate into the sub-
set of Gaussians selected as background. We merge, rather than replace O with
E , because portions of O may still be accurate and useful. This is particularly
true when the errors result from inadequate modeling of dynamic background
objects. In general, errors occur because too little evidence in the observation
history supports building an accurate model of them with sufficient weight to be
chosen as background. Hence, the merging process aims to boost the relative pro-
portion of evidence corresponding to things that were incorrectly omitted from
the background model, without obliterating other highly-weighted evidence.

Because the maximum complexities of what may be modeled by O and E
are similar, we use mostly the same parameters for each. The main exception is
that we use a higher learning rate, which we denote as αe, for E . Because error
examples may be presented to this TAPPMOG rather infrequently, error model
means and variances might converge very slowly if we were to use the same learn-
ing rate as for O. In addition, from equation (3), we see that a higher learning
rate will cause the weights associated with E to increase more quickly. When O
and E are merged as described below, these higher weights help compensate for
the under-representation of the errors in the observation history.

While update of E with error information is done for every frame, we merge E
with O at a low rate θ in the range of 0.2-1.0Hz, to avoid excessive computational
cost. When merging the Gaussian mixtures of O and E at a particular pixel, we
do not simply make a new mixture that has one mode for each of the modes in
the two original mixtures, since this would cause the complexity of O to grow
without bound. Instead, we seek to keep the number of Gaussians at each pixel
in O at or below the limit K. A well-principled way to merge the two mixtures
under this constraint would be to convert each to a histogram representation,
and then use an iterative Expectation-Maximization method to fit a mixture of
K Gaussians to the sum of the two histograms. This would be a rather costly
procedure, particularly as the dimensionality of the observation feature space
increases, so we instead adopt the following, more approximate approach that
allows for real-time implementation:

1. Merging is performed at a pixel only if the total weight of the error Gaussians
at that pixel exceeds a threshold κ. As κ is decreased, less error evidence is
needed to trigger a modification of O, and each modification will have smaller
impact. For larger κ, errors tend to be better modeled before they are merged
into O, and individual merges occur less frequently but are more influential.

2. To merge E and O at a pixel, we first attempt to find observation history Gaus-
sians ηo

k whose variance parameters may be increased to include the spaces
spanned by nearby error model Gaussians ηe

j . Expansion of ηo
k to include ηe

j is
permitted if their means are separated by less than β times the sum of their
standard deviations. A single ηo

k may be expanded to include more than one
ηe

j . When merging two Gaussians, we add their weights, set the new mean
equal to their weighted sum, and select the minimum variance large enough to
cause all points that would have matched either one of the original Gaussians
to also match the merge result.

3. If an error Gaussian ηe
j is not near any ηo

k, we substitute ηe
j for the “poorest”

observation model Gaussian ηo
k - namely that with the lowest weight/variance

ratio - provided that we would not be replacing one Gaussian with another
supported by far less evidence. This latter criterion is enforced by ensuring that
the ratio of the weight of ηe

j to that of ηo
k is above a threshold minweightratio.

4. Gaussians ηe
j that are merged in either of the prior two steps are removed

from E , while the others remain in it and will continue to evolve over time.

5. After merging is completed, we normalize the weights of the observation Gaus-
sians so that they add up to their sum prior to the merge. This prevents the
scale of these weights from fluctuating depending on the rate at which seg-
mentation errors are occurring.

6. To prevent the accumulation of errors over arbitrarily long times, all weights
for error Gaussians not merged into the observation history model are decayed
by a multiplicative factor 0 < τ < 1. Values of τ at the higher end of this
range allow for errors to be accumulated over longer time periods without
being disregarded as noise.

Examination of the negative feedback process reveals that it is relatively
unimportant for N to be precisely correct at the pixel level. If N extends slightly
beyond the true bounds of some erroneous foreground inclusion, the result will
usually be the addition to E of further evidence to support the current back-
ground model. If N fails to include some of the pixels associated with a true
error, E will just build up a little more slowly at those locations.

4 Examples of feedback generation and usage

In this section, we illustrate the beneficial effects of using the feedback correction
framework of Section 3 to connect two types of “high-level” analysis modules
to the TAPPMOG method of Section 2. Since these are just two of the infinite
number of high-level modules that could be employed in our framework, and since
the emphasis of this paper is on the feedback itself, and not on the high-level

analysis that generates it, we omit most of the algorithmic details of the high-
level modules. However, we note that, like the TAPPMOG method of Section 2,
both modules make interesting use of dense depth imagery.

One of these modules is a person detection and tracking method. We use
the results of this method to produce feedback that enhances the TAPPMOG’s
segmentation of people, and helps it to ignore all else. Positive feedback is gen-
erated for image regions where the person tracker believes people are present,
while all other foreground pixels are assumed not to pertain to people, and are
associated with negative feedback. Our person tracking method is described in
[7], and has similarities to the methods of [1, 3, 18]. In brief, it uses depth data to
create overhead, “plan-view” images of the foreground produced by the TAPP-
MOG of Section 2, and then uses templates and Kalman filtering to detect and
track people in these images. For each tracked person, positive feedback (with
a value of 1) is generated at all pixels within the camera-view bounding box of
the set of pixels that contributed to the person’s plan-view image representation.
This generally causes some true background pixels to be incorrectly labeled with
positive feedback, but, as discussed in section 3.1, it is generally harmless when
feedback maps are imprecise in this way. The overall positive feedback map is
produced by summing the maps generated for the individual people. Negative
feedback (with a value of -1) is generated at all foreground pixels not inside any
of the individual bounding boxes.

Note that other person detection and tracking methods, including ones that
make no use of depth, can be substituted here, provided that the methods label
the approximate image locations of people in the scene with a reasonable degree
of reliability. In general, it is preferable that the person tracking methods produce
false positives (image locations incorrectly labeled as people) rather than false
negatives (person detection failures), since repeated failures to detect a person
at a particular image location may produce strong negative feedback that causes
the person’s appearance to be quickly incorporated into the background model.
Repeated misclassification of an image region as a person, on the other hand,
merely slows adaptation of the background model to changes in that region.

Our second module detects rapid changes in global illumination, camera gain,
or camera position. When it detects any of these events, it produces negative
feedback (with a value of -1) at all current foreground locations so that the
TAPPMOG will quickly update itself to reflect the new scene appearance. The
feedback is generated not just at the event onset, but for a time window long
enough to allow for good TAPPMOG adaptation to the changes. The module
decides that one of these events may have occurred whenever the TAPPMOG
suddenly produces a large amount of foreground that is well-distributed about
the image. Shape information, from the depth data, is then used to discriminate
these events from the possibility that a foreground object has closely approached
the camera, occupying most of its field of view. In this case, we do not want to
rapidly update the background model.

The final feedback bitmaps P and N are produced by thresholding the
summed feedback from the two modules at +1 and -1, respectively.

0min, 35sec 5min, 34sec 5min, 39sec 7min, 6sec 9min, 58sec

Fig. 3. Pixel-level segmentation results with (third row) and without (second row)
high-level feedback correction. Some significant differences are circled in second row;
second row also contains some object labels. Input color (top row) and depth (not
shown) were captured using the Tyzx real-time stereo camera head [18]. Feedback maps
(bottom row) show N in white, P in gray, and “no feedback” in black. TAPPMOG
parameters are the same as for Figure 1, but no cleanup of isolated foreground pixels
or holes has been done. Feedback parameters: κ = 0.3, αe = 0.1, τ = 0.95, θ = 1.0,
minweightratio = 0.1.

In Figure 3, we compare foreground segmentation results with and without
this feedback for the same Tyzx test sequence described in Section 2.3. Several
important differences are evident. First, without feedback, the relatively static
person toward the back of the room (upper-middle of images) begins to fade
into the background after less than 90 seconds of standing at his position (see
figure column 4). After a couple more minutes, he becomes difficult to separate
from noise, so that tracking and any other analysis of this person becomes very
challenging. However, when feedback from the person-tracker is used to prevent
background model update at his location, he is well-segmented as foreground for
the entire five minutes that he stands at his position, and would remain so indefi-
nitely if the test sequence were longer. This is achieved without sacrificing model
adaptation to other scene changes such as the moving of the chair near the mid-
point of the sequence. The moved chair causes temporary foreground errors for
both methods (see figure column 2). With feedback, these errors are corrected in
about 2 seconds, without disrupting segmentation elsewhere. Without feedback,
chair errors linger for nearly two minutes, during which the person-tracker must
detect and ignore them.

Inclusion of dynamic foreground objects such as the video displays and the
rotating sign was virtually eliminated by using negative feedback. Early in the se-
quence, negative feedback is generated when the sign and displays occasionally

1min, 6.3sec 1min, 6.9sec 1min, 9.0sec 1min, 10.1sec 1min, 11.1sec

Fig. 4. Pixel-level segmentation results with (third row) and without (second row)
high-level feedback correction, for a simulated rapid illumination change. Input color
(top row) and depth (not shown) were captured using the Tyzx real-time stereo camera
[18]. Feedback maps (bottom row) show N in white, P in gray, and “no feedback” in
black. TAPPMOG parameters are the same as for Figure 1, and feedback parameters
are the same as for Figure 3. No cleanup of isolated foreground or holes has been done.

appear in the foreground (figure column 1), until they stop appearing. When
connected-components analysis is used to extract “significant” foreground ob-
jects, the rotating sign appears in no frames beyond the 2-minute mark of the
sequence. In contrast, without feedback, the sign appears in 74% of foreground
frames beyond the 2-minute mark, including all frames in Figure 3. Similarly, in
both sets of results, “display3” sometimes appears in the foreground soon after it
is turned on around the 5.5-minute mark. After 2 minutes pass, significant parts
of “display3” appear in only 5% of the foreground frames for the feedback-aided
method, in contrast to 68% without feedback (figure columns 4 and 5).

The foreground noise levels for the two methods are noticeably different to-
ward the later frames of the test sequence. Without feedback, the variances in
the TAPPMOG model drop to very low levels over time, so that imager noise
frequently results in color or depth measurements that exceed the tolerance for
matching to the background model. With feedback, the system learns to increase
these variances where they become problematically small. The lower noise lev-
els result in more cleanly-segmented foreground regions, and less higher-level
processing and analysis dedicated to the removal of image clutter.

Segmentation results with and without feedback are compared for a simulated
change in global illumination in Figure 4. The lighting change was simulated by
applying a gamma correction of 2.0 to a one-minute portion of the test sequence
of Section 2.3, beginning at the 1000th frame (a little over a minute into the

sequence). For both methods, almost all of the image appears as foreground im-
mediately after the illumination change (see figure column 2). Without feedback,
this condition persists for over 30 seconds while the background model adapts.
The adaptation time could be reduced by increasing the TAPPMOG learning
rate, but this would further lessen the time that a person, such as the one who
appears near the back of the room later in the sequence, can remain relatively
still before becoming part of the background. In contrast, when feedback is used,
the illumination change is detected and causes negative feedback maps covering
most of the frame to be generated for a short period of time. One such map is
shown in figure column 2; note that the negative feedback is canceled where the
person-tracker module estimates that people are present. Within 2 seconds, the
background model is almost completely repaired, except where people occluded
the background during the correction period (see figure column 3). When these
regions are disoccluded, the person tracker module identifies them as not being
people, and generates further, more localized negative feedback that repairs the
background model here over the next 2 seconds (see figure columns 3-5).

It is important to note that the correction of most of the background model
in under 2 seconds is fast enough to allow person tracking methods to con-
tinue to operate through rapid, frame-wide changes. By using prior history and
probabilistic methods to estimate person locations during a brief interruption of
reliable measurements, tracking can recover gracefully when the background is
repaired quickly. Obviously, continuity of tracking is much less likely when an
interruption lasts for more than 30 seconds, as was the case without feedback.

5 Conclusions

Although TAPPMOG modeling is one of the leading choices for general, robust
pixel-level foreground segmentation, we have shown that this robustness can be
greatly improved, and tailored to the needs of a specific application, by applying
a general framework for guiding the TAPPMOG process with corrective feedback
from high-level system modules. Rather than seek to assess high-level semantics
using low-level statistics, this framework encourages each module to focus on
tasks appropriate to it. The pooling of feedback influences from different high-
level modules into a common TAPPMOG also creates a mechanism for high-level
modules to share knowledge of errors they detect so that all modules that make
use of the pixel-level segmentation may benefit. Finally, feedback can provide
a means for fast background adaptation in response to selected events, thereby
making it more feasible to slow the learning rate α for the basic TAPPMOG
modeling process. The basic TAPPMOG process would therefore better reflect
longer-term, persistent features of the scene, and would be less susceptible to
influence from foreground objects that remain static too long.

Because the most compute-intensive part of the feedback framework - namely,
the error-modeling component - is itself based on TAPPMOG principles, any
effort spent on speeding up TAPPMOG background modeling implementations
(e.g. in MMX or hardware) can also be leveraged to make feedback correction a
relatively light-weight addition. Also, the similar processes for background and
error modeling at the pixel level, the guiding of these processes by feedback map

connections from high-level modules, and the resultant focusing of higher-level
attention on the foreground of greatest interest, are all reminiscent of aspects of
biological visual cortex. We hope to further explore these similarities.

Acknowledgments
The author would like to thank Tyzx Inc. and Interval Research Corp. for their support
in publishing this work and their permission to use data sets obtained at Interval.

References

1. D. Beymer. “Person Counting using Stereo”. In Wkshp. on Human Motion, 2000.
2. K. Bhat, M. Saptharishi, P. Khosla. “Motion Detection and Segmentation Using

Image Mosaics”. In IEEE Intl. Conf. on Multimedia and Expo 2000, Aug. 2000.
3. T. Darrell, D. Demirdjian, N. Checka, P. Felzenszwalb. “Plan-view Trajectory Es-

timation with Dense Stereo Background Models”. In ICCV’01, July 2001.
4. A. Elgammal, D. Harwood, L. Davis. “Non-Parametric Model for Background Sub-

traction”. In ICCV Frame-rate Workshop, Sep 1999.
5. N. Friedman, S. Russell. “Image Segmentation in Video Sequences: a Probabilistic

Approach”. In 13th Conf. on Uncertainty in Artificial Intelligence, August 1997.
6. X. Gao, T. Boult, F. Coetzee, V. Ramesh. “Error Analysis of Background Adap-

tation”. In CVPR’00, June 2000.
7. M. Harville. “Stereo Person Tracking with Adaptive Plan-View Statistical Tem-

plates”. HP Labs Technical Report, April 2002.
8. M. Harville, G. Gordon, J. Woodfill. “Foreground Segmentation Using Adaptive

Mixture Models in Color and Depth”. In Proc. of IEEE Workshop on Detection
and Recognition of Events in Video, July 2001.

9. K. Konolige. “Small Vision Systems: Hardware and Implementation”. 8th Int.
Symp. on Robotics Research, 1997.

10. A. Mittal, D. Huttenlocher. “Scene Modeling for Wide Area Surveillance and Image
Synthesis”. In CVPR’00, June 2000.

11. H. Nakai. “Non-Parameterized Bayes Decision Method for Moving Object Detec-
tion”. In ACCV’95, 1995.

12. J. Ng, S. Gong. “Learning Pixel-Wise Signal Energy for Understanding Semantics”.
In Proc. Brit. Mach. Vis. Conf., Sep. 2001.

13. J. Orwell, P. Remagnino, G. Jones. “From Connected Components to Object Se-
quences”. In Wkshp. on Perf. Evaluation of Tracking and Surveillance, April 2000.

14. Point Grey Research, http://www.ptgrey.com
15. S. Rowe, A. Blake. “Statistical Background Modeling for Tracking with a Virtual

Camera”. In Proc. Brit. Mach. Vis. Conf., 1995.
16. C. Stauffer, W.E.L. Grimson. “Adaptive Background Mixture Models for Real-

Time Tracking”. In CVPR’99, Vol.2, pp.246-252, June 1999.
17. K. Toyama, J. Krumm, B. Brumitt, B. Meyers. “Wallflower: Principles and Practice

of Background Maintenance”. In ICCV’99, pp.255-261, Sept 1999.
18. Tyzx Inc. ”Real-time Stereo Vision for Real-world Object Tracking”. Tyzx White

Paper, April 2000. http://www.tyzx.com
19. J. Woodfill, B. Von Herzen. “Real-Time Stereo Vision on the PARTS Reconfig-

urable Computer”. Symposium on Field-Programmable Custom Computing Ma-
chines, April 1997.

20. M. Xu, T. Ellis. “Illumination-Invariant Motion Detection Using Colour Mixture
Models”. In Proc. Brit. Mach. Vis. Conf., Sep. 2001.

21. R. Zabih, J. Woodfill. “Non-parametric Local Transforms for Computing Visual
Correspondence”. In ECCV’94, 1994.

