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With the advancement of wireless technologies and sensing methodologies, many studies have shown that wireless signals can
sense human behaviors. Human activity recognition using channel state information (CSI) in commercial WiFi devices plays an
important role in many applications. In this paper, a framework for human activity recognition was constructed based on WiFi
CSI signal enhancement. Firstly, the sensitivity of different antennas to human activity was studied. An antenna selection al-
gorithm was proposed, which can make a choice of the antenna automatically based on their sensitivity in accordance with
different activities. Secondly, two signal enhancement approaches, which can strengthen the active signals and weaken the inactive
signals, were proposed to extract the active interval caused by human activity. Finally, an activity segmentation algorithm was
proposed to detect the start and end time of activity. In order to verify and evaluate the methods, extensive experiments have been
conducted in real indoor environments. *e experimental results have demonstrated that our solutions can eliminate a large
number of redundant information brought by insensitive and inactive signals. Our research results can be put into use to improve
recognition accuracy significantly and decrease the cost of recognition time.

1. Introduction

Nowadays, WiFi signals cover almost every corner of people’s
lives, such as houses, schools, shopping malls, and buildings. If
WiFi is regarded as a sensor in a sense, then WiFi-based per-
ception systems act as the world’s largest sensor network which
covers all areas around us and monitors people’s behaviors.
With the acceleration of population aging, the demand for
health monitoring is increasingly urgent, such as fall detection
and health monitoring. Human activity recognition based on
WiFi signals will achieve “one thing with multiple uses”; WiFi
can silently perceive every action in the physical world while
completing data transmission tasks.Wireless sensing technology
based onWiFi signals has become an important hub linking the
physical world and the information world. It has also become a
research hotspot in the fields of gesture recognition [1], local-
ization [2], and even identification [3].

In previous studies, human activity recognition systems
can be categorized into four classes: wearable-based [4],

vision-based [5], ambient devices-based [6], and wireless-
based. Wearable sensor devices are widely used for human
activity recognition especially in elder healthcare. Wearable-
based human activity recognition uses hardware devices
such as gyroscopes, accelerator, and barometer for recog-
nition with high accuracy. However, these devices are ex-
pensive and inconvenience to wear. In addition, there exists
limitations such as insufficient battery and people forget to
wear. Vision-based methods require camera to capture
human activities. However, there are still some problems
such as blind spots, personal privacy, and high energy
consumption. Additionally, ambient devices-based human
activity recognition requires various hardware devices
deployed in the environment.*ese ambient devices, such as
pressure sensors, vibration sensors, and acoustic wave
sensors are expensive, complicated to deploy, and difficult to
apply in ordinary households. *e movements of the human
body impact the wireless signals propagation, which make it
possible to capture human movements by analyzing the
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received wireless signals. It has the advantages of low cost,
easy deployment, wide coverage, highly penetrating [7],
unaffected by light, and privacy protection.

Benefit from the widespread deployment of com-
mercial WiFi devices in the indoor environment, using
WiFi signals for human activity recognition, is a cheap
solution without any additional costs [8]. In the past,
some approaches based on Received Signal Strength In-
dicator (RSSI) had been presented for human localization
[9] and human activity recognition [10]. *e RSSI of
wireless signals is severely affected by severe multipath
and random noise in the indoor environment. *ereby,
RSSI-based mechanisms have certain limitations. In re-
cent years, new trend in device-free human activity rec-
ognition based on Channel State Information (CSI) has
attracted more attention. Many previous studies have
shown that CSI outperforms RSSI in human activity
recognition. *erefore, in this paper, we use WiFi CSI
signals for human activity recognition.

According to the background mentioned above, we have
explored three issues of human activity recognition and put
forward some novel proposals in this paper. *e contri-
butions of our work are summarized as follows:

(i) Based on the sensitivity of different antennas to
actions, an active antenna selection approach, which
makes a choice of antennas automatically, is pro-
posed to reduce the amount of data required for
subsequent calculation and analysis.

(ii) Two signal enhancement approaches were pre-
sented to achieve the enhancement of active signals.
*ey can strengthen the interval of active signals
and weaken the impact of inactive signals.

(iii) An activity segmentation algorithm was provided to
detect the start and end times of activity, which can get
rid of inactive signals and retain the active signal
interval.

*e rest of this paper is organized as follows: Section 2
reviews some related works for human activity recogni-
tion using WiFi signals. Section 3 introduces prelimi-
naries of WiFi-CSI activity recognition. Section 4
describes the inspirations and framework. Section 5
discusses the detailed design of each module of the
framework. Section 6 describes the data for experiments
and presents the experimental setup. Additionally, the
experimental results are presented and evaluated. Section
7 discusses the advantages and limitations of this study.
Section 8 summarizes the work of this paper and looks
forward to the future.

2. Related Work

Wi-Fi signals will be reflected and scattered when trans-
mitted from the transmitter to the receiver, which causes
multipath effect [11]. *e overlaid multipath signals carry
large amounts of information about the current features of
the indoor environment. *is made it possible to human
activity recognition using Wi-Fi signals.

2.1. Human Activity Recognition Based on WiFi-CSI.
Previous work explored the attenuation characteristics of
WiFi signals [12, 13]. Coarse-grained information RSSI was
used in many applications, such as environmental people
counting WiCount [14], indoor localization [15], and mo-
tion tracking [11]. With the open source and release of CSI-
tool, extracting CSI from commercial WiFi devices has
become a reality. Due to the widespread deployment of WiFi
signals, many systems based on WiFi CSI have been de-
veloped in the literature in recent years. WiFall [16] uses
anomaly detection algorithms and learns specific CSI pat-
terns to detect falls. WiFall proposed a wireless propagation
model in the indoor environment under the interference of
human activities and analyzed the wireless propagation
model during a fall from a theoretical perspective. WiFall
can realize single person fall detection with high accuracy.
E-eyes [17] recognized human activity by using the moving
variance of amplitude. Moving variance is more effective for
those nonstationary human activities, especially those ac-
tivities with sharp variations in amplitude, such as falling
and jumping. However, stationary activities do not cause
significant variations in amplitude in repetitive patterns,
such as sleeping and sitting. In this case, the moving variance
seems to be less effective. CARM [18] includes two theo-
retical models. One is the CSI speed model, which quantified
the relationship between CSI dynamics and human move-
ment speed, and the other is CSI activity model, which
quantified the relationship between humanmovement speed
and human activity. Guo et al. [19] combined WiFi and
visual human activity recognition in HuAc.*ey derived the
correspondence between CSI and bone-based activity rec-
ognition. In HuAc system, a mechanism of subcarrier se-
lection was designed, which removes the first-second and the
last-second data sequence of an activity according to the
sensitivity of subcarriers to human activities. *e HuAc
system achieved the robustness of human activity recog-
nition. CDHAR [20] is a system with WiFi-sensing radar
integrated on UAVs to recognize human activities. Kernel
Density Estimation (KDE) is applied in CDHAR to obtain
adaptive detection thresholds and extract activity duration.
CDHAR use a random subspace classifier ensemble method
for classification and achieve high recognition accuracy.

Recently, deep learning methods have been widely used
in human behavior recognition. Yang et al. [21] proposed a
human activity recognition system with a temporal-fre-
quency attention mechanism. In this system, a neural net-
work model based on attention mechanism is proposed,
which assigns more weight to different characteristics by
imitating the human brain to focus on important infor-
mation. Ding and Wang [22] proposed a WiFi CSI-based
human activity recognition approach using deep recurrent
neural network (HARNN), which constructs a two-level
decision tree. Meanwhile, a linear regression method was
also introduced to seek for the optimal parameter for the
designed decision tree. Chen et al. [23] proposed a new deep
learning based bidirectional long short-term memory
(ABLSTM). It leverages on an attentionmechanism to assign
different weights for all the learned features. ABLSTM is able
to achieve the best recognition performance in real
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experiments. A convolutional neural network (CNN) [24]
was designed to automatically extract deep features from the
CSI images and achieved an average recognition accuracy of
86.3% in human activity recognition.

2.2. Antenna and Subcarrier Selection Mechanism.
Different antennas are different sensitive to static and dy-
namic composition in the environment. Wang et al. [18]
proposed that a specific WiFi antenna link may not show
significant variations in the CSI signals. Although principal
component analysis (PCA) can be used to combine CSI in
different subcarriers, it cannot be used to combine data from
different antenna links. *erefore, they proposed three
different approaches to fuse data from multiple links: ma-
jority-voting fusion, likelihood fusion, and feature fusion. In
the multiple input multiple output (MIMO) system, the
transceiver antennas exist in pairs; the more the amount of
transceiver antennas, the higher the data dimension, which
may lead to overfitting problems. To solve this problem, a
subcarrier selection approach based on information theo-
retic learning was proposed to compensate for the overfitting
problem in CSI-based localization systems [25].

2.3. Activity Segmentation Method. Many activity segmen-
tation algorithms were proposed in the previous work. Time-
frequency analysis techniques were utilized to segment the
walking movement in WiStep [26]. Activity segmentation
can extract activity details and compress the data so as to
improve computing speed. Wi-CR [27] took advantage of an
activity indicator and a threshold to segment the activity,
then counted the number of actions through a peak-finding
algorithm, and determined the start and end time of each
activity. WiBot [28] designed impulsive windowing ap-
proach for activity segmentation, which adopted the binary
segmentation approach to detect active boundaries. WiBot
allowed the start and end of gestures to be accurately
identified in a continuous stream of data.

3. Preliminaries

In this section, the background knowledge of channel state
information and MIMO antenna system based on CSI is
summarized.

3.1. Channel State Information. Channel state information
can reflect the channel properties of communication link
[29]. It describes multipath propagation of the amplitude
and phase of each subcarrier in the frequency domain.
Meanwhile, it contains multiple effects such as time delay,
amplitude attenuation, and phase shift. CSI is more sensitive
to the environment, so it can be applied to the fields such as
activity recognition, gesture recognition, and motion
tracking.

*e wireless channel generally uses the channel impulse
response (CIR) to describe the multipath effect of the
channel. Under the assumption of linear time invariance, the
CIR can be expressed by the following formula:

h(τ) �∑
N

i�1

aie
−jθiδ τ − τi( ), (1)

where ai represents the amplitude attenuation on the i th
path, θi represents the phase shift on the i th path, τi
represents the time delay on the i th path, N represents the
total number of propagation paths, and δ(τ) represents the
Dirichlet impulse function.

In wireless communication, the transmitted radio signals
are affected by the physical environment. On the contrary,
these signals can reflect changes in the physical environ-
ment. In frequency domain, multi-input-multi-output
(MIMO) is modeled as

Y � HX + N, (2)

whereY andX represent the received and transmitted signal
vectors, N represents the noise vector, and H represents the
channel gain matrix.

CSI describes the attenuation factor of the signal on
every transmission path by the channel gain matrix H, such
as signal scattering, multipath fading, power decay of dis-
tance, and other information. *e multipath propagation of
the signal manifests is a delay spread in the time domain, and
it will cause selective fading of the signal in the frequency
domain. *erefore, the channel frequency response (CFR)
describes the multipath propagation of the signal using the
amplitude-frequency and phase-frequency characteristics,
respectively. Under the condition of unlimited bandwidth,
CFR and CIR are each other’s Fourier transform. *e fre-
quency response of the channel can be expressed as follows:

H(k) � |H(k)|ej∠H(k), (3)

where H(k) represents the CSI of k th subcarrier, |H(k)|
represents the amplitude of the k th subcarrier, and ∠H(k)
represents the phase shift information.

3.2. Multiple-Input Multiple-Output Antenna System in CSI.
WiFi standards use orthogonal frequency division modu-
lation (OFDM) in the physical layer. OFDM splits its
spectrum band into multiple frequency sub-bands called
subcarriers. CSI reveals a set of channel measurements
depicting the amplitude and phase of every OFDM sub-
carrier. For example, Atheros 9590 wireless NIC generates
total 56 CSI values. Intel 5300 wireless NIC reports total 30
CSI values.

CSI is extracted from the parsing packet of the Intel 5300
wireless NIC. Based on the CSI tool [30], the CSI packet
received is a Ntx × Nrx × 30 matrix, where Ntx is the
amount of transmitting antennas, Nrx is the amount of
receiving antennas, and the third dimension is 30 subcarriers
in the OFDM channel. In the commercial equipment of Intel
5300 wireless NIC, Ntx � 3 and Nrx � 3. *e structure
diagram of the MIMO antenna is shown in Figure 1. An
antenna at the transmitter will send three data streams to the
receiver. CSI packet contains 9 data streams with 30 sub-
carriers, which can be represented in the following format:
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CSI1 � CSI1,1,CSI1,2, . . . ,CSI1,30{ }

CSI2 � CSI2,1,CSI2,2, . . . ,CSI2,30{ }

⋮
CSI8 � CSI8,1,CSI8,2, . . . ,CSI8,30{ }

CSI9 � CSI9,1,CSI9,2, . . . ,CSI9,30{ }.

(4)

4. Framework of HAR

4.1. Inspirations

4.1.1. Antenna Selection. Different antennas have different
sensitivity to environmental perception. *us, many works
are focused on methods of subcarrier selection and fusion.
Due to the diversity of the human activities and the envi-
ronment, antennas are more susceptible to external factors
such as the direction of human movement and the vertical
dimension of the antenna, which led to the fact that antennas
have different sensitivities to different actions. An antenna
contains 30 subcarriers. If the antenna is not sensitive to
actions, it is meaningless to select subcarriers on this in-
sensitive antenna. Zhou et al. [31] reveal the distribution of
CSI amplitude of different antennas. According to the ex-
periments mentioned above, different antennas have dif-
ferent sensitivity to the same activity. For example, in the
bend movement, one antenna is insensitive, while the others
are sensitive. Based on the above inspiration, we have ex-
plored the relationship between antennas and proposed an
antenna selection mechanism to remove those antennas that
are not sensitive to the activity.

4.1.2. Enhancement of Activity Signal. In previous work,
filter, outlier elimination, and interpolation are often used
for data preprocessing, such as Butterworth filter [32],
Kalman filter [33], Hampel filter, and discrete wavelet
transform (DWT) [34]. However, these methods only re-
duced the noise instead of enhancing activity signals. If the
difference between the active signal and the inactive signal
can be augmented, the active signals will be enhanced and
the inactive signals will be weakened. Based on the above
inspiration, a signal enhancement approach is proposed.*e
enhanced signals will clearly indicate the active intervals;
meanwhile, those inactive ones will be further weakened,
which will suffice to separate the active signals and the
inactive ones.

4.1.3. Activity Segmentation of Start and End Times. In the
entire CSI sequence, the signals caused by human activity
account for only a small part. Most of the signals are
composed of inactive signals before and after the action. If
the features of the entire CSI sequence are extracted and
input into the classifier training, a large number of inactive
signals will increase the amount of calculation and affect the
accuracy. In the previous work, the variance of the phase
difference between the antennas is used to detect a fall
[35, 36]. Hilbert transform extracts multiple envelopes to
achieve activity segmentation. In our paper, an activity
segmentation algorithm is proposed to detect the start and
end times of activities based on signal enhancement.

4.2. Framework ofHAR. *eHAR framework consists of the
antenna selection module, signal enhancement module and
activity segmentation module in Figure 2. We describe the
details of every module in Section 5.

*e antenna selection module selects the antenna which
is sensitive to different activities and abandons the others.
*e signal enhancement module includes SavitzkyGolay
filter and interpolation and signal enhancement. Among
these studies, this paper focuses on signal enhancement. Two
approaches have been proposed for signal enhancement,
N-iteration signal enhancement (NISE) and P-signal en-
hancement (PSE). *e signal enhancement amplifies the
signal which implies activity and weakens the signal which
indicates inactivity. *e activity segmentation module seg-
ments the active and inactive parts of the signal. In this
module, an activity segmentation algorithm is proposed,
which aims at detecting the intervals of the activity.

5. Construction of HAR Framework

5.1. Antenna Selection Module. In this section, a MIMO
antenna system which consists of one transmitter and three
receivers comes into use.*e raw signals of various activities
were analyzed based on a large number of experiments as
shown in Figure 3. *e results show that the existence of
insensitive antennas is inevitable rather than accidental.
*ree representative activities were selected, such as vig-
orous movement (bend), slight movement (clap), and
continuous repetitive stable movement (walk).

It can be seen from Figure 3 that there exists an antenna
which is not sensitive to human activity in the 1× 3 antenna
system. *us, it is named insensitive antenna. *e signal on
the insensitive antenna is seriously interfered by noise and
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Figure 1: Schematic diagram of MIMO antenna structure.
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hardly reflects the human activity. If this antenna is used in
the final classification, the recognition accuracy will be se-
riously degraded. If the insensitive antenna will be aban-
doned, the characteristic information would not lost due to
the information redundancy and correlation among these
antennas.

It can be found that the sensitivity of different antennas
to activity is different. Insensitive antenna contains a sig-
nificant characteristic that the amplitude of CSI is relatively
stable, whereas the signal of the sensitive antenna will change

obviously. *e reason for the existence of insensitive an-
tennas may be related to factors such as the experimental
environment, physical antenna placement, and human body
orientation. Our purpose is to find and remove insensitive
antennas without considering the quantitative relationship
between the antenna and the above influencing factors.

Based on the above research, we propose an adaptive
antenna selection approach, which choose or reject the
antennas according to the sensitivity of different activities.
*e experiments make a comparison to 30 subcarriers
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Figure 2: *e framework of HAR.
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Figure 3: Raw signals of three antennas with different activities: (a) bend; (b) clap; (c) walk.
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between the insensitive antenna and the sensitive antenna.
*e results revealed that the signal change trend and the
activity range of the sensitive antenna are consistent. We
calculate the average of 30 subcarriers and form a data
sequence, and the activity interval of the sensitive antenna is
very obvious, such as the first and second antennas as shown
in Figure 4(a). Meanwhile, the insensitive antennas, such as
the third antenna, are stable with a small range of fluctu-
ations and insensitive to human activities.

In order to further distinguish the sensitive to human
activities of the antennas, the sliding window variance ap-
proach was adopted in the analysis of the three CSI streams.
As shown in Figure 4(b), the first antenna is the most
sensitive to movement, and the third antenna is the least
sensitive. It means that the difference between them is ex-
panded significantly. Finally, it can conclude that the first
antenna, which is the most sensitive to human activities, is
the best choice. *e antenna selection algorithm is described
as follows (Algorithm 1).

5.2. Signal Enhancement Module

5.2.1. Stability Measurement Based on Variance 5eory.
In the theory of probability and statistics, variance is a
measure of the dispersion degree of a set of data, which is
used to describe the distance between the sample and its
mean center. *e CSI measurement of a subcarrier is
denoted as A � A1, A2, . . .Ai . . .An{ }, and the difference
between the measured valueA and the true value Â is
denoted as δ � δ1, δ2 . . . δi . . . δn{ }, where n represents the
number of samples, δi � Ai − Â. *e variance can be defined
as

S2 �
1

n
∑
n

i�1

δi
2
�
1

n
∑
n

i�1

Ai − Â( )2. (5)

However, the true value Â is unknowable and δi cannot
be obtained; so, formula (5) has only theoretical significance.
In practical applications, the arithmetic mean A can often be
used to represent the true value Â. Vi can be defined as
Vi � Ai − A. δi and Vi have the following mathematical
relationship [37]:

∑
n

i�1

δi
2
�

n

n − 1
∑
n

i�1

Vi
2. (6)

*e S2 can be modified as follows:

S2 �
1

n
∑
n

i�1

δi
2
�
1

n

n

n − 1
∑
n

i�1

Vi
2
�

1

n − 1
∑
n

i�1

Ai − A( )2, (7)

where Ai represents the amplitude of sample i, A represents
the mean center of the sample, and n represents the number
of samples. In the CSI signal, the signal time series reflects
the change of human activity with time. If the variance is
calculated in the entire time series, it will be meaningless and
only reflects the average stability of the entire process. In a
local range, the variance can represent the discrete degree of
instantaneous activity. If the signal in the inactive range
tends to be stable, the variance in the sliding window is small,

and if the signal in the active range is unstable, the variance
in the sliding window will grow larger. Based on the above
ideas, this paper introduces a sliding window to calculate the
variance of the local range to measure the stability and
instability and then roughly distinguishes between active
signals and inactive signals.

5.2.2. N-Iterations Signal Enhancement (NISE). *e raw CSI
signal contains a lot of noise; the key activity signal range is
submerged in the noise. Most of the previous work was based
on filters to remove noise interference and rarely considered
enhancement of active signals and suppression of inactive
signals. Based on the above inspiration, formula (7) is used to
describe the stability of the data in samples. *is approach can
strengthen the activity signals, but the enhanced signal has
obscure activity boundaries as shown in Figure 5(a).

To solve the above problem, we proposed a signal en-
hancement approach based on N-iterations (where N is the
number of iterations), which means that the signal was
enhanced multiple times with the same approach. As shown
in Figure 5(b), in a single subcarrier, N-iterations signal
enhancement (NISE) outperforms the above approach.

*e iterative structure with the sliding window is shown
in Figure 6. *e CSI amplitudes of every subcarrier is
denoted as S � 1, 2, 3, . . . , n{ }, where n represents the
number of packets. We calculated the variance of the raw
signal in the sliding window. *ese variances form a new
variance sequence A � A(1), A(2), A(3) . . .A(k){ }, where
k � n −Wz + S, Wz is the size of slide window, and S is the
step, which is used to calculate the variance of the next round
and achieve B � B(1), B(2), B(3) . . .{ }. It should be noted
that the size of data sequence will changes for each iteration.

*e NISE enhanced signals of the three antennas is
shown in Figure 7. *e signals in the left picture are the raw
signals, it can be seen that the active and inactive parts of the
raw signals are difficult to distinguish, and their boundaries
are blurred. On the right are the enhanced signals. NISE
enhances the active signal and weakens the inactive signal,
which leads to the fact that the active window boundary of
the enhanced signal is clear. By means of signal enhance-
ment, the fact that there exists insensitive antenna is affirmed
in the experiment. Sensitive antenna (a) and (b) have
overlapping active signal windows, whereas the insensitive
(c) did not show the same characteristic after being
strengthened, and its windows are still scattered.

*e pseudocode of the NISE algorithm is given as follows
(Algorithm 2).

5.2.3. P Signal Enhancement (PSE). Considering the issue
that NISE requires multiple rounds of iterative calculations
with high computational overhead, a P-signal enhancement
(PSE) is proposed in the following studies. *e formula of
P-signal enhancement is defined as follows:

S �∑
n

i�1

Ai − A( )2p, p � 1, 2, 3 . . . , (8)
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where Ai represents the amplitude of sample i, A represents
the mean center of the sample, and p represents a natural
number. 2p ensures that the distance between the sample
and its mean is positive, because we focus on measuring the
degree of deviation, negative distance is meaningless. *e
raw CSI signals of different qualities have different p values.

If the CSI signals are less interfered by environmental noises,
then a smaller p value can obtain inspiring effect brought by
means of signal enhancement. Here, the value of p is 2; the
value of p will be discussed in Section 6.

*e pseudocode of PSE algorithm is given as follows
(Algorithm 3).
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action; (b) N-iterative signal enhancement of No. 24 subcarrier of bending action.

Input: S—the sequential data of CSI which contain 3 antennas with 30 subcarriers
W—the size of sliding window
step—the step size of window movement
Output: Sj—the sequential data of the antenna which are most sensitive to activity
Step 1: for each antenna Sj in S
Step 2: calculate the mean sequential data (Fj) of 30 subcarriers in Sj
Step 3: Nj� the length of Fj
Step 4: Ej�Ø
Step 5: for (int k� 0; k +W≤Nj; k� k + step)
Step 6: calculate the variance (vk) of sequential data in sliding window
Step 7: append vk to Ej
Step 8: end
Step 9: Rj�max (Ej)−min (Ej)
Step 10: end
Step 11: return antenna Sj whose corresponding Rj is maximum

ALGORITHM 1: Antenna selection.
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*e PSE enhanced the signals of the first and second
antennas in the bend activity, which is shown in Figure 8. It
is not difficult to conclude that PSE is comparable to NISE.

5.3. Activity Segmentation Module. Activity segmentation
aims to detect the start and end times of activity. Figure 9(a) has
shown the segmentation of a single subcarrier. In our experi-
ments, 30 subcarriers on each antenna were adopted to explore
active intervals. Figure 9(b) has shown the result obtained by
combining the active intervals of all subcarriers, which describe
the start and end times of human activity. In aword, themethod,
which is used to segment a single subcarrier, is evolved to deal
with all subcarriers at one time and form a comprehensive
segmentation of human activity. *erefore, the activity seg-
mentation algorithm for integrating the activity interval of all
subcarriers is proposed. *e pseudocode of the activity seg-
mentation algorithm is given as follows (Algorithm 4).

5.4. Feature Extraction. Plenty of relative studies summarize
the feature extraction methods of WiFi-CSI human activity
recognition. We extract the following features from CSI
amplitude to classify human activity: (1) mean, (2) nor-
malized standard deviation (STD), (3) maximum and
minimum, (4) skewness and kurtosis, (5) median absolute
deviation (MAD), (6) signal range, (7) interquartile range
(IR), (8) signal entropy, and (9) velocity of signal change.
*ese features, which extracted from CSI amplitude, are all
set to be the input of the classifier.

5.5. Classification. Various classification methods have been
applied to classify human activities. In order to discuss
whether or not our approaches mentioned above can achieve
better performance and validity, machine learning methods
and deep learning methods were applied to verify the ef-
fectiveness of the proposed approaches.

Machine learning classifiers such as support vector ma-
chine (SVM), random forest (RF), and K nearest neighbor
(KNN) were applied in our experiments. SVM is a supervised
learning model in machine learning, which is used to analyze
data and recognize patterns. In order to solve the nonlinear
classification problem, a kernel function is used to map input
samples into a high-dimensional feature space. It can find the
maximummargin hyperplane in the transformed feature space.
Random forest (RF) is based on ensemble learningmethods for
classification and regression. *e RF classifier consists of a
collection of single decision trees, each of which is grown by
randomly drawing samples and replacing them. RF improves
the classification performance of a single-tree classifier by
constructing decision trees with random methods, such as the
bootstrap (bagging) method.*e random forest selects the tree
with themost votes to classify it in all the forests. KNN is a basic
classification and regression method, which is an optimization
problem of finding the closest point in a scale space. KNN
classifies by measuring the distance between different feature
values. *is distance is determined by Euclidean distance or
Manhattan distance.

Convolutional neural network (CNN) is a kind of
feedforward neural network with convolution operation and
deep structure and, therefore, is regarded as one of the

1 2 3 4 5 6 7 8 9 10 11 12 …

Window size (Wz)

Step (S)

A(1) A(2) A(3) A(4) A(5) A(6) A(k – 2)A(7) … A(k – 1)

B(1) B(2) B(3) B(4) B(5) …

CSI data sequence

Raw signal

First iteration

N iteration

C(1) C(2) …

Second iteration

n – 7n – 6n – 5n – 4n – 3

A(k)

n – 2n – 1 n

B(i)

Figure 6: *e iterative structure of the sliding window.
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representative algorithms of deep learning. It has the ability
of representation learning and classifying input information
according to its hierarchical structure.

6. Implementation and Evaluation

6.1. Experimental Setup. *e experimental environment is
built on off-the-shelf devices. *e experimental data ac-
quisition system consists of two devices. Two *inkPad
X200 laptops equipped with an Intel 5300 NICs served as
the transmitter and receiver, each of which has three
external 4 dBi Gain omnidirectional antennas. *e laptop
is installed Ubuntu 12.05 with a modified Intel NIC driver
and the kernel version is 4.2.0. In order to prevent in-
terference of many devices working at 2.4 GHz, the ex-
perimental system is designed to support two frequency
bands 2.4 GHZ and 5.2 GHZ. *e software used in our

experiments is the open-source CSI-tools presented by
Shangguan et al. [38]. Python software was used to analyze
the collected data as described in the methodology section
and MATLAB software was used to achieve the visuali-
zation of results. *e experimental hardware is shown in
Figure 10.

*ese experiments were carried out on three typical
indoor environments with different layout schemes. *e
experimental scenarios are shown in Figure 11. *ree vol-
unteers, of height between 165 cm and 185 cm, join these
experiments. Each volunteer performs specific activities
individually. *e distance between the transmitter and re-
ceiver is 2.5m–3m, and the vertical height is 1.2m. *e
experiments were implemented on IEEE 802.11n monitor
mode at 5.2G WiFi frequency in order to get rid of the
crowded 2.4GHz interference in the experimental envi-
ronment. *e sampling rate is 30 packets per second.
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Figure 7:*ree antennas raw signal and enhanced signal of bend movement based on NISE. (a) First antenna; (b) second antenna; (c) third
antenna.
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6.2. Dataset Description. *ree volunteers were recruited to
perform eight daily activities including bend, call, clap, drink,
sit, squat, walk, and wave in three different scenarios. Each
volunteer was required to finish the activities individually for a
period of 5–20 seconds. It is important to note that the vol-
unteer remains stationary in addition to perform specific ac-
tivities. In order to simulate the activities under real conditions,

items on the table will be moved randomly. During the ex-
periment, the door of the room remains closed and there was
no furniture to move. In addition, both the transmitter and
receiver are placed in the line-of-sight (LOS) conditions.

Six-hundred data files of all activity from three volun-
teers were collected. Datasets are described in Table 1. A
sliding window was used to extract features from samples to

Input: Sij—the sequential data of i-th subcarrier and j-th antenna for CSI signal
W—the size of sliding window
P—the number of iterations
step—the step size of window movement
Output: SEij—the enhanced sequential data of i-th subcarrier and j-th antenna
Step 1: S� Sij
Step 2: for (m� 0; m<P; m++)
Step 3: N� the length of S
Step 4: for (k� 0; k +W≤N; k� k+ step)
Step 5: ST�Ø
Step 6: calculate the variance (vk) of sequential data in sliding window from S
Step 7: append vk to ST
Step 8: end
Step 9: S� ST
Step 10: end
Step 11: SEij� S
Step 12: return SEij

ALGORITHM 2: N-iteration signal enhancement.

Input: Sij—the sequential data of i-th subcarrier and j-th antenna for CSI signal
W—the size of sliding window
step—the step size of window movement
Output: SEij—the enhanced sequential data of i-th subcarrier and j-th antenna
Step 1: N� the length of Sij
Step 2: for (k� 0; k+W≤N; k� k+ step)
Step 3: ST�Ø
Step 4: calculate formula (6) (vk) based on sequential data in sliding window from Sij
Step 5: append vk to ST
Step 6: end
Step 7: SEij� ST
Step 8: return SEij

ALGORITHM 3: P-signal enhancement.

0

5000

10000

A
m

p
li

tu
d

e 
o

f 
C

SI

30 60 90 120 1500

Packets

(a)

0

2000

4000

A
m

p
li

tu
d

e 
o

f 
C

SI

906030 120 1500

Packets

(b)

Figure 8: Enhanced signal based on PSE. (a) First antenna; (b) second antenna.
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generate labeled feature data. *e data set was divided into
90% training and 10% testing to build three classifiers, and
we also measured the five-cross validation accuracy.

6.3. Performance of Human Activity Recognition. *is sec-
tion discusses the impact on human activity recognition
from the following three aspects.

6.3.1. Impact of the p Value in PSE. *e effect brought by the
p value was observed on the signals. As shown in Figure 12, the
signal becomes sharp and the range of activity tends to be
constant with the increase of p value. In order to obtain the start

and end times of the activity, this paper maps this time range to
the raw signal and segments the activity.*erefore, we paymore
attention to the boundary of the enhanced signal rather than the
amplitude shape. *e performance results under different p
values are shown in Figure 13. It can be seen that the perfor-
mance is best when p value is 2, and the accuracy and precision
are 96.86% and 97.81%, respectively. With the increase of p
value, the system performance did not continue to improve.

6.3.2. Impact of Sliding Window Size in NISE and PSE.
*e size of the sliding window is the key to signal enhance-
ment. According to our researches, the appropriate size of the
sliding window is closely related to the sampling frequency
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Figure 9: *e raw signal and segmented signal of (a) a single subcarrier and (b) all subcarriers.
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(our sampling frequency is 30Hz). *e amount of data in
sliding window is related to the duration of human activity and
reflects the transient movement. If the sliding window is too
small, human activities will be oversegmented and cannot
contain integral human behavior. Conversely, if the sliding
window is too large, it cannot reflect this microvariation of
human behavior and only indicate the overall changes. *e
relationship between the size of the sliding window and the
signal enhancement performance is shown in Figure 14. It can
be found that 20 is the best size of the sliding window. As the

sliding window increases, the system performance decreases
rapidly. According to a large number of experiments, it can be
concluded that the signal enhancement performance is the best
whenW� F/1.5, where the slidingwindow size is denoted asW
and the sampling frequency is described as F.

6.3.3. Impact of the Experimental Scenarios. We evaluated
the performance of human activity recognition in three
experimental scenarios. Table 2 makes a comparison

(a) (b) (c)

Figure 11: *e scenarios of human activity experimental: (a) empty room, (b) meeting room, and (c) research room.

Figure 10: Experimental hardware.

Input: Se—the enhanced signal of CSI
W—the size of sliding window
N—the length of the sequential data of CSI
step—the step size of window movement
Output: Ts—the start time point of activity
Te—the end time point of activity
Step 1: for each subcarrier Sj
Step 2: V�Ø
Step 3: for (k� 0; k+W≤N; k� k+ step)
Step 4: calculate the mean(mk) of sequential data in sliding window from Sj in Se
Step 5: append mk to V
Step 6: end
Step 7: VS � V
Step 8: sort VS in ascending order
Step 9: t� the numerical value of third quartile (75%) in sorted VS

Step 10: filter out the value that is less than t in V
Step 11: the range of the remaining continuous data in V is the start time(vjs) to the end time(vje) in sequential data for the activity
Step 12: end
Step 13: Ts�min(vjs)
Step 14: Te�max(vje)
Step 15: return Ts, Te

ALGORITHM 4: Activity segmentation.
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between different activities on different experimental sce-
narios. *e overall performance in the meeting room is
better than the other two experimental scenarios. It can be
seen from Table 2 that the average accuracy of walk is the
highest, because it is a continuous repetitive action with a
single action pattern. *e difference between individuals is
relatively insignificant. *e average recognition accuracy of
clap and drink is a little poor, because these actions are often
accompanied by other body movements at the same time.
*ese movements are complex and diverse and have no fixed
pattern, which makes it is difficult to recognize.

6.4. Evaluation

6.4.1. Comparison between Different Approaches. *e di-
versity of individual human activities determines the di-
versity of CSI information, which means that different
persons possess different movement patterns (such as
posture, speed, range of mentioned, and height). In order to
verify the performance of these methods proposed in this
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Figure 12: *e impact of different p values on signal enhancement. (a) p � 1, (b) p � 2, (c) p � 3, and (d) p � 4.

Table 1: *e details of datasets in three scenarios.

Scenario Volunteer Number of data files Number of activities per file Time per file (s)

Empty room
A 600 1 8
B 600 1 8
C 600 1 8

Meeting room
A 200 3 15
B 200 3 15
C 200 3 15

Research room
A 150 4 20
B 150 4 20
C 150 4 20

95.99%

96.85% 96.73% 96.59%

97.10%
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Figure 13: Performance results under different p values.
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paper, machine learning and deep learning methods were
applied to our system. *ree volunteers A, B, and C were
recruited to take part in the experiment. Meanwhile, any
combination of these datasets is utilized and described as
A-B, A-C, B-C, and A-B-C. *e performance of different
approaches on three volunteers and their fusion data using
RF classifier in an empty environment is shown in Figure 15.

It can be shown in Figure 15 that the performance of
NISE and PSE is significantly better than the raw signals.
Among them, the performance of NISE is slightly better than
PSE. *e average recognition accuracy of A and B is better
than C. According to our observation, volunteers A and B
are both male and have similar activity styles. Volunteer B
who exercises regularly and obtains 96.82% of average
recognition accuracy. Volunteer C is a female who rarely
exercises and does not have standard activity. Volunteers B
and C are one male and one female, respectively; therefore,
there are differences in posture and height. Based on above
reasons, it can be confirmed that the greater similarity of the
height, posture, and activity styles between volunteers, the
better the recognition performance of the system.

*e CNN was constructed with two convolutional layers
and two pooling layers. *e size of the convolution kernel is
5× 5 and the size of the pool is 2× 2. *e number of iter-
ations epoch in CNN is set to 200. *e data extracted from

CSI sequence generated a matrix, the rows of which cor-
respond to subcarriers and the number of columns of which
is equal to the size of the slide window. *e matrix with
30× 60 is used as input data of CNN in our experiments.
With three volunteers and their fusion data achieved in an
empty environment, the performance of CNN based on
different approaches is shown in Figure 16.

Experiment results show that the performance of CNN
based on NISE and PSE is better than that based on raw
signals; therefore, it is not difficult to conclude that the
enhanced and segmented signal can obtain better recogni-
tion accuracy than the raw signal in deep learning. NISE and
PSE can obtain 93.81% average of recognition accuracy in
A-B-C datasets. Moreover, it is worth while to note that the
performance of NISE and PSE in deep learning is stable in
the fusion datasets.

Moreover, the confusion matrices were built to evaluate
our system. Figure 17 shows the confusion matrix of the
experiment results created by NISE and PSE in the RF
classifier. Each row represents an actual class, where each
column represents a predefined class. *e average accuracy
is 95.75% in NISE and 94.5% in PSE.

6.4.2. Comparison between Different Classifiers. We com-
pared three classifiers with different architectures (SVM,
RF, and KNN); SVM implemented 10-fold cross
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Figure 15: Performance of different approaches on three volun-
teers and their fusion data using RF classifier in an empty
environment.

Table 2: Accuracy of different activities in each experimental scenario.

Scenarios Approach Bend Call Clap Drink Sit Squat Walk Wave

Empty room
Raw signal 93.63 96.46 88.38 88.81 93.78 89.74 98.76 87.49
NISE 96.94 99.46 92.09 92.42 98.63 90.58 100 97.74
PSE 96.63 98.98 91.33 91.48 97.83 91.20 100 96.04

Meeting room
Raw signal 90.09 89.37 91.57 91.26 92.56 94.49 93.90 92.76
NISE 95.07 95.37 95.02 98.30 96.39 98.59 100 99.35
PSE 92.91 95.17 92.75 97.96 98.51 99.20 100 99.49

Research room
Raw signal 81.08 82.18 80.52 80.58 81.78 82.88 86.59 83.35
NISE 96.30 91.60 94.37 92.38 99.10 97.68 99.10 89.01
PSE 94.28 90.77 91.84 92.22 98.84 99.11 98.96 91.10

Accuracy

Precision

%
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Figure 14: *e impact of sliding window size on performance.

14 International Journal of Antennas and Propagation



validation. *e number of trees is 200 in RF classifier, and
the value of k in KNN classifier is 13, which provides
higher classification accuracy and avoids obvious over-
fitting. Based on these results in Figure 18, we can draw a
conclusion that KNN has the best recognition perfor-
mance, Volunteer B’s actions are the most standard ones,
and the recognition accuracy of the three classifiers is
almost equal.

6.4.3. Comparison between Different Indicators. To evaluate
the performance of the proposed approaches, accuracy,
precision, recall, and F1 score were used to analyze results
of the experiments. *e RF classifier was used in volunteer
B dataset to analyze classification indicators; the formulas
of the precision and recall for the category Ci are defined
as

Pi �
TPi

TPi + FPi
,

Ri �
TPi

TPi + FNi
,

(9)

where TPi is the number of the activities that is correctly
classified to category Ci, TNi is the number of the activities that
is correctly classified to other categories excluding the category
Ci, FPi is the number of the activities that is misclassified to the
categoryCi, and FNi is the number of the activities belonging to
category Ci, which are misclassified to other categories. To
evaluate performance average across categories, the micro-
averaging and macroaveraging were used in our experiments.
Microaveraging is obtained by summing the over all individual
decisions. Macroaveraging is evaluated “locally” for each

Bend Call Clap Drink Sit Squat Walk Wave

Bend 0.97 0.02 0 0.01 0 0 0 0

Call 0.01 0.98 0 0.01 0 0 0 0

Clap 0 0.01 0.98 0 0 0.01 0 0

Drink 0.02 0.01 0 0.97 0 0 0 0

Sit 0.03 0.02 0 0.01 0.95 0 0 0

Squat 0.06 0.01 0 0.01 0 0.92 0 0

Walk 0 0 0 0 0 0 1 0

Wave 0.03 0.03 0 0.05 0 0 0 0.89

(a)

Bend Call Clap Drink Sit Squat Walk Wave

Bend 0.97 0.02 0 0.01 0 0 0 0

Call 0.01 0.98 0 0.01 0 0 0 0

Clap 0.04 0.02 0.88 0.02 0 0 0 0.04

Drink 0.01 0 0 0.98 0 0.01 0 0

Sit 0.06 0.02 0 0.01 0.89 0 0 0.02

Squat 0.06 0.01 0 0.01 0 0.9 0.02 0

Walk 0 0 0 0 0 0 1 0

Wave 0.01 0.02 0 0.01 0 0 0 0.96

(b)

Figure 17: *e confusion matrices created by (a) NISE and (b) PSE.
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Figure 16: Performance of CNN based on different approaches on three volunteers and their fusion data in an empty environment.
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category and then “globally” by averaging over the results of the
different. *e microprecision, microrecall, macroprecision, and
macrorecall may be obtained as

Pmicro �
TP

TP + FP
�

∑|C|i�1 TPi
∑|C|i�1 TPi + FPi( )

,

Rmicro �
TP

TP + FN
�

∑|C|i�1 TPi
∑|C|i�1 TPi + FNi( )

,

Pmacro �
∑|C|i�1 Pi
|C|

,

Rmacro �
∑|C|i�1 Ri
|C|

.

(10)

In our evaluation, “macro” is used to analysis recall and
precision and “micro” is adopted for F1. *e micro-F1 and
accuracy are defined as follows:

F1micro �
2 × Pmicro × Rmicro
Pmicro + Rmicro

,

accuracy �
TP + TN

TP + TN + FP + FN
,

(11)

where TP� true positives, FP� false positives, TN� true
negatives, and FN� false negatives. Among these indicators,
accuracy and precision are themost importantmeasures in our
studies. Accuracy indicates the proportion of correct recog-
nition in all activities. Precision can identify the proportion of
human activity in all detected activities, so it is a measure of
false alarms.*e recall rate provides the proportion of activities
that the system correctly recognizes in actual activities. F1 score
is the harmonic mean of these twometrics. It can be seen from
Figure 19 that NISE and PSE are significantly better than the
raw signal. Among the classifier indicators, precision per-
formed best, reaching 97.8%, which also shows that our system

has a low false alarm rate. Accuracy reflects the overall per-
formance of the system, reaching 96.82%.

7. Discussion

In fact, only a small portion of the whole signal is available
to represent the characteristics of human activities. All the
signals are used to train the classifier, which will lead to
large amount of calculation, long recognition time, and
low efficiency. *us, this paper puts forward to remove
insensitive antenna signal from the raw signal and con-
struct a framework, which consists of the antenna se-
lection module, signal enhancement module, and activity
segmentation module. *e solutions described above are
implemented in our system, which improves the recog-
nition accuracy and reduces the time required for rec-
ognition. *e experimental environment in this paper is
closer to actual needs, such as fall detection, home safety
detection, and other scenarios that require real-time
detection. *e methods proposed in this paper aims to
achieve real-time detection and recognition and will be
widely used in real-life scenarios.

However, there are still many limitations in our work.
First, only the CSI amplitude information is used in
current studies, and more accurate CSI phase information
will be still needed in the future. Secondly, existing data
collection equipment requires manual operation. In the
future, an automatic collection system would be devel-
oped to achieve the integration of data collection, data
analysis, and result display. In addition, human activity
recognition for multiple targets will cope with enormous
challenges. Existing works are based on the activity rec-
ognition of a single person. However, in real-life sce-
narios, human activity is an intricate combination of
many activity types. *erefore, it is necessary for us to
recognize the human activity involving more targets from
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Figure 18: Comparison between different classifiers using NISE
approach.
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Figure 19: Comparison of the classifier indicators in the three
approaches using RF classifier in an empty room.
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the intricate human activities. Meanwhile, it is vital to
further explore the mechanisms that meet different sit-
uations and promote the practical application of human
activity recognition in social life.

8. Conclusions and Future Work

8.1. Conclusions. In this paper, a framework for human
activity recognition was proposed to improve the speed and
accuracy of activity recognition. *e framework contained
three modules, which were developed to remove insensitive
antennas, extract the range of human activities, reduce
computational costs, and process redundant information.
First, by analyzing the sensitivity between different antennas,
an antenna selection approach was proposed to deal with
insensitive antennas. After that, we enhanced the extracted
sensitive antenna signals and discussed two different signal
enhancement approaches, which can clearly show the active
range and the inactive range. Finally, an activity segmen-
tation algorithm was proposed to determine the beginning
and end of the activity.

In our paper, three impact factors are discussed, namely,
the diversity of human activities, the value of p in PSE, and
the size of the sliding window. Although some progress has
been made in human activity recognition, there still exist
some challenging problems in our future work. We will
continue to explore these problems and look forward to
achieving satisfactory results.

8.2. Future Work

8.2.1. To Achieve Multiperson Recognition. In real-life
scenarios, it is possible that multiple targets simulta-
neously exist in the same environment, and the activities
are intertwined and complicated. *erefore, more
equipment will be used to emulate the real-life situation in
the following studies to obtain more signal information
reflected by the human body. Meanwhile, the framework
proposed in this paper will be applied to multiperson
recognition and detection. Of course, the further research
is challenging.

8.2.2. To Achieve Automatic Data Collection and Analysis.
*e existing data collection requires manual operation,
which will cause additional interference by nonidentity
personnel. In the future, we consider establishing a human
activity recognition system which can perform the collection
and analysis of signals automatically.*e system is desired to
achieve real-time activity recognition, visualization, and
alarm.

8.2.3. To Introduce New Features. *e existing features are
based on empirical observation and statistical learning. It
heavily depends on the specific environment which is
deployed in our experiments. However, many factors, such
as different environments, different individuals, and even
different positions of the same individual, contribute to the

accuracy. Our future researches will extend the study scope
and depth for the features of WiFi signal and explore more
effective methods of human activity recognition, which can
be widely used in social life.

Data Availability

*e CSI data for human behavior recognition used to
support the findings of this study are available from the
corresponding author upon request.
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