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Hydrologic classification is one of the most widely applied tasks in ecohydrology.  During the 
 

last two decades considerable effort has gone into analysis and development of methodological 

approaches to hydrologic classification.  We review the process of hydrologic classification, 

differentiating between an approach based on deductive reasoning using environmental 

regionalization, hydrologic regionalization and environmental classification whereby 

environmental variables assumed to be key determinants of hydrology are analyzed, and one 

based on inductive reasoning using streamflow classification whereby hydrologic data is 

analyzed directly.  We explore past applications in ecohydrology highlighting the utility of 

classifications in the extrapolation of hydrologic information across sparsely gauged landscapes, 

the description of spatial patterns in hydrologic variability, aiding water resource management, 

and in the identification and prioritization of conservation areas.  We introduce an overarching 

methodological framework that depicts critical components of the classification process and 

summarize important advantages and disadvantages of commonly used statistical approaches to 

characterize and predict hydrologic classes.  Our hope is that researchers and managers will be 

better informed when having to make decisions regarding the selection and proper 

implementation of methods for hydrologic classification in the future. 

KEY WORDS: dams; flow regime; environmental flow; river regulation; hydrologic metric 
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Hydrologic classification is the process of systematically arranging streams or rivers into groups 
 

that are most similar with respect to the characteristics of their flow regime.  The classification of 

flow regimes continues to play an important role in ecohydrology as a means to understand 

riverine flow variability (e.g. Mosley, 1981; Haines et al., 1988; Poff, 1996; Harris et al., 2000; 

Snelder et al., 2009a), explore the influence of streamflow on biological communities and 

ecological processes (e.g. Jowett and Duncan, 1990; Poff and Allan, 1995; Snelder et al., 2004; 

Kennard et al., 2007), aid hydrologic modeling in regionalization analyses (e.g. Tasker, 1982; 

Nathan and McMahon, 1990; Wagener et al., 2007), inventory hydrologic types for water 

resource management (e.g. Snelder and Biggs, 2002; Wolock et al., 2004; Arthington et al., 

2006), and prioritize conservation efforts for freshwater ecosystems (e.g. Nei et al., 2007; 

Snelder et al., 2007).  The flow regime is a key determinant of freshwater biodiversity patterns 

and ecological processes (Poff et al., 1997; Bunn and Arthington, 2002).  Hydrologic 

classification has therefore been identified as a critical process in environmental flow 

assessments by providing a spatially explicit understanding of how much and when flow regimes 

vary among rivers and regions (Kennard et al., 2010b; Poff et al., 2010).  Consequently, 

hydrologic classification is viewed as both an organizing framework and scientific tool for river 

research and management. 

Challenged by the need to quantify flow similarities among rivers and map their distribution 

across the landscape, ecohydrologists have turned to a bewildering (and expanding) array of 

protocols using an equally diverse set of statistical approaches to conduct their hydrologic 

classification.  As a result, several groups of methods are in use, and to-date no single approach 

has demonstrated universally accepted results.  This is not entirely surprising given that despite 

the growing use of hydrologic classification in ecohydrology, little guidance and no synthesis on 

this topic has been published in the literature, and the purposes for conducting a classification 

vary greatly.  Herein, we provide a systematic review of the process of hydrologic classification 

by (i) reviewing two broad classification approaches according to deductive reasoning using 

environmental regionalization, hydrologic regionalization and environmental classification 

whereby environmental variables assumed to be key determinants of hydrology are analyzed, 

and inductive reasoning using streamflow classification whereby hydrologic data is analyzed 
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directly; (ii) exploring past applications in ecohydrology; (iii) introducing a unifying 
 

methodological framework that depicts critical components of the classification process; and (iv) 
 

summarizing important advantages and disadvantages of commonly used statistical approaches 

to characterize and predict hydrologic classes.  The intention of our study is to inform 

ecohydrologists about the critical elements of hydrologic classification, including a discussion of 

the important considerations and techniques available to them. 
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Hydrologic classification refers to a broad suite of methods that seek to characterize similarities 
 

in hydrologic properties among locations.  We recognize two broad approaches that either 

classify locations according to attributes describing those aspects of the environment assumed to 

influence streamflow (the deductive approach consisting of environmental regionalization, 

hydrologic regionalization and environmental classification) and those that classify the emergent 

properties of the discharge time series (the inductive approach or streamflow classification) 

(Figure 1). 

Deductive approaches to hydrologic classification are commonly used when the objective is 

to describe and quantify the spatial variation in flow regime attributes across broad spatial scales 

but where the availability of gauged or modeled hydrologic data is scarce or absent.  The 

availability of high quality hydrologically-relevant environmental datasets (e.g. describing 

climate, catchment topography, soils and geology, vegetation and land use) makes deductive 

reasoning an appealing approach to defining spatial similarities and differences in perceived 

hydrologic characteristics.  There are limits, however, in the particular facets of the flow regime 

able to be accurately quantified by this approach.  Poor data quality (e.g. soil and geology) and 

limited understanding of hydrologic processes (e.g. groundwater-surface water connectivity) in 

many regions means that the ability to accurately characterize spatial variation in low flow 

magnitude and duration (for example) is often precluded using deductive environmental 

classifications. 

Inductive approaches to hydrologic classification are typically conducted using various 

attributes describing different components of the riverine flow regime.  This approach has the 

advantage of being based on direct measures of hydrology (rather than indirect environmental 
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surrogates for hydrology) but has a number of limitations including the often limited spatial 
 

coverage of stream gauges within the river network and the notoriously variable quality and 

quantity of discharge data available for each gauge (Kennard et al., 2010a).  Key characteristics 

and examples of deductive and inductive approaches to hydrologic classification are presented in 

more detail below. 

Deductive Approaches 

96 Environmental regionalization 
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Environmental regionalization is commonly used to provide a spatial representation of similarity, 
 

whereby contiguous or non-contiguous regions are considered homogeneous with respect to 

certain environmental characteristics at a particular scale (Bryce and Clarke, 1996; Loveland and 

Merchant, 2004).  This approach is often developed because it is not necessarily reliant on 

empirical flow data and can be carried out using existing maps and spatial databases (e.g. Bailey, 

1996; Omernik, 2004).  Geographically contiguous regions, such as river basins, have been used 

to group streams assumed to have similar hydrologic characteristics (Table 1), although there is 

ample evidence that flow regimes vary greatly within river basins (Poff et al., 2006; Kennard et 

al., 2010b).  Despite the appeal and advantages of estimating hydrologic similarity based on an 

environmental regionalization approach, streams and rivers within the same region (whether 

contiguous such as river basins or non-contiguous such as hydro-regions) are not guaranteed to 

be hydrologically homogenous.  Kennard et al. (2010b) showed that flow regime classification 

of stream gauges in Australia did not correspond well to membership based on a suite of 

biophysical classifications schemes, including major drainage basins, freshwater ecoregions, and 

Köppen climate divisions.  Similarly, Carlisle et al. (2010) found that the environmental drivers 

of streamflow vary substantially even within relatively homogenous hydrologic regions of the 

United States. 

Hydrologic regionalization 
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The regionalization of hydrologic models has a long history of use in attempting to extend 

insights gained from well-gauged regions to ungauged or sparsely gauged regions or rivers (e.g. 

Tasker, 1982; Nathan and McMahon, 1990; Vogel et al., 1999; Chiang et al., 2002; Merz and 
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Bloeschl, 2004; Wagener et al., 2007).  The common approach to hydrologic regionalization in 
 

ungauged basins is to delineate geographic areas of similar streamflow pattern, use regression to 

relate catchment environmental characteristics to hydrologic metrics describing the flow regime 

within these areas, and assess model reliability.  Typically, only specific components of the flow 

regime are included, such as flood and low flow frequency (e.g. Wiltshire, 1986; Nathan and 

McMahon, 1990; but see Sanborn and Bledsoe, 2006).  By dividing a study area into 

homogeneous groups that are considered to exhibit similar hydrologic characteristics, hydrologic 

metrics may be extrapolated with more precision, and regionalization models based on 

catchment characteristics may be used with greater confidence.  In addition, some explanatory 

factors (e.g., orographic effects, geology) are not well represented by continuous variables with 

monotonic relation to flow, so classification prior to regionalization will likely improve the 

ability to extrapolate hydrologic characteristics.  Often regionalization groupings encompassed 

geographically contiguous areas (e.g. Mosley, 1981; Hughes, 1987; Wagener et al., 2007). 

Environmental classification 
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Environmental classification (also termed environmental domain analysis – Mackey et al., 2007) 
 

defines classes based on physical and climatic attributes that are assumed to broadly produce 

similar hydrological responses in stream systems.  This represents a deductive approach to 

hydrologic classification that is often geographically-independent and depicted by a spatial 

mosaic of hydrologic types across the landscape (Detenbeck et al., 2000).  An advantage of this 

approach is that it is not reliant on an extensive spatial coverage of stream gauges to characterize 

flow regimes.  Instead, spatially comprehensive environmental datasets are often readily 

available (e.g. in a Geographic Information System) and suitable to the task.  Numerous 

physical-based or geomorphic classifications of rivers have been conducted, including those 

based on similar topography, surficial geology and climate (e.g. Kondolf, 1995; Wolock et al., 

2004; Buttle, 2006; Abell et al., 2008; Stein et al., 2009; Sawicz et al., 2011), as well as 

combined hydro-geomorphic typologies (e.g. Snelder and Biggs, 2002; Snelder et al., 2005; 

Schmitt et al., 2007, reviewed in Kondolf et al., 2003) (Table 1). We discuss two examples 

below. 

The concept of hydrologic landscape regions was introduced by Winter (2001) and 
 

developed by Wolock et al. (2004) to describe non-contiguous areas for the United States that 
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reflected aggregated river basins sharing similar environmental factors (e.g. climate, soils, 
 

geology, topography) known to influence streamflow.  According to this classification, a 

fundamental hydrologic landscape unit could be defined according to: (a) the movement of 

surface water, which is controlled by the slopes and permeability of the landscape; (b) the 

movement of ground water, which is controlled by the hydraulic characteristics of the geologic 

framework; and (c) atmosphere-water exchange, which is controlled by climate.  Using 

multivariate ordination and cluster analysis, Wolock et al. (2004) assigned membership of nearly 

44,000 small (ca. 200 km2) watersheds in the United States to 20 hydrologic regions based on 
 

similarities in land-surface form, geologic texture, and climate characteristics (Figure 2).  The 

hydrologic landscape region and similar concepts have proven useful in ecohydrology because 

they are founded on sound physical principles, yet this framework has only rarely been tested 

against regional hydrologic variables.  Santhi et al. (2008) demonstrated that the classification 

approach has merit in predicting regional variations in baseflow, and Carlisle et al. (2010) found 

that stratification by hydrologic landscape regions improved models predicting hydrologic 

metrics from watershed characteristics.  By contrast, McManamay et al. (2011) reported that 

hydrologic landscape regions showed little concordance with the hydrologic classes of Poff 

(1996; see below) for the continental United States, and explained < 30% of the overall 

variability in the hydrologic metrics. 

A similar framework is represented by the River Environment Classification (REC) scheme 

for New Zealand (Snelder and Biggs, 2002).  This classification is represented by a mapped 

hydro-geomorphic topology of rivers based on a combination of watershed climate and 

topography, which are assumed to be the dominant causes of variation in hydrologic character at 

a variety of spatial scales (Figure 3).  In support of this approach, Snelder et al. (2005) found that 

the REC explained statistically significant amounts of variation in 13 hydrologic metrics. 

Specifying a-priori the boundaries between classes (i.e. a ‘top-down’ approach to 

environmental classification) has been criticized (e.g. O’Keefe and Uys, 2000; Stein et al., 2009) 

as it assumes all possible classes are already known.  A ‘bottom-up’ approach to the 

environmental classification may be preferable as it results in classes that are an emergent 

property of the data and reflect the shared similarities of key attributes (Mackey et al., 2007); 

assuming that the modeled data is representative of the total variation that exists.  Although there 

are still subjective choices as to environmental attributes, weightings, classificatory strategy and 
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numbers of groups to include in the classification process, these decisions are explicit and 
 

therefore transparent and repeatable (Stein et al., 2009). 
 

Classifications based on environmental deduction, including REC, are common in the 

literature because topography, surficial geology and climate are assumed to control hydrological 

processes (e.g. precipitation, storage and release of water by watersheds).  However, they do not 

necessarily reflect only hydrological variation because they usually encompass more general 

principles concerning the causes of physical variation in streams and rivers (Snelder et al., 2005; 

Carlisle et al., 2010).  Therefore, as mentioned previously, the choice of environmental factors to 

include in the analysis (and their transformation, weighting and numerical resolution), the 

classification method and choice of number of groups, may influence the final delineation of 

hydrologic regions (Snelder et al., 2007).  Furthermore, some aspects of stream hydrology are 

poorly explained using environmental surrogates due to the coarse resolution of available data 

(e.g., geology layers to describe groundwater contributions), which may also limit the utility of 

environmentally-deduced classifications. 

Inductive  Approach 

197 Streamflow classification 
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Streamflow classification involves the direct delineation of patterns in hydrologic character 
 

through inductive approaches that use attributes describing different components of the multi- 

faceted flow regime.  In this approach, classification schemes attempt to provide order to 

inherently complex flow data by identifying and characterizing similarities among rivers 

according to a set of diagnostic hydrologic metrics that vary spatially across the landscape (e.g. 

Mosley, 1981; Jowett and Duncan, 1990; Poff, 1996; Hannah et al., 2000; Harris et al., 2000; 

Snelder et al., 2009a; Kennard et al., 2010b).  Streamflow classification relies on hydrologic 

metrics that describe the various components of the flow regime, including the seasonal 

patterning of flows; timing of extreme flows; the frequency, predictability, and duration of 

floods, droughts, and intermittent flows; daily, seasonal, and annual flow variability; and rates of 

change (Olden and Poff, 2003; Figure 4).  Hydrologic metrics are often selected to account for 

characteristics of the flow variability that are hypothesized to be important in shaping ecological 

and physical processes in lotic ecosystems.  Many of these metrics have proven to be suitable for 
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hydrologic classification (Kennard et al., 2010b), and are responsive to hydrologic alteration 
 

caused by human activities such as river regulation by dams, urbanization, and projected climate 

change (Richter et al., 1996; Bunn and Arthington, 2002). 

Streamflow classification has been conducted for a number of purposes in ecohydrology. 

Previous efforts have developed classifications at basin, regional, national, continental and global 

scales, focusing on different components of the flow regime and applying a number of statistical 

methodologies (Table 2; Appendix A).  For example, efforts at global or continental scales have 

primarily focused on flow seasonality, flood behavior or low flow characteristics of the 

hydrograph, whereas regional classifications have typically utilized a larger suite of hydrologic 

metrics.  Below we provide a succinct summary of the more common applications of streamflow 

classification in the literature. 

Describing patterns in hydrologic variability – Streamflow classifications have commonly been 
 

developed to place individual stream sites or reaches into a broader spatial context with the goal 

of maximizing the transferability of knowledge among rivers of the same hydrologic class. 

Numerous classifications have been developed to quantify similarities in natural hydrologic 

characteristics at a variety of scales (Table 2).  Poff (1996) identified 10 distinctive flow types – 

seven permanent and three intermittent - in the continental United States based on ecologically 

relevant hydrological characteristics describing flow variability, predictability and low- and 

high-flow extremes.  Kennard et al. (2010b) presented a continental-scale classification of 

hydrologic regimes for Australia describing 12 classes of flow-regime types differing in the 

seasonal pattern of discharge, degree of flow permanence, variation in flood magnitude, and flow 

predictability and variability (Figure 5a).  The geographic distributions of the flow classes varied 

greatly, as did differences in key hydrologic metrics.  At the regional scale, Hughes and James 

(1989) classified streamflow types in Victoria, Australia, based on 16 hydrologic metrics 

computed for 138 gauges from daily time series.  A low-flow classification scheme produced 

four distinct classes with a spatially heterogeneous distribution across the state, which was 

largely determined by topography.  In another example, Bejarno et al. (2010) described 15 

natural flow typologies in the Ebro River Basin, Spain, which were characterized in terms of 

flow fluctuation through the year as well as timing, flow ratio and duration of the maximum and 

minimum flows.  Groups of streams that are hydrologically distinctive at landscape scales are 
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expected to discriminate differences in ecological character (Poff et al., 1997).  For example, 
 

streamflow classes are likely to have similar biological responses to both natural and human- 

induced variability in patterns of magnitude, frequency, duration, timing and rate of change in 

flow conditions.  Therefore, systems that show commonalities in their hydrologic characteristics 

have provided a basis for testing whether hydrology influences the structure and function of 

biological communities in a similar fashion (e.g. Jowett and Duncan, 1990; Poff and Allan, 1995; 

Snelder and Lamouroux, 2010). 
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Aiding water resource management – Streamflow classification based on spatial variation in 
 

stream hydrology can play a central role in river ecosystem planning (e.g., Snelder et al., 2004) 

and environmental flow assessments for water management.  Holistic methodologies to 

environmental flow assessments, such as the application of the benchmarking methodology 

(Brizga et al., 2002), Downstream Response to Imposed Transformations (King et al., 2003), and 

the Ecological Limits of Hydrologic Alteration (ELOHA: Poff et al., 2010), either implicitly or 

explicitly involve the hydrologic classification of rivers.  Streamflow classification is the first 

step in the ELOHA framework and serves two important purposes.  First, by assigning rivers or 

river segments to a particular type, relationships between ecological metrics and flow alteration 

can be developed for an entire river type based on data obtained from a limited set of rivers of 

that type within the region.  Thus classification can help establish the expected ecological 

condition of river basins by class, which alleviates the burden of developing ecological standards 

on a river-by-river basis.  Second, a streamflow classification facilitates efficient biological 

monitoring and research design by informing the strategic placement of monitoring sites 

throughout a region to capture the range of flow conditions (Arthington et al., 2006; Poff et al., 

2010).  Recent efforts have also called for greater focus on how rivers in different classes vary 

with respect to the degree of human influence (e.g., land use, river regulation), thus providing a 

benchmark against which the response of biological communities to these factors can be assessed 

and a better understanding of the extent to which impacts and management options are 

conditional on river class (Peterson et al., 2009; Poff et al., 2010). 
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Identifying and prioritizing conservation efforts for freshwater ecosystems – Recent interest has 
 

focused on the spatial prioritization of freshwater ecosystems for conservation of regional-scale 
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biodiversity (Abell et al., 2007).  Hydrologic classification (inductive or deductive) may be a 
 

useful tool for the identification of streams, rivers or entire catchments with representative flow 

regimes, and therefore, representative biological communities (Nel et al., 2007).  Broadly, 

environmental classes are often used as biodiversity surrogates as different types of 

environments are assumed to support different combinations of species (Margules et al., 2002). 

Following the premise that flow is a key driver of aquatic ecosystem structure and function, 

identifying streams and rivers that exhibit distinct or representative flow regimes using 

hydrological classification can aid in the selection of those river systems that can contribute to 

dynamic conservation reserves to support ecosystem resilience and maintenance of biodiversity 

(e.g. Nel et al., 2007; Snelder et al., 2007). 
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Hydrologic classification should be a process that, ideally, is adequately transparent, readily 
 

interpretable, account for uncertainty and for hydrologic variability at multiple temporal and 

spatial scales, recognize methodological biases and robustness, and provide definable class 

boundaries, objective group membership, and information on the diagnostic hydrologic 

characteristics of each class.  To maximize the ability to achieve (at least in part) these 

requirements, we believe that a hydrologic classification system should be based on a defensible 

scientific framework.  Below, we provide a specific protocol to help reach this goal, highlighting 

all of the aforementioned approaches to hydrologic classification and focusing specifically on 

streamflow classification. 

1) Define the objectives of the hydrologic classification 

a) Deductive approaches are selected when the study seeks a general description of 
 

perceived hydrologic patterns based on first principles with an emphasis on the ease of 

understanding. Limited availability and quality of streamflow data may also necessitate 

deploying a deductive approach. 

i)   Environmental regionalization. The objective is to quantify environmental similarity 
 

using readily-available maps and spatial data, producing a simple classification of 
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contiguous or non-contiguous regions that are considered homogeneous with respect 
 

to certain environmental characteristics at a particular scale. 
 

Hydrologic regionalization. The objective is to extend insights gained from well- 

gauged regions to ungauged or sparsely gauged regions or rivers by relating 

catchment environmental characteristics to hydrologic metrics describing the flow 

regime within defined groups that are considered to exhibit similar hydrologic 

characteristics. 

ii) 

iii) Environmental classification. The objective is to classify sites according to 
 

similarities in hydrologically-relevant environmental datasets (e.g. describing climate, 

catchment topography, soils and geology, vegetation and land use) that are assumed 

to control hydrological processes (e.g. precipitation, storage and release of water by 

watersheds). 

Inductive approaches are selected when the study seeks a stream classification based on 

direct measures of hydrology rather than indirect environmental surrogates for hydrology. 

Proceed to step #2. 

b) 

2) Acquire and evaluate the hydrologic data 

a) Determine availability of discharge data.  Data may be gauged or modeled, recorded at 
 

daily, monthly or annual time steps, span short or long time periods, and vary in 

geographic coverage. 

Select candidate set of gauges (if using gauged discharge data).  If your purpose is to 

classify “natural” flow regimes (the most common application in the literature), then only 

include gauges that are minimally affected by human activities (e.g. dams, water 

extraction, land-use) using best available information (e.g. spatial patterns of land-use, 

dam location and attributes, expert knowledge and input from water managers). 

Evaluate quality of discharge data (i.e. missing data, poor measurement recordings as 

indicated by quality codes) and eliminate gauges with large data gaps and unsatisfactory 

records. 

Ensure consistency of discharge measurement units among gauges (e.g. m3·sec-1 vs. 
 

ML·day-1). 

b) 

c) 

d) 
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e) Evaluate temporal period (e.g. 1965-2000) and duration (i.e. 35 years) of available 
 

discharge data for each gauge, and decide on criteria for inclusion of gauge data. 

Important considerations include: minimum vs. fixed record length, completely 

overlapping vs. partially overlapping period of record, and period of record to include 

particular environmental events (e.g. years including significant changes in climate). 

Screening for long-term trends in hydrologic characteristics (e.g. based on annual values 

of mean, minimum, and/or maximum flows) can help to clarify the extent to which the 

chosen time period is likely to influence the hydrologic classification.  Based on a 

sensitivity analysis, Kennard et al. (2010a) recommend that at least 15 years of daily 

discharge data is suitable for use in hydrologic classifications (to maximize precision and 

minimize bias in the estimation of the hydrologic metrics), provided that gauge records 

are contained within a discrete temporal window (i.e. preferably >50% overlap between 

records). 

Evaluate spatial distribution of gauges that meet the above criteria to ensure adequate 

geographic coverage (e.g. representing climate regions of interest).  If the spatial 

coverage is not sufficient, then evaluate potential for including additional gauges by: 

f) 

i) 
 

ii) 

Relaxing the acceptance criteria (steps 2b, c, e), and/or 
 

Estimating missing or poor quality data in the discharge time series (step 2c) by using 

linear interpolation for short periods, general linear regression for longer periods, or 

another appropriate technique. 

Note that relaxing the acceptance criteria will decrease the comparability of gauges, and 
 

estimating missing data will increase the measurement uncertainty of flow data.  Both 

options will compromise bias and precision of classification results, although some 

hydrologic indices are more sensitive to record length and period overlap than others (see 

Kennard et al., 2010a). 

If steps 2a-f reveal that streamflow data is not of sufficient quality and quantity, then 
 

consider deploying an deductive approach to hydrologic classification (see step 1a). 

g) 

3) Select hydrologic metrics 
 

a)  Select hydrologic metrics according to purpose of the study.  Olden and Poff (2003) 
 

provide a comprehensive review of the most commonly used hydrologic metrics, but 
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importantly, metric selection will influence the outcome of the hydrologic classification. 
 

Considerations for metric selection include: 

i) General ecological rationale: Select a suite of metrics that characterize the totality of 
 

the flow regime. 
 

Specific ecological rationale: Select individual metrics that are known or 

hypothesized to have ecological importance for the specific target response(s) of 

interest (e.g. species, community, or ecosystem properties). 

ii) 

iii) Driver rationale: Select a suite of metrics that is sensitive to an environmental or 
 

anthropogenic driver of interest (e.g. urbanization, river regulation, climate change). 

Select hydrologic metrics that are appropriate for the temporal grain of flow data (e.g. 

metrics describing flow spell duration are more suited to daily or weekly data than 

monthly or annual data; see also Poff, 1996). 

Select hydrologic metrics depending on available software and the user’s experience with 

computer programming.  Software options include dedicated hydrologic software such as 

the Indicators of Hydrologic Alteration (Richter et al., 1996), Hydrologic Assessment 

Tool (Henriksen et al., 2006), the River Analysis Package (www.toolkit.net.au/rap), and a 

number of others. 

Select hydrologic metrics based on minimizing statistical redundancy among metrics. The 

results will inform variable selection and dimensionality reduction (e.g. indirect 

ordination approaches to produce composite variables, such as Principal Component 

Analysis) if multicollinearity among metrics is a concern (see Olden and Poff, 2003), and 

may lead to more robust classifications (Snelder et al., 2009b). 

No hydrologic metrics are chosen.  Hydrologic classification will proceed using 

parameter sets calculated from any number of time series tools available to analyze 

hydrographs, including autoregressive integrated moving average (ARIMA) models, 

Fourier analysis, and wavelets (e.g., Smith et al., 1998; Lundquist and Cayan, 2002; Sabo 

and Post, 2008). 

b) 

c) 

d) 

e) 

4)  Compute hydrologic metrics 
 

a)  Calculate the metric values for each flow record according to decisions made in step 3. 
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b) Screen datasets for outliers and/or gauges potentially affected by anthropogenic activity 
 

or unknown factors (i.e. used in conjunction with step 2b).  Potential approaches include: 

i) 
 

ii) 

Examining diagnostic plots and descriptive statistics. 
 

Conducting indirect ordination (e.g. Principal Component Analysis), plotting 

ordination scores of gauges in multi-dimensional space and looking for outliers that 

might be suggestive of modified flows, unique natural flows, or errors in discharge 

measurement, data entry or metric calculation. 

iii) Plotting mean daily flow (or similar hydrologic metric) against catchment area, 
 

allowing gauges with obviously different discharge (either through extraction or 

supplementation) to be identified. 

Eliminate gauges if necessary. 
 

Estimate uncertainty in hydrologic metrics caused by different lengths and periods of 

gauge records (also see step 2e).  Although commonly overlooked, a robust classification 

system should explicitly incorporate (or in the least, examine) uncertainty in the 

hydrologic metrics that ultimately underlying the classification scheme.  Uncertainty 

values can be used to weight metrics in the classification process and/or metrics with high 

uncertainty can be eliminated from the analysis.  See Kennard et al. (2010a,b) for more 

details.  This step is optional, but recommended. 

Remove scale-dependence of flow magnitude metrics (if required, depending on 

objectives of the study) by standardizing values by catchment area, mean daily flow, or a 

similarly suitable variable. 

c) 
 

d) 

e) 

5) Conduct the hydrologic classification 

a) Select hydrologic metrics to include in classification analysis.  Choice of metrics might 

also be dependent on statistical assumptions/requirements (data type, normality, etc.) of 

classification approach.  Selections might include: 

i) 
 

ii) 

All flow metrics. 

Subset(s) of metrics describing separate components of flow regime (this decision 

depends on the purpose for classification). 
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iii) Subset(s) of metrics that are non-redundant (i.e. low multicollinearity) and highly 
 

informative (i.e. explaining dominant gradients of variation that exist in the larger set 

of metrics).  See Olden and Poff (2003) for more details. 

Decide whether metric transformations and/or standardizations are required (again, this 

depends on statistical assumptions/requirements of classification approach). 

Conduct hydrologic classification analysis using a statistical approach that corresponds 

with the objective of classification and capability of the researcher. Ordination analyses 

may also be conducted to complement hydrologic classification, explore the extent of 

hydrologic variability and examine for natural clusters of stream gauges and/or outliers. 

See Methodologies section below. 

Delineate and decide on the number of hydrologic classes (i.e. clusters) based on 

objective (statistical) criteria, ecological rationale and/or considering a trade-off between 

resolution of hydrological variability and complexity (number of classes). Depending on 

the purpose of the classification, each approach may be legitimate for deciding on the 

number of classes.  Assign class membership.  See Methodologies section below. 

Examine classification results for outliers and eliminate gauges if necessary; repeat steps 

5b-d. 

b) 

c) 

d) 

e) 

6) Interpret and/or spatially-model the hydrologic classification 

a) Assess the predictive performance of the hydrologic classifier using an independent 
 

dataset containing gauges not included in the classification (e.g., cross-validation) 

according to an appropriate statistical approach (e.g. coefficient of agreement such as 

Cohen’s Kappa statistic).  When model performance is poor and the uncertainty of 

classifications are high, this may indicate an inadequate understanding of watershed 

behavior or an inability to know or estimate the salient hydrologic characteristics.  The 

result is a classification system with low power and utility. 

Diagnose the distinguishing characteristics of the hydrologic classes using numerical, 

statistical, graphical, and descriptive approaches. 

Examine geographic distribution of gauge class membership. 

Depending on the study purpose, model class membership of gauges based on upstream 

physiographic characteristics (e.g. drainage area, stream slope, soil type) and climatic 

b) 

c) 
 

d) 
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variables (e.g. precipitation, temperature, evapotranspiration) of the watershed using an 
 

appropriate statistical approach (e.g. logistic regression, discriminant function analysis, 

classification tree).  Assuming adequate model performance (see Snelder et al., 2007 for 

discussion) the user can predict hydrologic class membership by applying model at the 

river segment scale.  See Methodologies section below. 

METHODOLOGIES FOR STREAMFLOW CLASSIFICATION 459 
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The objective of streamflow classification is to ascribe objects (i.e., streams, rivers, catchments) 
 

to empirically-based groupings or classes, so as to maximize the similarity between the members 

of each group and minimize the similarity between groups.  By virtue of the many ways that the 

various components of the flow regime can be characterized (see Olden and Poff, 2003), the 

statistical techniques for organizing rivers into hydrologic classes are numerous and vary in their 

output.  Below we discuss some of the more common approaches to streamflow classification, 

and examine some important considerations with respect to delineating and deciding on the 

number of hydrologic classes (i.e. clusters) and assigning class membership. 

Ordination approaches to exploring hydrologic variability 
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Multivariate ordination is typically used to explore continuous patterns in hydrologic variability 
 

among sites (e.g. Lins, 1997; Clausen and Biggs, 2000) and complement clustering-based 

classifications that assign sites to classes (see below).  Commonly employed approaches include 

Principal Component Analysis (PCA) or non-metric multidimensional scaling.  Ordination 

approaches do not produce a classification; rather the relative hydrological 

similarity/dissimilarity of different objects (i.e. gauging locations) is displayed in multivariate 

space of reduced dimensionality, thus allowing the investigator to visually determine whether 

objects group together in well-defined sets or form contrastingly poorly-defined and overlapping 

groups.  One property of most classification algorithms is that they force a grouped structure on 

what may otherwise be a continuously varying distribution and ordination is a useful tool to 

assess whether any such grouping is warranted.  Other approaches for exploring hydrologic 

variation, although rarely used, include graphical representation of multi-dimensional data using 

Andrews curves (Andrews, 1972) and a range of pictorial techniques that involve “entertaining 
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transmogrifications” (Nathan and McMahon, 1990) of cartoon faces, trees, castles, and 
 

dragonflies (see Chernoff, 1973). 

Clustering approaches to developing a streamflow classification 
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Hierarchical clustering has been most commonly applied for streamflow classification.  These 
 

algorithms produce a classification of objects (typically presented as a dendrogram), starting 

with each stream site (gauge) in a separate cluster and combining clusters until only one is left 

(agglomeration approach) or by splitting larger clusters into smaller ones (divisive approach). 

As pointed out by Nathan and McMahon (1990), a major consideration encountered when using 

cluster analysis for streamflow classification is the plethora of different computational 

algorithms and distance/dissimilarity measures available.  Unfortunately, different clustering 

algorithms applied to the same set of data can produce classifications that are substantially 

different because each approach implicitly imposes structure on the data.  Therefore, the choice 

of algorithm used in hydrologic classification is paramount. 

Seven algorithms for agglomerative hierarchical clustering have been commonly applied in 

the past (Table 2), including (i) single linkage; (ii) complete linkage; (iii) average linkage (either 

weighted or unweighted); (iv) centroid linkage; (v) median linkage; (vi) density linkage; and 

(vii) Ward’s minimum-variance algorithm.  Each algorithm has both strengths and weaknesses 

(see Gordon (1987) for a good overview from a statistical perspective), but perhaps the most 

relevant feature for streamflow classification is the tendency of algorithms to ‘distort’ space, thus 

affecting the clustering results (see Everitt et al., 2001).  The ‘chaining’ effect, in which 

dissimilar objects are sequentially drawn into the same cluster, is an example of space 

contraction and is commonly produced by the single linkage algorithm.  Such approaches tend to 

identify highly distinctive groups and may see their greatest use in conservation when 

practitioners are seeking to reveal unique and rare hydrologic environments.  By contrast, space 

dilation refers to the process of favoring the fusion of clusters together, and is typical of the 

complete linkage algorithm.  These approaches tend to produce groups of equal size and may be 

best applied in hydrologic regionalization to ensure adequate sample sizes to establish statistical 

relationships.  Lastly, space-conserving methods, such as average linkage, merge clusters in a 

manner that best balances space contraction and dilation, and therefore, the resulting dendrogram 

best represents the original data structure.  The choice of clustering algorithm will depend on the 
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objective of the classification exercise, but for most applications we would recommend space 
 

conserving approaches, such as average linkage or Ward’s algorithm.  The latter is quite 

beneficial because it maximizes the cophenetic correlation between the original and dendrogram 

distances and eliminates group size dependencies on the clustering results.  Selection of an 

appropriate (dis)similarity index is also important, but for continuous variables such as the 

majority of commonly used hydrologic metrics, standardized Euclidean distance remains the 

most popular.  However, other indices have favorable properties (i.e., minimizing the influence 

of large distances) and may be preferred (see Legendre and Legendre, 1998). 

Partitional clustering techniques have also been applied for streamflow classification.  This 

family of methods seeks to identify clusters of equal distinction, and thus is not represented in a 

hierarchy.  Examples include K-means, K-median, K-modes and K-medoids algorithms, where 

K-means is by far the most commonly used.  This algorithm groups cases according to a distance 

measure (typically Euclidian distance) from initial, randomly chosen cluster centers of a 

predetermined number, and then it iteratively redefines cluster centers as the means of the cases 

in the latest cluster, until cases no longer change in membership (Everitt et al., 2001).  The 

method is efficient for large datasets, and results are often sufficient, although subjectivity of the 

initial number of clusters and the location of their centroids in n-dimensional space must be 

considered. 

While the hierarchical clustering procedures are not influenced by initialization and local 

minima, the partitional clustering procedures are influenced by initial guesses (number of 

clusters, cluster centers, etc.).  The partitional clustering procedures are dynamic in the sense that 

objects can move from one cluster to another to minimize the objective function.  By contrast, 

the objects committed to a cluster in the early stages cannot move to another in hierarchical 

clustering procedures.  The relative merits of the hierarchical and partitional clustering methods 

resulted in the development of hybrid-clustering methods that are a blend of these methods.  For 

example, Rao and Srinivas (2006a) used a partitional clustering procedure to identify groups of 

similar catchments by refining the clusters derived from agglomerative hierarchical clustering 

using the K-means algorithm.  Similarly, Kahya et al. (2007) considered results of an average 

linkage algorithm to help identify an optimal number of hydrologic classes of Turkey streams for 

subsequent flat classification using K-means. 
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Determining the number of distinct classes is a problem inherent to most if not all conventional 
 

clustering techniques.  For partitional algorithms, the number of clusters must be predetermined 

before the patterns of input data have been analyzed.  For hierarchical algorithms, selection of 

the degree of cluster distinction between tiers is subjective.  Several approaches for optimizing 

the number of clusters have been discussed in the literature and are relevant for hydrologic 

classification (Milligan and Cooper, 1985).  In hierarchical clustering, partitions are achieved by 

selecting one of the solutions in the nested sequence of clusters that comprise the hierarchy.  This 

is equivalent to cutting down the dendrogram at a particular height in which the appearance of 

distinct classes is present.  Although this procedure is commonly used, it does carry with it the 

high possibility of influence from a priori expectations.  More formal methods for determining 

the number of clusters are reviewed by Milligan and Cooper (1985).  Among the many they 

reviewed, the authors identified “best” approaches – including those based on the ratio of 

between-cluster to within-cluster sums of squares. 
 

Expert opinion can also guide the selection process.  Snelder and colleagues (Snelder and 

Hughey, 2005; Snelder et al., 2007) suggest that the definition of most classifications cannot be 

entirely objective as it rare that all parts of the hydrological space are represented, thus no 

optimal number of classes exists.  Moreover, where classifications serve some managerial utility, 

then trade-offs between resolution of hydrological variability and complexity (number of classes) 

may be needed and are then guided by other than mathematical elegance (i.e. simple 

pragmatism). To date, we fear that the lack of application and consensus about which rule to 

apply have resulted in informal and subjective criteria in the selection of hydrologic classes.  We 

urge that investigators become more explicit on the criteria that they apply. 

Assigning class membership: hard vs. soft classification 
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Clustering algorithms can lead to either hard or soft (i.e. fuzzy) classifications.  A hard clustering 
 

method is based on the assumption that stream sites can be divided into non-overlapping clusters 

(i.e. hydrologic class) with well-defined boundaries between them, and each site is assigned to a 

single cluster with a high degree of certainty.  In other words, a stream is classified as belonging 

to a cluster on the basis of distance (or dissimilarity) between itself and the cluster centroid in the 

multi-dimensional space of attributes depicting the flow variation. 
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It is reasonable to suppose, however, that most streams partially resemble several other 
 

streams and therefore a hard assignment to one class (cluster) may not be justified. 

Consequently, identifying classes with vague boundaries between them is preferable, compared 

to crisp classification with well-defined boundaries as in the case of hard clustering.  The fuzzy 

set theory that straddles ordination, classification and clustering analysis (Roberts, 1986) is a 

natural way to represent such a situation.  Fuzzy partitional clustering allows a stream site to 

belong to all the regions simultaneously with a certain degree of membership.  The distribution 

of membership of a stream among the fuzzy clusters specifies the strength with which the stream 

belongs to each class and is useful to identify ambiguous sites.  A threshold to maximum 

membership values can be applied to derive crisp, vector-based representations from raster, 

fuzzy classifications.  Rao and Srinivas (2006b) argue that given the inadequacies of 

conventional stream classification methods, fuzzy representations of hydrologic variability 

present an appealing alternative. 

Another fuzzy partitional method available is Bayesian mixture modeling (Gelman et al., 
 

2004).  In this approach, the observed distribution of data is modeled as a mixture of a finite 

number of component distributions in order to determine the number of distributions, their 

parameters, and object memberships (Webb et al., 2007).  The approach is fully probabilistic and 

uncertainty can be explicitly reported in terms of data specification, class specification and the 

final classification chosen.  Multiple plausible classifications are produced, which are then 

ranked on their estimated marginal likelihoods to select the most parsimonious classification that 

is guaranteed to have the highest posterior probability; the probability of the model being correct 

given the data (Gelman et al., 2004; Webb et al., 2007).  To date, Kennard et al. (2010b) 

represents the only application of fuzzy clustering for streamflow classification; here, the authors 

used 120 hydrologic metrics to quantify the likelihood of 830 stream gauges to belong to 12 

flow-regime types across Australia (Figure 5a). 

Predicting landscape patterns of streamflow classes 
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Knowledge of probable class membership within a streamflow classification allows hydrologic 
 

behavior to be predicted for a target site or stream.  For example, hydrologists frequently use 

regression models developed for specific clusters within a classification to predict hydrology of a 

novel stream (i.e. regionalization) after determining to which class it should belong (Lin and 
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Wang, 2006).  The key issue, therefore, is how class membership for novel locations is 
 

determined given that geographic proximity alone is not always a sufficient rationale (Ouarda et 

al., 2001; Poff et al., 2006).  Several methods are available to predict class membership using 

upstream physiographic characteristics (e.g., drainage area, stream slope, soil type) and climatic 

variables (e.g., precipitation, temperature, evapotranspiration) of the watershed based on an 

appropriate statistical model.  Linear discriminant analysis (LDA) is one such method in which 

linear combinations of potential predictor variables are used to allocate group membership.  LDA 

has a number of requirements and assumptions that are not always met when applied to 

environmental data (e.g., multivariate normality of predictor variables), however LDA has been 

appropriately used in a variety of ecohydrological analyses (e.g. Pusey and Arthington, 1996; 

Detenbeck et al., 2005; Jowett and Duncan, 1990; Sanborn and Bledsoe, 2006).  Alternative non- 

parametric and/or machine learning methods are available (see Olden et al., 2008; Kampichler et 

al., 2010) and have been used to allocate cluster group membership in hydrologic analyses (e.g., 

Reidy Liermann et al., 2011).  For example, classification trees were used by Kennard et al. 

(2010b) to identify a subset of climatic and landscape variables that were able to predict flow 

regime class membership with a relatively high success rate of 62.1% (Figure 5b).  In another 

example, Snelder et al. (2009a) used boosted regression trees and watershed variables describing 

climate, topography, and geology, to predict natural flow classes for stream segments in France 

with 87% accuracy. 

The examples above all involve a two-step process; the classification is developed and then 

potential predictor variables are assessed and combined to predict class membership.  Lin and 

Wang (2006) suggest that this is an inefficient process and describe a machine learning approach 

based on self-organizing maps (SOM: Kohonen 2000) in which cluster analysis and 

discrimination analysis is performed in one analysis.  Their SOM-based cluster and 

discrimination analysis produces three maps in a single step for use in classification.  The feature 

density and discrimination maps can be used to assign unknown catchments to classes at one 

time, eliminating the step of post-clustering discriminant analysis for each unknown catchment. 

As well, the ability to define the number of clusters at multiple resolutions from the feature and 

density maps is argued as a key advantage of the method. 

The capacity to predict streamflow class membership provides, in addition to increased 
 

knowledge of what factors drive hydrologic variation, a means by which a classification may be 
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extrapolated to all locations within the spatial domain of the input variables. Thus, a map of flow 
 

regime variation can be constructed.  For example, Snelder et al. (2009a) developed a natural 

flow regime classification of continental France using non-hierarchical K-means cluster analysis. 

Boosted regression tree models were used to predict the likelihood of gauging stations belonging 

to identified clusters based on watershed characteristics and these models were used to 

extrapolate the classification to all ~115,000 segments of a national river network.  Snelder and 

Hughey (2005) and Arthington et al. (2006) argue that such a spatial framework has practical 

use.  A spatially explicit classification aids in exploring the influence of streamflow on biological 

communities and ecological processes, prioritizing conservation efforts for freshwater 

ecosystems and guiding river management strategies. 
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Hydrologic classification is increasingly being used to guide and aid the management of aquatic 
 

resources. No single classification will suit all purposes, as classification is a tool not an end in 

itself.  Rather, different approaches and many different means of classifying locations, stream 

reaches or catchments are available and the choice of which approach and which classification 

method is employed depends on the availability of data and the desired purpose of the 

classification.  In the case where high quality hydrologic information is sparse or lacking for 

some areas, the deductive approach is appropriate.  This approach varies from simple 

environmental or hydrologic regionalizations in which region membership is qualitatively 

assigned, to regionalizations in which membership is quantitatively assigned based on 

similarities across a number of environmental (climatic, topographic etc) variables that are 

assumed to have direct influence on streamflow.  The inductive approach, in contrast, is based on 

quantitative classification, achieved by a variety of methods, in which classification group 

membership is based on similarity in various metrics describing aspects of the flow regime for 

individual locations. Whatever the approach used, the steps taken in the formation of a 

classification need to be explicitly described including criteria used for data selection, data 

treatment and assessment, metric selection and rationale, and classification method including 

explicit rationale for derivation of final group number.  These steps are integral to the framework 

described here. 
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Table 1. Examples of deductive regionalization/classifications of environmental attributes (inferred as key determinants of riverine 
 

flow regimes).  Environmental data types: Spatial Location (SL) (e.g. latitude & longitude, catchment boundaries), Climate (C), 

Catchment Topography (T), Soils/Geology (SG), Vegetation (V), Flow (F), Land Use (LU). A brief description of classification 

methodology is also provided (see references for more details).  The spatial units analyzed included individual stream segments or 

watersheds of varying spatial resolution with the exception of Mkandi and Kachroo (1996). 
 

data to externally validate the classifications with the exception of Wolock et al. (2004). 

All examples used gauged streamflow 
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Scale/Location 
 

Environmental 
attributes 

Geographic 
dependence 

Classification methodology 
 

Reference(s) 
 

    
Africa 
(Southern) 

SL, C, T, F 
 

Dependent 
 

Regions delineated based on subjective interpretation of 
environmental attributes. 

Mkandi and Kachroo, 1996 
 

Australia 
 

C, T, SG, V, F 
 

Independent 
 

Non-hierarchical iterative clustering method based on Gower 
similarity of objects to groups. 

Stein et al., 2009 (see also Ward et al., 
2010) 

Australia 
(South-eastern) 

 

SL, C, T, SG 
 

Independent 
 

Clustering (using a range of similarity measures and clustering 
methods) and Andrew’s curves to identify group outliers and 
evaluate within-group cohesiveness. 

Nathan and McMahon, 1990 
 

New Zealand 
 

C, T, SG, V 
 

Independent 
 

Top-down hierarchical method whereby river segments were 
classified individually according to various differentiating 
criteria. 

Snelder and Biggs, 2002; Snelder et 
al., 2005 

 
Scotland 

 
C, T, SG 

 
Independent 

 
Hierarchical clustering using Ward’s algorithm and maximum 
likelihood. 

Acreman and Sinclair, 1986 
 

USA 
 

C, CT, SG 
 

Independent 
 

Ordination (Principal Component Analysis) and clustering 
(using a minimum variance criterion and the nearest neighbor 
chain algorithm) 

Wolock et al., 2004 
 

USA (Indiana) 
 

C, T, SG, V 
 

Independent 
 

Hierarchical (single linkage, complete linkage, Ward’s 
algorithm)1 and non-hierarchical (K-means1, fuzzy 
partitioning c-means algorithm2) clustering. 

Rao and Srinivas, 2006a1; Rao and 
Srinivas, 2006b2

 
 

USA (Eastern) 
 

C, T, SG, V 
 

Independent 
 

Non-hierarchical clustering using fuzzy partitioning Bayesian 
mixture algorithm. 

Sawicz et al., 2011 
 

 



Table 2. Examples of inductive streamflow classifications.  Flow regime attributes: Magnitude (M), Frequency (F), Duration (D), 
 

Timing (T), Rate of Change (R).  Temporal scale of the flow regime attributes analyzed: Daily (D), Weekly (W), Monthly (M), 

Annual (A).  A brief description of classification methodology, instances of external validation of the classifications (i.e. using 

independent environmental data unless otherwise stated) and method for prediction of class membership at new locations is also 

provided. See references for more details and Appendix A for a complete listing of past streamflow classifications. 
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Scale/Location 
 

Flow 
attributes 

Temporal 
scale 

Classification methodology 
 

Reference(s) 
 

Basin     
Huai R., China 

 
M, F, D, T 

 
M, A 

 
Ordination (Principal Component Analysis), hierarchical clustering (Ward’s 
algorithm) and external validation. 

Zhang et al., 2011 
 

Ebro R., Spain 
 

M, D, T 
 

M 
 

Hierarchical clustering (unspecified cluster algorithm), external validation 
and prediction (logistic regression). 

Bejarano et al., 2010 
 

Missouri and 
Yellowstone R., USA 

M, T 
 

M, A 
 

Hierarchical clustering (centroid linkage). 
 

Pegg and Pierce, 2002 
 

Regional    
Victoria, Australia 

 
M, F, D, T 

 
D 

 
Ordination (Principal Component Analysis), hierarchical clustering (average 
linkage) and external validation. 

Hughes and James, 1989 
 

Quebec, Canada 
 

M, D, T, R 
 

M 
 

Ordination (Principal Component Analysis), heuristic classification method 
based on rules and signs of loadings on PCs and external validation. 

Assani and Tardif, 2005 
 

Washington, USA 
 

M, F, D, T, R 
 

D, M, A 
 

Non-hierarchical clustering using fuzzy partitioning Bayesian mixture 
algorithm, external validation and prediction (random forest classifier). 

Reidy Liermann et al., 
2011 

National/Continental     
Australia F, T D Wavelet analysis and non-hierarchical clustering (K-means). Zoppou et al., 2002 
Australia 

 
M, D, F, T, R 

 
D 

 
Non-hierarchical clustering using fuzzy partitioning Bayesian mixture 
algorithm and external validation. 

Kennard et al., 2010b 
 

Canada M, T W Hierarchical clustering (Ward’s method). Monk et al., 2011 
France 

 
M, T 

 
M 

 
Proportion of flow within each of four seasons, together with the source of 
water (i.e. snow melt, glacier melt, rainfall). 

Pardé, 1955 
 

France 
 

M, D, F, T, R 
 

D 
 

Ordination (Principal Component Analysis), non-hierarchical clustering (K- 
means), external validation and prediction (boosted regression trees). 

Snelder et al., 2009a 
 

New Zealand 
 

M, F 
 

D, A 
 

Hierarchical clustering (Two-way indicator species analysis)) and external 
validation. 

Jowett and Duncan, 1990 
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Scale/Location 
 

Flow 
attributes 

Temporal 
scale 

Classification methodology 
 

Reference(s) 
 

Scandinavia 
 

M, T 
 

M, A 
 

Two-step approach: (1) Flow regime class discriminating criteria based on 
the time of occurrence of the highest (3 classes) and lowest (2 classes) of 
monthly flow, (2) entropy based groupings based on interannual variation in 
monthly flows. 

Krasovskaia, 1997 
 

South Africa, Lesotho 
and Swaziland 

T, M 
 

M 
 

Index of flow variability divided into classes using cumulative deviations 
from homogeneity plots. 

Hughes and Hannart, 
2003 

Tanzania 
 

M, F 
 

A 
 

Three-step process: (1) Geographic information was used to identify likely 
homogeneous regions that are geographically continuous; (2) Each region 
was checked for similarity in the statistics of observed flood data. Based on 
this step, regions obtained in step (1) were modified; (3) A test of 
homogeneity was applied to confirm that the delineated regions are 
statistically homogeneous. 

Kachroo et al., 2000 
 

United Kingdom 
 

M, T 
 

M 
 

Hierarchical clustering (Ward’s algorithm) and external validation 
(qualitative environmental information and quantitative biological data). 

Monk et al., 2006 
 

United Kingdom 
 

M, T 
 

M 
 

Hierarchical (Ward’s algorithm) and non-hierarchical (K-means) clustering 
and external validation. 

 

Bower et al., 2004 (see 
also Harris et al., 2000; 
Hannah et al., 2000) 

United States M, F, D, T D, M, A Hierarchical clustering (density linkage). Poff, 1996 
Global    

 M 
 

A 
 

Two-step approach: (1) initial groupings based on regions of similar climatic 
conditions (based largely on Köppen's climate regions); (2) Hierarchical 
clustering (average linkage) of stream gauges based on an index of flood 
magnitude. 

Burn and Arnell, 1993 
 

 M, T M Non-hierarchical clustering (K-means). Dettinger and Diaz, 2000 
 M, T 

 
M, A 

 
Hierarchical clustering (average linkage) and external validation. 

 
Haines et al., 1988 (see 
also Finlayson and 
McMahon, 1988) 

 M, F 
 

A 
 

Examined regional variation in mean annual flood magnitudes and flood 
frequency curves, where regions were defined using an empirical approach 
based firstly on physical and climatic characteristics, and second, by 
evaluation of the homogeneity of flood frequency curves within the defined 
regions. 

Meigh et al., 1997 
 

 M 
 

M 
 

No actual streamflow classification but examined regional variation in 
individual hydrologic attributes at a global scale. 

McMahon et al., 2007a, b 
 

 M, F, D, T R 
 

D, M, A 
 

Ordination (Semi Strong Hybrid Multidimensional Scaling), hierarchical 
clustering (average linkage) and external validation. 

Puckridge et al., 1998 
 

 



FIGURE CAPTIONS 

Figure 1. Two main approaches to hydrologic classification based on deductive 
(environmental regionalization, hydrologic regionalization or environmental  
classification) and inductive (streamflow classification) reasoning. 

Figure 2. Hydrologic landscape regions of the United States after Wolock et al. (2004). 

Figure 3. The REC classification for New Zealand.  River classes refer to a combination of 
 

climate type: warm-extremely-wet (WX), warm-wet (WW), warm-dry (WD), cool- 

extremely-wet (CX), cool-wet (CW) and cool-dry (CD); and source of flow: glacial- 

mountain (/GM), mountain (/M), hill (/H), low-elevation (/L) and lake (/LK).  The width of 

the lines representing the rivers has been scaled to according to the mean flow in each river 

segment.  Modified from Snelder et al. (2011), and provided courtesy of Ton Snelder. 

Figure 4.  Different components of the flow regime may be characterized over varying temporal 
 

scales for use in streamflow classifications. 

Figure 5. (a) Hydrologic classification of flow-regime types for 830 stream gauges in Australia 
 

from Kennard et al. (2010b).  Australian drainage divisions (thick lines) and State and 

Territory borders (dashed lines) are shown. (b) Inset figure shows predicted flow regime 

types of north-eastern Australian streams based on climate and catchment topographic 

characteristics and derived using a classification tree predictive model (see Kennard et al., 

2010b).  This figure incorporates data that are copyrighted by the Commonwealth of 
 

Australia (GeoSciences Australia, 2006). 
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Appendix A. Examples of inductive streamflow classifications.  Flow regime attributes: Magnitude (M), Frequency (F), Duration (D), 

Timing (T), Rate of Change (R).  Temporal scale of the flow regime attributes analyzed: Daily (D), Weekly (W), Monthly (M), 

Annual (A).  A brief description of classification methodology, instances of external validation of the classifications (i.e. using 

independent environmental data unless otherwise stated) and method for prediction of class membership at new locations is also 

provided.  See references for more details. 
Scale/Location Flow 

attributes 
Temporal 
scale 

Classification methodology Reference(s) 

Basin     
Burdekin R., Australia M, F, D, T D, M, A A-priori classification of stream gauges (based on stream size and relative 

catchment position) and ordination (Discriminant Functions Analysis) of 
streamflow attributes  

Pusey and 
Arthington, 1996 

Condamine–Balonne R., 
Australia 

M, F, D, T, R D, M, A Ordination (Semi Strong Hybrid Multidimensional Scaling) and hierarchical 
clustering (average linkage) 

Thoms and Parsons, 
2003 

Huai R., China M, F, D, T M, A Ordination (Principal Component Analysis), hierarchical clustering (Ward’s 
algorithm) and external validation 

Zhang et al., 2011 

Ebro R., Spain M, D, T M Ordination (Principal Component Analysis), hierarchical clustering (unspecified 
cluster algorithm), external validation and prediction (logistic regression) 

Bejarano et al., 
2010 

Tagus R., Spain M, F, D, T D, M, A Hierarchical clustering (unspecified cluster algorithm)  Baeza Sanz and 
García del Jalón, 
2005 

Missouri and 
Yellowstone R., USA 

M, T M, A Hierarchical clustering (centroid linkage) Pegg and Pierce, 
2002 

Regional     
Victoria, Australia M, F, D, T D Ordination (Principal Component Analysis), hierarchical clustering (average 

linkage) and external validation 
Hughes and James, 
1989 

Tasmania, Australia M, F, D, T D Ordination (Principal Coordinate Analysis), hierarchical clustering (complete 
linkage) and external validation 

Hughes, 1987 

South-eastern Australia M, D, F D No actual streamflow classification but examined regional variation in flow 
regime attributes using ordination (Semi Strong Hybrid Multidimensional 
Scaling) 

Growns and Marsh, 
2000 

Gulf of Carpentaria 
region, Australia 

M, D, F D Ordination (Semi Strong Hybrid Multidimensional Scaling) and hierarchical 
clustering (average linkage) 

Leigh and Sheldon, 
2008 

Quebec, Canada M, D, T, R M Ordination (Principal Component Analysis), heuristic classification method based 
on rules and signs of loadings on PCs and external validation 

Assani and Tardif, 
2005 
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Scale/Location Flow 
attributes 

Temporal 
scale 

Classification methodology Reference(s) 

Southern Taiwan M, T, F  Clustering and external validation (discrimination) using self-organizing maps Lin and Wang, 
2006 

Alabama, Georgia and 
Mississippi, USA 

M, T M Ordination (Principal Component Analysis), hierarchical clustering (average 
linkage) and external validation 

Chiang et al., 
2002a,b 

Arizona, New Jersey, 
Pennsylvania, Texas, 
USA 

M, F D, A Hierarchical clustering (complete linkage) and external validation Tasker, 1982 

National/Continental     
Australia M, D, F, T, R D Non-hierarchical clustering using fuzzy partitioning Bayesian mixture algorithm 

and external validation 
Kennard et al., 
2010b 

     
Australia F, T D Wavelet analysis and non-hierarchical clustering (K-means) Zoppou et al., 2002 
Austria M, T D Ordination (Principal Component Analysis), non-hierarchical clustering (K-

medoids) and external validation 
Laaha and Blöschl, 
2006 

Canada M, T W Hierarchical clustering (Ward’s method) Monk et al., 2011 
France M, T M Proportion of flow within each of four seasons, together with the source of water 

(i.e. snow melt, glacier melt, rainfall) 
Parde, 1955 

France M, D, F, T, R D Ordination (Principal Component Analysis), non-hierarchical clustering (K-
means), external validation and prediction (boosted regression trees) 

Snelder et al., 
2009a 

Mediterranean countries 
(Portugal, France, Italy, 
Cyprus, Morocco, 
Algeria, Tunisia, Israel) 

M, D, F, T, R D, M, A Ordination (Principal Components Analysis), hierarchical clustering (group 
average) and external validation 

Oueslati et al., 2010 

Nepal M, T M Hierarchical clustering (Ward’s algorithm) Hannah et al., 2005 
(see also Harris et 
al., 2000; Hannah 
et al., 2000; Bower 
et al., 2004) 

New Zealand M D Hierarchical clustering (Ward’s algorithm ) Mosley, 1981 
New Zealand M, F D, A Hierarchical clustering (Two-way indicator species analysis) and external 

validation 
Jowett and Duncan, 
1990 

New Zealand M, F, D, T, R D Hierarchical clustering (flexible beta) Snelder et al., 2005 
Russia M, T M Proportion of flow within each of four seasons, together with the source of water 

(i.e. snow melt, glacier melt, rainfall and groundwater) 
Lvovich, 1973 
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Scale/Location Flow 
attributes 

Temporal 
scale 

Classification methodology Reference(s) 

Scandinavia  M, T M Flow regime class discriminating criteria based on the time of occurrence of the 
highest (3 classes) and lowest (2 classes) of mean monthly flow  

Gottschalk et al., 
1979; Krasovskaia 
and Gottschalk, 
2002 

Scandinavia  M, T M, A Two-step approach: (1) Flow regime class discriminating criteria based on the 
time of occurrence of the highest (3 classes) and lowest (2 classes) of monthly 
flow, (2) entropy based groupings based on interannual variation in monthly 
flows  

Krasovskaia, 1997 

Scandinavia and western 
Europe 

M, T M Flow regime class discriminating criteria based on the time of occurrence of the 
highest (3 classes) and lowest (2 classes) of mean monthly flow  

Krasovskaia, 1995 

South Africa, Lesotho 
and Swaziland 

T, M M Index of flow variability divided into classes using cumulative deviations from 
homogeneity plots 

Hughes and 
Hannart, 2003 

Sweden M, T M Ordination (Principal Component Analysis) and hierarchical clustering (average 
linkage) 

Gottschalk, 1985 

Taiwan M, D, F, R D Non-hierarchical clustering (K-means) and self-organizing maps Chang et al., 2008 
Tanzania M, F A Three-step process: (1) Geographic information was used to identify likely 

homogeneous regions that are geographically continuous; (2) Each region was 
checked for similarity in the statistics of observed flood data. Based on this step, 
regions obtained in step (1) were modified; (3) A test of homogeneity was applied 
to confirm that the delineated regions are statistically homogeneous 

Kachroo et al., 
2000 

Turkey M A Non-hierarchical clustering (K-means)  Kayha et al., 2007 
United Kingdom M, T M Hierarchical clustering (Ward’s algorithm) and external validation (qualitative 

environmental information and quantitative biological data) 
Monk et al., 2006 

United Kingdom M, T M Hierarchical clustering (average linkage) 
 

Harris et al., 2000 
(see also Hannah et 
al., 2000) 

United Kingdom M, T M Hierarchical (Ward’s algorithm) and non-hierarchical (K-means) clustering and 
external validation 

Bower et al., 2004 
(see also Harris et 
al., 2000; Hannah 
et al., 2000) 

United Kingdom (and 
other regions) 

M, T, F, D   Hierarchical clustering (Ward’s algorithm) and external validation Stahl, 2001  

United States M, T Y No actual streamflow classification but examined regional variation in flow 
regime attributes using ordination (Principal Component Analysis)  

Lins, 1985 

United States M, F, D, T D, M, A Non-hierarchical clustering (K-means) and external validation Poff and Ward, 
1989 

United States M, F, D, T D, M, A Hierarchical clustering (density linkage) Poff, 1996 
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Scale/Location Flow 
attributes 

Temporal 
scale 

Classification methodology Reference(s) 

Global     
 M A Two-step approach: (1) initial groupings based on regions of similar climatic 

conditions (based largely on Köppen's climate regions); (2) Hierarchical 
clustering (average linkage) of stream gauges based on an index of flood 
magnitude  

Burn and Arnell, 
1993 

 M, T M Non-hierarchical clustering (K-means) Dettinger and Diaz, 
2000 

 M, T M Hierarchical clustering (average linkage)  Finlayson and 
McMahon, 1988 

 M, T M, A Hierarchical clustering (average linkage) and external validation Haines et al., 1988 
 M, F A Examined regional variation in mean annual flood magnitudes and flood 

frequency curves, where regions were defined using an empirical approach based 
firstly on physical and climatic characteristics, and second, by evaluation of the 
homogeneity of flood frequency curves within the defined regions. 

Meigh et al., 1997 

 M M No actual streamflow classification but examined regional variation in individual 
hydrologic attributes at a global scale  

McMahon et al., 
2007 

 M, F, D, T R D, M, A Ordination (Semi Strong Hybrid Multidimensional Scaling), hierarchical 
clustering (average linkage) and external validation 

Puckridge et al., 
1998 
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