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Automata-based modeling of hybrid and cyber-physical systems (CPS) is an important formal abstraction
amenable to algorithmic analysis of its dynamic behaviors, such as in verification, fault identification, and
anomaly detection. However, for realistic systems, especially industrial ones, identifying hybrid automata is
challenging, due in part to inferring hybrid interactions, which involves inference of both continuous behav-
iors, such as through classical system identification, as well as discrete behaviors, such as through automata
(e.g., L*) learning. In this paper, we propose and evaluate a framework for inferring and validating models of
deterministic hybrid systems with linear ordinary differential equations (ODEs) from input/output exe-
cution traces. The framework contains algorithms for the approximation of continuous dynamics in discrete
modes, estimation of transition conditions, and the inference of automata mode merging. The algorithms
are capable of clustering trace segments and estimating their dynamic parameters, and meanwhile, deriving
guard conditions that are represented by multiple linear inequalities. Finally, the inferred model is automat-
ically converted to the format of the original system for the validation. We demonstrate the utility of this
framework by evaluating its performance in several case studies as implemented through a publicly available
prototype software framework called HAutLearn and compare it with a membership-based algorithm.
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1 INTRODUCTION

Modeling and learning of systems from traces has a long and storied history, with some original
effective algorithms for finding automata from their traces described by Angluin’s L∗ algorithm [4]
now instantiated in software packages such as LearnLib [44]. From a software engineering van-
tage point, one can view finding automata from traces as a form of specification inference for an
implementation of a system. Specification inference is an effective technique for automated docu-
mentation, model validation, model repair, and many other tasks, often restricted to subclasses of
possible specifications that may be inferred, such as invariants [14–16, 28, 38]. From the automata
theoretic perspective, one can thus view learning automata from traces as a method to infer classes
of specifications beyond safety and into temporal behaviors, such as liveness.

A hybrid automaton is a formal model that models both continuous and discrete behaviors
through a combination of continuously-evolving real-valued variables and discrete components,
which together exhibit mixed dynamical behaviors [24]. Continuous variables evolve over inter-
vals of real time with respect to some specified ordinary differential equations (ODEs) or inclu-
sions. Discrete behaviors are modeled in an automata-theoretic manner, typically defined by some
forms of graphs or state machines. The discrete modes may contain invariant conditions which,
once violated, will induce transitions to different modes. The transitions between discrete modes
may also have guards with conditions including exogenous events and predicates over continuous
variables. One of the canonical examples is the model of a bouncing ball. Released from a spec-
ified height, the ball exhibits different continuous dynamics after impacting the ground. Hybrid
automata provides an expressive and useful abstraction to model different dynamical systems, and
have proven valuable in various areas, such as system simulation, anomaly detection, reachability
analysis, verification, and identification of optimal policies [3, 25]. Realistic systems are often too
complex to be designed purely in a formalism such as hybrid automata, and often rely on complex
software toolchains such as the MathWorks’ Simulink/Stateflow, with a significantly more expres-
sive modeling framework, but with unclear semantics. As hybrid automata models often are not
the design engineer’s modeling tool of choice, inferring hybrid automata from traces of complex
and black-box systems can provide insight into the behaviors of those systems. Actual physical
environments are usually too complicated to be analyzed using available technologies. Learning
hybrid automata from system behaviors can provide a convenient way for system analysis in the
abstraction layer so that the complexity of hybrid systems can be reduced while safety proper-
ties are still kept in its relevant behavior and the system itself can become accessible to existing
analysis tools. Therefore, it helps engineers develop high-level automata strategies.

The contributions of this paper are that an automata-based framework for the inference and val-
idation of hybrid systems from execution traces is developed, with restrictions on the continuous
behaviors, guards, invariants, and resets to be described by linear (affine) equations. The inference
framework includes five steps as shown in Figure 1: (1) cluster execution trace segments according
to their dynamics, (2) fit an ordinary differential equation (ODE) to each cluster, (3) estimate guard
conditions for the discontinuities, or changepoints in traces, (4) merge modes and transitions in
terms of a defined compatibility criterion, and (5) prune duplicate and other erroneous transitions
that arise from steps 1 and 3. We approximate the continuous dynamics by fitting linear (affine)
ODEs to segmented traces, which is a classical problem in system identification [32]. To distinguish
different dynamics from traces, we develop a method to calculate their solution spaces within a
pre-specified error bound and cluster them accordingly. For guard conditions, under the assump-
tion that they are described by linear inequalities, a subspace clustering algorithm is applied to
estimate their parameters by clustering changepoints into a low-dimensional line or plane. For
the mode merging, a method based on the prefix tree acceptor (PTA) is applied to merge similar
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Fig. 1. Overview of the framework proposed in this paper to learn hybrid automata with linear (affine) ODEs,

guards, invariants, and resets from time-series data (traces).

Fig. 2. Overview of the validation of the proposed framework for the method described in this paper. A

given hybrid automaton is specified in the SpaceEx/HyST [7, 20] format, automatically translated to a

Simulink/Stateflow model using HyST [6, 7], simulated to generate time series data (traces). The hybrid

automata learning framework is then applied to these traces, and a learned hybrid automaton is generated

in the SpaceEx/HyST format, and simulated again to generate traces to validate the learned model’s behav-

iors against the original model’s behaviors.

modes without introducing non-determinism into the model, and then erroneous transitions are
pruned before generating the final hybrid automaton that can recreate the source trace data. The
framework is implemented in a prototype software tool within Matlab relying in part on the HyST
source transformation and translation tool [7] and its integration with Simulink/Stateflow [6]. The
framework is evaluated and validated against several standard hybrid systems benchmarks. These
examples were chosen in part so that the validation approach illustrated in Figure 2 could be illus-
trated, where both syntactic and semantic similarities could be compared to the learned automata.

2 RELATED WORK

Significant related works have been developed in the context of automata learning for purely dis-

crete systems, such as finite state automata [4]. For timed, switched, and hybrid systems, there
has been less investigation, although there are several recently proposed methods [35, 43, 48, 50].
From the control theory, there are more related works for the system identification, including
the identification of piecewise models such as the Switched affine AutoRegressive eXogenous

(SARX) model and the PieceWise affine ARX (PWARX) model. A primary challenge of such
identification includes the inference of the parameters of all potential models, as well as the co-
efficients of the hyperplanes that partition the state-input domain. Such approaches have been
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well studied [21, 31, 42]. The majority of works can be divided into three categories: algebraic
based [9, 33, 51–53], clustering-based [10, 12, 18, 22, 26], and optimization based [8, 27, 29, 36, 41].
The algebraic methods regard the identification of multi-models as one single model. The param-
eters are estimated with a polynomial embedding from whose derivatives the original model can
be estimated. The clustering-based methods utilize feature vectors computed from local data sets
to cluster the models and then estimate their parameters. The optimization-based methods con-
vert the estimation of models to an optimization problem, such as minimization of a predefined
loss function. Most of these works mainly focus on the identification of models, but few of them
consider the inference of the overall automaton and switching policies.

Recent works on identification of hybrid automata are as follows. Summerville et al. propose
a framework for hybrid automaton inference [47], where a cost function with a penalty criterion
based on one set of potential linear model templates is applied to segment the traces and then
select an optimal model with the minimum trace error. Their guard conditions are selected from
predefined predicates using Normalized Pointwise Mutual Information (NPMI). Niggemann
et al. model each segment using linear regression or neural networks [40]. The similarity of states is
tested by checking the probability of staying in the state. States are merged in a bottom-up fashion.
Guard conditions are estimated by a combination of exogenous events, timing constraints, and tran-
sition probabilities. Medhat et al. cluster the observed traces into input/output events according
to predefined features [35], and then apply the linear regression to estimate the clustered dynam-
ics. They derive an automaton based on a Mealy inference algorithm within LearnLib. Grosu et al.
propose a methodology to estimate cycle-linear hybrid automata for excitable cells from virtual
measurements [23]. The traces of electrical signals are segmented by filtered null points and inflec-
tion points. Then, they apply a modified Prony’s method to fit an exponential function to each seg-
ment within an error bound. The transition guards are estimated from the transitions’ post states.
Sarkar et al. propose an approach to learn a stochastic switched linear model for nonparametric
systems, which is by constructing data with Hankel-like matrices and computing approximations
via singular value decomposition (SVD) truncation [45]. Miriam et al. propose algorithms to
apply membership-based synthesis to learn linear hybrid automata with nondeterministic guards
and invariants [46]. Bernhard et al. combine abstract automata learning, model-based testing, and
machine learning to learn a hybrid system, where the state space is first discretized and then a
testing method is applied to generate sufficient data for the behavioral estimation in the machine-
learning process [2]. Lamrani et al. propose a framework for the learning of hybrid systems [30],
where candidate models are clustered from traces using feature vectors, and guard conditions are
then estimated based on the segmentation of traces. However, such a framework requires a good
prior knowledge of the target system to select features for the clustering.

Even though tremendous related techniques have been developed, the inference of hybrid au-
tomata is still an open and challenging problem. In this paper, we propose a framework for infer-
ring and validating deterministic hybrid systems from another perspective. We evaluate it with
four benchmarks as well as a comparison with one state-of-the-art membership-based approach,
and show that our framework can identify accurate hybrid automata given trace information and
can be an effective and promising approach.

3 HYBRID AUTOMATA

Hybrid automata are a common formal modelling framework for hybrid systems that combine
finite state machines with a finite set of real-valued continuous state variables described by differ-
ential equations or inclusions. Our work mainly focuses on deterministic and synchronous models,
where all constraints over state variables are specified using linear (affine) equations or inequalities.
Given a set of time series traces that are generated from a hybrid system, a formal inference model,
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Gh , for this hybrid system is inferred as a hybrid automaton. We assume the system dynamics in
each mode are characterized by an affine ODE:

ẋ = Aqx + Bqu (1)

where Aq and Bq are constant system matrix, and x indicates the state variable vector and u de-
notes an input vector. In our work, the identification problem of this continuous dynamics is the
determination of Aq and Bq from traces that are collected at a constant sampling frequency. With
these traces, its discrete-time representation will be first derived and then be converted back to
Equation (1). Here, the discrete-time representation is defined as

xk+1 = Axk + Buk (2)

where matrix A and B will be used for the further mode identification and mode merging in the
framework.

Definition 3.1 (Hybrid System Model). A hybrid automaton Gh is a tuple Gh = 〈Q,X , f ,E,Φ,U 〉:
• Q is a finite set of control modes, and X ⊆ Rn is the continuous state space, an element of

which is typically denoted as x = [x1,x2, . . . ,xn]� ∈ X . The x is also referred as the variable
vector.
• f is a vector field that describes the dynamics ofX with respect to real-time, f : Q×X ×U →
X . For a mode q ∈ Q , we define f as in Equation (1), where Aq and Bq are time-invariant
within mode q:

ẋ = f (q,x,u) = Aqx + Bqu.

• E denotes events or guard conditions that trigger modes switching, where e ∈ E is an exoge-
nous event or multiple linear inequalities (predicates) involving continuous variables. The
invariant conditions are the complement.
• Φ denotes the discrete transitions: Q × E → Q . Here, ϕ : 〈q, e,q′〉 ∈ Φ denotes a mode

transition from source mode q to a destination mode q′ triggered by an event e .
• U ⊆ Rm denotes a continuous space of inputs, and u = [uo ;uq]� ∈ U is an input consisting

of an exogenous input to the system, uo ∈ Rm−1, and an internal constant, uq ∈ R in each
mode.

Definition 3.2 (Trajectory). A trajectory ofGh from a state (q,x) to a state (q′,x′) where q,q′ ∈ Q
and x,x′ ∈ X is a pair ρ � (Q,X). Q and X are functions that define for each time point in an
intervalT the mode and the values of the continuous state variables. The time points where mode
switches ϕ ∈ Φ occur are defined as timestamp changepoints (τi )i=0,1, ...,p ∈ T . The timestamp
changepoints τi must satisfy the following conditions: (1) τ0 = 0, τi < τi+1 and τp = T , (2) ∀i∀t ∈
[τi ,τi+1),Q (t ) = Q (τi ), (3) ∀i∀t ∈ [τi ,τi+1), the dynamics function f at each t is the same as at τi .

4 IDENTIFYING AND CLUSTERING DYNAMICS FROM TRACES

In this section, we present a method to estimate and cluster ordinary differential equations (ODEs)
from traces. In clustering of trace segments, some works apply clustering methods from the field of
machine learning [35]. However, it is challenging to select effective dynamic features to distinguish
time-series data traces from different dynamics, and meanwhile the selected features may not
be easily generalized to other systems. Instead, we utilize the Linear Matrix Inequality (LMI)

method to detect the dynamic similarity between trace segments under a specified error tolerance.

4.1 Changepoints and Input-output Traces

The dynamics of hybrid systems is reflected in the behaviors of execution traces. One such trace
is one set of a finite sequence of input signals and their corresponding outputs (or state variable
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Fig. 3. One set of traces from a buck-converter system. This set of data includes the voltage and current

measurement in a circuit, and here τ denotes a discontinuity, henceforth referred to as a changepoint.

values) with a constant sampling time interval ts . From the perspective of the trajectory in Defini-
tion 3.2, an output trace over an execution timeT is a sequence of sampled values of the continuous
variables x in the trajectory overT , and it is denoted as X. In segmenting the traces, a changepoint

of two consecutive trace segments is characterized by an abrupt change in value or slope, which
also can reflect a mode switch. Thus we use the timestamp changepoints (τi )i=0,1, ...,p ∈ T from Def-
inition 3.2 to represent the time point where mode switches happen. With such changepoints, an
output traceX ∈ Rn×l with a length l will be segmented into [X1,X2, . . . ,Xp], whereXi = X[τi ,τi+1]

and li is its length. Similarly, letU ∈ Rm×l be an input trace, then [U1,U2, . . . ,Up] represent the
input segments where Ui = U[τi ,τi+1]. A set (Xi , Ui ) is called a trace segment. This definition of
traces is demonstrated by one example of state traces collected from a buck-converter system, as
shown in Figure 3.

In our experiments, all the traces are automatically segmented by applying the peak detection
algorithm on the second-order difference of state traces. A desired trace segment should only
contain a single dynamics. Despite the fact that a perfect segmentation cannot be guaranteed due
to noises in traces, the clustering method based on the LMI in the following section helps filter
out erroneous trace segments that contain multiple dynamics. This is because when a trace spans
multiple dynamics, the solution space for its ODE estimation will have few chances to overlap
with the solution space from the trace that has single dynamics. These erroneous segments can be
detected by checking the number of trace segments in each cluster. Additionally, the changepoints
of these mis-segmented traces do not reflect the true guard condition for mode transitions. In
the estimation of the guard conditions, these changepoints will likely fall in the outlier where they
become invalid. Overall, with our framework, the impact of mis-segmented traces on the inference
of hybrid automata can be reduced.

4.2 Construction of Solution Space

Given a trace segment, A solution space is the space that contains all the possible parameter sets
for Equation (2) under a pre-specified error tolerance. The error here refers to the difference be-
tween the given traces samples for learning and the traces generated from the learned dynamics.
The solution space is represented by a Linear Matrix Inequality (LMI) as defined in Equation (8).
Based on it, we can inspect the similarity between the dynamics of trace segments by checking
whether their solution spaces overlap. The construction of the LMI starts with the dynamics formu-
lation. To reduce the impact from noise in trace segments, we consider the dynamics in Equation (3)
which is modified from Equation (2):

xk+j = Aj xk +A
j−1Buk +A

j−2Buk+1 + · · · + Buk+j (3)
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The reason is as follows. Suppose an output x = x +ε where x denotes the true value and ε denotes
noise, then Equation (2) can be converted to

xk+1 + ε = A(xk + ε ) + Buk

but the difference of state-variables values after one time step can be so small that the noise ε may
dominate the dynamics estimation, leading to an inaccurate model. To simplify the analysis in this
equation and further application of LMI, the system is assumed to have a constant input u = uk

over this j time steps. Thus, with E = Aj−1B + Aj−2B + · · · + B as one matrix, Equation (3) can be
simplified to Equation (4). In this case, ‖xk+j − xk ‖ normally increases with j, such that a larger j
can reduce the impact of the noise ϵ . For different dynamics and noise bounds, the choice of j can
be determined empirically. Our experimental results of the inference of two hybrid automatons
show that when j = 10, accurate hybrid models can be estimated from state traces with uniformly
distributed noise [−0.05, 0.05].

xk+j = Aj xk + Euk (4)

Let A = [Aj ,E], O = (X,U ) be the collected traces of the state variables and input signals of
the right part of Equation (4), and O′ = X be the trace of the state variables of the left part. Given
a trace segment (Xi ,Ui ) with a constant sampling interval τs , we can construct Equation (5) from
Equation (4) that

O′i − AiOi = 0 (5)

where Oi = [X;U][τi ,τi+1−jts ] ∈ R(n+m)×(τi+1−τi−jts ) , O′i = X[τi+jts ,τi+1] ∈ Rn×(τi+1−τi−jts ) , and Ai =

[Aj ,E] ∈ Rn×(n+m) , and τi , τi+1 are timestamps of chanдepoints . A typical method to compute the
optimal parameter sets for this trace segment is the least square method. However, empirically it
will be still challenging to measure the similarity between the derived parameter matrix of different
trace segments. Therefore, here we propose the solution-space approach as an alternative to handle
such problems. By adding an error tolerance σ to Equation (5), we have

∀h ∈ [1, 2, . . . ,n],
1

li

��� {O′i − AiOi
}
h
���2
≤ σ (6)

where {∗}h denotes the error trace of the continuous variable xh , li denotes the trace length, and
the 1

li
‖ ∗ ‖ indicates the averaged error. The function {∗}h can be realized by right multiplying a

selection matrix Ch ∈ R1×n where the hth element is 1 and the rest of elements are zero. Then
Equation (6) is converted to

1

li

���Ch (O′i − AiOi )���2
≤ σ (7)

Therefore, it is guaranteed that, for each dimension of output in all the possible models within this
solution space of A, the average error is not greater than σ . Thus, it can be guaranteed that the
precision of clustered dynamics can be bounded by σ . According to Theorem 4.1, which has been
proven [55], Equation (7) is equivalent to a non-strict LMI that

Fh =

[
I (O′i − AiOi )�C�

h

Ch (O′i − AiOi ) (liσ )2

]
 0

The multiple LMIs F1  0, F2  0, . . . can be merged into a single LMI: diag{F1, F2, . . .}  0, where
diag{} denotes the diagonal matrix of given matrices. Therefore, considering all (Fh )h∈[1,2, ...,n],
the solution space Si of Ai for the trace segment (Xi ,Ui ) can be transformed into an LMI form
as Equation (8) and F (Ai ) = diag{F1, F2, . . . , Fn }.

Si = {Ai |F (Ai )  0} (8)
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Theorem 4.1. Suppose M is a symmetric matrix given by

M =

[
A B
B� C

]
and A is invertible. Then, sufficient and necessary conditions for positive semidefiniteness of (M  0)

in terms of the Schur complement are

M  0⇔ A  0, C − B�A−1B  0, (I −AA−1)B = 0.

4.3 Intersection of Solution Spaces

In this section, methods for linear matrix inequalities are applied to determine the intersection
between two different solution spaces. The existence of an intersection implies that the dynamics
of these two segments can be clustered into one. Given two trace segments (U1,X1) and (U2,X2),
we can construct their solution space F (A1) and F (A2) as LMIs according to Equation (8). To
determine intersection between these two solution spaces, we can merge them into one LMI
diag{F (A1), F (A2)}  0 and compute its feasibility. A true feasibility indicates an intersection
and that these two segments exhibit similar dynamics, and otherwise, not. The LMI approach we
apply is the polynomial-time projective method proposed by Nemirovskii [37], which is one of the
most efficient algorithms among interior-point methods for solving LMI problems.

The clustering method is illustrated in Algorithm 1, which recursively searches for the trace seg-
ments belonging to the same cluster by checking their intersection. In the algorithm, the longer
trace segment is assumed to have higher likelihood of encoding more dynamic information. Thus,
trace segments are sorted in decreasing order and the longest segment is used as a reference for
the rest. The function’s output is the clustered index of trace segments. Here, the symbol Oj de-
notes the jth trace segment and the symbol Sj denotes its solution space in LMIs. The Oc denotes
the set of trace segments that fails to be clustered with the O1, and In denotes the set of index
of segments which belong to the same cluster. The functions in the algorithm are as follows. (1)
Function FnSoluspace returns its solution space expressed in LMIs. (2) Function FnCombine com-
bines two solution spaces. (3) Function FnInspace calculates the feasibility of two LMIs through
the projective method.

For the computational complexity, let n be the total number of traces segments for the frame-
work. The mode identification takes O (n2) operations of checking the feasibility of LMIs. After
clustering, all the trace segments in the same cluster will be applied to calculate the A. With the
sampling interval τs , the continuous dynamics can subsequently be derived. The clustered ODEs
will be labelled with the symbol f , and then the segmented trace is converted into an ODE-label
trace. Suppose a trace X is segmented into [X1,X2,X3], and X1, X3 are clustered together with a
label f1, and theX2 is with a label f2, thus, we have an ODE-label trace [f1, f2, f1]. Accordingly, we
obtain two preliminary transitions for X1 → X2 and X2 → X3:

〈f1, changepoint, f2〉, 〈f2, changepoint, f1〉 (9)

5 INFERRING GUARD CONDITIONS

As described in Definition 3.1, there are two types of guard conditions: exogenous event and linear

inequalities (LIs). As introduced, the model we consider is synchronous, which indicates that
there is no delay between the input and output. Therefore, the event ’s immediate impact on the
system will be directly reflected in a mode switching and its corresponding changepoint in output
traces, from which the association between the event and its mode switching can be achieved.
Here, we mainly focus on the LIs’ estimation.
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ALGORITHM 1: Identification of modes.

O ← p sets of sorted trace segments;

Function FnRecursive(O)
Oc , In ← empty # In is a set of indices;

if O � empty then

S1 ← FnSoluspace(O1) # construct a solution space;

for j = 2 to p do

Sj ← FnSoluspace(Oj );

Stemp ← FnCombine (S1,Sj ) # combine two solution spaces;

feasibility← FnInspace (Stemp ) # check the feasibility of the two solution spaces;

if feasibility < 0 then

j add to In # two solution spaces are compatible and their dynamics will are clustered;

else

Oj add to Oc ;

end

end

FnRecursive (Oc ) add to In # the recursive step for the unclustered trace segments;

return In ;

else

return empty;

end
end

The LI estimation is conducted for each type of preliminary transition (from (9)) that have the
same source ODE and destination ODE. There generally exist various types of LIs guard conditions
for transitions. Suppose two e1 and e2 LIs guard conditions are respectively derived for the change-

points in the transitions in (9), then we can update those preliminary ODE-labeled transitions to
〈f1, e1, f2〉 and 〈f2, e2, f1〉 which will be utilized for future mode merging.

Given changepoints from one type of transitions, we can estimate the LIs using affine-subspace
clustering method which aims to cluster data into multiple low-dimensional planes. Here, we uti-
lize the Random Sample Consensus (RANSAC), a statistical method proposed in [19] which is a
learning technique for estimating parameters of a mathematical model by iteratively and randomly
sampling a set of observed data. The observed data contain inliers, points that can be approximated
by fitting to a plane, and also outliers, points that cannot be fit. The plane that are estimated from
the most inliers is selected as the optimal one. In our case, the changepoints are normally close to
the boundary of LIs, so RANSAC can potentially exhibit a very competitive performance compared
with other methods [5]. The original RANSAC estimates one plane for one particular data group.
A guard condition may consist of multiple LIs in conjunction, which means there may exist multi-
ple planes to estimate. Inspired by the work [49, 54], we choose to apply RANSAC sequentially, to
mine a new subspace from the modified data set, where the points belonging to previously found
planes are removed.

The algorithm is shown in Algorithm 2. The inData and inNum denote the inlier points and
their number, respectively. The plane denotes a candidate in one iteration while the bestPlane,
bestData and bestNum denote information of the current best candidate. During each iteration, the
function FnRandomSample randomly selects a candidate. The function FnValidP finds all its inlier
points. Once a new plane is determined, the corresponding points will be removed before the next
iteration. The process will be terminated after no more planes are found.
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Fig. 4. Linear inequality estimation using RANSAC.

ALGORITHM 2: Identification of Multi-planes.

while true do

bestPlane, bestData← empty;

bestNum← 0;

Remove(bestData);

for n = 1 to η do

plane← FnRandomSample(data) # randomly create a candidate;

inNum, inData← FnValidP(plane) # determine the inliers and outliers;

if inNum > γ & inNum > bestNum then

bestNum, bestData← inNum, inData # update the current optimal candidate;

bestPlane← plane;

end

end

if bestPlane � empty then

Output (bestPlane);

else
break

end

end

Figure 4 demonstrates one sample of LI estimation from changepoints of one same type of transi-
tion. The points describe the changepoints, from which multiple solid lines that denote the LIs can
be estimated using the modified RANSAC. The points’ positions, with respect to their lines, are
used to determine the inequality sign. The logical connectivity between multiple linear inequalities
is also taken into consideration. LIs are determined to be conjuncted if all trace segments ahead
of those changepoints do not satisfy them, otherwise, each LI is treated as an individual guard con-
dition. For the changepoints that are still outliers after the algorithm termination, we use a label 0
to indicate an invalid estimation. The transition with such guard condition will be removed from
the further automata inference.

Similar to the original RANSAC, the modified one has three parameters to specify: (1) error
tolerance, λ, to check a point’s compatibility with a model candidate, (2) the iteration number, η,
for each model estimation, and (3) the threshold number of compatible points, γ , that indicates a
valid estimation. In our work, the error tolerance, λ, is described by the distance between a point

ACM Transactions on Cyber-Physical Systems, Vol. 6, No. 2, Article 13. Publication date: April 2022.



A Framework for Identification and Validation of Affine Hybrid Automata 13:11

Fig. 5. Illustration of mode merging. According to the compatibility criterion, f3 and f1 in trace1 are respec-

tively compatible with the f3 and the f1 in trace3. However, they are not compatible with the states in trace2
because in the subsequent transition, the guard condition e2 triggers different transitions from the f1 state.

and its corresponding affine hyperplane. There do not exist straightforward methods to determine
these three parameters, but we are able to approximate them by decreasing it from a large value.
Since all the changepoints are near the boundary of their planes, there should be an error tolerance
λ, such that most of the points become inliers. Decreasing, iteratively, from a large value candidate
to approach such a λ helps achieve a robust estimation. For the threshold number, suppose that
the probability of one point being compatible with all the planes is equal, then, the selected γ
should not exceed n/m, where n is the total number of data points and m is the number of linear
inequalities involved in that transition condition. The iteration number η can be approximated
with the method in [19], which is based on the assumption of the probability of only inliers being
selected in some iterations and the probability of one single inlier being selected each time.

6 MERGING MODES

In this section, we introduce the concept of the prefix tree acceptor (PTA) to help merge the
ODE-label traces from the previous section and construct the final hybrid model. Each ODE which
represents a type of dynamics will be regarded as a candidate mode. There exist many heuristic
algorithms focusing on inferring automata grammar from a set of labeled strings. To our best
knowledge, the element in the string only represents input events or internal guard conditions that
trigger mode switches, without considering the dynamics in modes. In our proposed framework,
besides the estimated guard condition of each transition, the dynamics in each mode have been
classified before the merging, which can be used for a more robust inference. As shown in Figure 5,
each subtree in a PTA represents one processed mode trace. Each mode is characterized by their
own ODE, f , and the guard condition in each mode switching is denoted by e . Unlike the work
[13, 40] which shows that the similarity of two modes is associated with the probability of staying
in or transitioning out of a mode, our method evaluates the compatibility of two modes using their
derived ODEs and transition conditions. To avoid creating a non-deterministic system during the
process of merging, modes are compatible under the following two conditions:

• First, the source ODE, destination ODE and guard conditions of two transitions are the same,
and meanwhile, in the subsequent transition where the destination ODE is the next source
ODE, there do not exist different transitions that are triggered by the same guard condition.
Then the modes involved in these two transition are compatible. This situation is illustrated
in Figure 5.
• Second, the first segments in each trace have the same dynamics and represent the same

initial mode.

In the algorithm, merging of modes is associated with the merging of mode transitions. We first
construct a 6-tuple 〈label1, e, label2, id1, id2, times〉 for each mode transition in traces. label1 and
label2 respectively denote the labels of the source and destination ODE. Item e denotes the guard
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ALGORITHM 3: Merging Modes.

for i = 1 to num_tuple do

ituple← tuples[i];

if ituple � empty then

for j = i + 1 to num_tuple do

jtuple← tuples[j];

if FnCompatibility(ituple, jtuple) then

FnModifyTuple(ituple, jtuple);

tuples[j]← empty;

ituple.times + +;

end

end

end

end

return tuples;

condition. Modes with the same ODE are not necessarily compatible, which will be demonstrated
by the navigation system in the case study. Some modes exhibiting the same dynamics are sepa-
rated due to different guard conditions. For a clear identification, the modes in all the preliminary
traces will also be assigned with a unique index id in addition to the ODE label and this index
is used to represent the unicity of a mode. The id1 and id2 respectively denote the index of the
source and destination. Item times is used to count the number of transitions that are merged to
the current one.

During the merging process, the 6-tuples are checked and merged according to the compatibility
criterion. The algorithm is shown in Algorithm 3. For each pair of tuples ituple and jtuple , we check
their compatibility by the function FnCompatibility which refers to the compatibility criterion.
If they are compatible, jtuple will be merged to ituple , and id1, id2 of jtuple are modified to be
consistent with ituple’s. Meanwhile, the function FnModifyTuple is applied to search the rest of
the transitions and modify the modes having the same indices as jtuple’s. Thus, the connectivity
between transitions can be maintained. Afterwards, the jtuple is emptied and the times in ituple
is increased by one. For the analysis of the algorithm complexity, let n be the number of tuples .
Then the merging modes takes O (n2) operations of checking the compatibility of tuples.

6.1 Parameter Selection

Multiple parameters need to be set in the identification of dynamics and the inference of guard
conditions, and their selection can determine the performance of the framework. The identifica-
tion of dynamics includes two parameters. One is the parameter j in Equation (3) which denotes
the number of steps and is utilized to reduce the impact of the noise. Overlarge values of j result
in less impact of the noise. The other one is the error tolerance ε , which is for the solution space
of ODE parameters. An overlarge value of ε generates a larger solution space, which may result in
clustering together trace segments with different dynamics. Too small a value leads to a smaller
solution space, which may result in classifying segments with similar dynamics into different clus-
ters. In the guard-conditions, the λ determines changepoints’ compatibility with a mode candi-
date. An overlarge value can misclassify changepoints into a different LI. While too small a λ will
generate more outliers and thus lose more information. For the η, a large number will increase
the robustness of the LI estimation but will also increase the computational burden. The threshold
number γ is the number of changepoints needed to validate an estimation. An overlarge value can
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Table 1. Execution Time and Accuracy Evaluation

Case Study Total Time (sec) Trace Segments
Conformance Degree

(T (sec ), J ,τ (sec ), ϵ )
Navigation System 11157 299 (1.8, 4, 0.21, 0.22)

Multi-room Heating System 8866 691 (40, 8, 1.2, 0.98)
Buck Converter 65 144 (0.02, 13, 0.0015, 0.17)

Cooperative Vehicles 54 80 (10, 2, 0.0000, 0.1265)

cause estimation failure while too small a value can yield a large amount of LIs and thus cause
overfitting issues.

7 CASE STUDIES AND EVALUATION

In this section, we study several case studies to evaluate the proposed hybrid automata learning
framework on different systems, following the validation overview from Figure 2. The chosen
systems are a navigation system, a multi-room heating system [17], and a DC-DC buck converter
system [11, 39]. They all have linear ODEs, guards, and invariants. We also compare our method
with a membership-based algorithm [46] on a simplified heating system. They are designed as
Simulink/Stateflow models that can generate training traces for the hybrid automata inference
framework and testing traces for validation of our methodology. The methodology is implemented
in a prototype software tool in Matlab, building on the HyST software tool [7] and its integration
with Simulink/Stateflow [6].1 In the evaluation, we utilize two methods to measure the proximity
between the inferred system and the original. The first one is comparing their reachable states
given an input set. Using the learned hybrid automata that are generated from our framework, we
compute their reachable sets using SpaceEx to compare the original model to the learned model
as a form of equivalence checking. The second evaluation is the conformance degree proposed in
[1, 11]. As defined, it can provide a proximity measure between two output traces in both space and
time (see Table 1). It is noteworthy that the component τ of the conformance degree relies on the
running timeT of traces. A longer trace will lead to a larger value τ . This is because the estimation
error in the model-transition condition as well as in the dynamics equations will be reflected on the
difference of transition time between the original system and the inferred one. Such difference can
be accumulated with each transition. This is also a challenging issue, and to our best knowledge,
there are few effective solutions. Overall, the τ that represents the worst transition-time difference
is generally related to the last mode transition that occurs in the trace. And a large value of τ can
be due to many mode transitions

Definition 7.1 (Conformance Degree). Given output traces for timeT ∈ R>0, a maximum number
of mode switches J ∈ N, and parameters τc , ϵ > 0, two traces y1 and y2 are (T , J ,τc , ϵ )-close, if (1)
for all (t1, j1) ∈ y1 such that t1 < T and j1 < J , there exists (t2, j2) ∈ y2 such that |t1 − t2 | ≤ tc
and ‖y1 (t1, j1) − y2 (t2, j2)‖ ≤ ϵ , (2) for all (t2, j2) ∈ y2 such that t2 < T and j2 < J , there exists
(t1, j1) ∈ y1 such that |t1 − t2 | ≤ tc and ‖y1 (t1, j1) − y2 (t2, j2)‖ ≤ ϵ .

7.1 Navigation System

This system deals with dynamics of an object in the R2 plane with m × n grids. In each grid, the
desired velocity along the x and y axes are respectively set to sin(i ∗ π/4) and cos(i ∗ π/4), where
i = 0, 1, . . . , 7, and the length and width of each are set to 1. The system to be learned is shown in
Figure 6. Given the desired velocity vd , the dynamics of the actual velocity v is described by the
differential equation v̇ = A(v − vd ) where A = [−1.2, 0.1; 0.1,−1.2].

1Code for the prototype HAutLearn tool and examples are available online at: https://github.com/verivital/hautlearn.
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Fig. 6. Navigation system in a 3× 3 grid. The label i refers to the parameter to calculate the desired velocity.

The object needs to reach the grid labelled A and meanwhile avoid the grid labelled B.

Table 2. Inferred Transitions of the Navigation System

label1 ( f ) дuard (e ) label2 ( f ) id1 id2 times
2 1 1 1 2 66
1 3 3 2 3 54
3 5 2 3 1 12
2 6 0 1 5 38
1 7 2 2 1 14
3 4 2 3 4 29
2 2 1 4 6 29
1 8 0 6 7 42
3 9 1 3 6 13

Table 3. Inferred Hybrid Automaton for the

Navigation system. The number indicates each

unique mode. Symbol f indicates their

dynamics. Symbol e indicates the guard

conditions

Fig. 7. Navigation: The red domain is the reachable states of the inferred system while the blue domain is the

reachable area of the original system. The green domain is the initial states, which is [0.5 ≤ x1 ≤ 0.6∧ 0.5 ≤
x2 ≤ 0.6 ∧ 1.4 ≤ x3 ≤ 1.5 ∧ 1.4 ≤ x4 ≤ 1.5].

The object’s start position can be in any grid except for A and B. Here, we choose to learn one
hybrid automaton for each starting grid. By fixing the initial position in one specified grid and
trying different initial positions and velocities, we can generate sufficient trajectory traces which
are respectively, position inX direction, position inY direction, velocity inX direction, and velocity
inY direction. Then a hybrid automaton is estimated through our framework to approximate their
dynamics. We estimated one hybrid automaton for the traces starting from the bottom left grid.
For the learning, we set σ = 10−4 for clustering the trace segments, λ = 0.01, η = 103 and γ = 10
for estimating the LIs. Here, 81 traces are collected with a sampling time ts = 0.01s . The estimated
state transitions is listed in Table 2, and the details of labels e and f is in Table 10 in Appendix A.1.
Accordingly, a hybrid automaton is constructed as shown in Figure 3. The comparison of reachable
states with the original system and accuracy evaluation are shown in Figure 7 and Table 1.

ACM Transactions on Cyber-Physical Systems, Vol. 6, No. 2, Article 13. Publication date: April 2022.



A Framework for Identification and Validation of Affine Hybrid Automata 13:15

Fig. 8. Circuit of a closed-loop buck converter.

Table 4. Inferred Mode Transitions for the

Buck Converter

label1 ( f ) дuard (e ) label2 ( f ) id1 id2 times

2 1 3 1 2 17
1 3 2 3 1 32
3 2 1 2 3 11

Table 5. Inferred Hybrid Automaton of the

Buck Converter

Fig. 9. Buck Converter: The red domain denotes the reachable states of the inferred system while the blue

domain denotes the reachable area of the original system. The green is the range of initial states which is

[−1 ≤ I ≤ 1 ∧ −1 ≤ vc ≤ 1].

7.2 Buck Converter

A buck converter is a DC-DC power converter that steps down voltage from its input to its output.
It exhibits both continuous and discrete behaviors because of the presence of passive elements and
switching components. Here we consider a closed-loop DC-DC buck converter in [11]. It takes a
DC voltage at its input Vin and then adjust its output vc according to the Vr ef by controlling the
operation of the MOSFET switch. It is a time-independent hybrid system where there are two state
variables, voltage across capacitorvc and current through the inductor I . The switching conditions
of its controller include an upper switching boundary Vr ef + δ and a lower switching boundary
Vr ef − δ .

The state traces are collected using Simulink where a uniformly distributed noise with a range
[−0.05, 0.05] was added. The sampling time ts was set to 5 × 10−5 seconds and the total running
time for each execution was 0.02 seconds. The range of the initial states are set to I = [0, 30] and
vc = [0, 15] from which 11 traces were collected. For the learning, we set σ = 2×10−2 for segments
clustering, and λ = 0.04, η = 105 and γ = 10 for estimating the LIs. The inferred hybrid automaton
is shown in Figure 5 and the dynamics information is shown in Table 11 in the Appendix A.2. The
comparison of reachable states and accuracy evaluation are shown in Figure 9 and Table 1.
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Fig. 10. Hybrid automaton model of the multi-room heating system.

7.3 The Multi-room Heating System

The system includes multiple rooms. The temperature in each room is controlled by one heater
and depends on the outside temperature as well as the temperature in the adjacent rooms. Let xi

denote the temperature in room i and u denote the outside temperature. The temperature of each
room exhibits linear dynamics with the heaters’ power status, the difference between the room’s
temperature and the outside temperature, and other rooms, which is described by

f : ẋi = cihi + bi (u − xi ) +
∑

j�i

ai, j (x j − xi ), (10)

where ai, j , bj , ci are constant and hi ∈ {0, 1} denotes the heater’s status. hi = 0 indicates the heater
is not in room i or the heater is off. The heater in room i is on if xi ≤ oni and off xi ≥ o f fi . A
heater will move to room i from room j if all of the following conditions hold: (1) no heaters in
room i , (2) one heater in room j, (3) xi ≤ дet i , (4) x j − xi ≥ di f i .

For our experiment, the heating system is set to have three rooms and one heater. Since there
may be multiple transition conditions holding simultaneously and the system may become non-
deterministic, we restrict that there is only one destination room for each source room. Then,
the system can be modelled as shown in Figure 10, which has u and [x1,x2,x3] as the input and
output, respectively. The input/output traces are collected by running simulations in Matlab with
a sampling interval of 0.1 seconds. For the learning, we set σ = 5 × 10−5 for segments clustering,
and λ = 0.05, η = 103 and γ = 10 for estimating the LIs. The state transitions in 6-tuples generated
from the framework is shown in Table 6. The final hybrid automata is shown in Figure 7, which
has 6 discrete modes, 4 distinct ODEs, and 9 mode switches in total. The initial mode is the mode 1.
The parameters of the guard conditions e and ODEs f are shown in Table 12 in Appendix A.3. The
comparison of reachable states is shown in Figure 11. These reachable domains are approximated
by simulating 1,000 traces because SpaceEx does not support the non-convex linear constraints.
Its accuracy evaluation is shown in Table 1.

7.4 Cooperative Vehicles

This benchmark is a platoon of three autonomously-driven vehicles following a leader [34], as
shown in Figure 12. The difference between the distance di of the vehicle i to its predecessor and a
reference distance dr ef ,i is defined as the space error ei . The dynamics of the platoon is as follows:

ẋ = Ax + BaL, (11)
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Table 6. Inferred Transitions for the Multi-room

Heating System

label1 ( f ) дuard (e ) label2 ( f ) id1 id2 times

2 2 1 1 2 107
1 3 3 2 3 103
3 4 2 3 1 110
2 5 4 1 4 24
4 6 2 4 1 24
1 7 4 2 5 98
4 8 1 5 2 95
3 9 4 3 6 52
4 10 3 6 3 52

Table 7. Inferred Hybrid Automaton of the

Heating System

Fig. 11. Heater: The red domain denotes the reachable states of the inferred system, while the blue domain

denotes the reachable area of the original system. The green denotes the initial states that is [14 ≤ x1 ≤
15 ∧ 14 ≤ x2 ≤ 15 ∧ 14 ≤ x3 ≤ 15].

Fig. 12. Cooperative platoon of three vehicles and a leader vehicle.

where the state vector x consists of 9 variables and x = [e1, ė1,a1, e2, ė2,a2, e3, ė3,a3] with ai being
the acceleration of vehicle i , A and B are constant system matrix, and aL denotes the acceleration
of the leader vehicle. In the case of radio communication, A and B are given as follows:

A =

�������������

0 1 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0

1.60 4.86 −3.57 −0.81 0.42 −0.04 −0.19 0.36 −0.09
0 0 0 0 1 0 0 0 0
0 0 1 0 0 −1 0 0 0

0.87 3.81 −0.07 1.19 3.62 −3.23 −0.59 0.12 −0.07
0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 −1

0.71 3.57 −0.09 0.84 3.25 −0.08 1.27 3.07 −3.13

�											

, B =

�������������

0
1
0
0
0
0
0
0
0

�											
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Table 8. Estimated Hybrid Automaton for the

Cooperative Vehicles. The Transition in Red with

label2 being 0 is an Erroneous Transition

label1 ( f ) дuard (e ) label2 ( f ) id1 id2 times

2 1 3 2 1 20
3 2 2 1 2 15

Table 9. Inferred Hybrid

Automaton of the

Cooperative Vehicles

While in the case of no communication, A and B are given as follows:

A =

�������������

0 1 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0

1.60 4.86 −3.57 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 1 0 0 −1 0 0 0
0 0 0 1.19 3.62 −3.23 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 −1

0.71 3.57 −0.09 0.84 3.25 −0.08 1.27 3.07 −3.13

�											

, B =

�������������

0
1
0
0
0
0
0
0
0

�											

The platoon is modelled as a hybrid automaton. Every two seconds, the radio communication

breaks down for the following two seconds. The breakdowns trigger discrete switches, where a
timer is reset. For the training data, we collect 16 traces using Simulink with the running time
and sampling time, respectively, set to 10 seconds and 0.05 seconds. The collected traces are also
added with uniformly distributed noise [−0.05, 0.05]. For the learning, we set σ = 8 × 10−3 for
segment clustering, and λ = 0.01, η = 105, and γ = 10 for estimating the LIs. The state transitions
in 6-tuples generated from the framework are shown in Table 4. The final hybrid automaton is
shown in Figure 9, which has 2 discrete modes, 2 distinct ODEs, and 2 mode switches in total. The
initial mode is the mode 1. The parameters of the guard conditions e and ODEs f are shown in
Table 13 in Appendix A.4. The comparison of reachable states is shown in Figure 11. The accuracy
evaluation is shown in Table 1

7.5 Comparison on A Heating System

We compare our framework with a membership-based algorithm (Hysynth) for learning linear
hybrid system from traces [46]. This method defines the continuous dynamics of models with con-
stant different equations which generally suffices to estimate an arbitrary continuous function. As
claimed, this algorithm can learn an automaton with nondeterministic guard conditions and in-
variants with piecewise linear functions that are derived from input-output traces. We are not able
to fit multi-variable traces using their source code, although there is no such limitation claimed in
their work. Therefore, we choose to evaluate our framework against this algorithm in a simple case
study. The target hybrid system is a heating system with one heater controlling the temperature x ,
which is modelled as shown in Figure 13. For the learning, 5 traces are collected with a time hori-
zon of 20 seconds, a sampling interval 0.1 second, and different initial conditions. The piecewise
linear functions are created for the membership-based method with an error bound ϵ = 0.1.

Our framework can successfully learn an automaton with similar dynamics as shown in
Figure 14. The running time is 5 seconds. While the membership-based method derives an automa-
ton with 40 discrete modes and 71 mode switches, where 6 of the discrete modes are unreachable.
Its running time is 2 seconds. Trace samples generated from the learned systems are shown in
Figure 15. We can notice that the system learned with Hysynth terminates early and yields incom-
plete traces that are in red. This is mainly because the dynamics violates the invariant of a discrete
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Fig. 13. Heating system with one heater.

Fig. 14. Inferred hybrid automaton from the heating system with one heater.

Fig. 15. Comparison of hybrid automatons learned by our method and the membership-based method. The

black traces are from the original system, the blue traces are from the system learned by our method, while

the red traces are from the system learned by the membership-based method.

mode that do not have successor discrete modes to switch to. So, this inferred automaton fails
to recover behaviors of the original system. The reason of this undesirable performance may be
because it can deal with simple dynamics of the form ẋ + c = 0, but cannot be applied to the more
general ODEs allowed by our method.

8 CONCLUSION

This paper presents a framework to mine and learn hybrid automata with linear (affine) constraints
and ODEs from input and output traces. It first clusters and estimates ODEs for the segmented
traces by checking the intersection of their solution space using an LMI method. The obtained
ODEs for segments defined by discontinuities in the traces are learned as potential discrete modes.
Subsequently, a modified subspace-clustering method is applied to estimate the linear inequalities
that describe the transition guard conditions from the collected changepoints. With the potential
modes and classified events, a PTA method is applied to merge the achieved states and generate the
hybrid automaton. The utility of this framework is validated by comparing approximated traces
with the source traces from which the automaton is learned. There are multiple directions to im-
prove our framework. In future work, we plan to explore improvements in the capability of data
preprocessing, such as noise filtering, so that it can have better scalability. As discussed, a robust
method of trace segmentation is essential for the inference of hybrid automaton, and further re-
search is needed in that direction. Another potential enhancement is extending this framework to
nonlinear hybrid systems by exploring methods to estimate the nonlinear dynamics of each trace
segment. Further case studies using black-box models and runtime monitoring can be conducted,
but likely will depend on improving scalability as just discussed.
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A APPENDIX: ADDITIONAL DETAILS FOR THE CASE STUDIES

A.1 Navigation System

Table 10. Guard Conditions e and Dynamics f of the Learned

Automata for the Navigation System

e1 : 0.0049x − 0.9980y − 0.0134vx + 0.0217vy + 1 ≤ 0

e2 : −0.4904x − 0.0049y + 0.0030vy + 1 ≤ 0

e3 : −1.0065x + 0.0031y + 0.0201vx − 0.0028vy + 1 ≤ 0

e4 : −0.0045x − 0.4971y + 0.0011vx + 0.0064vy + 1 ≤ 0

e e5 : 0.0083x − 1.0007y − 0.0166vx + 0.0139vy + 1 ≥ 0

e6 : −0.5018x + 0.0067vx − 0.0030vy + 1 ≤ 0

e7 : 0.0011x − 1.0070y + 0.0159vx + 0.0126vy + 1 ≥ 0

e8 : 0.0054x − 0.9710y − 0.0176vx + 0.0521vy + 1 ≥ 0

e9 : −0.4784x + 0.0019y − 0.0449vx + 0.0168vy + 1 ≤ 0

f1 : A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.0000 0.0000 0.1000 0.0000

0.0000 0.0000 0.0000 0.1000

0.0000 0.0000 −0.1200 0.0100

0.0000 0.0000 0.0100 −0.1200

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.0000

0.0000

0.0100

−0.1200

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
f f2 : A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.0000 0.0000 0.1000 0.0000

0.0000 0.0000 0.0000 0.1000

0.0000 0.0000 −0.1200 0.0100

0.0000 0.0000 0.0100 −0.1200

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.0000

0.0000

0.1200

−0.0100

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
f3 : A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.0000 0.0000 0.1000 0.0000

0.0000 0.0000 0.0000 0.1000

0.0000 0.0000 −0.1200 0.0100

0.0000 0.0000 0.0100 −0.1200

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.0000

0.0000

0.0919

−0.0919

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
A.2 The Buck-converter System

A.3 The Multi-room Heating System

A.4 Cooperative Vehicles
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Table 11. Guard Conditions e and Dynamics f of the

Learned Automata for the Buck Converter System

e1 : 0.0004x1 − 0.0824x2 + 1.0 ≤ 0

e e2 : −78.8x1 − 0.0638x2 + 1.0 ≥ 0.0

e3 : 0.0012x1 − 0.0842x2 + 1.0 ≥ 0.0

f1 : A =

[
−271.7 −377.4
454.5 −45.45

]
B =

[
9056.6
0.0000

]
f f2 : A =

[
−195.1 −378.4
454.6 −45.47

]
B =

[
11.29
0.1235

]
f3 : A =

[
−0.1511 0.6177
0.0001 −45.45

]
B =

[
−9.392
0.0057

]

Table 12. Guard Conditions e and Dynamics f of the Learned Automata

for the Multi-room Heating System

e2 : −0.4794x2 + 0.4770x3 + 1 ≤ 0 ∧ 0.0014x1 − 0.0659x3 + 1 ≥ 0

e3 : 0.4884x1 + 0.0013x2 − 0.4901x3 + 1 ≤ 0 ∧ −0.0627x1 + 1 ≥ 0

e4 : −0.3309x1 + 0.3292x2 + 0.0016x3 + 1 ≤ 0 ∧ −0.0641x2 + 1 ≥ 0

e5 : −0.0480x2 + 1 ≤ 0

e e6 : −0.0527x2 + 1 ≥ 0

e7 : −0.0456x3 + 1 ≤ 0

e8 : −0.0539x3 + 1 ≥ 0

e9 : −0.0475x1 + 1 ≤ 0

e10 : −0.0496x1 + 1 ≥ 0

f1 : A =

⎡⎢⎢⎢⎢⎢⎣
−0.1001 0.0298 0.0040

0.0299 −0.1001 0.0500
0.0398 0.0497 −0.1400

⎤⎥⎥⎥⎥⎥⎦ B =

⎡⎢⎢⎢⎢⎢⎣
0.0301 0.0036
0.0200 0.0024
0.0501 1.1060

⎤⎥⎥⎥⎥⎥⎦
f f2 : A =

⎡⎢⎢⎢⎢⎢⎣
−0.0994 0.0302 0.0392

0.0209 −0.1040 0.0530
0.0410 0.0504 −0.1413

⎤⎥⎥⎥⎥⎥⎦ B =

⎡⎢⎢⎢⎢⎢⎣
0.0301 −0.0025
0.0230 0.8405
0.0502 −0.0042

⎤⎥⎥⎥⎥⎥⎦
f3 : A =

⎡⎢⎢⎢⎢⎢⎣
−0.0532 −0.0776 0.0941

0.0299 −0.0999 0.0500
0.0397 0.0502 −0.1399

⎤⎥⎥⎥⎥⎥⎦ B =

⎡⎢⎢⎢⎢⎢⎣
0.0230 0.9161
0.0200 0.0000
0.0501 0.0000

⎤⎥⎥⎥⎥⎥⎦
f4 : A =

⎡⎢⎢⎢⎢⎢⎣
−0.1003 0.0298 0.0397

0.0298 −0.1001 0.0498
0.0395 0.0497 −0.1406

⎤⎥⎥⎥⎥⎥⎦ B =

⎡⎢⎢⎢⎢⎢⎣
0.0303 0.0107
0.0202 0.0071
0.0505 0.0179

⎤⎥⎥⎥⎥⎥⎦
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Table 13. Guard Conditions e and Dynamics f of the Learned Automata for the

Multi-room Heating System

e1 − 0.5128t + 1 ≤ 0; t = 0;

e2 − 0.5128t + 1 ≤ 0; t = 0;

f2 : A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.2474 0.5568 0.2046 0.0583 −0.2216 −0.0015 −0.0227 −0.1457 0.2183
−0.3591 −1.2851 −0.8297 −0.2218 −0.8613 −0.0163 −0.4111 −0.7054 0.7599

1.3970 3.6241 −2.8374 −0.2900 −0.3110 −0.0552 −0.2818 −0.3502 −0.0988
0.1469 −0.0462 −0.1657 −0.1852 0.8500 0.0151 −0.1603 −0.1636 0.077
−0.1605 −0.7953 0.9879 −0.2192 −0.6950 −1.0086 −0.3207 −0.6155 0.6032

0.1304 −0.3190 −0.1390 0.9189 3.1426 −2.0634 −0.0656 0.3862 −0.5285
−0.0182 −0.4770 −0.0579 −0.2057 −0.3947 −0.0089 −0.2646 0.6382 0.3288
−0.1252 −0.8587 −0.0594 −0.2904 −0.7963 1.0033 −0.3948 −0.7162 −0.3455

0.8712 4.1273 −0.1135 0.9544 3.6687 −0.0814 1.4677 3.4067 −3.5463

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0850 −0.0487
1.4159 0.3822
0.3349 0.1665
0.0800 0.2523
0.2593 0.2860
0.8062 2.5326
0.1943 0.3559
0.2998 0.3681
−0.1777 −0.1891

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

f3 : A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.1296 0.8586 0.1423 0.0820 −0.0756 0.0058 0.0435 −0.0323 0.0255
−0.2269 −0.4539 −0.6487 0.1232 −0.1842 −0.0092 0.0259 −0.1155 −0.0028

1.3946 4.4506 −3.1376 −0.6166 0.5344 −0.0472 −0.0463 0.4700 −0.2756
0.1619 0.1622 −0.3123 −0.1775 0.9763 0.0094 −0.1086 −0.0626 0.14073
−0.0717 −0.2104 1.0574 −0.0124 −0.1691 −0.9987 −0.0480 −0.1370 0.1150

0.4699 3.3837 −0.0129 1.2955 3.3234 −2.2285 0.1033 0.2572 −0.7385
0.0000 −0.1019 −0.0034 −0.0422 −0.0908 −0.0166 −0.0618 0.9239 0.0792
0.0113 −0.0746 −0.0686 −0.06537 −0.1245 1.0026 −0.0680 −0.12317 −0.8793
0.6570 3.5501 0.0957 0.9566 3.3547 −0.0977 1.3575 3.1740 −3.2994

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0089 −0.0984
1.1166 0.0102
0.0762 −0.0838
−0.0057 0.0822

0.0564 0.0566
0.1114 −0.3391
0.0408 0.0909
0.0325 0.0744
−0.0176 −0.0396

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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