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 Abstract 
During a digital forensics investigation, it is often necessary to identify ‘related’ files and 

log records for analysis. While this is typically achieved through manual examination of content, 

recent advances in storage technologies pose two major challenges: the growing volumes of digital 

evidence; and the technological diversity in storage of data in different file formats and 

representations. Both these challenges call for a scalable approach to determine related files and 

logs from one or more sources of digital evidence. In this thesis, I address some of the challenges 

involved in identifying associations that are inherent among the sources of digital evidence, via 

their metadata.  

 Metadata pertains to information that describes the data stored in a source, be it a hard disk 

drive, file system, individual file, log record or a network packet. By definition, metadata as a 

concept is ubiquitous across multiple sources and hence presents an ideal vehicle to integrate 

heterogeneous sources and to identify related artifacts. I develop a metadata based model and 

define metadata-association based relationships to identify ‘related’ files, log records and network 

packets, using metadata value matches. 

While there are many tools that allow the extraction of metadata for examination (using 

only a small fraction of the available metadata), the analysis step is left largely to the individual 

forensics investigator. In this thesis, I present a consolidated review of such tools and identify 

specific functionalities that are essential to integrate multiple sources for conducting automated 

analysis. Besides, I develop a framework and design the associated technology architecture to 

integrate these functionalities. In this framework, I define a metadata-based layer for automating 

the analysis – called the metadata association model which identifies the metadata value matches 

across arbitrary artifacts and organizes them based on the association semantics into meaningful 

groups. I have built a prototype toolkit of this model, called the AssocGEN analysis engine, for 
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identifying related artifacts from forensic disk images and log files. I evaluated this tool on 

heterogeneous collections of digital image files and word processing documents and successfully 

identified doctored files and determined the origin of artifacts downloaded from the Web. 

Apart from associations in digital evidence that arise out of metadata value-matches, time-

based sequencing is an essential part of forensic investigations. Timestamps are an important part 

of metadata that correspond to events that transpired. Sequencing these timestamps gives rise to a 

timeline. However, generating a timeline across heterogeneous sources poses several challenges; 

timestamp interpretation is one such. To address this issue, I develop a provenance information 

model and the associated technology architecture to incorporate timestamp interpretation while 

generating a unified timeline across multiple heterogeneous sources. The provenance information 

model can also validate time-based assertions by comparing semantically related timestamps to 

establish evidence consistency. I have built a prototype toolkit of this model, called UniTIME, to 

generate unified timelines from files, logs and packet captures and successfully evaluated it on 

datasets containing FAT file systems and ZIP file formats. 

In summary, this research develops a framework for identifying associations in digital 

evidence using metadata for forensic analyses. I show that metadata based associations can help 

uncover the inherent relationships between heterogeneous digital artifacts which can aid 

reconstruction of past events. I also show that metadata association based analysis is amenable to 

automation by virtue of the ubiquitous nature of metadata across forensic disk images, files, 

system and application logs and network packet captures. The results obtained demonstrate that 

metadata based associations can be used to extract many meaningful relationships between digital 

artifacts, thus potentially benefitting real-life forensics investigations. 
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1. Introduction 
Digital forensics, as a branch of science, involves the application of scientific principles to the 

interpretation of digital evidence during a criminal investigation. It spans acquisition, 

examination, analysis, documentation and presentation of digital evidence in a court of law. With 

the increasing use of computers and the Internet, the challenges associated with forensic 

investigations involving digital evidence have become formidable [67, 69]. As a consequence, 

issues facing the field today include the intrinsic technological diversity
1
 (heterogeneity) and the 

increase in the number of sources of digital evidence (volume). 

Traditionally in computing environments, hard disk drives were the dominant source of digital 

evidence and as a result analyses were largely confined to files. Today, however, in addition to 

hard disks, data is also found on volatile memory, log files and network packets, all of which are 

in different formats. As a consequence, system and application logs, volatile memory images and 

network packet traces have become equally important to investigators.  

During a digital forensics investigation, each source of digital evidence is examined using one or 

more forensic tools to identify the artifacts contained in them which are then analyzed 

individually [50, 67]. When multiple heterogeneous sources of evidence are analyzed in this 

traditional manner, redundancy in processing the evidence becomes unavoidable, as illustrated in 

Figure 1.1. In fact, even among multiple sources of the same data type, redundancy results. 

Processing digital evidence in the traditional manner contains four parts; source, process 

(examination and analysis), outcome, and consolidation. For each one of the sources that require 

processing, the artifacts need to be examined and analyzed individually for generating relevant 

                                                           
1 I henceforth use the terms diversity and heterogeneity interchangeably. 
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reports that are corroborated in the final step. The workflow described hitherto underlines the need 

for a cohesive approach to analyze diverse sources of digital evidence to arrive at a consolidated 

outcome. 

 

Figure 1.1 Traditional method for conducting forensic analysis on different sources 

  

In this thesis, I posit that it is beneficial to group the artifacts (available across sources of 

digital evidence, irrespective of their forms and formats) to enable an examiner to identify 

relevant evidence. I achieve this goal using the metadata that is inherently present in digital 

evidence and identify the associations
2 between the artifacts. Interestingly, metadata based 

associations in digital evidence exist both at syntactic as well as semantic levels. 

1.1 The Heterogeneous Nature of Digital Evidence 

During a digital forensics investigation, evidence is acquired from four different types of sources 

[43, 44, 64], viz., hard disk drives, memory dumps, system and application logs, and network 

packet captures, each of which can also internally vary in formats. For example, in file systems 

alone there are dominant and often-used variations such as FAT, NTFS, EXTx and HFS+. The 

                                                           
2 A connection or link between artifacts. 
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files, in turn, may be stored in different file formats and therefore, file analysis often requires 

multiple utilities to elicit evidence relevant to the investigation at hand. This is illustrated in 

Figure 1.2. This complexity is compounded by several usage scenarios, two typical examples of 

which are explained in the sequel. 

 

Figure 1.2 Some of the heterogeneity found in digital evidence 

  

 

Scenario 1: When the same file is used across heterogeneous file systems  

Today it is common for people to use multiple computers as well as multiple storage 

devices during their day-to-day work. Such storage devices may be formatted using the 

FAT32, NTFS, EXT2/3 or other such standards. If a user created a file on an NTFS file 

system and transferred the file to an EXT2 file system using a FAT32 formatted USB 

flash drive, then differently-formatted copies of the file may be present on all three file 

systems. Beyond this, if the user modified the file on the USB drive or the EXT2 file 

system, it is possible that content similarity or the provenance of the modified file may 

not be apparent. One can contend, however, that in such cases the metadata associated 

with each of the files, when analyzed in unison, can provide a better perspective and 

insight into the file’s origins, thus providing valuable evidence for a digital forensics 
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investigator. The research challenge is thus to identify such relationships across 

heterogeneous sources and devise a method to group them in order to aid a forensics 

examiner (assuming, of course, that the user does not meddle with the metadata). 

Scenario 2: When an activity sequence relating to a given file spans heterogeneous 

sources 

Consider another scenario where a user downloads a set of digital photographs from the 

Internet, edits them and markets them as originals. This would normally be construed as 

IP theft. Garfinkel notes that no existing tools can enable a forensic examiner to detect 

such related activities [69, 165]. While tools to detect whether or not an image has been 

edited are available, they fall short of detecting the activity sequence, which is necessary 

to create evidence linking copies to the original photographs while making a case. In 

order to do so, it is essential to find the original photographs from the user’s computer 

and group them with the edited duplicate. One may also be faced with a situation where 

the user deleted the original files. While deleted files can be recovered using an approach 

known as data carving [50], trace-evidence of the user’s online activity can also be 

obtained from the corresponding browser logs or network packet captures. If one were to 

use the metadata from files and the log attributes and determine related items, it can help 

relate these sources of digital evidence to establish provenance. The research challenge 

here is to identify log records that are directly related to the duplicates stored on a user’s 

computer and to group the relevant pairs together to aid the forensics examiner. 

The two scenarios described above highlight the challenges faced by a forensics examiner when 

dealing with heterogeneous data sources. In the first scenario, the challenge was to establish file 

similarity and provenance. In the second scenario, the challenge was to establish provenance and 

authenticity verification. 

In both scenarios, the traditional method of analysis (based on the DFRWS report [50])  requires 

that the sources of digital evidence be analyzed individually and sequenced using timeline 

information. However, this requires that the conclusions cannot be arrived at until after all the 

sources are exhaustively analyzed. On the other hand, if one were to use the metadata that is 

present in all digital evidence sources, it has the potential to aid a forensic examiner to arrive at 

the same conclusion without having to exhaustively analyze all the files. Moreover, this approach 

can be designed to be technology-agnostic with ability to scale across heterogeneous sources. 
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In this thesis I present a model, methodology and a demonstrable toolkit to automatically identify 

associations in digital evidence at the syntactic and semantic levels using metadata. For example, 

if we consider my earlier description of Scenario 2, my approach can identify associations 

between different data sources based on metadata to elicit evidence, which could involve files that 

have been downloaded, evidence relating to the origins of the downloads and doctoring of digital 

photographs, and Internet browser logs and network packet traces. In the following section, I 

elaborate on this motivation further. 

1.2 Motivation for Finding Associations in Digital Evidence 

Digital evidence is ubiquitous in cyberspace today. As observed earlier, rapid advancements in 

digital technology over the past decade, the multiplicity in file formats and log formats of the 

artifacts have rendered forensic analysis a formidable challenge. Besides, applications also create 

multiple temporary files and logs hand-in-hand with regular files. In fact, in most computing 

applications, each and every stage of an activity is recorded at multiple levels, from the 

application down to the operating system level; these are often stored in different formats. Despite 

the differences in file formats, all files on a file system can be classified using common file 

system metadata like the filename, file size, MAC3 timestamps, etc. Still, files cannot always be 

(readily) associated with log records. Under these circumstances, in order to get a holistic 

perspective, during a forensics investigation, it thus becomes necessary to examine all these 

related files and logs along with the regular files. This is highly laborious and error prone, so a 

scalable method for analysis is needed. 

In the literature, classification has mainly been used to group forensic artifacts belonging to the 

same source [17, 18, 109, 113]. The groups are then presented in some ordered form, e.g., 

alphabetical order or time-sorted, and analyzed for patterns. This approach seems to work well for 

homogeneous sources [27, 65, 69], however, when confronted with heterogeneous sources, even 

across file formats, classification requires an additional step by the examiner in “linking up” the 

groups so identified. In practice, one may have to classify the artifacts repeatedly, using different 

parameters, before a pattern emerges [17, 18]. 

To extract associations such as those illustrated in the scenarios described in the previous section, 

it is necessary to examine how the artifacts from heterogeneous sources are ‘connected’ in order 

to corroborate a fact [19, 130]. This can be achieved in two different ways: (i) using the actual 
                                                           
3 Refers to the Modified, Accessed and Created timestamps  
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content in the artifacts and identifying matches across artifacts; or (ii) using the attributes 

describing the artifacts, or metadata, and identifying matches in them. The former is 

computationally intensive and is often used in the literature whenever a deep file analysis is 

needed [98, 158]. On the other hand, the latter approach remains largely unexplored. I therefore 

focus on attributes and develop a framework to determine metadata based associations across 

heterogeneous sources. More specifically, I identify value matches that lead to associations that 

“link up” evidence. This naturally opens up a new regime of semantic understanding based on 

associations across artifacts. Figure 1.3 illustrates my approach.  

 

Figure 1.3 My approach to forensic analysis by identifying associations across different sources of digital 

evidence 

  

In this thesis, I use metadata to identify those artifacts which contain overlapping contexts and 

group them to be analyzed together. As such, the grouping eliminates the repetitions which are an 
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1.2.1 Concept of a Digital Artifact 

An examiner is often confronted with the problem of aligning different sources to corroborate 

digital evidence by correlating the information between them. Since all types of digital evidence, 

notwithstanding their type, have abundant metadata [22, 67], it can act as the common medium to 

discover the inherent relationships that often exist in digital evidence. Carrier and Spafford [29] 

note that metadata can be treated as the characteristics of a digital object. Every digital object is 

evidence of at least one event and the metadata is a partial representation of the state of a digital 

object. In my work, I refer to the digital object with its associated metadata as a digital artifact. 

The metadata associated with these digital artifacts can correspond to events and thereby enable 

reconstruction of events and their sequence. For example, creation of a file on a file system is a 

type of file-event, accessing a file is another type of file-event and visiting a webpage is a type of 

Internet-event and so on. This abstraction of a digital artifact allows my work to focus on not only 

syntactic value matches but also the semantics that links these matches. Analyzing one or more 

digital artifacts can thus help in reconstructing the set of events that generated these artifacts. 

1.2.2 Metadata in Digital Investigations 

Metadata refers to data about the data that is stored in digital media. Metadata is the information 

about the data contained in a source, be it a file, folder, hard disk drive, logs or network traffic and 

is independent of the content it describes. For instance, metadata for a file contains information 

regarding the filename, location of the file, file size, content type, application type, ownership, 

access privileges, date and timestamps and so on. (Similar descriptions exist for log file related 

metadata.) 

Metadata can be considered as sets of name-value pairs. It is common to all digital data stored in a 

digital storage medium, albeit in different forms. As metadata describes attributes regarding the 

data, and as these attributes can have values in common across similar digital artifacts, it is useful 

to group digital artifacts with the same values for attributes together in order to analyze them 

holistically. 

Timestamps are one such kind of metadata that has been extensively used in the literature and 

timestamp analysis has played an important part in digital forensics so far. Timestamps are used to 

generate a timeline of activities relevant to an investigation. Sequencing timestamps generates a 

sequence of events, and this process is referred to as digital time-lining. Some of the challenges 
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pertaining to timestamp analysis are synchronization [184], clock skew and drift [23, 171], and 

timestamp interpretation [8, 34, 120-128].  

Interestingly, metadata contains certain types of situational information as well. In other words, 

the information relating to who, how and when the digital artifacts were created, modified or 

accessed are present in their metadata. During forensic analysis, focusing on metadata enables us 

to understand the evolution of artifacts and their relationships with other artifacts. 

1.3 Using Metadata to Determine Associations in Digital Evidence 

In conventional systems of forensic analysis [50], content is analyzed for describing and 

understanding the artifacts. Such content analysis is carried out using “searching”. When 

searching a file or for a file, use of keywords is normally the norm. When the exact words are not 

known, one may use a regular expression search which supports searching for a set of keywords 

that fit a pattern. If a suitable search pattern too is unknown, a forensics examiner may have very 

little to go by during analysis and will need to resort to an exhaustive search. (A similar argument 

can be extended to log files as well.) 

Metadata, on the other hand, contains information that can be used to achieve the same objective, 

but more efficiently. Metadata based search is amenable to automation by virtue of its ubiquitous 

nature. This property of metadata can potentially benefit digital forensic analyses, as there is 

always a need to identify all types of associations that exist between the digital artifacts. The 

research objectives of this thesis are to show how this can be done. 

1.4 Objectives of this Thesis 

In view of the challenges posed by heterogeneous sources and the growing volumes of digital 

evidence, I focus on the following three objectives in my research: 

1. While there have been general advancements in the development of forensic tools, the 

abstraction of functionalities for an integrated analysis of heterogeneous sources of digital 

evidence is required. In my research, my first objective was to develop a comprehensive 

understanding of the complementary functionalities of current forensic tools in order to 

integrate them for examining heterogeneous sources of digital evidence. 
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Metadata is ubiquitous across heterogeneous sources of digital evidence. Naturally, metadata can 

become a vehicle for integrating the examination of different sources. The understanding gained 

from the first objective led to the development of an architecture which integrates the 

functionalities of complementary and specialized tools. To build a metadata based platform to 

integrate the examination and analysis of heterogeneous sources, I identify associations in digital 

artifacts that are present with the different sources based on metadata. I validate this 

understanding by developing a prototype toolkit for extracting metadata and identifying metadata 

associations across different sources. 

When identifying metadata associations in digital evidence, I believe that it can be important to 

distinguish between a value match resulting in a syntactic association between two digital artifacts 

and the semantics of the association between them leading to a forensic context. I believe that the 

ability to identify syntactic associations can aid in automation, and the ability to identify semantic 

associations can aid in answering one or more of Casey’s (six) forensic questions [32]. 

2. To cultivate such a distinction, my second objective was to develop a model to represent a 

metadata association and a method for identifying (i) a syntactic metadata association 

between two or more artifacts, and (ii) a semantic metadata association between two or 

more artifacts. 

The understanding gained from the second objective led to the development of a framework to 

identify the semantics related to the associations of metadata in the context of forensic analyses 

and to group such related associations. This is motivated by the fact that metadata consists of 

several fields (called tags or names). In my work, I refer to these fields as metadata names.  

When digital artifacts are associated based on metadata, it is possible that a single digital artifact 

can be associated with an artifact on a particular metadata name and at the same time be 

associated with yet another artifact on a different metadata name. In regards to forensic analysis, 

when the same artifact contains multiple associations, it requires consolidation. 

3. Our third and last objective was to incorporate such consolidation by grouping the related 

associations among digital artifacts. 

Based on the understanding gained from the second and third objectives, I developed a model to 

represent metadata associations both at the syntactic and semantic levels for artifacts of arbitrary 
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type. I validated this model by applying it to existing classes of artifacts and successfully inferred 

the existence of higher order relationships.  

In the sequel, I present an overview of the research method used to achieve these research 

objectives. 

1.5 Overview of the Research Method  

In this research I adopted an iterative method [49, 61]. An iteration of the research method 

consisted of several steps. The first step was the definition of an overarching research goal. In my 

case this was the establishment of a framework for identifying metadata based associations across 

heterogeneous sources of digital evidence. The second step was the development of a framework 

to define the scope and solution design needed to address the research goal. The third step 

involved an implementation of my design which resulted in a research prototype. The fourth step 

was to conduct experiments using the prototype to test my hypotheses concerning the use of 

syntactic and semantic metadata associations in digital evidence. The fifth step involved an 

evaluation of the experimental outcome based on which I qualified the results and derived 

inferences. When the outcome addressed the research goal adequately as measured during the 

evaluation, I proceeded to the next research goal. If, however, the evaluation demonstrated that 

the solution was inadequate to address the research goal, I returned to the second step and refined 

the design to address the deviation in expected behavior. Thereafter, I proceeded with the method 

as outlined above. This process is shown in Figure 1.4. 
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Figure 1.4 Iterative Research Method 
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context. Hence I adopted the grounded theory and applied metadata matches to files. In this study, 

I illustrated heterogeneity in file formats by identifying intra and inter metadata matches among 

application files such as digital image files and word processing documents. Such application files 

were frequently encountered during digital investigations that necessitate the grouping of related 

files to conduct forensic analysis. It was therefore necessary to understand how such files are 

‘interconnected’ and assess their relevance to an investigation. 

In order to achieve my third objective, it was essential to gain a “grounded” understanding of how 

to group the associated artifacts in a manner that can aid in answering forensically relevant 

questions. In this study, I group the associated digital image files and word processing documents 

based on ‘source’, ‘ownership’, ‘timestamps’ and structural  application metadata concerning the 

file formats to determine answers to the questions posed by Casey [32].  

Having outlined the research methodology in my work, I list the contributions from this research 

in the sequel.  

1.6 Contributions from this Research 

In the context of the research challenges outlined in this chapter, the following were the salient 

contributions from this research. 

1. An understanding of the functionalities of contemporary forensics and analysis tools to 

examine digital evidence and to use the metadata for analysis. This is demonstrated 

through the development of a functional forensic integration architecture to identify 

associations across heterogeneous sources of digital evidence, using metadata.  

This contribution addresses the first research objective. my work on this research objective 

has resulted in the following publications: 

i. Raghavan S. (2012)., Digital Forensic Research: Current State-of-the-Art, CSI 

Transactions on ICT, March 2013, Volume 1(1), pp. 91–114, Springer Publishers, 

Berlin Heidelberg. 

ii. Raghavan S. and Raghavan S. V. (2013)., A Study of Forensic & Analysis Tools, In 

Proceedings of the Eighth International Conference on Systematic Approaches to 

Digital Forensic Engineering (SADFE 2013), Hong Kong, China, Nov 21–22, 2013, 

Accepted Aug 2013, In Press. 
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iii. Raghavan S., Clark A. and Mohay G. (2009)., FIA: An Open Forensic Integration 

Architecture for Composing Digital Evidence, In Forensics in Telecommunications, 

Information and Multimedia, Lecture Notes of the Institute for Computer Sciences, 

Social Informatics and Telecommunications Engineering, 2009, Volume 8(1), pp. 83–

94, Springer Publishers, Berlin Heidelberg. 

2. An understanding of metadata associations between digital artifacts when two or more 

artifacts exhibit (a) a syntactic metadata association resulting from a value match or 

similarity between corresponding metadata; and (b) semantics of a metadata association 

interpreted in a forensic context. This is demonstrated through the development of a 

metadata association model for identifying metadata-based associations among the 

artifacts in digital evidence. To validate this, I identified metadata associations across 

collections of digital images and word processing documents that were obtained from 

diverse sources using metadata matches.  

This contribution addresses the second and third research objectives in a conceptual 

manner. My work on this research objective has resulted in the following publications: 

i. Raghavan S. and Raghavan S. V. (2013)., AssocGEN: Engine for Analyzing Metadata 

Based Associations in Digital Evidence, In Proceedings of the Eighth International 

Conference on Systematic Approaches to Digital Forensic Engineering (SADFE 

2013), Hong Kong, China, Nov 21–22, 2013, Accepted Aug 2013, In Press. 

ii. Raghavan S. and Raghavan S. V. (2009)., Digital Evidence Composition in Fraud 

Detection, Lecture Notes of the Institute for Computer Sciences, Social Informatics 

and Telecommunications Engineering, 2010, Volume 31(1), pp. 1–8, Springer 

Publishers, Berlin Heidelberg. 

3. Development of a method to group the artifacts in a manner that eliminates redundancy 

and organizes them into event-related groups for the purpose of conducting forensic 

analyses. This led to the identification of related digital artifacts from heterogeneous 

sources, whether a file, a log record or a network packet, to identify the higher-order 

associations or relationships via the metadata. I demonstrated this in my work by the 

grouping metadata associated digital image files and word processing documents that 

were obtained from diverse sources.  

This contribution addresses the second and third research objectives in an experimental 

manner. my work on this research objective has resulted in the following publications: 
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i. Raghavan S. and Raghavan S. V. (2013)., Determining the Origin of Downloaded 

Files Using Metadata Associations, Journal of Communications, Vol. 8(12), pp. 902-

910, JCM ET Publishing 2013. 

ii. Raghavan S. and Raghavan S. V., Eliciting File Relationships Using Metadata Based 

Associations on File Collections for Digital Forensics, (Under Review) Submitted to 

CSI Transactions on ICT, Springer Publications 

4. An understanding of timestamp related associations in digital evidence and related 

challenges in timestamp interpretation. The analysis led to the development of a 

provenance information model to provide timestamp resilience in metadata for 

interpretation. I demonstrated these in my work using contemporary case studies involving 

FAT32 file systems and ZIP file formats.  

This contribution addresses the second research objective for unifying heterogeneous 

events through the generation of a unified timeline. my work on this research objective has 

resulted in the following publication: 

i. Raghavan S. and Saran H. (2013)., UniTIME: Timestamp Interpretation Engine for 

Generating Unified Timelines, In Proceedings of the Eighth International Conference 

on Systematic Approaches to Digital Forensic Engineering (SADFE 2013), Hong 

Kong, China, Nov 21–22, Accepted Aug 2013, In Press. 

1.7 Chapter Summary 

In this chapter, I presented the need for identifying associations between the artifacts in digital 

evidence. Metadata, by virtue of its ubiquity, is the obvious choice for identifying these 

associations. My definition of association broadly conforms to the definition of the term 

‘association’, according to Webster’s English dictionary [198a] which defines it as “an identifier 

attached to an element in a system in order to indicate or permit connection with a thing or 

person”. In my work, metadata is the identifier and an element is the artifact belonging to the 

source of digital evidence. The act of finding metadata associations refers to the identification of 

metadata between two or more digital artifacts that exhibit a value match.  

I organize the rest of this thesis as follows:  

In Chapter 2, I review related literature and motivate the need for identifying and analyzing 

metadata based associations in digital evidence during forensic analysis. 
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In Chapter 3, I present my methodology to develop a framework for identifying metadata 

associations among digital artifacts and for grouping them for analysis. 

In Chapter 4, I develop a framework to identify metadata based associations among digital 

artifacts from heterogeneous sources of digital evidence. In particular, I introduce my functional 

Forensic Integration Architecture and define my metadata association model to determine 

associations using unconstrained combinations of metadata across heterogeneous sources of 

digital evidence. I also introduce my provenance information model to provide timestamp 

resilience in metadata for timestamp related associations and digital time-lining.  This is the 

central theoretical contribution of the research. 

In Chapter 5, I design experiments to evaluate my proposed model. I discuss the need to study the 

metadata found in digital image files and word processing documents and derive their respective 

metadata taxonomy to determine metadata associations for forensic purposes. 

In Chapter 6, I present the results of the experiments that were designed in Chapter 5 to analyze 

digital images using the metadata association model.  

In Chapter 7, I present the results of the experiments that were designed in Chapter 5 to analyze 

word processing documents using the metadata association model. 

In Chapter 8, I summarize the contributions from my research and discuss some limitations and 

identify scope for future research in the area. 
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“Learn from yesterday, live for today, hope for tomorrow. The important 

thing is to not stop questioning.”  

- Albert Einstein 

 

 

 

2. Related Work 
The diversity and increasing volumes of digital evidence has generated a need to determine new 

approaches to unify multiple data sources for analysis. In this chapter, I review the digital 

forensics research literature, identifying significant contributions along the way and eliciting 

current challenges in the field. I motivate the need to determine associations in digital evidence 

and how metadata plays a role in deriving valuable relationships to aid forensic analysis. 

2.1 Digital Forensics: A Multi-Staged Scientific Process 

The Digital Forensic Research Workshop (DFRWS) 2001 report [50] has defined digital forensic 

science as follows: 

“The use of scientifically derived and proven methods toward the preservation, collection, 

validation, identification, analysis, interpretation, documentation and presentation of 

digital evidence derived from digital sources for the purpose of facilitating or furthering 

the reconstruction of events found to be criminal, or helping to anticipate unauthorized 

actions shown to be disruptive to planned operations.” 

Digital forensics is a multi-staged process starting with the identification of digital media from a 

scene as potential evidence until the time when the analysis results are presented in a court of law. 

The goal of a digital forensic investigation is the reconstruction of past events leading to an 

understanding of the incident being investigated. The sequence of activities [50] is illustrated at a 

high level in Figure 2.1.  
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Figure 2.1 The various stages of the digital forensic process 

  

Evidence Identification: The very first stage of the digital forensic process is the identification of 

relevant digital evidence. During this stage, one or more sources of digital data are identified as 

potential evidence. Examples of devices that can provide digital evidence include hard disks on 

computer systems, random access memory cards, USB storage devices, external sources of 

secondary storage, mobile phones, PDAs and so on.  

Evidence Acquisition and Preservation: Once a data source is identified, its contents are 

forensically acquired and preserved. Acquisition refers to the process of obtaining a binary, bit-

wise copy of the entire contents of a digital medium. The evidence is preserved using standard 

hash signatures like MD5 or SHA1 to verify its integrity. Besides such media, forensic examiners 

deal with digital records such as documents on a computer, telephone contact lists, lists of phone 

calls made, traces of signal strength from the base station of a mobile phone, voice and video files, 

email and SMS conversations, network traffic patterns, and virus intrusions and detections. The 

examiners use the actual user data, metadata associated with user data, activity logs and system 

logs. Each acquired source is duplicated to conduct forensic tests on read-only copies, lest an 

activity alters the data stored within the original sources [26, 33, 36].  

Evidence Examination: The digital evidence is examined using one or more forensic tools which 

provide multiple file system abstractions and support schemas to enable examiners to interpret and 

understand raw binary data. This stage is called evidence examination where the sources are 

examined and indexed for conducting searches. Casey [32] defines forensic examination as the 

process of extracting information from digital evidence and making it available for analysis. In 

some cases, the examination of digital evidence may reveal some hidden or otherwise not-so-

explicit information, which has to be extracted and subsequently analyzed. The act of identifying 

such information is termed evidence discovery.  
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Evidence Analysis: Evidence analysis begins when the evidence sources and the discovered data 

are analyzed to determine the sequence of events leading to the reported incident under 

investigation. Casey [32] defines forensic analysis as the application of scientific methods and 

critical thinking to address the fundamental questions in an investigation: what, who, why, how, 

when and where.  

Documentation and Presentation: The individual stages are thoroughly documented and this 

documentation is presented in a court of law. Occasionally, the digital evidence may be presented 

in court by an expert witness.  

2.2 Related Research 

Current research in digital forensics can be classified into four major categories, viz. digital 

forensic process modeling, evidence acquisition and representation, evidence discovery and 

examination and digital forensic analysis. 

Digital forensic process modeling deals with establishing theoretical models of the forensic 

process and the procedures and processes that must be in place to guarantee the integrity of 

evidence throughout an investigation [12, 26, 30, 50, 114]. The modeling process also defines 

fundamental forensic principles for the development of new tools in forensics examination, 

analysis and presentation.  

Evidence acquisition and representation deals with that branch of digital forensics concerned with 

acquiring digital data in a forensically secure manner from a variety of digital devices and 

proposing models to represent the data contained for examination [9, 131, 134, 135]. This branch 

studies the forensic scope of data from different devices and presents new techniques and tools 

(both hardware and software) to acquire data from the field. The data so acquired is then carefully 

and securely imaged for examination and discovery.  

Evidence examination and discovery deals with techniques to discover relevant data within the 

acquired sources and the software support needed to examine the contents using one or more 

forensic tools [26, 27, 39].  

Digital forensic analysis deals with post-examination evidence study to attempt to recreate past 

events [26, 30, 53, 91, 114, 117]. This branch deals with the analysis of artifacts from one or more 
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sources of digital evidence to reconstruct the sequence of events and answer the questions 

pertinent to analysis. 

2.2.1 Modeling the Digital Forensic Process 

A digital forensic examiner typically has to contend with many different types of digital evidence 

during an investigation, i.e., forensic disk images, logical images of folders and files, logs, 

network packet traces and memory dumps. Owing to the diverse nature of digital evidence 

involved, there can also be a general lack of cohesiveness in the manner in which the evidence 

acquisition, examination and analysis are handled. The Digital Forensic Research Workshop 

(DFRWS) 2001 report [50] highlighted the challenges facing the field and called for new 

approaches to develop a better understanding of the digital forensic process.  

Many digital forensic process models have been proposed in the literature. Primarily, these 

models deal with the definition of the general stages in a digital forensic investigation. 

McKemmish [114] identified four broad stages involved in a digital forensic investigation: 

1. Identification of digital evidence; 

2. Preservation of digital evidence; 

3. Analysis of digital evidence; and 

4. Presentation of digital evidence. 

Among the digital forensic process models, the important ones are the physical investigation 

process model [26], the hierarchical objectives framework [12], the Hadley IO model [74], the 

computer history model [30] and the concept of digital evidence bags [87, 190]. Of these, the 

physical investigation model and the hierarchical objectives framework both model the entire 

process while the Hadley model and digital evidence bags emphasize digital evidence acquisition. 

The computer history model attempts to model the reconstruction process. 

Carrier and Spafford [26] observed similarities in the digital investigation process with its 

physical twin; this work highlights the cross-applicability of many techniques used in the 

traditional form of physical forensics adopted into its digital sibling. Beebe and Clark [12] 

presented an objective based framework for digital forensic process, dividing it into six stages and 

proposing a 2-tier hierarchical objectives framework. The six stages defined by this work are  
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1. preparation,  

2. incident response,  

3. data collection,  

4. data analysis,  

5. presentation of findings; and  

6. incident closure. 

The framework further broke down the six stages into sub-stages (called sub-phases) and defined 

the objectives for these phases in typical investigations.  

Activities on a computer can be treated as a series of input-output sequences. The layered Hadley 

model [74] for input and output defined computer-based IO as a sequence of translations followed 

by transport of data. This model is primarily a hardware computer model for the purposes of 

identifying all I/O sources of digital evidence on one computer. The Hadley model does not 

account for digital evidence generated from information flow on computer networks, external 

storage drives, logs and various other active digital devices such as mobile phones, PDAs, MP3 

players and so on.  

The computer history model [30] attempted to formalize digital forensics using a finite state 

automaton. However, it concluded that this approach is computationally infeasible owing to the 

size of the resulting state space. Hosmer [87] emphasized the importance of chain-of-custody 

equivalents in the digital world and called for auditing every operation conducted on digital 

evidence from digital devices. Since data on digital devices can be altered, copied or erased, 

Hosmer proposed the applying following principles,  

 authentication,  

 integrity,  

 access control, and  

 non-repudiation,  

while handing digital evidence. The significance of this concept is reinforced by Turner’s digital 

evidence bags [190]. Turner focused on these four aspects from the standpoint of forensic 
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acquisition and draws a parallel from physical investigations to define digital evidence bags to 

record provenance information. 

Myers and Rogers [133] called for the need to standardize the forensic investigation process and 

presented an argument for achieving this through education and certification. Pollitt [151] 

presented an annotated bibliography of the different digital forensic models and examined the 

legal constraints of various forensic process models. Reith et al. [155] presented another 

independent examination of the digital forensic models and analyze its implications in the context 

of the challenges highlighted in the DRFWS 2001 report. 

In 2003, Mocas [130] identified three main challenges that must be overcome to advance the field 

of digital forensics from a theoretical standpoint. These challenges are: 

1. scaling forensics technology and the need to adapt scalable architectures; 

2. the need to adopt uniform certification programs and courses in digital forensics; and 

3. the need for changes in the digital evidence permissibility laws in courts. 

In this thesis, I address the concept of the need for adaptable architectures and the need for 

forensics tools to scale with the technology under analysis by grounding the forensic analyses on 

identifying metadata matches across multiple sources of digital evidence.  

Turner [190] stated that when devices become more specialized, forensic examiners require 

multiple tools to interpret the data contained. Existing digital forensic tools are typically designed 

to examine a few types of digital evidence. For instance, tools like Guidance EnCase or the 

AccessData Forensic Toolkit (FTK) primarily support hard disk images, albeit in different 

evidence formats. There are also several forensic tools in the open domain which perform 

specialized tasks like Sleuthkit [25], Volatility [195], Wireshark [42], etc.  

The Common Digital Evidence Storage Format Working Group (CDESF-WG) [43] noted 

drawbacks with many current forensic tools not being able to cope with multiple forensic image 

formats exhaustively. CDESF-WG emphasized the need to introduce a common digital evidence 

storage format across multiple sources of evidence including hard disk images, network logs, 

proxy cache data and memory dumps. 
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2.2.2 Evidence Acquisition and Representation 

Evidence acquisition deals with the identification of potential sources of digital evidence and how 

these sources may be acquired. Several national governmental agencies have recognized the 

increasing use of digital data and have participated in efforts to define guidelines for their use and 

handling in digital forensic investigations. The National Institute of Justice (NIJ) and the 

Department of Justice (DoJ) in the United States of America have laid down principles for first 

responders [134], e.g,, where to search for evidence in a crime scene and how to go about 

acquiring data. The National Institute of Standards and Technology (NIST) have developed 

several tools and tool testing frameworks [138-140 ] for evidence acquisition. The Association of 

Chief Police Officers (ACPO) [9] in the United Kingdom has published the Good Practice Guide 

for Computer Based Electronic Evidence and Standards Australia [180] has laid down guidelines 

for the management of IT evidence in Australia.  

Typically, when a digital source must be acquired, it is connected to the examiner’s computer via 

a write-blocker and a binary image of the entire disk is taken. A write blocker is a hardware 

device or a software tool that allows read-only access to the source to avoid tampering with 

evidence and thus maintains data integrity [140]. Lyle described the functions of a hardware write 

blocker [112] and described the tool testing processes defined by NIST [138-141]. The 

development of a multitude of forensic acquisition tools necessitated the development of digital 

evidence representation models which could be processed while adhering to the requirements of a 

digital forensic investigation. The digital evidence bag and the sealed-digital evidence bag cater 

to this need [170, 190]. 

2.2.2.1 Digital Evidence Bags (DEB) 

Turner [190] proposed the digital evidence bag (DEB) as a hierarchical digital evidence model 

that mirrors a physical piece of evidence. The model represents a source of digital evidence as 

data associated with tags (or metadata) that describe case information, evidence context, physical 

attributes of the source and so on. Once a source of digital evidence is tagged, it becomes 

immutable. But this posed a problem since during an examination when a new piece of evidence 

was discovered, since there was no place to record it. Therefore, DEB became monolithic and 

unwieldy during evidence examination and discovery [170].  
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2.2.2.2 Sealed Digital Evidence Bags (S-DEB) 

To overcome immutability with DEB, Schatz and Clark [170] introduced the open DEB 

architecture called sealed digital evidence bags (SDEB). Each tag in the SDEB model was 

uniquely identified with an identifier and was made immutable. When the analysis of primary 

evidence resulted in secondary evidence, a new encapsulating evidence bag was created into 

which the new details were stored. Hence, the existing evidence bags were untouched and were 

secure from unintended modifications, thus guaranteeing the integrity of the digital evidence. 

The models discussed here have demonstrated significant advances with regard to representing 

digital evidence and have provided us with different levels of abstraction to perceive digital 

evidence during the later stages of an investigation, such as examination and analysis. The 

development of such models instigated the development of different forensic image formats. 

There are different forensic imaging formats, viz., raw binary format, Encase image file format, 

advanced forensic format and so on. The common digital evidence storage format working group 

(CDESF-WG) presented a comparative study [44] of the different evidence storage formats and 

the forensic tools that support them. 

2.2.2.3 RAW Forensic image 

The raw image format is a binary image of the source; i.e., a bit-for-bit copy of the raw data of the 

source [44]. There is no metadata stored in raw Image Format files; however sometimes the 

metadata is stored in secondary files. The raw Image Format was originally native to UNIX 

operating system using the dd file copying utility, but presently it is supported by most computer 

forensic applications. 

2.2.2.4 Encase Format (E0x) 

The Encase format (E0x) is the basis of the image file format created by Guidance EnCase. The 

Encase image file format is used to store various types of digital evidence, e.g., disk image 

(physical bit stream of an acquired disk), volume image, memory and logical files. The Encase 

image file format is compressed but is a proprietary image format used by Encase forensic tools. 

2.2.2.5 Advanced Forensic Format 

Garfinkel [66] noted the need to maintain an open and extendable standard for forensic analysis 

and introduced the advanced forensic format (AFF) exclusively for hard disk drive images. The 

AFF was partitioned into two layers providing both abstraction and extended functionality. AFF’s 
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lower data storage layer describes how a series of name/value pairs are stored in one or more disk 

files in a manner that is both operating system and byte-order independent. AFF’s upper disk 

presentation layer defines a series of name/value pairs used for storing images and associated 

metadata. It presents an opportunity for an examiner to capture all the information related to a disk 

and also allows us to record case related metadata. The AFF can be processed by forensic tools 

like Sleuthkit and PyFlag. Garfinkel developed the afflib4 open source library to support the AFF 

format that has since been integrated with many open source forensic tools. Cohen et al. [41] 

proposed the AFF4 format by redesigning the AFF model to accommodate out-of-band 

information. AFF4 is a container format for multiple secondary storage devices, new data types 

(including network packets and memory images), extracted logical evidence, and forensic 

workflow.  

Since initially recognizing the need to acquire digital data and use it in digital investigations, 

research has paved the way for many acquisition techniques and tools for evidence. Many forensic 

formats support varying levels of metadata information, but this introduced concerns regarding 

completeness of the acquired evidence [43, 44]. 

2.2.3 Evidence Examination & Discovery 

Carrier’s work on forensic tool abstraction layers [27] bridged the gap between the definition of a 

forensic process model and the development of associated forensic tools in aiding an 

investigation. Since raw data from digital evidence is often very difficult to understand, the data 

are translated through one or more layers of abstraction using forensic tools until they can be 

understood. The directory is an example of a file system abstraction while ASCII is a non-file 

system binary abstraction. The abstraction layer concept has been instrumental in the development 

of many forensic tools. The tool abstraction model proposed by Carrier is illustrated in Figure 2.2.  

 

Figure 2.2 Carrier's tool abstraction model  

                                                           
4 http://www.afflib.org/ 
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Carrier classified forensic tool abstraction layers as lossy or lossless. When a forensic tool 

processed a source of digital evidence, leaving the source intact after the processing, the tool was 

supposed to provide lossless abstraction. On the contrary, if a forensic tool processing a source 

affected the source such that the source was no longer intact, that tool was said to provide a lossy 

abstraction associated with a margin of error. The abstraction layers identified two types of errors 

introduced by forensic tools, namely, tool implementation error introduced by tool design errors 

and abstraction error introduced by the simplifications used to generate the tool. Pan and Batten 

[146] studied the reproducibility of digital evidence that builds on the abstraction layer concept.  

During an evidence examination, digital evidence sources are interpreted using one or more 

forensic tools. Evidence discovery involves the process of reliably5 recovering encrypted, hidden, 

lost or deleted data from the acquired evidence for further examination. AccessData and Guidance 

introduced the AccessData FTK6 and Guidance EnCase7 forensic tool suites respectively for 

examining digital evidence. Carrier [25, 27] developed the SleuthKit8 framework based on the 

Coroner’s (TCT) toolkit. Cohen [39] extended the Sleuthkit to develop the PyFlag network 

forensic architecture for examining forensic images of hard disks, memory dumps, network 

captures and logs.  

The forensic community has also witnessed the advent of many other tools for examining digital 

evidence from hard disk images, logs, network packet captures, memory dumps, mobile phones 

and so on. Sleuthkit [25], Pyflag [39], Wireshark [42], log2timeline [111], tcpdump [185] and 

volatility [195] are a few examples9. Although tools such as Wireshark or tcpdump may have 

found their way into forensic investigations, it is interesting to note that they were not intended as 

forensic tools to examine and analyze digital evidence. Such tools are simply termed analysis 

tools. Sleuthkit and Pyflag excluded, many of the tools in the opensourceforensics website (refer 

to Footnote 9, p. 46) fall into this category, albeit for different sources. 

During evidence examination, not all data may be readily available if efforts were made to 

conceal or eliminate data. One may need to identify and extract evidence from deleted or partial 

data, and recover hidden or encrypted data. The techniques associated with these methods are 

                                                           
5 This involves the process of obtaining data as it is represented in a digital evidence source, without having to 

manipulate or modify any information contained on that evidence source. 
6 http://accessdata.com/products/computer-forensics/ftk 
7 http://www.guidancesoftware.com/forensic.htm 
8 http://www.sleuthkit.org/ 
9 More forensic tools can be found at http://www2.opensourceforensics.org/tools. 
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known as data carving and steganography respectively. After extraction, all the data in evidence 

is indexed to enable querying and searching.  

2.2.3.1 Data Carving 

Occasionally, evidence examination uncovers the presence of deleted or partial file data that could 

help an investigation. The process of uncovering such data gave rise to the new field called data 

carving. Data carving is the process of identifying file types using a string of bytes, called magic 

numbers, from a memory image and matching them with a database of known magic numbers to 

recover deleted or partially deleted files [50]. The magic number is a constant binary stream used 

to identify a file format and is hence unique to each format. Carving is done on a disk when the 

unallocated file system space is analysed to extract files because data cannot be identified due to 

missing allocation information, or on network captures where files are “carved” from the dumped 

traffic using the same techniques. One drawback of this process on disks or images is that file-

carving tools typically produce many false positives [50]; hence tests must be done on each of the 

extracted files in order to check their consistency. A huge repository of such file types and headers 

are then incorporated into each forensic tool which then examines the section of data that need to 

be carved with the reference file signatures.  

Garfinkel proposed a technique for controlling the state space explosion when carving from AFF 

images [64]. Richard and Roussev [157] described a high performance file carver called Scalpel 

for carving files from hard disk images. 

2.2.3.2 Data Hiding and Steganography 

Evidence examination is often accompanied by discovery of new information from within digital 

evidence and this is called evidence discovery. One such evidence discovery technique is the 

discovery of steganographic content or hidden information. Steganography is the art and science 

of writing hidden messages in such a way that no one, apart from the sender and intended 

recipient, suspects the existence of the message. Digital steganography may include hiding 

information inside document files, image files, programs or protocols. Media files are ideal for 

steganographic transmission because of their large size. Hosmer and Hyde [86] discussed the 

challenges posed by steganography and proposed the saturation view technique to detect 

steganographic information from digital images. Lee et al [106] presented an approach for 

detecting image anomalies by combining computer graphics principles and AI reasoning. Image 

forgery has been classified into four categories, viz. deletion, insertion, photomontage and false 
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captioning. The approach segments a given image, computes the importance map on regions of 

importance and employs a rule based reasoning component to determine forgery status. 

Hargreaves et al. [82] described the Windows Vista format and examine the challenges it posed to 

forensics, while Park et al. [146] studied data concealment and detection in Microsoft Office 2007 

files. Pal et al. [145] proposed a file fragmentation testing method using sequential hypothesis 

testing on raw forensic images to determine all sectors of a disk image where a file may have been 

stored. 

2.2.3.3 Indexing and Querying Digital Evidence 

Alink et al. [3] proposed XIRAF, XML based indexing and retrieval of stored digital evidence for 

querying. The XIRAF architecture indexed into raw disk images storing them in annotated XML 

format. The XIRAF framework consists of three subsystems; the tool repository, the storage 

subsystem and the feature extraction manager. The feature extraction manager handles the various 

feature extraction tools and integrates their outputs into XML which are then stored in the storage 

subsystem. A query engine called XQuery was used to query into the XML database for evidence 

related information.  

In summary, over the years, researchers have devised new ways to examine digital evidence 

sources and discover potential sources of evidence using one or more forensic tools. However, it 

remains a largely manual and labour intensive process, and the growing volumes of digital 

evidence complicate this challenge. Garfinkel [67] noted that present-day forensic tools were 

designed to find new pieces of digital evidence but that the analysis continues to remain largely 

manual. There is a need to consolidate the research findings to provide a seamless transition from 

forensic examination to analysis, especially with multiple sources of digital evidence. 

2.2.4 Digital Forensic Analysis 

Digital forensic analysis involves the analysis of digital evidence (both direct and derived) using 

scientific methods to reconstruct the scenario or events. The solitary purpose of digital forensic 

analysis is the reconstruction of events by determining the answers for the six fundamental 

questions in an investigation. Studies of this nature have been carried out on different types of 

digital evidence, hard disks [26, 27, 64, 65], memory dumps [150, 167, 172, , ], the Microsoft 

Windows registry [54, , 116], log analysis [132] and time-lining from logs [90, 96, 111]. A 

generic approach to the event reconstruction problem involves the application of formal methods 

[76, 77, 91] while other techniques rely on file similarity matches in content [102, 115, 165].  
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2.2.4.1 Formal Methods for Event Reconstruction 

A formal study to determine possible reconstruction scenarios involves the analysis of cause-and-

effect sequences. In order to reconstruct the events, the digital artifacts from the evidence sources 

are sequenced using timestamps to set time windows within which the events could have 

occurred. Metadata are also utilized during analysis to determine who created or accessed the 

digital artifacts and how these were created or accessed. Gladyshev and Patel [77] proposed a 

finite state model approach for event reconstruction. However, they concluded that even a simple 

printer investigation problem has an exponential state space. Jeyaraman and Atallah [91] 

presented an empirical study of automatic reconstruction of events from logs in intrusion cases. 

Wang and Daniels [197] proposed an evidence graph approach to network forensic analysis and 

built a correlation graph using network packet captures. Garfinkel [65] studied forensic feature 

extraction using file carving across 750 hard disk images and determined cross drive correlation 

using personal identifiers such as email addresses, social security and telephone numbers. Case et 

al. [31] proposed the FACE framework for performing automatic correlations to determine static 

relations between network sockets in memory to TCP requests in packet captures. 

2.2.4.2 File Content Similarity Detection 

To identify similarities between different data files, Mead [115] explored unique file identification 

using hash signature mapping with NSRL database, and the Scientific Working Group on Digital 

Evidence (SWGDE) explored scope for digital evidence in Microsoft Windows operating systems 

[168, 169]. Garfinkel [65] developed a drive correlation technique to determine identical content 

across 750 secondary market hard disk drives. Kornblum [102] presented an approach for 

identifying similar files using piecewise hashing. Kornblum’s aim was to automate detection of 

visual similarity between two files based on similarity in hash signatures. The approach combines 

a rolling hash with the spamsum10 algorithm to compare the resultant signature and determine if 

any similarity exists. My research also explores the concept of similarity albeit using metadata 

matches leading to associations among digital artifacts. Roussev et al. [164] explored hash-based 

similarity to retain enough information to allow binary data to be queried for similarity without 

additional pre-processing/indexing. Thumbnail images can be classified according to the National 

Library of Australia guidelines [135] to distinguish thumbnail image files from an image 

collection. The guidelines contain directives that state that all digital image files which range 

                                                           
10 http://samba.org/~tridge/junkcode/spamsum/README 
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under 160 pixels in height and/or width are to be treated as thumbnail icons. Identifying such 

image files during analysis would help an examiner to prune the thumbnail images. 

We illustrate the various developments in digital forensic research literature through the taxonomy 

in Figure 2.3. Digital forensic analysis emerged as a key area of focus [50] and my review 

establishes a need for cohesive analysis of digital evidence by grouping and conducting holistic 

analysis, possibly across heterogeneous sources. Technological diversity of digital evidence and 

the volume in terms of the number of sources involved in a digital investigation continue to push 

the frontiers of research in this area. Hitherto, classification and filtering have been the techniques 

that examiners have relied on in identifying relevant evidence during analysis. However, in order 

to further an investigation, grouping related events is needed, and to achieve this, we need to be 

able to group related digital artifacts and derive inferences from them. 

 

Figure 2.3 Taxonomy of digital forensic research literature 

  

Therefore, my research focuses on grouping event-related digital artifacts together by identifying 

associations between the digital artifacts found in forensic evidence. I identify these associations 

using metadata that is inherent to all sources of digital evidence. 
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2.3 Metadata … in and as … Digital Evidence 

Metadata contain information describing aspects pertaining to the digital objects or artifacts they 

are attributed to. Metadata provide context information that enables easy handling and 

management of the corresponding data or, in other words, for book-keeping purposes. There are 

many different types of metadata, such as system metadata, file system metadata, application 

metadata, document metadata, email metadata, business metadata, geographical metadata and 

many more. File system metadata describe attributes as recorded by a file system regarding the 

files, such as locations of files, MAC timestamps, file sizes, owners and access permissions. 

Application metadata describe attributes as recorded by the application handling the files such as 

file authors, file formats, content types, and encoding. Thus, the term metadata is an umbrella 

definition to encompass all such different types of metadata. According to the Sedona Principles 

for Addressing Electronic Document Production,  

“metadata includes information about the document or file that is recorded by the 

computer (or digital device) to assist in storing and retrieving the document or file. 

The information may also be useful for system administration as it reflects data 

regarding the generation, handling, transfer and storage of the document or file within 

the computer (or digital device).” [175, 176] 

Broadly, file system metadata and application metadata are also often referred to as external and 

embedded metadata [175] since file system metadata is stored external to the document or file it 

describes and application metadata is embedded into it.  

2.3.1 File Metadata 

Metadata, related to files, record the filename, location, file extension, size, MAC timestamps11, 

author (group), and word count, etc. Some metadata may also provide additional attributes such as 

content length, total edit time, line count, last saved and printed timestamp, author group, last 

author, creator, publisher, etc. Two important types of file metadata are file system metadata or 

metadata generated by the file system regarding that file, and application metadata or metadata 

generated by specific applications about the content stored on such files. 

                                                           
11

 MAC timestamps indicate when a file was created (C), when it was last modified (M) and when it was last accessed 
(A). 
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2.3.1.1 File System Metadata 

File system metadata record information that relates to the file system and helps it manage the file 

within that file system. Buchholz and Spafford [22] provide a qualitative treatment of file system 

metadata and their importance in digital forensics and briefly describe the different types of file 

system metadata found in different file systems. A comparison of some of the file system 

metadata across a few popular file systems is shown in Table 2.1. 

File 

System 

Stores 

File 

Owner 

POSIX file 

permissions 

Creation 

timestamp 

Last 

Access 

timestamp 

Last 

Modified 

timestamp 

Last 

metadata 

change 

timestamp 

Access 

Control 

lists 

Extended 

attributes 

FAT12 No No Yes Yes No No No No 

FAT16 No No Yes Yes Yes No No No 

FAT32 No No Yes Yes Yes No No No 

exFAT No No Yes Yes Yes Unknown No Unknown 

HPFS Yes No Yes Yes Yes No No Yes 

NTFS Yes Yes Yes Yes Yes Yes Yes Yes 

HFS No No Yes No Yes No No Yes 

HFS+ Yes Yes Yes Yes Yes Yes Yes Yes 

EXT2 Yes Yes No Yes Yes Yes Yes Yes 

EXT3 Yes Yes No Yes Yes Yes Yes Yes 

EXT4 Yes Yes Yes Yes Yes Yes Yes Yes 

Table 2.1 Comparison of file system metadata across different file systems 

(adapted from Comparison of file system metadata, Wikipedia
12) 

As Table 2.1 shows, the file system timestamps, i.e., the creation timestamp, the last modification 

timestamp and the last access timestamp are recorded by almost all file systems. Some file 

systems also record when the metadata was changed but this is not quite common. Some metadata 

like the file owner and access control are also recorded in some file systems which can come in 

handy during investigations. File systems that record access control lists are also used to record 

POSIX file permissions and extended attributes are recorded in all file systems introduced after 

FAT32. File system metadata has been critical in digital forensics and digital time-lining based on 

MAC timestamps is an integral part of a digital investigation [19, 22].  

                                                           
12 http://en.wikipedia.org/wiki/Comparison_of_file_systems#Metadata 
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2.3.1.2 Application Metadata 

Application metadata is a blanket name given to information that various applications store 

regarding the files they operate on describing their attributes. The National Information Standards 

Organization (NISO) [137] categorized application metadata into 3 categories, viz., descriptive, 

structural and administrative metadata. Application metadata are strongly reliant on the types of 

files they describe, i.e., the application metadata for a text file differs significantly from that of a 

Microsoft Office document or a JPEG image file. NISO presented an overview of the different 

metadata structuring that are prevalent and describe the Dublin Core Metadata Initiative13 (DCMI) 

[20] which is an international standard (ISO 15836) since 2003. Microsoft Office documents have 

imbibed this specification into their documents which resulted in the OOXML metadata. 

2.3.2 Use of File Metadata in Digital Forensics 

Buchholz and Spafford [22] examined the role of file system metadata in digital investigations 

and noted that despite the lack of quality and quantity of information stored in file system 

metadata, it played a crucial role in reconstructing events. Willassen [200] designed a method to 

compare the MAC timestamps in file system metadata to produce ways of antedating. Buchholz 

and Tjaden [23] proposed a clock model for translating MAC timestamps to address clock drift. 

Chow et al. [46] presented a discussion on the rules governing MAC timestamps to arrive at a 

systematic understanding of NTFS timestamps in file system metadata and Koen and Olivier 

[100] used these rules to validate files based on timestamp behavior for copy or move actions. 

Agarwal et al. [1] presented a study summarizing the extent to which file system metadata has 

grown in FAT32 and NTFS file systems over a five year period from 2000 to 2004. According to 

the study, they found significant temporal trends relating to the popularity of certain file types, the 

origin of file content, the way the namespace is used, and the degree of variation among file 

systems in size and capacities.  

Alvarez [4] used EXIF metadata in digital photographs to verify the authenticity of a picture and 

determine whether or not it was altered. Kornblum [101] proposed a method to detect JPEG 

images that were processed by software based on analyzing the JPEG quantization tables. Huang 

and Fang [88] proposed a method that combines EXIF metadata with image error control codes to 

generate digital watermarks for copyright protection. Gloe and Bohme [78] described the Dresden 

Image dataset for benchmarking digital image forensics. The database aims to provide a uniform 

platform for researchers to test camera-based image forensic methods. It consists of over 8896 

digital photographs taken with over 73 camera models and stored as JPEGs. 

                                                           
13 http://dublincore.org/documents/dces/ 
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Castiglione et al. [35] highlighted the information that can be obtained from the Microsoft 

Compound Document File Format (MCDFF) that can be relevant during digital investigations. 

They list some of the metadata in Microsoft documents that can potentially be useful in forensic 

investigations, most of which my own research incorporates for identifying metadata associations 

in word processing documents. Rowe and Garfinkel [165] developed a tool that used directory and 

file metadata to determine anomalous files on a large corpus. The tool used fiwalk [69] to traverse 

the corpus and compute statistical characteristics on the numerical metadata. The analysis 

generated multiple output files that were then analyzed to detect misnamed files and duplicate 

copies of files.  

2.3.3 Metadata for Grouping Files 

Boutell and Luo used EXIF metadata in digital photographs to classify camera types [17] and to 

perform scene classification [18]. Minack et al. [129] identified image-related metadata based 

searching as an effective solution for personal computers. In forensic investigations, examiners 

have to frequently deal with objects from personal computers and their work emphasizes the 

importance of metadata. Liu et al. [109] proposed a feature combination method to classify digital 

images that combined image content and EXIF metadata based on linear-discriminant-analysis 

(LDA) for digital photograph management.  

Bohm and Rakow [16] discussed the different aspects of classifying multimedia documents based 

on document metadata. Multimedia documents can be classified into six orthogonal categories, 

viz., representation of media type, content description, content classification, document 

composition, document history and document location. Fathi et al. [59] classified web documents 

based on author and title in document metadata and Toyama et al. [189] built a system that utilizes 

geographic information in location metadata (or geotags) to classify digital photographs with 

same location information. Denecke et al. [47] developed a classification method using 

bibliographic metadata such as author and document title. Maly et al. [113] proposed a method to 

classify documents based on layout metadata. Lerman et al. [110] described a method to label web 

services and classify them based on metadata from the web services definition file (WSDF).  

2.3.4 Extending Metadata to Logs and Network Packet Captures 

In the traditional sense, metadata are native to files that reside on file systems. However, log 

records and network packets also have some associated information that can be attributed the term 

‘metadata’. Although logs and network packet captures themselves reside as files in a file system, 
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the log entries and network packets they contain are discrete artifacts that correspond to specific 

events. For instance, an entry in the IE history log, index.dat, would correspond to visiting a web 

page characterized by a URI. The attributes describing such an entry contain the timestamp of 

web page visit, the domain, the host server IP address and so on. Similarly, an entry in a network 

packet capture corresponds to a network packet that was observed by the network capture sensor 

on a particular network belonging to a specific protocol containing a source and destination 

address. A network packet can be associated with a timestamp, source and destination IP 

addresses, and the protocol for transfer and payload size. Such information may be treated as 

metadata for a log record or a network packet, as the case may be. 

Metadata for Grouping Log events & Network Packets 

With regard to metadata in logs and network packet captures, timestamps are the most common 

metadata, used to generate timelines [19, 111, 199]. Often in network packet captures, the packets 

are organized according to the IP addresses and protocol in investigations involving network 

intrusion detection [202, 161]. Zander et al. [202] classified IP traffic based on statistical flow 

characteristics by filtering based on destination address and port. Roesch [161] introduced ‘snort’ 

intrusion detection tool that allows IP packets to be monitored and classified according to IP 

addresses. Jiang et al. [92] proposed a coloring scheme to identify a remotely accessible server or 

process to detect provenance aware self-propagating worm contaminations. This scheme 

associated a unique color as a system-wide identifier to each remote server or process and that is 

inherited by all spawned child processes. 

In summary, metadata in digital forensics is kept to authentication and determination of hidden 

information. Metadata based classification is used for the identification of file classes and 

timestamp based correlation is used to discover antedating activities by comparing the MAC 

timestamps on the file. Metadata, by virtue of recording the partial state of a digital artifact, 

contain information of forensic value [29]. During an investigation where it is necessary to 

discover all higher order associations that exist between the digital artifacts, metadata can be used 

for inferring such associations. In my research, I conduct a systematic analysis of metadata 

association to extract higher-order associations and relationships across heterogeneous sources 

and group the related digital artifacts. My model to identify associations using metadata across 

heterogeneous digital artifacts is presented in Chapter 4 of this thesis. 

When I discuss metadata associations, it is essential to take cognizance of a particular type of 

metadata which is extensively used to derive event sequences from different sources, viz., 
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timestamps. A timestamp is the record of the time, according to some reference clock, of an 

associated event. Timestamps are an integral part of metadata associated with files, log records 

and network packets. 

2.4 Timestamps as Metadata and Digital Time-lining 

A timestamp has a physical realization and a temporal interpretation [55]. The physical realization 

is an encoding as a pattern of bits while the temporal interpretation stipulates the meaning of the 

bit pattern, the calendar date and time to which the pattern corresponds. Analysis of timestamps is 

the use of timestamps from digital evidence towards constructing a timeline of all events on a 

source of evidence and/or for reasoning with the sequence in which certain events are recorded on 

that source. Allen [2] discussed the different representations of timestamps adopted in the 

literature, including one where timestamps are logical timestamps only, merely a sequential 

numbering of events on a system. In this thesis, I adopt Dyreson and Snoddgrass’s definition of a 

timestamp [55] and regard timestamps as a record of calendar time associated with an event 

recorded on a digital device. The major challenges associated with the use of timestamps in digital 

forensics can be limited to three broad areas, timestamp semantics and interpretation, timestamps 

for causal ordering of events, and timestamp representation across different systems. I review the 

related work in these three areas in the sequel. 

2.4.1 Timestamp Semantics and Interpretation 

Timestamp semantics and its interpretation are acknowledged as complex and challenging tasks 

[19, 23, 171, 199]. Weil [199] presented a method for correlating times and dates contained in 

application metadata to the file system’s timestamps. The method attempts to standardize the 

apparent file MAC times to the actual time and concluded that increasing the number of 

independent sources enhances the reliability of the data and minimizes CMOS limitations. Boyd 

and Forster [19] described the timestamp interpretation challenges associated with Microsoft’s 

Internet Explorer web browser and time zone translations between UTC and local time. In their 

paper, Boyd and Forster described a case study where examiners were wrongly accused of 

tampering with computer evidence based on misinterpreted timestamps.  

When discussing the analysis of timestamps, it is important to acknowledge that not all system 

clocks are always accurate. Since system clocks are based on a low frequency CMOS transistor, 

the clock drifts over several charging and discharging cycles and a 1 second count no longer 



57 
 

remains at exactly 1 second. This can lead to two problems: clock drift and clock skew. Clock drift 

is when the system time continues to drift at an undetermined rate out-of-synchronization from a 

reference clock, due to the clock “ticking” either too quickly or slowly. Clock skew is the 

cumulative effect of clock drift at a singular instance in time, which results in the clock being 

offset from the reference time. Schatz et al. [171] and Buchholz and Tjaden [23] conducted 

independent studies on clock skew and clock drift to determine exact time from recorded system 

events. The conclusions from these works indicate that system clocks lose time non-linearly and 

no single, simple model can be applied to correct this. Clock skew and drift are beyond the scope 

of this thesis and will not be discussed further. 

2.4.2 Causal Ordering of Events 

Lamport [105] characterized causality in distributed systems as a “happened before” function on 

events (called the clock consistency condition) and a presented a framework for reasoning about 

partial event ordering in distributed systems. Gladyshev and Patel [76] formulated the event time-

bounding problem and proposed the sandwich algorithm for solving it when the causal order is 

known. The algorithm attempts to time bound an event between the smallest interval defined by 

predicate TB
min ≤ timestampevent ≤ TB

max when the event’s causal relationship is known with 

respect to other events whose timestamps are available. Willassen [200] proposed a similar 

method using hypothesis based testing on timestamps to detect antedating. 

Stevens [184] proposed the unification of timestamps from different sources by accounting for 

factors affecting the behavior of system clocks with respect to a global clock. He proposed a 

global clock model to account for clock drift and skew and simulate the behaviour of each 

independent clock. The clock models were used to remove the predicted clock errors from 

timestamps to obtain a realistic indication of the actual time at which the corresponding events 

occurred. All the timestamps from different sources can then be unified using this global clock 

model into a single time-line. In order to be able to unify all the digital events, two sets of 

information are required. Firstly, one needs to identify all the different clocks that were used and 

which time stamps were produced by each clock. Secondly, one needs to know the complete 

behaviour of each clock over the relevant time period. It is also necessary to have a full 

understanding of how time stamps are generated and their semantics. 

Stevens’ work identified the need for a global reference and addressed the problem of clock skew 

in unifying timestamps. Although Stevens’ model assumes a global reference for the timestamps, 
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the locality of timestamps is often lost if the design does not retain time zone information. Stevens 

validated the model on NTFS timestamps; however it is not readily applicable to the FAT32 file 

system or even ZIP file formats which do not record time zone information. 

2.4.3 Timestamp Representation Across Systems 

Microsoft [120, 121, 123, 124] documented the fact that the FAT and NTFS file systems have 

different time-references. Further, FAT file systems only record timestamps to the even second 

[120] while NTFS systems record up to nanosecond intervals. Consequently, when a file is copied 

across file systems, its timestamps undergo some changes [126, 127]. Koen and Olivier [100] 

discussed the information deficiency problem and the use of file timestamps from a UNIX file 

system in digital forensics. Chow et al. [46] proposed a method for systematic evaluation of 

timestamp behavior on the NTFS file system.  

One of the challenges in using timestamps is their interpretation owing to varied semantics across 

different representations. For instance, timestamps are allocated 4 bytes on the FAT32 file system, 

2 bytes each for DATE and TIME [201]. On other FAT file systems, such as FAT12 and FAT16, 

fewer bytes are allocated and hence, time is less precisely represented. On NTFS file systems, 

timestamps are represented as 64-bit values. In UNIX, timestamps were represented as 32-bit 

values but have recently been changed to 64-bit values in LINUX based systems.  

When files from these file systems are archived into one of the many archiving formats, these 

formats dictate which timestamps get carried forward. For instance, the ZIP file format, which is a 

popular archiving format, stores timestamps as 2 + 2 bytes for DATE and TIME [96]. When 

multiple timestamps are recorded on a file system, such as creation, modification and last-access, 

the ZIP format only carries forward the modification timestamp forward dropping the remaining 

timestamps. As a result, timestamp precision often suffers, for example, when files from NTFS 

are transferred to FAT32 [126]. 

These diverse timestamps representations can have a significant bearing on the semantics and 

interpretation of their values which in turn will affect their sequencing to generate a causal 

ordering. This can often result in ambiguous or inconsistent timelines, particularly across 

heterogeneous sources of digital evidence. To address this problem, my work develops a 

provenance model to provide uniform interpretation across heterogeneous systems and develop a 

unified timeline during analysis. My model is presented in Chapter 4 of this thesis. 
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2.5 Chapter Summary 

In this chapter, I reviewed the process of digital forensics and discussed related research and how 

the literature classifies the field into four main categories: digital forensic process modeling; 

evidence acquisition and representation; evidence examination and discovery; and digital forensic 

analysis. I discussed each of the categories highlighting relevant contributions and interesting 

challenges.  

Based on my study of literature, I identified the following as the gap in technology that motivated 

my research: 

1. There is general lack of cohesiveness in the use of forensic and analysis tools in the face of 

the heterogeneous nature and the growing volumes of digital evidence. This motivated my 

research on objective one stated in Chapter 1. 

2. The results from the analysis of one or more tools do not yet lend to integrated analysis 

requiring significant manual effort to establish corroboration. It requires the identification 

of associations in digital evidence and grouping the associated elements in a manner that is 

forensically productive. This motivated my research on objectives two and three stated in 

Chapter 1. 

3. The heterogeneity of digital evidence has significantly challenged the ability to generate 

unified timelines across multiple sources, often leading to ambiguous or inconsistent 

timelines. This motivated my research on objectives one and two stated in Chapter 1. 

From my review, I elicit that metadata are an important part of digital artifacts and they lend a 

valuable hand during forensic investigations. The literature tells us that classification and filtering 

are two methods used to understand yet unknown data where the grouping can yield a 

determination of patterns based on value matches. However, in regard to forensics, it is necessary 

to discover and examine other higher level associations to answer the questions pertaining to an 

investigation. This necessitates the identification of all associations between the digital artifacts 

leading to the discovery of relationships and sequencing. While filtering and classification are 

single-stream, or single parameter based, metadata, which can be treated as sets of name-value 

pairs, they can provide the dynamics that I desire. Identifying metadata value matches and 

similarities can result in metadata associations that can inform us of the existence of such higher-

order associations leading to the discovery of relationships in digital evidence.  
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Encouraged by this common thread, in my research I focused on developing a metadata 

association model based on matching metadata values across digital artifacts that result in 

association based aggregation. To investigate the implications of this approach, I apply my 

approach to analyzing two types of files, commonly examined during investigations, and study the 

relationships that emerge on multiple collections of digital images and word processing 

documents. The following chapter outlines the research method adopted in this thesis. 
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“You know my method. It is founded upon the observation 

of trifles.” 

- Sherlock Holmes 

 

 

 

3. Research Method 
In this chapter, I describe the research method adopted in this thesis to achieve the research 

objectives set out in Chapter 1. My research objectives focus on the development of a model to 

identify association among digital artifacts from heterogeneous sources to elicit the higher-order 

relationships that may exist among them, via the metadata value matches.  

3.1 Research Methodology 

The overall approach to my research was to adopt the iterative method [49, 61] outlined in 

Section 1.5. The very first step in the first iteration of this method was the definition of the 

research problem, i.e., identification of metadata based associations and unconstrained 

combinations of metadata in digital artifacts from heterogeneous sources of digital evidence. The 

second step was the identification of sub-goals or specific research objectives which arise out of 

the research objectives stated in Section 1.4. Excepting the first research objective, which 

involved a survey of contemporary forensic and analysis tools and their treatment of metadata, the 

other two research objectives were achieved by applying the iterative method using a grounded 

theory approach [188], wherein I develop the model for identifying metadata associations from 

heterogeneous digital artifacts based on empirical data. Each research objective was broken down 

into multiple research tasks with well-defined goals. The completion of all the goals associated 

with each objective led to the successful completion of the overall objective. This strategy is 

shown in Figure 3.1, as an instantiation of the general research method presented in Figure 1.4. 
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Figure 3.1 How my large research problem was broken down into smaller research objectives, each dealt with 

in sub-iterations 
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The first research objective involved an understanding of contemporary forensic and analysis 

tools in their treatment of metadata from digital evidence. It is common knowledge that file 

system metadata is extracted from forensic images of hard disk drives to validate the files and 

timeline the activities on that source of digital evidence [19, 22]. However, it was necessary to 

understand how the availability of other types of metadata, particularly the application metadata, 

can be used. Beside files, logs and network packet captures also contain attributes that provide 

valuable book-keeping information regarding a log record or a network packet, like timestamps, 

which are useful during analysis. It was necessary to identify the specific support extended by 

present-day tools in this regard. Besides, it was also necessary to gain an understanding regarding 

the functionalities of the forensic and analysis tools in regard to grouping the files. These 

requirements motivated us to use a survey method in undertaking this objective. I developed a 

hypothesis based survey; each hypothesis was tested in order to draw conclusions on the 

functionalities of the tools identified.  

To define a metadata based association between two or more digital artifacts, I needed to take 

cognizance of the existing types of associations exhibited by digital artifacts. To develop this 

understanding, it was essential that I used those digital artifacts which contained a wide variety of 

metadata, which can be built into my model. In that regard, I identified files as the common 

ground for developing this model since files are well-understood in the literature [26] and contain 

metadata which can be directly attributed to forensic contexts [22]. Figure 3.2 illustrates the 

various stages in my research method. 

 

Figure 3.2 The research method applied in my research 
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Digital forensics, as a field largely built on explaining the nature of stored digital data and 

reconstructing the past, is founded in a grounded theory. Kesseler [98a] argued for the need to 

develop grounded approaches to interpreting digital evidence. Jeyaraman & Atallah [91], Arasteh 

et al. [7] and Wang & Daniels [197] have also used grounded theory to reconstruct event 

sequences from logs and network packet traces. Besides this, the nature of forensic analysis can be 

qualitative [39, 32] which justifies the use of inductive argumentation to develop techniques that 

suit this cause [186]. As a result, I adopted the grounded theory [188] approach to identify 

existing associations and develop an association model that explained the observed associations. I 

outline the nature of the research objectives in regards to the methodology and identify the 

research tasks in the sequel. 

3.2 Identifying the Research tasks for the Objectives 

We have outlined the three major research objectives for this thesis in Chapter 1. my first research 

objective was to develop an understanding of the treatment of metadata in the digital artifacts and 

the grouping techniques used by contemporary forensic and analysis tools across heterogeneous 

sources of digital evidence. The nature of the task required a survey of existing forensic toolkits 

and architectures for handling different sources of digital evidence and access the metadata from 

their digital artifacts. I adopted a survey method and it involved the following research tasks: 

a. Identify a list of contemporary forensic toolkits, forensic examination tools and 

artifact analysis tools for the commonly occurring sources of digital evidence. 

b. Identify the methods used by the selected tools for extracting digital artifact 

metadata. 

c. Identify the methods used by the tools for grouping the digital artifacts based on 

the extracted metadata for the purpose of analysis. 

d. Determine if the tools can be configured to use multiple metadata for grouping the 

digital artifacts. If so, how? If so, is the configuration programmable? 

e. Develop generic abstractions for the functionalities of the tools in handling 

different sources of evidence at (i) binary data level; (ii) digital artifact abstraction 

level; (iii) metadata abstraction level; and (iv) digital artifact grouping level. 
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f. Develop a functional architecture based on these abstractions to integrate these 

tools. 

The nature of these research tasks was sequential that required one or more hypothesis based tests. 

Each chosen forensic or analysis tool was subjected to these tests using a test image identified for 

this task (refer to Chapter 4, Section 4.1). My research tested the tools using raw and logical 

forensic images, web browser log files and network packet captures. My hypotheses were 

predominantly binary in nature requiring answers of the type YES/NO, but often delving deeper 

using the same approach when a YES was determined. When a NO was determined, I proceeded 

to the next criterion or tool, as the case indicated. This is discussed further in Chapter 4. 

To achieve my second research objective of developing an understanding for a metadata 

association between any two digital artifacts, it was necessary to distinguish the different types of 

associations that can exist depending on the artifacts involved. Between two digital artifacts, we 

may find 

a. a value match on corresponding metadata; and 

b. the semantics of the metadata as interpreted for digital artifacts that are deemed to 

be associated based on a metadata value match. 

In order to develop this understanding further, I identified metadata value matches between two 

digital artifacts to ascertain the existence of higher-order associations relevant to an investigation 

(refer to Chapter 4, Section 4.4). I adopted a grounded approach to develop a solution and 

evaluate the nature of syntactic metadata associations between files on a file system. To this end, I 

identified two kinds of file types, viz., digital image files and word processing files, for 

conducting my experiments. These file types, in addition to containing a variety of metadata, are 

frequently encountered by forensic examiners during investigations. My approach to achieve the 

second objective involved the following research tasks: 

a. Identify a dataset on the file types of choice and identify all metadata value 

matches between the files. 

b. Develop a grounded model for syntactic metadata associations based on the 

matches identified for the files. 

c. Evaluate the model on a different dataset and measure its accuracy. 
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d. Identify and define a set of metadata equivalences between files, logs and network 

packets. 

e. Develop a case study to justify the identification of metadata associations between 

files, logs and network packets. 

f. Develop a grounded model for semantic metadata associations based on the 

matches identified for the digital artifacts. 

g. Evaluate the model on a different dataset and measure its accuracy. 

h. Refine the models (repeat steps b-g) until the accuracy is at the required level. 

i. Develop a formal representation for metadata associations based on the models 

developed for any two digital artifacts.  

j. Evaluate the satisfaction criteria. If unsuccessful, identify the deviation and iterate 

to Step b and refine the model. 

The nature of these research tasks was experimental and iterative. I identified metadata based 

matches, maintaining matches as the criterion for association between files, and grouped the files 

containing identical values for each metadata separately. Based on the groupings so formed, I 

developed a model to represent the associations among grouped files across different file types. I 

undertook similar approaches for log files and network packet captures as well and then integrated 

the models so generated in each case at the end of my experiments.  

To achieve my third objective of grouping the associations using the digital artifacts, it was 

necessary to understand the requirements of forensic analysis. From its definition, digital forensics 

is the application of scientific methods to reconstruct the past. This activity involves discovering 

answers to questions that pertain to the creation, existence, modification and access of the digital 

artifacts in digital evidence. These questions can be succinctly listed as who, what, when, where, 

how and why [32]. In my experiments, this grouping based on metadata was used to find answers 

to the six forensic questions. For instance, questions pertaining to “the when” in digital evidence 

can be answered by grouping the artifacts based on value matches of those metadata that relate to 

timestamps. Therefore, achieving this objective involved achieving the following research tasks: 
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a. Identify the categories of metadata relevant to a digital forensics investigation, 

taken from the six forensic questions.  

b. Organize the metadata chosen in step (a), as belonging to ‘source’, ‘ownership’, 

‘timestamps’ and ‘structural application metadata’. 

c. Group the artifacts from a given source according to the metadata value matches. 

The nature of these research tasks was experimental and iterative. Using the same dataset, I 

identified metadata associations using value matches. To eliminate repetition of files, I grouped 

the associated files on metadata (refer to Chapter 4, Section 4.4). I examined each group and 

mapped the associations in order to answer the forensic questions mentioned earlier. Based on this 

examination, I derived an algorithm which can be applied to files in my datasets. Then I validated 

against a different dataset to determine if the same questions can be answered. In situations where 

there were differences, I learnt from them and modified the algorithm. I applied my grouping 

strategies initially on files that I used as the dataset for the second objective and extended it to 

group the digital artifacts belonging to logs and network packet trace. The experiments were 

conducted for two reasons: firstly, to determine the categorization of metadata with regard to the 

forensic context as defined by the six forensic questions [32] and secondly, to evaluate my 

algorithm against a different dataset. 

3.3 Evolution of a Metadata based Model 

We adopted the scientific method [49, 50, 61, 186] and identified specific problems, where further 

research was required. I evolved this method by priming it with a solution based on preliminary 

studies (grounded research). In my work, I used metadata matches to generate associations 

between files and built an association model, which was experimentally tested on multiple 

datasets. I evaluated the success of the model by identifying the number of outliers (digital 

artifacts that should have been associated with other artifacts but were not associated) and refined 

the model to accurately represent the associations in the dataset.  

Our research was completely driven by metadata, i.e., entirely depended on the availability of 

metadata in the digital artifacts that relate to the forensic questions to illustrate metadata matches 

which lead to metadata associations. Naturally, I required digital artifacts of the type that exhibit 

such characteristics wherein the metadata not only stores basic book-keeping information, but also 
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attributes which can help reveal information regarding its source, ownership and authorship, date 

and timestamps, content type, size and other attributes.  

While there are many forensic disk images to conduct such tests, most datasets dispense with the 

creation of file metadata as it is not used by contemporary forensic tools (refer to Chapter 4). As a 

result, these datasets provide only file system metadata where the scope for developing 

associations is limited. Existing datasets provide limited sets of associations particularly as they 

focus purely on file system metadata. This includes the datasets available from Digital Forensics 

Tool Testing Images
14

 (DFTT), Computer Forensic Reference Data Sets
15

 (CFReDS), Digital 

Corpora disk images
16, ForensicKB

17, The Honeynet project
18, and so on. As a result, these 

datasets could not be readily used in my experiments to evaluate my model. 

In the presence of additional metadata, the nature of associations can potentially provide insights 

into a user’s activities discerned using the artifact relationships defined in this work. Incorporating 

such metadata into the existing datasets was found to trivialize the problem and did not suit my 

purpose either. As a result, I selected public data sources that provide such metadata and 

composed five datasets without modifying the data or the metadata to evaluate my metadata 

association model. 

Since I required datasets which exhibit file system metadata as well as application metadata, 

which together can sufficiently represent the attributes of a file, I therefore developed a custom 

dataset based on files and used both file system metadata and application metadata in my 

evaluation. In order to evaluate the quality of the dataset, I designed a distance metric to quantify 

the effectiveness of the metadata associations using all the metadata that pertain to the four classes 

of source, ownership, timestamps and application and determined metadata value matches to 

establish associations. This distance metric is introduced in Chapter 5 of this thesis. 

With regard to using file based datasets, I needed to understand the type of metadata that already 

exists in files and identify the subset of metadata that stores information pertaining to the source, 

ownership and authorship, date and timestamps, etc. Since my classification of the metadata was 

generic, it was sufficient to use a readily available dataset for this purpose. Any common 

workstation and personal computer together can be used provided they contained several files of 

                                                           
14 http://dftt.sourceforge.net/ 
15 http://cfreds.nist.gov/ 
16 http://digitalcorpora.org/corpora/disk-images 
17 http://www.forensickb.com/ 
18 http://www.honeynet.org/challenges 
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each application type. Since the purpose of this study was to identify the subset of metadata that 

were relevant to forensic analysis, the metadata present in the files needed to be exhaustive and 

not the file contents themselves. Naturally, I identified such a dataset on which the grounded study 

was conducted.  

In addition to file based datasets, to illustrate heterogeneity in data type, I required sources of 

evidence which recorded event attributes that can correlate activities on files. Log files readily 

exhibit these characteristics and their attributes can be mapped to many metadata in files. While 

there are many different types of log files, I decided to exploit web browser attributes. Activities 

such as web logins, checking web based emails, and uploading/downloading files to/from the 

Internet generate browser log records which are described by their attributes. To corroborate 

networking related events on browser logs, I acquired network traces which provide source and 

destination IP addresses among other attributes. 

The nature of evaluation for metadata associations required that the datasets across sources can be 

related in an obvious manner so that extraction of these relationships from the metadata 

associations is straightforward. Most datasets in the literature have focused on digital artifacts of a 

specific type whereas I had to develop related activity logs on other kinds of sources. Besides this, 

as discussed earlier, files from existing datasets dispense with application metadata, thereby 

providing a restricted set of metadata to derive associations from. As a result, I used custom 

datasets and constructed browsing scenarios using case studies that included files, browser logs 

and network packet traces. The nature of the case studies included typical usage patterns that 

linked files with browser logs and network packet traces. 

3.4 Experimental Evaluation of Model Prototype 

This section presents my experimentation process and an overview of the environment. Besides, 

this section also outlines the criteria considered for conducting a successful experiment for 

evolving my research method and developing my prototype toolkit. 

3.4.1 Experimentation Environment 

Our experiments were conducted by selectively imaging file systems on workstations and 

isolating the relevant logs. A prototype implementation in software was used to validate my 

contributions. The software was multi-threaded and a separate thread was spawned to traverse a 

particular source of digital evidence. The log files and network packet captures were exported into 
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XML before it was analyzed using the prototype. The workstations I used had 2 hard disk 

partitions totaling 23.2 GB on the workstation used for constructed scenarios and 77.2 GB on the 

workstation with normal activity. Both computers were operating under Microsoft Windows 7 

with Internet Explorer and Mozilla Firefox web browsers and common Microsoft Office 

applications installed. In addition, several documents belonging to these applications, and audio 

and video files were stored on the hard disks of each workstation. 

3.4.2 Experimentation Criteria 

Before an experiment was conducted, my success criteria were defined by the specific research 

objective being tested for evaluation. If these criteria were not satisfied by the outcome of the 

experiment, then the experiment was repeated after revisiting the implementation. The basic 

criteria to be satisfied for an experiment to be regarded successful are listed below: 

1. Were all the digital artifacts and their metadata accounted for? 

2. Did the prototype software generate metadata associations on the provided 

sources? 

3. Did each association group contain all the digital artifacts it was expected to 

contain? 

The expected answer to Criterion 1 is yes. If the prototype software was unable to generate the 

metadata associations on the given input, an investigation was conducted with the experimental 

setup to assess what went wrong in the implementation or the experiment itself. The most 

common error that was discovered was the prototype software running into a never-ending or 

infinite loop while trying to extract metadata and appropriate exit clauses had to be incorporated 

for such cases. 

The expected answer for Criterion 2 is yes. To satisfy Criterion 2, I identified the actual digital 

artifacts contained in the sources provided as input to the experiment and enumerated the 

metadata and their values. This list was then compared against the output generated to determine 

the satisfaction status. If there were discrepancies, then the criterion could not be satisfied. The 

most common error that was discovered was the prototype software running into a never-ending 

or infinite loop while trying to extract metadata and appropriate exit clauses had to be 

incorporated for such cases. 
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The expected answer for Criterion 3 is yes, if the results generated by my prototype software did 

contain all the digital artifacts, enumerated as earlier. If there were discrepancies, the absence of 

the artifacts had to be explained. The most common programming error that resulted in such 

absences was insufficient rules to account for metadata equivalences across digital artifacts of 

heterogeneous types. This error is rectified by incorporating these metadata equivalences as rules 

for generating association groups in the prototype software code which was addressed in the 

subsequent iteration of the design before re-experimentation. If the subsequent re-experimentation 

then yielded the expected results, then this criterion is deemed to have been satisfied. 

3.5 Chapter Summary 

For a given (forensic) context, my methodology was applied to develop a design for experiments 

which outline experimental procedures. In my case, the experimental procedure applied the 

associations through metadata to determine related artifacts from multiple sources of digital 

evidence. The true nature of the associations (that were determined using my software) were 

ascertained using the specific metadata matches which help in revealing the digital artifact 

relationships that are latent in digital evidence. Extracting such latent relationships can benefit in 

the consolidation of multiple and possibly heterogeneous sources. Through the process of 

consolidation that is achieved through grouping the related artifacts, I also achieve a reduction in 

the volume of digital evidence. This is illustrated in Figure 3.3. 

 

Figure 3.3 Applying my methodology to derive digital artifact relations using metadata associations 

  

In this chapter, I presented my research methodology used to achieve the research objectives set 

out in Chapter 1. I analyzed the nature of these research objectives and identified a set of research 

tasks for each objective. I presented my approach to achieving these research objectives and 

highlighted its relevance to this thesis. I also presented an overview of the evaluation methods that 

I have adopted in this thesis to evaluate my contributions.  
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In the following chapter, I present my framework to identify associations among heterogeneous 

sources of digital evidence using metadata and develop the metadata association model. 
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"The world is full of obvious things which nobody by any 

chance ever observes. You see, but you do not observe. The 

distinction is clear."   

- Sherlock Holmes 

 

 

 

4. Determining Metadata based Associations in Digital Evidence 
In this chapter I develop a new framework for identifying associations in digital evidence based 

on metadata. While there have been several forensic tools produced to examine digital evidence, 

the heterogeneous nature of the sources of digital evidence have significantly compartmentalized 

the use of such tools in analysis, as identified in Chapter 2. There is a general need for integrating 

the complementary functionalities of the tools used in this regard; to this end, I develop the 

functional Forensic Integration Architecture (f-FIA) and introduce a new layer to integrate the 

examination of heterogeneous sources of digital evidence and determine associations in digital 

evidence based on metadata. I develop this framework by abstracting the functionalities supported 

by existing tools and identifying new functionalities to integrate the examination of heterogeneous 

sources through a hypothesis based review (presented as an experiment in Section 4.1). In 

addition, I develop the metadata association model (MAM) grounded in metadata matches for 

identifying associations across digital artifacts both within and across sources of digital evidence 

and grouping them for analysis. I present a review of current forensic and analysis tools to 

examine digital evidence in the sequel. 
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4.1 Review of Contemporary Forensic & Analysis Tools 

The goal of this review is to gain an understanding of the functionalities provided by existing 

tools for examining and analyzing digital evidence. In general, there are two classes of tools used 

to examine digital evidence, forensic tools and analysis tools. The two classes are discussed in the 

sequel. 

4.1.1 Forensic Tools 

All forensic tools take a forensic image of a data source such as a hard disk drive or a memory 

dump as input and provide binary abstractions of the raw data. This allows the entire source to be 

read as a binary stream of data. In my work, I refer to this functionality as the binary abstraction. 

The tools also distinguish the different files and their application formats on the file systems using 

standard file signatures [26]. A notable feature of this technology is the development of the known 

file filter (KFF) to omit system files during evidence examination. I refer to the functionality of 

recognizing files and automatically associating them with their application in order to help parse 

the file as file system support. These two functionalities address the complexity problem in digital 

evidence [27].  

There are several software forensic tools both in the commercial and open domains. The 

commonly used forensic toolkits for analyzing file systems are Encase, FTK, X-Ways, Nuix, 

TCT, Sleuthkit, DFF, OCFA, Snorkel and LibForensics. Of these, Encase19, FTK20 and X-Ways21 

are commercial toolkits while TCT, Sleuthkit [25], DFF, OCFA, Snorkel and LibForensics are in 

the open domain22. Among these tools, most commercial varieties also support the examination of 

memory dumps and mobile device flash memories. 

The tools extract file system metadata associated with each file including the location of the file, 

MAC timestamps, file ownership, file size and so on. Typically forensic tools do not rely on 

application metadata and consequently do not extract or parse them. To provide that functionality, 

one may resort to a special set of tools called analysis tools. 

                                                           
19 http://www.guidancesoftware.com/encase-forensic.htm 
20 http://www.accessdata.com/products/digital-forensics/ftk#.UeTux6q6aM8 
21 http://www.x-ways.net/forensics/index-m.html 
22 http://www2.opensourceforensics.org/tools 
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4.1.2 Analysis Tools 

An analysis tool directly accesses a data source such as a log file or a packet capture and parses its 

contents as independent records while guaranteeing read-only access. Each record may contain 

several attributes which are parsed for analysis. This functionality can also be broadly classified 

under schema support, as part of the file system support layer. I term the ability to parse or extract 

metadata, including file system metadata, application metadata and all related attributes of an 

artifact in a non-intrusive manner as metadata parsing. 

There are a wide range of analysis tools for examining files, memory dumps, log files and 

network packet captures. Some examples of such tools are Volatility for memory dumps, PyFlag23 

for log files and network packet captures, GrokEvt, libevt and Event Log Parser for Windows 

event logs, AWStats for web browser logs, RegRipper, python-registry, Forensic Registry EDitor 

and Win32Registry for Windows Registry and Wireshark and tcpstat for network packet captures. 

Log analyzers such as PyFlag, GrokEvt, libevt, and Event Log Parser parse the respective logs 

and their attributes. Typically, the attributes in such logs contain an event description, username 

associated with the event, event timestamp and so on. Wireshark and tcpstat parse corresponding 

attributes from network packet captures. Network packet attributes can include a packet sequence 

number, the protocol for communication, source and destination IP addresses, hosts’ MAC 

addresses, hosts’ operating systems and browser applications, and so on. Keyword based 

searching and filtering is used to conduct the actual analysis. 

Based on this understanding of the two classes of tools, I conducted a review of such tools to 

develop an understanding of the support extended by contemporary forensic and analysis tools to 

examine multiple sources of digital evidence. This review is based on the hypothesis testing 

method developed by NIST [140, 141]. 

4.1.3 Hypothesis Based Review 

Our approach to reviewing forensic and analysis tools was grounded on hypothesis testing. 

According to NIST [140], a forensic tool addresses one or more gaps in technology. Therefore, 

each technology solution is posed as a hypothesis which is then validated by conducting suitable 

experiments. In my review, the hypotheses concerning the capabilities of the different tools are as 

follows.  

                                                           
23 It is notable that PyFlag has since integrated Sleuthkit and Volatility and in that way allows the examination of 

forensic disk images and the analysis of memory dumps. 
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1. If a source of digital evidence is provided as input, the tool will successfully load the 

source; 

2. If a source of digital evidence can be successfully loaded, the tool can read binary data 

from the source; 

3. If a source of digital evidence can be successfully loaded, the tool can interpret binary data 

on the source; 

4. If the tool can interpret binary data from a source of digital evidence, the tool can 

recognize different file systems on the source; 

5. If the tool can recognize all the file systems on a source of digital evidence, the tool can 

identify the individual digital artifacts on a source of digital evidence; 

6. If the tool can identify all the digital artifacts on a file system on a source of digital 

evidence, the tool can extract/parse the metadata from the individual digital artifacts; 

7. If the tool can extract and/or parse metadata from the individual digital artifacts that reside 

on a source of digital evidence, the tool can combine/group multiple digital artifacts based 

on metadata; 

8. If the tool can extract and/or parse metadata from the individual digital artifacts that reside 

on a source of digital evidence, the tool can combine/group multiple digital artifacts using 

metadata in an unconstrained manner; or 

9. If the tool can extract and/or parse metadata from the individual digital artifacts that reside 

on a source of digital evidence, the tool can interpret the semantics of the metadata linked 

to a digital artifact. 

In order to test each tool’s ability to satisfy these hypotheses, I conducted the following 

experiment, which was applied to each forensic or analysis tool in turn. I created a forensic (raw) 

image of a volume partition containing a FAT32 file system and an NTFS file system. The file 

system contained several files created to mimic regular user behavior on a workstation PC that 

contained different word processing files (Microsoft Word documents, MS PowerPoint, MS 

Excel, Rich Text Format files, Adobe PDF files, Text files, and digital images). The files 

contained both file system and application metadata and recorded events related to activity on the 
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files. The files mainly contained blank content or random text that weren’t intended for use during 

the experiment. I also created a Windows XP SP2 raw memory dump, a browser history log from 

a web login session, and a network packet capture from the web login session on the same system 

used to create the files. My experiment involved the following tasks, each of which corresponds to 

one of the hypotheses above: 

1. Load the source files on a tool; check completion status for each source. 

2. Read the first X and last X bytes of the image and print them to the user interface. 

3. Redisplay the displayed bytes in hexadecimal and printable text formats. 

4. Identify and list the file systems on the image. 

5. Identify and list all the digital artifacts on the image. Digital artifacts correspond to: 

a. files on a file system; 

b. process control blocks on memory dumps; 

c. log records on a log file; and 

d. network packets on packet captures. 

6. On each digital artifact, parse/extract metadata from the system as well as the application. 

This corresponds to: 

a. File system and application metadata on files; 

b. Operating system memory maps and process attributes on memory dumps; 

c. File system metadata of the log file and log record attributes on log files; and 

d. File system metadata of the packet capture and network packet attributes on 

network packet captures. 

7. Identify methods to group two or more artifacts on the image using metadata using the tool 

being assessed, if possible. 
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8. Identify combinations of metadata that are supported by the tool to group two or more 

artifacts, if possible. 

9. Modify a selected file’s metadata and replace the values for Author with the number 

788755 and file size with the string “Jeffrey”. Recreate the forensic image with the new 

file and load it into the tool. Now extract the metadata and note observations. 

Since each of these tasks related to a specific hypothesis, their success corresponded to accepting 

the proposed hypothesis, and a failure corresponded to rejecting the hypothesis. For instance, if a 

tool was able to read and print the content, it supported binary data. In addition if the tool was also 

able to translate the content into hexadecimal and text, it supported interpretation. Listing the file 

system was applicable only to the forensic disk image, while on the other sources, success was 

implied by listing the digital artifacts (log records or network packets) on the source. For each 

digital artifact that was successfully traversed, the metadata was parsed for extraction.  

In the literature, keyword filtering and classification are the most common methods to group 

artifacts on a data source. To evaluate the existing tools I conducted filtering using metadata both 

explicitly and implicitly; for the explicit method, I used the values assumed by the metadata as 

specific keywords and for the implicit method, I used the metadata label to conduct searches. I 

conducted multiple sequences of grouping and regroupings to determine which combinations of 

metadata were permitted by each tool. In regard to metadata semantics, if a tool flagged an error 

for replacing expected values on the metadata, then I interpreted the outcome as yes to Hypothesis 

9. On the other hand, if the tool did not raise a flag, it implies that the tool is unable to detect 

inconsistencies in the value’s type which indicated that the tool was syntactic by design. My 

findings are summarized in Table 4.1. 
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Digital 
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access 

Digital Artifact Traversal & Examination Metadata 

Parsing 

& 

Extract-

ion 

Evidence Composition 

using metadata 

Binary 

abstract-

ion to 

DE
24

 

File 

system 

examin

-ation 

Memory 

dump 

examin-

ation 

Log 

examin-

ation 

Packet 

capture 

examin

-ation 

Text 

indexing 

and 

Search 

 Multiple 

sources of 

DE 

(examination 

and analysis) 

Identify 

correlations 

Encase 

Forensic
25

 

      Only FS26 

metadata 

Can group 

artifacts using 

FS metadata, 

one at a time 

 

FTK
2
       Only FS 

metadata 

Can group 

artifacts using 

FS metadata, 

one at a time 

 

X-Ways 

Foren-

sics
2
 

      Only FS 

metadata 

Can group 

artifacts using 

FS metadata, 

one at a time 

 

Nuix 

Investig-

ator
2
 

      Only FS 

metadata 

Can group 

artifacts using 

FS metadata, 

and keywords, 

configurable 

Can correlate 

from specific 

keywords 

across content 

Sleuthkit       Only FS 

metadata 

Can group 

artifacts using 

FS metadata, 

one at a time 

 

PyFlag       Only FS 

metadata 

Can group 

artifacts using 

FS metadata, 

one at a time, 

can classify 

using by 

combining 

timestamps 

across sources 

 

OCFA       Only FS 

metadata 

Can group 

artifacts using 

FS metadata, 

one at a time 

 

                                                           
24 DE = digital evidence 
25 These are the respective commercial product names. 
26 FS = file system 
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DFF       Only FS 

metadata 

Can group 

artifacts using 

FS metadata, 

one at a time 

 

Snorkel       Only FS 

metadata 

Can group 

artifacts using 

FS metadata, 

programmable 

prioritization 

 

Nirsoft 

log 

analysis 

      Log 

attributes 

Can classify 

using one 

attribute at a 

time 

 

GrokEvt       Log 

attributes 

Can classify 

using one 

attribute at a 

time 

 

Libevt       Log 

attributes 

Can classify 

using one 

attribute at a 

time 

 

Reg-

Ripper 

      Log 

attributes 

Can classify 

using one 

attribute at a 

time 

 

Volatility       Memory 

attributes 

Can classify 

using one 

attribute at a 

time 

 

Log2-

timeline 

      Log 

attributes 

Multiple 

timestamps can 

be combined for 

time-lining 

 

Wire-

shark 

      Network 

packet 

attributes 

Can filter using 

multiple 

attributes; 

classify using 

one at a time 

 

Table 4.1 The respective functionalities of various forensic and analysis tools 

  

4.1.4 Classification and Grouping of Artifacts 

Typically, forensic and analysis tools can classify artifacts using the file metadata or log or 

network attributes parsed, one attribute at a time [25, 26, 39, 69] as is the case with tools such as 

Encase, FTK, Sleuthkit or PyFlag. The file owner, username, last modified or event timestamp, 
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protocol, source or destination IP address are some of the attributes that are commonly used 

during analysis [19, 22, 23, 28, 32]. However, in order to determine answers to the six forensic 

questions of what, when, where, how, who and why [32], it may be necessary to conduct deep 

analysis. When deep analysis is required, the artifacts often may require to be classified multiple 

times using different attributes to determine the relevant set of artifacts and answer how they 

relate a particular investigation. This can often entail use of multiple different forensic tools (e.g. 

Encase, FTK, XWays, Sleuthkit, PyFlag, etc) on the same source of digital evidence and 

exporting their results for analysis using other tools (e.g. Volatility, GrokEvt, Wireshark, 

log2timeline, etc.). All commercial forensic tools are monolithic and exporting results from one 

tool to another can be cumbersome. Therefore, this is a laborious task; this disparity can be more 

pronounced when the sources of digital evidence span different file and log formats or source 

types.  

4.1.5 Summary of the Review 

From this review, I found that all digital forensics tools provide binary abstractions to forensic 

images to handle forensic images of hard disk drives or memory dumps. While the commercial 

toolkits may support both file system images as well as memory dumps, most open source 

forensic tools (e.g. Sleuthkit, DFF, OCFA, etc.) predominantly handle only file system images, 

albeit in different image formats as discussed in Chapter 2. File systems contain metadata 

associated with file activity which is independent of file content and forensic tools extract these 

metadata to identify the owner, MAC timestamps, access privileges and so on. However, forensic 

tools like Encase, FTK, Sleuthkit, PyFlag etc. do not usually extract or use application metadata 

from files. All forensic tools support text indexing and searching on an image and classify the 

artifacts on the image according to the file system metadata. While these tools support multiple 

forensic images, they do not provide the ability to correlate metadata values across files and alert 

an examiner when related metadata are discovered (for instance, an identical author name on 

documents). Besides this, log files which can also be found on many file systems are processed as 

files by these tools which have to be exported for analysis. 

Most analysis tools, with the exception of Volatility or Wireshark, do not provide binary 

abstraction [41, 195]. These tools interpret the contents and process the data as independent 

entries while parsing the respective attributes for reporting. Analysis tools also support indexing 

and query base search; however, they can process only one source (e.g., search the records of a 

single log file) at a time. This does not permit examiners to conduct analysis to determine 
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identical or similar entries across sources which can be useful during an investigation. While 

analysis tools do support classification of the log entries based on the parsed attributes, they do 

not allow combining multiple attributes to derive semantic relationships. This functionality is 

becoming a necessity, particularly in the face of the diversity and volume challenges outlined in 

Chapter 1. Naturally, moving forward, tools should be able to support this functionality and there 

is a need for architecture that is inclusive by design. 

Both forensic and analysis tools group their respective contents using two techniques, keyword 

filtering and attribute classification. Typically a digital forensic examiner may need to filter the 

contents based on different keywords or classify them based on different attributes during analysis 

to determine a pattern. In practice, these techniques are controlled by a human and unless the right 

combinations of keywords and attributes are specified, the pattern being sought is likely to be 

missed. Some attributes can also be combined during classification, even if sequentially. The most 

common way of combining attributes for classification as reported in the literature [17, 18, 113, 

195] involves combining timestamps with the owner for forensic images, the username for log 

files and the IP address for network packet captures. This leaves the remaining metadata and 

attributes unused. There is therefore a need for a framework which can identify metadata based 

associations in an unconstrained manner both within a single data source, like files on a forensic 

disk image, and across sources, such as between forensic images and logs or logs and network 

packet captures, and so on. 

Motivated by this understanding of contemporary forensic and analysis tools in examining and 

interpreting digital evidence, I design a functional architecture to integrate the different 

functionalities of existing tools identified from this review and define a new layer to provide the 

ability to combine artifacts using associations determined based on metadata. 

4.2 f-FIA: Functional Forensic Integration Architecture 

The functional Forensic Integration Architecture (f-FIA) is illustrated in Figure 4.1 and its layers 

are as follows: 

1. Digital Evidence Layer 

2. Digital Artifact Traversal & Metadata Parser Layer; and  

3. Evidence Composition Layer. 
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f-FIA is component oriented and multi-layered (refer to subsections below) and is designed to 

integrate the functionalities provided by contemporary forensic and analysis tools to examine 

heterogeneous sources of digital evidence. Besides this, it is also designed to identify associations 

within and across sources of digital evidence to conduct analysis.  

 

Figure 4.1 Block schematic of the functional Forensic Integration Architecture (f-FIA) 

  

The architecture of f-FIA is consistent with forensic principles (maintaining data integrity and 

read-only access during the examination) and lends itself naturally to automation of forensic 

examination, while at the same time seamlessly integrating forensic examination with analysis. Its 

layered architecture is designed to allow scope for future extensions based on technological 

advances. As my work focuses on identifying associations amongst digital artifacts among sources 

of digital evidence, I focus on the Evidence Composition Layer and concentrate on methods to 

group related digital artifacts. I describe the different layers of the f-FIA in the sequel. 

4.2.1 Digital Evidence Layer 

The Digital Evidence layer provides binary abstractions of digital evidence sources that are part of 

an investigation. The media operated by this layer must comply with read only semantics to 

maintain integrity of data during an investigation. The functionality of this layer can be likened to 
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the binary (and possibly hexadecimal) data support extended by Encase, FTK and Sleuthkit to 

forensic images such as dd, EWF and AFF and so on. 

4.2.2 Digital Artifact Traversal & Metadata Parser Layer 

The Digital Artifact Traversal and Metadata Parser layer provides access to the artifacts in digital 

evidence and their metadata. The layer provides appropriate file system and/or schema support to 

the digital evidence sources for examination. For instance, in forensic file system images, the 

layer interprets the files, but in logs, the layer interprets the individual log records and in network 

packet captures, the layer interprets the individual packets. The functionalities of this layer are file 

system and schema support to examine the files in forensic disk images, processes in memory 

dumps, log records in log files and network packets in packet captures. Succinctly, this layer is 

responsible for providing suitable abstractions to the digital artifacts and their corresponding 

metadata present on each source as well as building indices for the same that can be utilized by 

the upper layer to determine associations in digital evidence.  

In order to parse for metadata, the layer can determine an artifact’s application type based on 

which suitable metadata can be extracted. For example, in hard disk images, files and metadata 

carry their usual meaning. In log file and packet capture sources, the records and packets take on 

their attributes as metadata in addition to inheriting the metadata of the log file or network capture 

file. The functionality of this layer also includes the development of source traversal algorithms 

and metadata parsers according to the source and the specific application types. The output of the 

metadata extraction and the indexing process feed into the repository which is then used by the 

upper layer during analysis. 

4.2.3 Evidence Composition Layer 

The Evidence Composition layer is responsible for integrating information from various sources 

of evidence and composing the components into consistent and comprehensive evidentiary 

material to present to a forensics examiner. I achieve evidence integration at two levels; at the first 

level, by determining related evidence artifacts based on value matches to group them together 

during analysis and at the second level, by validating the consistency of grouped artifacts to 

determine relevant evidence. Therefore, this layer is composed of two sub-layers, the Cross 

Referencing sub-layer and the Knowledge Representation and Reasoning sub-layer. 

The cross referencing sub-layer correlates content and metadata from the digital artifacts in the 

repository. The repository is capable of supporting data from multiple sources of digital evidence 
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(digital artifacts, indexed content and metadata). The repository can also support information 

gathered from external sources (e.g., identity related databases such as social security, bank 

accounts, driver’s license database, etc.) that are deemed to be relevant to the investigation. The 

internal architecture of the evidence composition layer is illustrated in Figure 4.2.  

 

Figure 4.2 Internal architecture of the Evidence Composition Layer 

  

4.2.3.1 Cross-Referencing Sub-layer 

The Cross Referencing sub-layer is responsible for cross referencing content, including metadata, 

within and across digital evidence sources. It is the responsibility of this sub-layer to utilize the 

indices provided by the immediate lower layer to identify associations both on the same source as 

well as across multiple sources. Since the immediate lower layer abstracts each source by its 

artifacts and associated metadata, the cross-referencing sub-layer accesses each artifact through its 

metadata and determines value matches across artifacts, irrespective of the type of artifact. The 

functionality of this sub-layer is conceived in a technology-agnostic manner, in order to scale 

across arbitrary sets of digital evidence sources. The resulting sets of associated artifacts are 

stored in the repository for subsequent analysis. The cross referencing sub-layer can access data 

on the repository from multiple heterogeneous sources that can be deemed related to an 

investigation and consists of algorithms that aid in discovering the associations. 

4.2.3.2 Knowledge Representation & Reasoning Sub-layer 

The Knowledge Representation and Reasoning sub-layer is concerned with the logical validity of 

the digital evidence, based on the associations discovered. This sub-layer is responsible for 
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determining causal relationships between one or more assertions that can be established based on 

the artifacts that are associated. Establishing causal relationships between artifacts can help in the 

identification of relevant evidence for user activity reconstruction as part of the forensic analysis. 

For instance, consider the evidence that an email was sent by user X with a file attachment. This 

introduces three distinct predicates as listed below. 

1. User X was logged into that system when the email was sent. 

2. User X was logged into the email account when the email was sent. 

3. The file existed on the system from which the email was sent. 

While each predicate can be independently verified based on the evidence available, it may be 

necessary to identify the associations between the following. 

1. The email and the file attachment. 

2. The email and the email server logs for user X’s email login. 

3. The system and the system access logs for user X’s system login. 

This requires that evidence be considered across heterogeneous sources and associated to establish 

causation and relevance during an investigation. To achieve this, this sub-layer consolidates the 

syntactic metadata associations and metadata equivalence relationships across sources to derive 

semantic inferences on sets of associated artifacts. A few examples are listed below.  

1. If digital image files in the evidence match on one or more of their technical 

metadata, like EXIF metadata, then one may infer that the images were digital 

photographs captured with the same make and model of digital still camera. 

2. If web browser logs indicate a file download whose metadata matches against a file 

in the user’s hard drive, one can infer that the file was not authored by the user.  

3. If there are two records in a mail server for the same user at time instant T to 

indicate simultaneous logins from both Sydney and Melbourne, the information 

leads to two mutually-exclusive assertions “The user was in Sydney at time T” and 

“The user was in Melbourne at time T”. 

In the last case, the login attempts in themselves cannot be treated as incriminating evidence. 

However, the assertions warrant further scrutiny since it is impossible that an individual was in 

both Sydney and Melbourne at the same time. Resolution of such conflicting assertions requires 
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that the examiner takes recourse to other (related) external databases – perhaps flight details and 

passenger manifest databases to determine if the individual travelled between the two cities 

immediately prior to time T. Correctly ordered timestamps become especially useful in such cases. 

Validating the correctness and accuracy of timestamps obtained from metadata on digital artifacts 

including related sources beyond evidence is an example of the reasoning process. 

This sub-layer allows recording assertions and validating them by corroborating them within the 

scope of the data sources provided. Any evidence to the contrary is flagged and presented to the 

examiner. Besides assertion validation, often examiners need to repeatedly query the sources of 

digital evidence for information. Examples of such queries are “list the set of files that were 

modified on June 10
th

 2008 between 2:00 PM and 6:00 PM” or “list all HTTP sessions on the 

network capture with IP address X as the source”. This sub-layer’s architecture enables an 

examiner to query the digital evidence in this way and determine evidence associated with the 

query results simultaneously, without having to search for it. 

To utilize such a framework, it is necessary to understand the implications of determining 

metadata based associations in digital evidence and develop a model to represent such 

associations for analysis. However, when heterogeneous sources need to be correlated for 

analysis, it is essential to characterize the homogeneity of a single source of digital evidence. This 

topic is addressed in the sequel. 

4.3 Defining a Homogeneous Source of Digital Evidence 

Typically, a source of digital evidence is known in terms of where it was acquired from, for 

example, a source of a forensic image could be a hard disk drive, memory dump, network packet 

capture file, and so on. These sources have well-defined semantics in the literature as discussed in 

Chapter 2. However, in this thesis, I require a refinement to this understanding since the digital 

artifacts and more particularly known by their metadata, which varies greatly across the data types 

and establishing a relationship between the digital artifacts is not a straightforward task. In this 

section I develop this understanding further and define what constitutes a homogeneous source. 

Forensic images of hard disk drives are a known source of digital evidence. The hard disk drive 

may contain more than one volume partition containing one or more file systems. In that case, I 

refine my definition of a source to the file system level and distinguish each file system as a 

source of digital evidence. At this point, the forensic image level definition may be dispensed with 
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since the analysis is carried out with regard to the file systems. However, each file system, in turn, 

may contain files belonging to many applications, stored in different formats. Among common 

file types, the semantics of each metadata is well-understood, e.g., ‘Author’, ‘filename’, ‘file size’, 

etc; ‘Author’ refers to the author of a particular file; ‘filename’ refers to the name of a file on a 

particular file system and ‘filesize’ refers to the number of bytes occupied by a file on the file 

system. This can lead to metadata associations using syntactic value matches. Therefore, I 

collectively qualify all files belonging to the same application type (identified based on file 

formats) as a homogeneous source of digital evidence. For my purpose, this definition includes all 

files created either in temporary or permanent storage by that application. By this definition, all 

Microsoft Office Powerpoint presentation files, for instance, along with their temporary backup 

and cache files can be grouped as a single source during analysis. One can extend this argument to 

state that all files created by software X are collectively referred as a homogeneous source and the 

semantics is governed by software X. The definition ensures that when metadata based matches 

are identified between files on the same homogenous source, the corresponding metadata have 

identical semantics in reference to the respective files. Figure 4.3 diagrammatically illustrates the 

progression of a source hierarchy with an example of a Microsoft Windows based hard disk drive.  

 

Figure 4.3 Example of source level hierarchy on a Microsoft Windows hard disk drive 

  

In this example, as I refine a source definition at the logical levels, I draw distinctions in 

applications. Applications, typically record file metadata for file management and files belonging 

Forensic image of 

Hard disk drive

FAT NTFS

Documents
Digital 

Images

TIFF

JPEG

PNG

BMP
DOC PPT XLS

PDF

XML

HTML

INI

CONF

. . . 

LOG

Source as defined at 

the acquisition level

Source defined at the 

volume partition level

Source defined at the 

application level

Source defined at the 

file format level

Each type represented at a 

particular level is treated as a 

homogeneous source



89 
 

to the same application tend to store similar metadata, e.g., Microsoft Office documents, PDF 

files, JPEG files, etc. Naturally, in such files, determining metadata matches can be simplified into 

a search task pivoting on the corresponding metadata index across all the files and searching for a 

matching value is trivial. Therefore, files whose metadata can be mapped one-to-one are regarded 

as homogeneous. Notwithstanding, file system metadata is common to all files and consequently a 

forensic file system image is homogenous with regard to file system metadata. Where files from 

the same application are found on different storage media, the choice of the level of abstraction 

(either at the storage media level as is traditional practice or at the application level to provide 

uniform semantics across the files) that is appropriate for analysis is left with the forensic 

examiner. The examiner can exercise their choice depending on the granularity of the analysis that 

an investigation necessitates. 

Log files are of different types and while all log files can be treated as similar sources of forensic 

evidence, they are not identical. For instance, syslog and browser logs are not readily comparable, 

however all browser logs pertaining to a single browser application are comparable as their log 

records correspond to some form of browsing event. Naturally, logs describing specific events, 

such as logs pertaining to web browsing or mail server access, can be labeled homogeneous. 

Across homogeneous sources, metadata matches can be determined by identifying corresponding 

log attributes where the values match. The value match encapsulates the syntactic nature of the 

association across these logs while the activity that is represented by the log itself provides the 

semantics for the association, i.e., individual X who browsed website www.domain.com at time 

T1, also browsed website www.abc.biz at time T2, and so on. 

When multiple (heterogeneous) logs have to be compared, attributes such as the username or 

timestamps in the respective logs are comparable. In order to do so, these attributes have to be 

equated and this establishes attribute equivalence between the logs. The concept of a value match, 

as envisioned in f-FIA to implement the cross-correlation sub-layer, captures the syntactic nature 

of the association across these logs while the activity that is represented by the log itself provides 

the semantics for the association, i.e., individual X who browsed website www.domain.com at 

time T1, also checked X’s email at time T2, and so on. Figure 4.4 diagrammatically illustrates the 

progression of a data source hierarchy using common log files. 
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Figure 4.4 Example of the log file data source hierarchy 

  

All network packet captures are regarded as a homogeneous source and where necessary, packets 

are distinguished based on the protocol used in communication; this distinguishes network packets 

that were exchanged based on the ARP or the ICMP from those exchanged using the TCP or UDP 

during a recorded session. These distinctions are necessary to differentiate the parties in 

communication and the nature of the communication that transpired. 

From this, I make the following observation: A homogeneous source is one in which all digital 

artifacts have metadata of the same type (type is governed by the application responsible for 

creating the metadata) and determining syntactic value matches requires only a comparison 

operation. The semantics of the association on individual value matches is derived from the 

semantics of the metadata (elaborated in Section 4.4). Notwithstanding the fact that such digital 

artifacts may come from physically different acquired sources, in my work I treat such artifacts as 

a part of a homogeneous source. To develop this understanding, I present an overview of my 

approach to discovering metadata based associations in digital evidence through the 

identification of metadata matches in value. 
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4.4 Method for Associating Metadata in Digital Evidence 

Metadata matches among artifacts correspond to matching partial states of the digital artifacts. 

Grouping such digital artifacts based on such a partial state can contribute to reconstructing the 

past events during an investigation [26, 28]. If such artifacts are grouped together, the “related” 

artifacts can also be holistically analyzed (e.g., to discover the existence of some higher-order 

relationships). To ground my research in basic metadata based associations and derive the design 

for a model to identify associations in digital evidence using metadata, I conducted several pen-

and-paper exercises with different types of files and logs by matching the metadata of the files and 

log records respectively within the same source. An example of this exercise is illustrated in 

Figure 4.5.  

 
Figure 4.5 Illustration of syntax and semantics associated with a metadata match 

  

Figure 4.5 illustrates how my experiments using metadata matches led to the identification of 

associations. This example is based on a value match and is hence syntactic in nature. If I consider 

the metadata shown for File 1 and File 2 in Figure 4.5, the files contain matching values for 

metadata field ‘Author’ leading to a syntactic association. A similar association exists between 

File 2 and File 3 for metadata ‘File size’. During my research, I discovered that when the digital 

artifacts are of the same type, the metadata indices have well-defined semantics between two or 

more artifacts belonging to the same application. Therefore, between File 1 and File 2, the 

semantics accompanying with metadata ‘Author’ is interpreted as ‘James is the author of the file 

ThisisModified.DOC’ and ‘James is the author of the file ThisisCopied.DOC’. This leads to the 

deduction “James wrote File 1 and File 2”. Similarly, the metadata accompanying the ‘File size’ is 

interpreted as ‘ThisisCopied.DOC is of size 20 kilobytes’ and ‘ThisisOriginal.DOC is of size 20 

kilobytes’. This leads to the deduction “File 2 and File 3 have identical file sizes”. The deduction 

in the first case provides an answer to the who question concerning File 1 and File 2 while the 

deduction in the second case provides an answer to a what question concerning File 2 and File 3. 
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Thus the semantics of a metadata association has the potential to provide answers to questions 

pertinent during forensic analysis. 

As illustrated, at the syntactic level, the representation of the association is based on each 

metadata and its value, and it concerned a set of digital artifacts (files) that satisfied the condition 

required to make the association. If a metadata value is changed, it will result in a different match 

when using the same association semantics. If the metadata’s name is changed, then the semantics 

is changed. I conducted experiments on digital image files and word processing documents using 

different metadata to generate such metadata-value groups in the context of digital image 

provenance and identify files suspected of being doctored27. These experiments and their results 

are discussed in Chapters 6 and 7 of this thesis. 

We also conducted similar exercises on browser log files and network packet captures and 

analyzed the semantics for each syntactic metadata match between log records and network 

packets of the same type. I generalized the identification of syntactic metadata matches to derive a 

method for generating associations across artifacts. I am concerned with the identification of 

metadata associations through the identification of metadata matches, so in my design I explicitly 

represent the syntactic associations and make the semantics implicit. While combining the 

artifacts, I used the metadata semantics to guide the grouping and arrived at meaningful 

associations.  

There are four stages of existence for digital evidence (S1 – S4) and three levels of transformation 

(T12 – T34). In stage S1, the set U represents all sources of digital evidence, in their natural state, 

containing heterogeneous digital artifacts. The metadata, related to an artifact, visualized as a 

vector of metadata indices and its corresponding values, is used as the instrument in determining 

the transformations T12 – T34. In stage S1, I apply a static filtering transformation T12 using 

metadata matches to group (similar) artifacts into entities called similarity pockets that correspond 

to the metadata tag where the match was determined. The set of all similarity pockets generated 

based on metadata matches is represented as SP in Figure 4.6. 

                                                           
27 The concept of file doctoring extends the concept of image doctoring wherein the file in question is claiming to be 

original whereas in reality, it is derived by doctoring another file using one or more software. 
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Figure 4.6 The metadata matching stage giving rise to similarity pockets 

  

As a digital artifact can generate a metadata match based on more than one metadata tag, it can be 

present in multiple similarity pockets for multiple metadata matches in stage S2. In order to 

eliminate this redundancy, I apply a grouping transformation T23 to group the digital artifacts from 

component similarity pockets that overlap on at least one artifact to form similarity groups. The 

set of all similarity groups is represented by SG in Figure 4.7 and are a part of stage S3. Once the 

grouping process is completed, an artifact many occur in only one similarity group and the 

artifacts belonging to similarity groups on a single source are mutually exclusive. 
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Figure 4.7 Grouping the overlapping similarity pockets into non-intersecting similarity groups 

  

When we consider the metadata values taken by the artifacts belonging to similarity groups across 

sources, it is possible to establish metadata equivalence relationships on the metadata indices. A 

simple example of this concept is the equivalence relationships between the file system MAC 

timestamps and the packet timestamps on network packets from packet captures. A similar 

equivalence relationship can be established for ‘Author’ on file metadata and ‘usernames’ on log 

records. We can establish equivalence relationships between such metadata to group the artifacts 

from similarity groups across sources using transformation T34 to give rise to association groups 

in stage S4. The set of all association groups is represented by AG in Figure 4.8.  

. 
. 

. 

Stage S2

. 
. 

. 

SP

. 
. 

. 
. 

. 
. 

Set of all similarity 

pockets for some 

metadata mk in source si

Stage S3

Similarity group

on source si

Similarity group

on source sj

S
im

ila
rity

 g
ro

u
p

 fo
rm

a
tio

n

T23

SG

. 
. 

. 

An artifact occurs in exactly one 

similarity group; multiple similarity 

groups can exist for a single source

Grouping through common 

artifact identification 

leading to classification

. 
. 

. 

A similarity group is the largest 

union of similarity pockets on 

source si which contain at least 

one artifact in common between 

them; set union is performed 

across all metadata

Multiple similarity pockets containing 

one or more of the same artifact 

constitute redundancy which are 

absorbed into one similarity group



95 
 

 
Figure 4.8 Grouping similarity groups across sources into association groups 

  

The members of each association group may be presented to a forensic examiner to identify 

relevant evidence (as illustrated with the user X activity example presented for the Knowledge 

Representation and Reasoning sub-layer in Section 4.2). The model to identify associations in 

digital evidence based on metadata is presented in the sequel. 

4.5 Metadata Association Model 

In this section I define the concept of a metadata association and develop concepts to represent the 

relationships derived from metadata associations arising out of value matches in metadata. My 

Metadata Association Model (MAM) models the associations in digital artifacts identified through 

metadata matches. During an investigation, forensic investigators acquire one or more sources28 of 

stored information which are collectively referred to as digital evidence. The digital artifacts that 

are contained in the collection of sources of digital evidence can be heterogeneous in their 

application type. If we were to impose a homogeneous view on this world of digital evidence that 

contain arbitrary types of digital artifacts, let there be S finite and distinct homogeneous sources 

of digital evidence. Each artifact of a homogeneous source is by definition, homogeneous, i.e., 

belong to the same application type and contain the same set of metadata, albeit with possibly 

                                                           
28 These are forensic images of hard disk drives, memory dumps, system and application logs and so on. 
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different values. This method is consistent with my definition of a homogeneous source discussed 

in Section 4.3. If DE refers to digital evidence containing S homogeneous sources and si is the ith 

homogeneous source acquired for analysis, then 

DE = {si | si is the ith homogeneous source of digital evidence, i ∈  [1, S]}.                  …(1) 

Each source si so acquired can contain one or more digital artifacts and the S sources have N1, N2, 

N3, …, NS digital artifacts, respectively. In general, a source si has its digital artifacts numbered 

from 1 to Ni. Let each digital artifact in source si be referred to as ai
1, a

i
2, a

i
3, … and so on. Each 

digital artifact ai
j has metadata associated with it, which I refer to as mi

j, that describes the artifact. 

Thus I characterise a source of digital artifacts as 

si = {a
i
j | a

i
j is the jth digital artifact in source si, j ∈  [1, Ni]} where i ∈  [1, S].                ...(2) 

To represent a source si as the set of all metadata associated with the corresponding digital 

artifacts that belong to si, we can equivalently write Equation (2) in the following way, since there 

is a one-to-one correspondence between an artifact ai
j and its metadata mi

j. 

si = {m
i
j | m

i
j is the metadata corresponding to artifact ai

j in source si, a
i
j ∈  si, 

  j ∈  [1, Ni]} where i ∈  [1, S]                                  ...(3) 

Each metadata mi
j associated with an artifact ai

j can be represented as an M-vector (mij
1, m

ij
2, ... 

m
ij

M) of data values where m
ij

k is the k
th value for metadata m

i
j and a

i
j belongs to source si. 

Expressed formally,  

m
i
j = (mij

1, m
ij

2, m
ij

3, ..., m
ij

M) where j ∈  [1, Ni], i ∈  [1, S].                              ...(4) 

For convenience, all such vectors are assumed to be of the same length, so where a digital artifact 

has metadata mi
j such that |mi

j| < M, I append null values to bring it up to size M. The value M is 

chosen such that it takes the cardinality of the largest metadata vector selected across all digital 

artifacts, across all sources in DE, i.e.,  

M = (|mi
j|).                                     ...(5) 

Let the digital artifacts in each source si ∈  DE be grouped according to their respective application 

types. In my research, I represent a source of digital evidence as a list of artifacts, each identified 

by a list of corresponding metadata obtained both from the file system and the respective 

[1, ], [1, ]
max

ii S j N 
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applications. Then, a metadata match is indicated by matching values in corresponding metadata 

between two or more digital artifacts. In this thesis, my model for metadata is a vector of name-

value pairs, where the value can be either string or numeric type. 

The metadata correspondence can be established in two ways: (i) directly and one-to-one where 

the artifacts involved in the match belong to the same application and thereby share the metadata 

semantics; or (ii) through a metadata equivalence established prior to identifying metadata 

matches between the equated metadata. Where there is a one-to-one correspondence between the 

domains of values taken by two distinct metadata indices p and q across different sources sp and 

sq, a metadata equivalence relationship can be established between the metadata p and q across 

these sources. 

A syntactic association is assigned to the concerned artifacts when a value match or similarity is 

identified. The semantics of the association is derived from the semantics of the metadata where 

the match was found. The semantics of any single metadata associated with an artifact provides an 

‘of’ relationship with the artifact. For instance, if metadata ‘Author’ for a file F is James, then the 

semantics is derived as ‘the author of file F is James’. When multiple files are syntactically 

associated for metadata ‘Author’, then the semantics of the association is derived as ‘the author of 

files F, G and H is James’. Another way of expressing this association is ‘files F, G and H have 

the same author and the author is James’. When identifying metadata associations, it is necessary 

to understand the different types of matches in metadata and define them unambiguously. I briefly 

discuss in the next section the types of syntactic associations that can be defined on metadata that 

can take string or numeric values. 

4.5.1 Types of Metadata Associations 

With regard to metadata values, there can be 4 basic types of associations based on value, viz., 

exact association, partial association, threshold association and date association. These are 

elaborated below: 

Exact association: When a particular metadata value in one digital artifact matches exactly with 

the corresponding metadata on another artifact, irrespective of the type of value, an exact 

association is said to occur between the artifacts for that metadata. 

Partial association: When a particular metadata value in one digital artifact matches partially with 

the corresponding metadata on another artifact, for a value of STRING type, a partial association 
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is said to occur between the artifacts for that metadata. Such a partial association can be of three 

different types. 

 Left sequence: For two strings s1 and s2 such that s1 ≠ s2, if two or more characters from the 

left in s1 match exactly with the corresponding characters in s2, that defines a left sequence partial 

association between s1 and s2. 

E.g. s1 = SAMUEL  s2 = SAMSON 

 Right sequence: For two strings s1 and s2 such that s1 ≠ s2, if two or more characters from 

the right in s1 match exactly with the corresponding characters in s2, that defines a right sequence 

partial association between s1 and s2. 

E.g. s1 = WILLIAMSON  s2 = ROBERTSON  

 Anywhere in the middle: For two strings s1 and s2 such that s1 ≠ s2, if two or more 

characters in s1 match exactly with the corresponding characters in s2 and do not match at either 

the left or right ends, that defines a middle sequence partial association between s1 and s2. 

E.g. s1 = INTRIGUE  s2 = CONTRIVE 

Threshold association: When a particular metadata value in one digital artifact differs with the 

corresponding metadata on another artifact, for a value of NUMERIC type, such that the 

difference occurs within a pre-defined threshold δ, a threshold association is said to occur between 

the artifacts for that metadata. Such a threshold association may occur either with a value greater 

than or less than the specified threshold. As such, the nature of the difference in value is only 

relevant, if the artifact on which the comparison is pivoted, is identified. 

Date association: When a particular metadata value in one digital artifact, for a value of DATE 

type, is matched against with the corresponding metadata on another artifact, it defines a date 

association between the said artifacts for that metadata. Such a date association can occur in 4 

different types. 

 At time t: For two timestamps t1 an t2, if their values match to the last degree of resolution 

that can be determined within technological constraints, then an at t date association is said to 

occur. The value is taken as reference time t. 
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Before time t: For two timestamps t1 and t2 such that t1 ≠ t2, when it is determined that one 

timestamp is less than the other, then a before t date association is said to occur. In this case, the 

artifact corresponding to the larger timestamp value is taken as reference on which the comparison 

is pivoted and its value is taken as reference time t. 

 After time t: For two timestamps t1 and t2 such that t1 ≠ t2, when it is determined one 

timestamp is greater than the other, then an after t date association is said to occur. In this case, 

the artifact corresponding to the smaller timestamp value is taken as reference on which the 

comparison is pivoted and its value is taken as reference time t. 

 Between time instants tʹ and tʹʹ: For two timestamps t1 and t2, if we can determine pre-

defined time instants tʹ and tʹʹ such that tʹ < t1, t2 < tʹʹ, then a between tʹ and tʹʹ date association is 

said to occur. 

Based on the metadata associations outlined in this section, we can group the associated artifacts 

as discussed in the sequel. 

4.5.2 Similarity Pockets, Similarity Groups and Association Groups 

In Figures 4.9 and 4.10, nodes represent digital artifacts and the edges represent metadata with 

identical values. These artifacts, hence, have an exact association between them. Figure 4.9 

represents such a collection of 5 artifacts associated (numbered counterclockwise) by a single 

name-value pair match. Since all the digital artifacts have the same metadata index-value pair, it is 

a fully connected graph. For brevity, I have only shown a connected graph. I term such a 

collection as a similarity pocket since there is exactly one metadata match that is shared by all the 

digital artifacts in that pocket. For instance, a set of 5 documents connected by the metadata 

‘Author’ is a similarity pocket. I introduce the concept of a similarity pocket sp
ik

t as a set of digital 

artifacts within a source si which have the same metadata value mij
k for the kth metadata index. 

Each similarity pocket corresponds to a specific metadata index-value pair and hence, the 

similarity pockets generated by a particular metadata index k for different values v taken by the 

metadata index are mutually exclusive. The set of all such similarity pockets formed for a 

particular metadata index k and value v is tracked using the index t which belongs to the set of 

natural numbers N, and each t corresponds to a unique value for the metadata index and value that 

has resulted in a similarity pocket. 
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Definition. A similarity pocket sp
ik

t is a subset of source si, such that there exists a metadata value 

v and metadata index k ∈  [1, M], where, for each artifact ai
j ∈  sp

ik
t, metadata value mij

k equals v.  

Formally, 

sp
ik

t = {a
i
j | j ∈  [1, Ni], m

ij
k = v} for some v where k ∈  [1, M], t ∈  N, i ∈  [1, S].   

                …(6) 

 

Figure 4.9 Similarity pocket formed among five homogeneous documents on the value of the metadata index 

'AUTHOR' 

  

The set of all similarity pockets across all values v for some metadata index k ∈  [1, M] is denoted 

sp
i
k and the union of all such sets of similarity pockets across all metadata indices k in the range 

[1, M] for a source si is denoted spi. 

sp
i
k = {sp

ik
t | t ∈  N}                                   …(7) 

= set of all similarity pockets generated for metadata index k ∈  [1, M]. 

 spi = sp
i
k                                          …(8) 

= union over all sets of similarity pockets sp
i
k generated on source si across all 

metadata indices in [1, M]. 

We refer to the union of all spi across all sources in DE as the set SP (illustrated in Figure 4.10), 

which is defined as: 
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i                                   …(9) 
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 =  {sp
ik

t | t ∈  N} 

=  set of all similarity pockets generated across all values v for all metadata 

indices k ∈  [1, M] for all sources in DE. 

 
Figure 4.10 The set of all similarity pockets on some source 

  

For the purposes of illustration, consider a scenario where a set of documents on a source are 

being analyzed. The set of all documents are logically treated as homogeneous artifacts belonging 

to that source. The abstraction applied in this context refers to the application level abstraction 

referred to in Figure 4.3. In Figure 4.13, the similarity pocket from Figure 4.9 is extended to a new 

artifact which is associated with documents 5 and 2 via different metadata. By virtue of the 

abstraction applied, document 6 is treated as a homogeneous artifact alongside documents 1 to 5. 

Since this collection is formed by combining multiple similarity pockets, it results in a similarity 

group. A similarity group is the largest combination of two or more similarity pockets within a 

given source of digital evidence where each digital artifact has a least one metadata match with 

one or more other artifacts. I introduce the notion of a similarity group sg
i
t defined as a set of 

digital artifacts obtained from a union over similarity pockets from the set spi where, for each 

similarity pocket, there exists at least one other similarity pocket which has a non-empty overlap 
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process is continued until transitive closure is reached. I note that each similarity group that is 

formed from two or more similarity pockets has the characteristics described by Equation (10). 

Characteristics of a similarity group. A similarity group sg
i
t is a subset of source si such that it 

is the largest union over similarity pockets in spi where for each similarity pocket sp
ik

q  sg
i
t, 

there exists another similarity pocket sp
ikʹ

qʹ  sg
i
t such that sp

ik
q sp

ikʹ
qʹ ≠ ∅ . 

sg
i
t = {a

i
j | k ∈  [1, M], ∃ q, qʹ: (q ∈  N  qʹ ∈  N  ∃ sp

ik
q, sp

ikʹ
qʹ, kʹ: (kʹ ∈  [1, M]  ai

j ∈  sp
ik

q  sp
ik

q  sg
i
t  

sp
ikʹ

qʹ  sg
i
t  sp

ik
q  sp

ikʹ
qʹ  

sp
ik

q  sp
ikʹ

qʹ ≠ ∅ ))} where t ∈  N, i ∈  [1, S]          
                   …(10) 

The set sg
i
t is illustrated in Figure 4.11 with a set of conditions that govern membership for any 

two artifacts a and b on source si. 

sgi = {sg
i
t | t ∈  N}                      …(11) 

  = set of all similarity groups generated on source si. 

We represent the set of all similarity groups across all sources as SG.  

SG = sgi                              …(12) 

  = set of all similarity groups generated across all sources in DE. 
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Figure 4.11 Conditions that govern membership to a similarity group 

  

Similarity groups are formed when I merge the similarity pockets across all metadata for all 

digital artifacts in a source. In order to associate these similarity groups across the sources and 

determine correlations based on metadata values, I group the sg
i
t where i ∈  [1, S], t ∈  N by 

establishing metadata equivalence relationships between the metadata indices between two or 

more sources of digital evidence. The equivalence relationship is established by determining 

equivalence over the domain of values taken for the corresponding metadata indices between the 

respective sources. 

If similarity groups are combined across multiple sources based on metadata matches established 

through metadata equivalence relationships, it results in an association group. An association 

group is the largest union of two or more similarity groups in SG where at least one digital artifact 

Similarity pocket

Similarity group sgi
t

Condition 1

Condition 2

Condition 4

. . .

. . .

. . .
Condition 3

1. artifacts a, b belong to the same similarity pocket.

2. for some artifact c, (a and c) and (b and c) belong to the two respective similarity 
pockets for metadata m and m' respectively.

3. for some similarity pocket sp in that similarity group, a, b belong to two different 
similarity pockets such that there are two other artifacts x, y in sp that are 
associated on different metadata with and a and b.

4. for some arbitrary chain of similarity pockets sp1, sp2, … spn, such that for all k, 
spk and spk-1 exhibit the relationship described in point (2), there exist two other 
artifacts (x belonging to sp1, and y belonging to spn) that are associated on 
different metadata with and a and b respectively.
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from a similarity group sg
i
t has at least one metadata value match based on a metadata equivalence 

relationship with another digital artifact belonging to similarity group sg
iʹ
tʹ where i ≠ iʹ, t ≠ tʹ. To 

build an association group from the set of similarity groups, I pick one similarity group at random 

as the seed group and iteratively check all remaining similarity groups in sgi to determine the 

similarity groups that contain at least one artifact which has a metadata value match based on a 

metadata equivalence relationship for some artifact from the seed similarity group. The process is 

continued until transitive closure is reached. I note that each association group that is formed from 

two or more similarity groups has the characteristics described by Equation (13). 

Characteristics of an association group. An association group agt is the largest union of 

similarity groups in SG across sources in DE where metadata equivalence reveals the presence of 

metadata matches. For each artifact in an association group a
i
j that belongs to some similarity 

group sg
i
t for some i ∈  [1, S], t ∈  N, there exists another similarity group sg

iʹ
tʹ for iʹ ∈  [1, S], tʹ ∈  N 

where sg
i
q  sg

iʹ
qʹ and there is a metadata match between artifacts ai

j and aiʹ
jʹ based on metadata 

equivalence. 

agt = {a
i
j
 | i ∈  [1, S], ∃ q, qʹ, iʹ: (iʹ ∈  [1, S]  q ∈  N qʹ ∈  N  ∃ sg

i
q, sg

iʹ
qʹ, a

iʹ
jʹ: (a

i
j ∈  sg

i
q  sg

i
q  agt  sg

iʹ
qʹ  agt  

a
iʹ
jʹ ∈  sg

iʹ
qʹ  sg

i
q  sg

iʹ
qʹ  artifacts ai

j and aiʹ
jʹ 

exhibit a value match based on metadata 
equivalence))} where t ∈  N                  ...(13) 

The set agt is illustrated in Figure 4.12 with a set of conditions that govern membership for any 

two artifacts a and b. 

Let AG refer to the set of all agt in DE, then, 

AG  = {agt | t ∈  N}                     …(14) 

  = set of all association groups generated on DE. 

 

 
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Figure 4.12 Conditions that govern membership to an association group 

  

In the illustration in Figure 4.13, if the abstraction were drawn at the file format level, then 

logically document 6 would be regarded as an artifact of a different source and consequently, the 

grouping would result in an association group (where metadata equivalence is established a priori 

on the metadata ‘filesize’ and ‘Title’).  

Similarity pocket
Similarity group

Condition 1

Condition 2

Condition 4

Association group agt

Condition 5

Condition 6

. . .

Condition 3

1. artifacts a, b belong to the same similarity pocket.

2. artifacts a, b belong to the same similarity group.

3. for some metadata m and m' on 'a' and 'b' respectively, we can establish an equivalence 
relationship on their values such that metadata value of 'a' equivalent to metadata value of 'b'

4. for some two artifacts x and y, (a and x) belong to similarity group 1 and (b and y) belong to 
similarity group 2 where x and y exhibit relationship identified in point (3).

5. for some similarity group sg in that association group, a, b belong to two different 
similarity groups such that there is at least one artifact in sg that exhibits relationship 
identified in point (4).

6. for some arbitrary chain of similarity groups sg1, sg2, … sgn, such that for all k, sgk and sgk-1

exhibit the relationship described in point (3), there exist two other artifacts (x belonging to 
sg1, and y belonging to sgn) that are associated differently with and a and b respectively.
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Figure 4.13 Intersecting similarity pockets across different metadata indices among a set of six documents 

  

While documents 1 and 6 are not directly related, they are connected through documents 2 and 5. 

Thus a seemingly unrelated pair of documents (1 and 6) can be shown to be associated based on 

metadata. The transitive nature of metadata associations can be useful in scoping keyword 

searches during analysis as I demonstrate in Chapter 7 of this thesis where I apply my metadata 

association model to analyze collections of word processing documents. I also show how my 

model can be used on arbitrary collections of files to automatically identify and group the related 

files. It is then sufficient for an examiner to study the groups generated rather that examine the 

individual documents. This is discussed further in Chapters 6 and 7 of this thesis. 

During forensic investigations, it is common to identify new sources of evidence and therefore, 

any model developed for evidence associations should be scalable, incrementally [130]. The 

metadata association model is so designed that a similarity pocket or association group can be 

easily extended to incorporate additional artifacts where new metadata matches are discovered 

from such incrementally discovered sources. When multiple similarity pockets are connected by 

discovering new metadata matches between them, these pockets are promoted to a similarity 

group if the metadata associations are limited to a single source or an association group, if they 

span across multiple sources. 

When the digital artifacts from a collection (obtained from one or more sources of digital 

evidence) are “associated” using metadata, I can pose the following questions on the collection for 

analysis. 

1. How many associated and unassociated digital artifacts are present in the 

collection? 
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2. How many digital artifacts are singly associated? What is most frequently 

occurring association on such singly associated digital artifacts? 

3. How many digital artifacts are multiply associated? What is most frequently 

occurring association on such multiply associated digital artifacts? 

4. What is the size of largest association group found in the collection? 

5. What is the size of the largest multiply associated group found in the collection? 

6. What is most number of distinct similarity pockets contained within a single 

association group? 

7. What is the largest number of the associations generated by a single digital artifact? 

The numbers determined are inherent to a particular collection. Such questions can be relevant 

when analyzing sets of digital image files or word processing documents as discussed in Chapters 

6 and 7 in this thesis. In such collections of files, the file belonging to the largest association 

group or the file containing the most number of metadata associations are worthy of further 

examination. 

The theory developed in this section and the definitions presented are revisited in Chapter 5 and is 

used to drive the implementation of artifact association algorithms that we’ve developed to 

determine specific relationships between two or more digital artifacts in digital evidence. I discuss 

the nature of forensic analysis to derive digital artifact relationships based on metadata 

associations in the sequel. 

4.6 Nature of Forensic Analysis 

The aim in the analysis of digital evidence is identification of the events leading to a reported 

incident, the nature of these events and their attribution to individual(s). For my discourse, an 

event refers to actions that are directly performed by an individual on any digital device. 

Examples of such events are creating a file, modifying a file, sending an email, logging into a 

server, visiting a website, downloading a file, etc. Each event can result in creating new digital 

artifacts, or accessing or modifying existing digital artifacts(s). Typically the following are 

observed when a new event occurs on the sources of digital evidence we’ve discussed in Chapter 

1:  

1. On a file system, an event can create a new file, or access or modify one or more 

aspects of an existing file. 
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2. In memory, an event can create a new process or modify an existing process. 

3. On a log file, an event usually creates a new log record. Existing log records are 

preserved, untouched. 

4. During a network packet capture session, an event captures a new network packet. 

Existing network packets are preserved, untouched. 

If a new digital artifact is created as a result of an event, its occurrence is reflected in the metadata 

that are also created along with the digital artifact. If an existing artifact is modified as a result of 

an event, its occurrence is reflected in the change in values of the metadata linked to that artifact. 

Therefore, irrespective of the type of event, its effect can be perceived in the metadata linked to 

the metadata. 

The analysis is concerned with finding answers to the forensic questions that relate to who, what, 

when, where, how and why [32]. Naturally the process of analysis is driven by methods intended 

to find these answers. In the previous chapter, I discussed the semantics associated with metadata 

associations. I explore this further here by extending the semantics to multiple metadata 

associations and identify metadata classes that naturally provide answers to these six questions.  

The most common form of grouping metadata, as reported in the literature [17, 18, 98, 106], is 

timestamps with owners for files, usernames for logs or IP addresses for network packet traces. 

The motivation behind this grouping is evident since it helps one find answers to who and when. 

To determine answers to what, where, and how, the artifacts are individually analyzed with 

perhaps, keyword filtering. However, this can be an extended process and may require multiple 

back-and-forth activities to determine the exact nature of the events recorded in evidence.  

When an event creates or modifies more than one digital artifact, identifying the metadata that 

pertain to the event across these artifacts will elicit the relationships that exist between them. 

Therefore, focusing on the appropriate metadata across the digital artifacts, one can reconstruct 

the event(s). 

4.7 Applying the Metadata Association Model in a Forensic Context 

Our approach parameterizes the artifacts (using metadata) in digital evidence and determines the 

associations that underline the artifact relationships both within and across sources. In general, the 

analysis raises several forensic questions, a few of which are listed below. The algorithms 

corresponding to the questions raised are presented in Section 5.3. Successful application of the 
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Metadata Association Model to the analysis of digital artifacts can answer the following 

questions:  

1. How do we apply the MAM to determine all individuals or devices from the digital 

artifacts in the sources of digital evidence? How many digital artifacts correspond 

to each identified individual or device? 

2. How do we apply the MAM to determine the sequence in which the events that 

correspond to the identified individuals or devices occur? 

3. How do we apply the MAM to identify those digital artifacts edited with a 

particular software product? 

4. How do we apply the MAM to identify those digital artifacts downloaded from the 

Internet? How do we identify the sources (or URIs) of these digital artifacts? 

5. How do we apply the MAM to identify digital artifacts that were created or 

accessed or modified at the same time instant as a given artifact? 

6. How do we apply the MAM to identify digital artifacts that are identical or 

structurally equivalent to a given artifact? 

When a forensic examiner examines digital evidence, he/she is actually looking for one or more 

individuals or digital devices and their activities. Associating an individual or a device to an 

activity in evidence ascribes the ownership of that activity to that individual or device. Once the 

activities of an individual or device are identified, it is necessary to chronologically assemble 

them to study the sequence. Questions 1 and 2 pose this as MAM based problems. 

When analyzing digital artifacts, it is necessary to determine those digital artifacts that were edited 

with software and those that were downloaded from the Internet, not necessarily exclusively. 

Having identified an artifact as a downloaded resource, it is necessary to determine the origin of 

that resource from the World Wide Web. Questions 3 and 4 pose this as MAM based problems. 

An examiner is often likely to begin the analysis with a single digital artifact and then proceed 

with the analysis by identifying related artifacts based on the outcome from the first artifact. This 

relationship can exist in time or in structure. When artifacts related in time are sought, it is 

necessary to determine those artifacts that were affected at the same time instants. When artifacts 
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related in structure are sought, it is necessary to determine those artifacts that are stored with 

related structural information. Questions 5 and 6 pose this as MAM based problems. 

To determine answers to these questions using the MAM, it is first necessary to identify the 

metadata in different digital artifacts that are likely to carry information pertinent to the forensic 

questions raised in this section. In the sequel, I identify metadata families across files, log records 

and network packets and link them to MAM based analysis of digital artifacts. 

4.8 Identifying Metadata Families Relevant to Forensic Contexts 

In my work, I am primarily concerned with analysis of files from file systems, log records from 

log files and network packets from network packet captures. Naturally, it is necessary to 

determine the classes of metadata from such artifacts that can provide specific answers to the 

questions raised during forensic analysis. In Figure 4.14, I classify metadata from different 

sources based on the questions concerning forensic analysis.  

 

Figure 4.14 Metadata families pertinent to forenic analysis 

  

Typically, questions of the type what or where relate to the source of the artifact and the metadata 

that identify such sources are potential candidates for finding the answers. The who question 

identifies an individual who is attributed to an artifact or a system that is attributed to an artifact. 

The when question relates to the time-related event(s) that affected an artifact and the timestamps 

in metadata can provide such answers. The how question pertains to describing other aspects 

pertaining to an artifact when an event affecting the artifact was observed. Therefore, metadata 

that identify such situational information are likely candidates. In Figure 4.15, I identify metadata 

from different artifacts, viz., files, log records and network packets, that belong to the four 

metadata families and pertain to specific questions in regard to forensic analysis. A mapping of 

Files Log records
Network 

Packets

M E T A D A T A

Source Ownership Timestamps Application

The what?

The where?

The how?

The where?

The when?The who?
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metadata indices29 from documents, logs and network packets corresponding to each metadata 

family is illustrated in Figure 4.15. 

 

Figure 4.15 Metadata tags for each metadata family across documents, logs and network packets 

  

Source typically corresponds to entities that exist within digital media, such as filename, file 

location, IP address and Creator/Publisher. Ownership corresponds to entities that have some form 

of physical presence in the real world, i.e., Author, Username, Organization, Digital camera 

specifications, Web server, etc. Timestamps correspond to time instants when digital events are 

recorded in the digital media and Application corresponds to features describing a particular 

artifact such as its application type, content size, number of pages or slides and formatting. While 

the metadata describe the characteristics of an artifact, my focus in this thesis is to utilize the 

semantics related to the four metadata families to elicit associations across digital artifacts. 

Table 4.2 shows the nature of grouping conducted by identifying metadata associations in digital 

evidence. Since the primary method for determining associations is through metadata matches, 

irrespective of the nature of the sources of digital evidence, if all the digital artifacts are of the 

                                                           
29 This illustration is not exhaustive, simply suggestive. 
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same type, i.e., homogeneous, then the process is similar to classification where groups are 

identified based on the values. For instance, all files in a file system, irrespective of the 

application type, contain some file system metadata. Naturally, when I apply the MAM using file 

system metadata, files containing identical values for file owner, last modified timestamp, file 

size, etc. are grouped together and this can also be achieved using a classification technique that 

pivots on those metadata. However, when a file and a log record are “associated” based on 

timestamp metadata, it conveys extra meaning in terms of the higher level actions of a user that 

can be discerned from this grouping. For instance, when a file f is grouped with a log record r 

belonging to application A, then we could infer that “application A was used to modify file f ” 

which can be a valuable inference during analysis. By virtue of the difference in the native 

representation of these digital artifacts, classification may not be able to identify the inherent 

relationship30. Therefore, the power of the metadata association model is best taken advantage of 

when there is inherent heterogeneity in the digital artifacts, irrespective of the number of sources 

of digital evidence from which they come. 

Source of Digital 

Evidence/Nature of Digital 

Artifacts 

Across multiple 

Homogeneous digital 

artifacts 

Across multiple 

Heterogeneous digital 

artifacts 

Across single or multiple 

Homogeneous source(s) 

Classification based 

grouping 

Association based 

grouping 

Across multiple 

Heterogeneous sources 

Classification based 

grouping 

Association based 

grouping 

Table 4.2 Tabulating the nature of grouping conducted across diverse sources and digital artifacts 

  

When we group the associated digital artifacts for forensic analysis, it is necessary to define the 

semantics related to underlying metadata associations between digital artifacts that pertain to 

events of interest. In the sequel, I define digital artifact relationships based on the metadata 

associations for files and log records. 

                                                           
30 This is particularly so if the timestamp in the log record and the file metadata are slightly different. While 

classification may ignore the chronology in the two artifacts, the MAM will associate them to identify the higher-
level event that is being described. 
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4.9 Deriving Digital Artifact Relationships from Metadata Associations 

When we determine metadata associations across artifacts, it underlines the relationship between 

the artifacts which can reveal the nature of activities recorded. In this section, I define eight types 

of artifact relationships based on metadata associations to conduct analysis.  

4.9.1 Existence Relationship 

When a metadata match occurs in the source metadata family for metadata filename or 

Title/Subject of the file between files f1 and f2, where f1 and f2 reside on different homogeneous 

sources, I define an existence relationship between the files. The files themselves need not belong 

to the same application type, but only contain the metadata that leads to a metadata association, 

e.g., .DOC and .BAK or .TMP. The relationship is denoted by Re and it may be expressed as f1 Re 

f2. By definition this relationship is commutative and associative. The association groups 

containing such relationship pairs in evidence are referred to as existence association groups. 

Therefore,  

1. f1 Re f2  f2 Re f1               …(15) 

2. (f1 Re f2) (f2 Re f3) (f1 Re f3)             …(16) 

When multiple such files (f1, f2, f3, …fn) exhibit an identical association between each other, e.g., 

produce a metadata match for the same value of filename, I represent this relationship as Re (f1, f2, 

f3, …fn). 

4.9.2 Source Relationship 

When a metadata match occurs in the source metadata family between files f1 and f2, where f1 and 

f2 belong to the user file system, I define a source relationship between the files indicating that the 

files were likely to be created on the same source as identified the respective metadata. The 

relationship is denoted as Rs and is expressed as f1 Rs f2. By definition this relationship is 

commutative and associative. Therefore,  

1. f1 Rs f2  f2 Rs f1               …(17) 

2. (f1 Rs f2) (f2 Rs f3) (f1 Rs f3)              …(18) 

When multiple such files (f1, f2, f3, …fn) exhibit an identical association between each other, e.g., 

produce a metadata match for the same value of computer name or software, I represent this 

relationship as Rs (f1, f2, f3, …fn). 

 

 
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4.9.3 Happens Before Relationship 

When a metadata match occurs on the ownership metadata family of log files such as the log 

records of the web history and cache logs of a web browser, I define a happens before 

relationship indicating the occurrence of a web page visit prior to the download of the specified 

resource on the cache log. The relationship is denoted by Rh and expressed as x Rh y where x is the 

digital artifact corresponding to the browser history log and y is the artifact corresponding to the 

browser cache log. In general, for two events x, y, time(x) < time(y) indicating that x happened 

before y, and the interpretation of this relationship is that event y occurred after event x. This 

relationship is purely concerned with the associations between events that exist based on the 

metadata and those that can be practically detected using a deterministic algorithm. Whether these 

events were causally related or not cannot be decided based on the timestamps alone, and in 

general, such decisions are to a human forensic examiner. The discussion regarding the causality 

is beyond the scope of this thesis. By definition, the relationship is not commutative but is 

associative. 

(x Rh y)(y Rh z)   (x Rh z)              …(19) 

 

4.9.4 Download Relationship 

When the filename of a file f on the user file system generates a source metadata family metadata 

match with a download resource r recorded in a browser cache log, I define a download 

relationship indicating the download of the resource r to the user file system. The relationship is 

denoted by Rd and expressed as f Rd r indicating the creation of f implies the download of resource 

r. 

4.9.5 Parallel Occurrence Relationship 

When a metadata match occurs in the timestamp metadata family between two files f1 and f2, 

where f1 and f2 belong to the user file system, I define a parallel occurrence relationship 

indicating that the two files f1 and f2 were accessed at the same time identified by the matching 

value of the timestamps in their metadata. This relationship is purely concerned with the 

associations between events that exist based on the metadata and those that can be practically 

detected using a deterministic algorithm. Whether the association leads to the determination of 

parallelism in the abstract sense is beyond the scope of this thesis and often left to the judgment of 
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a human forensic examiner. The relationship is denoted by Rpo and expressed as f1 Rpo f2. By 

definition, this relationship is commutative and associative. Therefore,  

1. f1 Rpo f2  f2 Rpo f1               …(20) 

2. (f1 Rpo f2) (f2 Rpo f3) (f1 Rpo f3)             …(21) 

When multiple such files (f1, f2, f3, …fn) exhibit an identical association between each other, e.g., 

produce a metadata match for at least one timestamp on the same value, I represent this 

relationship as Rpo (f1, f2, f3, …fn). 

4.9.6 Structure Similarity Relationship 

When a metadata match occurs in the application metadata family between two files f1 and f2, 

where f1 and f2 belong to the user file system, I define a structure similarity relationship indicating 

that the two files f1 and f2 have identical or equivalent attributes. The relationship is denoted by Rss 

and expressed as f1 Rss f2. By definition, this relationship is commutative and associative. 

Therefore,  

1. f1 Rss f2  f2 Rss f1               …(22) 

2. (f1 Rss f2) (f2 Rss f3) (f1 Rss f3)             …(23) 

When multiple such files (f1, f2, f3, …fn) exhibit an identical association between each other, e.g., 

produce a metadata match for the same value of content type or file size, I represent this 

relationship as Rss (f1, f2, f3, …fn). 

4.9.7 Unauthenticated Modification Relationship 

When two files f1 and f2 differ in metadata only with respect to the structural composition of the 

files and the software exclusively present in only one of the files, it indicates an unauthenticated 

modification relationship denoted by Rua and expressed as f1 Rua f2. The relationship, by definition, 

is commutative.  

4.9.8 Majority Relationship 

When two files f1 and f2 have an unauthenticated modification relationship, in the presence of a 

third file f3 which contains a source relationship with either f1 or f2, then that pair of files is said to 

exert a majority relationship, denoted by Rm, over the other file. Therefore,  

(f1 Rua f2) (f1 Rs f3) (f1, f3) Rm f2.             …(24) 

 

 

 
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When such relationships are determined across digital artifacts on the same homogeneous source, 

it results in similarity pockets if exactly one metadata match is discovered or similarity groups in 

the case of multiple metadata matches. Across multiple sources, as in the case of the existence 

relationship, this would result in association groups. Selecting the right MAM group, one can 

determine either a single relationship or combinations of multiple relationships as the case may 

be. Using these eight relationships identified through metadata associations, I show how to 

discover evidence of files downloaded from the Internet, files likely to be downloaded from the 

Internet, the source of the download and doctored files. This is discussed in Chapters 6 and 7 in 

the context of digital image files and word processing documents respectively. 

Once the association groups are generated after applying my model, the related digital artifacts 

can be sequenced on a timeline for analysis. This is achieved by sequencing the timestamps in 

metadata into a unified sequence. However, since association groups typically contain 

heterogeneous digital artifacts, possibly across different sources of digital evidence, the timestamp 

interpretations can be a challenge. In the sequel, I discuss this problem in detail.  

4.10 Timestamp Interpretations across Heterogeneous Sources  

To determine evidence relevant to an investigation, it is necessary to analyze the artifacts that 

were created, accessed or modified closer to the time of a reported incident that is being 

investigated. In such situations, one can set up time windows and analyze the artifacts that were 

created, accessed or modified within it. Such time windows are relevant only if the artifacts’ 

timestamps are chronologically ordered or digitally time-lined.  

Timelines are usually generated using the timestamps recorded in the artifacts’ metadata. 

However, when associating timestamps, the syntactic associations as discussed in Section 4.4 

cannot be applied readily. This is because timestamps have varied representations across different 

systems (refer to Chapter 2). Broadly speaking, there are three types of challenges that can arise 

when dealing with timestamps from across heterogeneous sources. Apart from basic syntax 

aspects, there are the following other two types of challenges:  

1. Time zone reference and timestamp interpretation; and 

2. Clock skew, clock drift and synchronization. 
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A consequence of these challenges is that a syntactic association need not necessarily lead to a 

semantic association between the artifacts. For instance, two files with creation timestamps 

09:30:00 AM July 25th 2011 AEST and 09:30:00 July 25th 2011 GMT have a syntactic association 

but may not share a semantic relationship as these timestamps are 10 hours apart. It is necessary to 

take cognizance of these interpretation challenges when metadata associations are applied to 

timestamps. In this section, I examine such timestamp interpretation challenges. 

4.10.1 Timestamps and Digital Events 

We adopt the timestamp definition given by Dyreson and Snoddgrass [55]. Timestamps are an 

important part of metadata that are scrutinized during analysis. File systems typically record these 

three timestamps for each file that is stored within it. These timestamps indicate when a particular 

artifact was created, last accessed or last modified, as the case may be. Timestamps are also 

recorded on log files and network packet captures and these correspond to the events relevant to 

the respective logging context. In general, there are many types of events and in my research, I am 

concerned with five types of events: 

1. File Create event: creation of a file in a file system 

2. File Modify event: modification of a file in a file system 

3. File Access event: accessing a file in a file system 

4. Logged event: an event logged by some system or application (e.g., Web 

server, Internet browser) 

5. Packet event: the arrival/receipt of a network packet on capture 

The first three events are specific to files on file systems, the fourth event is specific to records 

contained in log files and the last event is specific to network packets in a network capture file.  

4.10.2 Ambiguities in Timestamp Provenance  

Different digital sources record events differently and therefore the representations and resolutions 

of the timestamps also differ. In fact, even if multiple sources were obtained from the same 

location, the values for their timestamps could differ greatly. For one thing, if the location 

information where an NTFS or an EXT file system image was found is not recorded, it may be 

lost forever, since these file systems only record time with respect to UTC. As a result, whether 
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the timestamp was recorded in Sydney (UTC +1000) at 3:30:00 PM July 1st or in New York (UTC 

-0400) at 10:30:00 PM the previous night, the timestamp would record a value corresponding to 

July 1st 5:30:00 AM UTC. Hence if the appropriate provenance of the timestamps is not recorded, 

despite the time-shift that is applied to the evidence on forensic tools, it can result in ambiguous 

timestamps which can lead to inconsistent timelines. 

4.10.3 Interpreting Timestamps Using Forensic tools 

On most forensic tools, the combination of source name and its type is sufficient to determine the 

timestamp representation format and its time reference. The event determines the specific event 

name or the file name as the case may be. These timestamps correspond to the MAC timestamps 

for documents on a file system. On Internet logs such as the history and cache, the semantics 

varies, but generally timestamps correspond to the last access of a URL (history) or the timestamp 

on the file system when a resource (represented by a URI) is saved (cache) on the file system. 

Typically, forensic analysis tools read the timestamps’ values and while rendering, apply a fixed 

time zone shift to obtain the UTC (Universal Coordinated Time) value. In the case of timestamps 

from the NTFS or EXT file system, the timestamps are available in UTC and the shift is applied to 

obtain the local timestamp. The time shift corresponds to the time difference between UTC and 

the local time where the evidence was acquired. This time zone information is obtained out-of-

band and all timestamps are adjusted with a uniform translation. The forensic tools process an 

entire forensic image at a time and hence do not maintain separate time zone information for each 

artifact within the image. That is to say, when a file system is analyzed, the same time zone offset 

is applied to the files in the file system as is to the Internet logs discovered within it. However, 

often file systems and logs from different homogeneous sources do not maintain the same time 

reference. I illustrate a generic model (in XML) for representing timestamps in Figure 4.16.  

 
Figure 4.16 Generic timestamp structure 

  

The timestamp model shown in Figure 4.16 is an abstraction of the representation for a 

timestamps as observed in most forensic tools. The timestamp values that are not recorded are 

<timestamp>

<source-name> name </source-name>

<source-type> type </source-type>

<event> event-name </event>

<modified> value </modified>

<created> value </created>

<last-accessed> value </last-accessed>

</timestamp>
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represented by null. The source name uniquely identifies the evidence source and the type 

identifies the type of source, such as a hard disk image or log or network packet capture. The 

event identifies the specific event that is represented and created, modified and last-accessed refer 

to the timestamps with usual meaning. 

4.10.4 The Timestamp Interpretation Problem 

The time-lining tools, currently in existence, do not carry forward the time reference information 

for analysis. While forensic toolkits such as Encase, FTK or Sleuthkit can take a time-reference as 

input, it is usually a fixed offset value common to all the contents on a forensic acquired medium. 

This is illustrated in Figure 4.17. 

 

Figure 4.17 Timeline generation using traditional forensic tools 

  

Consider how the conventional method works in the generation of a timeline. A forensic image is 

loaded into some forensic tool and the timestamps corresponding to the artifacts are extracted 

(using a fixed time zone offset) using the tools such as Encase, FTK, Sleuthkit. The timestamps 

are then sequenced using an analysis tool like log2timeline. Usually if the artifacts were obtained 

from the same source, all timestamps are treated as obtained in the same time zone. However, a 

hard disk as we all know is a mixture of all types of events, each having its own reference clock. 

Therefore applying a fixed time zone reference cannot always provide a homogeneous and 

consistent timeline. The time reference and the timestamp representation of these timestamps can 

significantly impact the timeline generated. For instance, if we consider a FAT file system with a 

Windows operating system, the files store timestamps as local system time while the Internet 
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Explorer application stores the browser log event timestamps in UTC, rendered in local time zone. 

I illustrate this challenge in Figure 4.18.  

 

Figure 4.18 Differences in timestamp interpretation across timestamps with different timezone references 

  

A timestamp can either have a local reference or some known global reference. For a local 

timestamp, one requires a time zone offset to determine its corresponding global value and vice 

versa for timestamp with global reference to determine its local time zone value. The two offsets 

are never the same. This results in two distinct problems with regard to timestamp interpretation. 

They are: 

1. A timestamp in local time without zone information (in FAT file systems and ZIP 

file formats) 

2. A timestamp in UTC time without zone information (in NTFS/EXTx file systems) 

One important drawback with regard to present-day digital time-lining tools is that they do not 

interpret the value of timestamps obtained from the source during digital time-lining. The values 

are used as they are found on the source (in the appropriate representation format), except 

perhaps, when a fixed time zone shift is applied. I illustrate the ambiguities that result from 

challenges (1) and (2) in Figure 4.19 and Figure 4.20 respectively. 
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Figure 4.19 Intrinsic FAT32 timestamp interpreted with global timezone reference at a different location 

  

 

Figure 4.20 Intrinsic NTFS timestamp interpreted on a FAT32 file system 

  

To address these challenges, it is necessary to distinguish the various homogeneous sources 

present even within a single forensic medium and develop a provenance model that is capable of 

recording sufficient provenance to facilitate accurate timestamp interpretation. The model should 

be capable of recording information relating to when and how a particular homogeneous source 

was acquired, its time zone shift with respect to UTC and ideally clock skew information. Such a 

provenance model will allow computing accurate timestamps to generate the unified timeline, is 

described in the following section.  

4.11 Provenance Information Model to Normalize Timestamp 

Interpretation 

The Provenance Information Model (or PIM) parallels the concept of Turner’s digital evidence 

bags [190], albeit with a practical outlook. While DEB records acquisition metadata such as date 

and time of acquisition, the size and contents of the source and so on, it fails to record time zone 
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information especially when dealing with FAT file systems on hard disks or ZIP archive files and 

so on.  

4.11.1 Structure for Provenance Information Model 

The PIM defines a structure for recording the time information associated with a homogeneous 

source for analysis that incorporates time zone shifts on individual timestamps to obtain values in 

reference to a single time zone. Each homogeneous source is associated with its own PIM to 

uniquely carry forward its time reference. The provenance information model for each 

homogeneous source records four important components that is carried forward along with the 

homogeneous source during analysis, viz., 

1. time zone information from where the homogeneous source was obtained, 

2. any known clock skew for the homogeneous source when acquired, 

3. summary of the acquisition process, and 

4. assertions about events recorded in the homogeneous source. 

The time zone information records the time shift of the event timestamps on a particular 

homogeneous source from UTC. Day light savings, if applicable, are also recorded alongside the 

time zone information. The PIM corresponding to the source provided in the DFRWS 2008 

forensic challenge [51] contains UTC -0500 to denote the time zone of the location in the eastern 

coast of United States where the events were recorded. This information is recorded as a part of 

each homogeneous source identified in the evidence source. It is applied to the timestamps on 

files within ZIP archives, FAT user folder and the contents of browser cache to obtain global 

reference values (e.g. UTC) to generate a unified timeline. Known clock skew is also recorded 

and separately represented as a shift denoting number of seconds each timestamp is skewed off 

the reference clock. Unlike clock skew, clock drift presents a greater challenge as it is necessary 

to determine the exact rate at which the timestamps started to drift and the accumulated drift at the 

time of the acquisition (w.r.t. a reference clock). 

4.11.2 Resilient Timestamps 

Reference clock information for evidence is typically obtained out-of-band from the evidence 

location and transferred through manual documentation. This information, applied through 

forensic tools, incorporates a fixed offset to the evidence contents, without discrimination. It is 
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however, necessary to acknowledge that there can be multiple homogeneous sources within a 

single forensic medium and each source requires a separate storage mechanism to record the 

respective time zone shifts. The PIM forms that medium; the PIM is essential for FAT file systems 

where time zone information is not recorded. ZIP archives do not carry MAC information of their 

own, and only store the last modified timestamp of the files archived in them, that too in local 

time with reference to where the archive was created. Therefore, while examining ZIP archives, 

the PIM can be important to trace the provenance of the archived files. In essence, the PIM 

recorded for a particular homogeneous source is applied to each timestamp to derive a referenced 

local timestamp and corresponding global (UTC) timestamp for:  

i. a local timestamp with no time zone information; and  

ii. a global timestamp with no local time zone information. 

Besides this, the reference clock information can also be used to reverse inadvertent time zone 

shifts caused by analysis tools while processing the homogeneous sources, rendering the 

timestamps resilient to time zone shifts which can produce a robust timeline.  

By virtue of the resilience imparted to the timestamps, the PIM is not merely a place-holder for 

reference clock information; the PIM can also be used to validate and identify, if not correct, 

ambiguous or uncertain timestamps. When assertions are recorded in the PIM, those assertions 

can be validated during digital time-lining. A variety of assertions can be recorded in the PIM; for 

example, one may assert that all documents in a user folder have the same value for the metadata 

‘Author’. 

4.11.3 Identifying and Validating Inconsistent Timestamps 

Maintaining the UTC and a local timestamp value for each timestamp serves two purposes; firstly, 

to digitally timeline the events with respect to global reference, the UTC is used to which all event 

timestamps, irrespective of the homogeneous source type are converted, and secondly, the local 

time zone can be used to allow for assertions and hypothesis within the PI of each homogeneous 

source that can be tested and reported back to the examiner on the outcome. For example, the 

examiner may posit that documents should have been used between working hours, i.e., the 

timestamps should have been recorded after 9 AM and before 5 PM on a weekday. Note that the 

examiner need not be certain that these values are necessarily correct. If this hypothesis was 

indeed true, it can allow one to omit files considered irrelevant and focus on a narrower group.  
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An examiner can make assertions such as, “All timestamps found on a particular homogeneous 

source should have timestamps less than the date and time when that homogeneous source was 

acquired”. When this assertion is satisfied, it guarantees that the homogeneous source has been 

processed according to proper procedures as a sanity check mechanism. On the other hand, if this 

assertion is not satisfied, one of two possibilities is likely, either the chain of custody is faulty, or 

the timestamps were intentionally tampered. While it is still possible for such timestamps to be 

found with no malicious intent, such decisions are left to the examiner. 

The design and implementation of my provenance information model is discussed in Chapter 5 of 

this thesis. I conclude this chapter with a brief summary of the work reported. 

4.12 Chapter Summary 

In this chapter I conducted a review of contemporary forensic and analysis tools to abstract the 

different functionalities supported to analyze different sources of digital evidence. This review 

culminated in the design of the functional Forensic Integration Architecture which consolidated 

these functionalities and defined a new layer to group artifacts based on metadata associations. I 

conducted experiments to elicit the syntax and semantics associated with metadata associations 

which were determined through the identification of metadata matches. I generalized my findings 

which resulted in the metadata association model. These contributions directly address my 

research objectives stated in Chapter 1 towards developing a framework for identifying 

associations in digital evidence using metadata. The architecture has resulted in a design for an 

analysis engine to analyze metadata associations among sources of digital evidence. The design of 

this tool is discussed in the next chapter. 

We identified and highlighted the interpretation challenges in processing timestamp-based 

associations across heterogeneous sources during analysis. To address this challenge, I developed 

the provenance information model which develops resilient timestamps for digital time-lining 

across multiple sources. I developed a prototype toolkit implementing this model and generate a 

unified timeline. The design of this tool is discussed in the next chapter. 
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“No amount of experimentation can ever prove me right; a single 

experiment can prove me wrong.” 

- Albert Einstein 

 

 

 

5. Prototype Implementation 
In this chapter, I present a practical framework to validate the metadata associations model 

(MAM) designed in Chapter 4 to identify metadata associations across multiple sources and group 

them. This chapter describes my demonstrable implementations of the metadata association and 

provenance information models which were used to translate forensic questions into MAM based 

experiments. I have developed two prototype toolkits which I describe in this chapter. The first 

prototype, called the AssocGEN analysis engine, is used to identify generic metadata matches 

across digital artifacts and group the associated artifacts, and the second, called UniTIME, is used 

to incorporate the provenance information model for timestamp interpretation and generate a 

unified timeline across multiple sources. 

5.1 Prototype Development One: The AssocGEN Analysis Engine 

The AssocGEN Analysis Engine was my research prototype implementation of the MAM used to 

access heterogeneous sources of digital evidence and unify the analysis by identifying metadata 

matches between them. Its design adopts many of the principles proposed in f-FIA (Section 4.2) 

but exclusively focusses on the development of the Evidence Composition layer to combine digital 

artifacts using metadata associations. The AssocGEN architecture is shown in Figure 5.1. 

AssocGEN can extract metadata from digital artifacts belonging to forensic hard disk images, 

Internet browser logs (both history and cache logs) and network packet captures. AssocGEN was 

developed in Java and is cross-platform compliant. 
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Figure 5.1 The AssocGEN architecture 

  

5.1.1 Rationale for the Design 

AssocGEN was primarily designed with the view of abstracting current technological support 

extended to heterogeneous sources of digital evidence. My review of contemporary forensic and 

analysis tools (refer to Chapter 4) informs this design. Since my primary focus in this analysis 

engine was to extract metadata associations across heterogeneous digital artifact, I adopted 

suitable software support to implement the lower layers that conform to forensic requirements 

[130]. Besides this, as I focused on using the metadata extracted/parsed from digital artifacts and 

not the entire evidence source, it was sufficient to implement these functionalities using existing 

software libraries. This rationale applies to the lower layer implementation of both prototypes, 

AssocGEN, in this section and UniTIME, described in the following section. The Digital 

Evidence layer provides binary-stream access to digital evidence. In current technology, the file 

system support provided in Sleuthkit, the evidence image libraries ewflib and afflib and the 

Snorkel file system library are potential candidates to provide this support. 

Among these, Sleuthkit
31 accesses a source of digital evidence as a monolithic bit stream and 

handling discrete objects such as digital artifacts and metadata can be an implementation 

                                                           
31 http://www.sleuthkit.org/sleuthkit/ 
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challenge. The ewflib
32 has similar concerns, best taken advantage of using commercial forensic 

toolkits like Encase which encapsulate using proprietary binary stream interfaces. The afflib 

accesses a source of digital evidence as inodes which store the attribute related to the contents. 

The abstractions modeled in the afflib
33 library are more conducive to raw binary data and stream 

processing rather than the discrete digital artifact abstraction which is the focus of my work. Afflib 

was therefore, restrictive in terms of being able to define a generic metadata structure to 

determining metadata matches. The Snorkel
34 library, on the other hand, provided the necessary 

abstractions to handle digital artifacts as read-only nodes with metadata. Besides, being developed 

in Java, it can readily integrate with other Java libraries for log parsing and network packet 

analysis which can be automated. Hence, I chose Snorkel to implement file system support and 

digital artifact traversal in forensic images. 

With regard to the metadata parsers from file systems, there were three contenders, viz., the 

libextractor
35, fiwalk

36 and the apache tika
37 libraries. Of these, the libextractor was completely 

built in C and had (at that time) limited file metadata support to word processing documents. 

Besides this, the memory requirements to handle the metadata structures and determine 

associations during runtime were very demanding. fiwalk was also developed in C and more 

conducive to Linux environments where an ‘inode’ implementation was handy, but its metadata 

extractor was in its early stages of development. In comparison, the apache tika library was 

developed in Java which could be readily integrated with my digital evidence access layer 

implementation and provided the necessary abstractions to deal with metadata matches at the 

digital artifact level. The abstractions supported by apache tika were readily mapped to event 

semantics that allowed effective grouping of digital artifacts that were deemed related through 

metadata associations. Therefore, I chose apache tika to implement the metadata parsers in 

AssocGEN. 

To process the log records and network packets individually, I processed logs and network traces 

and translated them into XML where each tag represented an attribute. The Internet browser logs 

and network packet captures, which were initially extracted as files from a file system, were 

converted into XML and then parsed into individual log records and network packets from their 

                                                           
32 http://code.google.com/p/libewf/ 
33 http://afflib.sourceforge.net/ 
34 http://www.holmes.nl/NFIlabs/snorkel.html 
35 http://www.gnu.org/software/libextractor/ 
36 https://github.com/yalemssa/fiwalk 
37 http://tika.apache.org/ 
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respective schema. The metadata obtained from each evidence source, viz., file system, or log or 

network packet capture, was represented as a list of hash tables indexed by the file path in the case 

of files and a numerical event ID in the case of Internet browser logs or network packet captures. 

The XML representation for the logs and the network packets contained tags which were 

extracted as metadata. I developed XML parsers to process Internet browser logs and network 

packet captures and extract the attributes of the records from the logs and the packets in the 

network packet captures in AssocGEN. The completed prototype toolkit spans over 20000 lines of 

Java code and consists of multiple modules. The modules are pluggable at runtime and can access 

and parse files and folders from most common file systems such as FAT32, NTFS, EXT2, EXT3 

and HFS+, web page visitation and cache logs on browser applications and network packets 

contained within packet captures.  

5.1.2 Digital Evidence Layer 

The Digital Evidence layer was built using the Snorkel forensic library which is responsible for 

providing raw binary access through a forensic file system interface. The snorkel library mirrors 

the functionality of the fiwalk tool [69]. Internet browser logs and network packet captures were 

treated as record-based files and this layer provides preliminary secure access to such files. The 

digital evidence layer provides regulated bit-stream access to the various different digital evidence 

sources from the upper layers. The layer allows unidirectional data flow ensuring read-only access 

to forensic images, file systems, Internet browser logs and network packet captures implemented 

by the snorkel forensic image interface. The snorkel interface allows traversing multiple forensic 

images without compromising data integrity. 

5.1.3 Digital Artifact Traversal & Metadata Parsing Layer 

The digital artifact extraction and metadata parser layer is composed of third party applications 

that I designed to traverse the digital artifacts and parse the metadata. This layer is implemented 

using the Apache tika metadata extractor library to parse metadata from files and log analyzers to 

traverse log records and network packets and parse their attributes. I extract the metadata from 

files based on the file MIME type. The MIME type for a file is identified by determining its 

encoding type in conjunction with its magic numbers identifying the file beginnings and endings. 

The browser logs are initially processed by a third party application (Nirsoft browser analyzer38) 

into XML which is then read by my parsers to extract the attributes for individual browser events. 

                                                           
38 http://www.nirsoft.net/web_browser_tools.html 
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The browser history is equivalent to a log that contains URI records; the specific web pages 

visited, its domain name, and the last visit timestamp were regarded as its metadata. Similarly, on 

a network packet, the packet timestamp, source and destination IP addresses, and protocol are 

regarded as associated metadata. The current implementation for parsing logs supports Internet 

browser (history and cache) logs for the Internet Explorer, the Mozilla Firefox and the Apple 

Safari, accessing all related log event attributes as the metadata corresponding to each bowser log 

event. Besides this, the network module can scan captured network packets accessing all packet 

related attributes as the metadata corresponding to each packet. 

5.1.4 Evidence Composition Layer 

The Evidence Composition layer comprises of algorithms that seek metadata matches between the 

various digital artifacts and group them. These groupings are merged and can be presented to a 

forensics examiner for analysis. Although the MAM groups all digital artifacts which have 

associated metadata into an association group, AssocGEN is configured to prioritize based on 

metadata matches by determining the source, ownership and timestamps of digital artifacts, for 

instance, all digital images captured using a Canon Powershot A70 camera on September 11th, 

2011.  

Between two or more digital artifacts, a single metadata match can lead to a set of digital artifacts 

that have an identical value for that metadata tag name. Such a set was termed a similarity pocket 

as per Section 4.5. Each pocket is identified by the metadata tag name. A set of artifacts may have 

multiple metadata tag matches giving rise to multiple similarity pockets each including an 

identical subset of artifacts—multiply matched subset artifacts are a special case of a similarity 

pocket that I term a multi pocket. Similarity pockets may also overlap partially in regard to their 

elements, i.e., digital artifacts. If there are two overlapping similarity pockets within a single 

source of digital evidence, these are merged into a similarity group as per Section 4.5. When such 

similarity groups match across multiple sources, these are merged into an association group as per 

Section 4.5. Merging the overlapping similarity pockets is continued until all transitive overlaps 

are accounted for. When multiple similarity pockets are merged into a similarity group and 

multiple similarity groups into an association group, the individual similarity pockets and 

similarity groups in the repository are replaced with the resultant association group incorporating 

all the metadata matches.  
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Digital artifacts may belong to different types but have metadata tags with identical or similar 

semantics. Therefore, metadata tag equivalence was established for those metadata tags whose 

values tend to be of the same type, i.e., metadata tags that take the names of individuals, metadata 

tags that take the values of applications, metadata tags that take timestamps, and so on. Such 

equivalence relations are configured into AssocGEN ahead of execution depending on the 

diversity that the sources of evidence present. For instance, the author name on a document could 

match the username in a record from Internet browser logs or the attribute timestamp in browser 

history logs can match with the corresponding timestamp in network packet captures and so on. 

The algorithms terminate when all the digital artifacts in the digital artifact and metadata 

repository have been grouped or classified. 

In each case, the set of N distinct homogeneous sources of digital evidence is provided as input. A 

source si contains Ni digital artifacts and the j
th digital artifact a

i
j is associated with a metadata 

vector m
i
j = (mij

1, m
ij

2, …, m
ij

k, …, m
ij

M). The naïve algorithm to determine metadata matches 

across the sources of digital evidence is described in Algorithm 5.1. The free-running variable t 

accounts for the different disjoint similarity pockets or groups generated within a source and 

association groups generated across all sources and t is a member of the set of natural numbers N. 

The desired output is the set of all association groups represented by the set AG in the algorithm. 

Association Grouping Algorithm 

Given: S = {s1, s2, s3, … sN}, the set of all discrete homogeneous sources of digital evidence 

 Ai = {a
i
1, a

i
2, a

i
3, … ai

Ni}, the set of all digital artifacts belonging to source si, i ∈ [1, N] 

Mi = {m
i
1, m

i
2, m

i
3, …, mi

Ni}, the set of all metadata vectors corresponding to each ai
j ∈ Ai,  

j ∈ [1, Ni] 

Output: AG, the set of all association groups generated on S 

begin algorithm 

for each si ∈ S do 

 for each ai
j ∈ Ai do 

  for each mij
k ∈ mi

j corresponding to the jth artifact ai
j ∈ Ai do 

   sp
ik

t ← {a
i
j | j ∈ [1, Ni], (∃v, mij

k = v)}  

  end for 

 end for 

 SP
i ← {sp

ik
t  | k ∈ [1, M], t ∈ N} 

end for 

for each sp
ik

t ∈ SP
i do 

sg
i
t ← largest union (until transitive closure) over those similarity pockets that 

overlap on artifacts across all metadata mij
k ∈ mi

j, for all k ∈ [1, M] 

end for 
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SG ← {sg
i
t | i ∈ [1, N], t ∈ N} 

for each sg
i
t ∈ SG do 

agt ← largest union (until transitive closure) over those similarity groups that 
contain at least one metadata match based on a metadata equivalence 
relationship between the sources  

end for 

AG ← {agt | t ∈ N} 

Display AG as output 

end algorithm 

 

Algorithm 5.1 Association grouping algorithm  

No processing occurs if all the similarity pockets are disjoint, viz., they contain no common 

artifacts. If metadata were unavailable in digital artifacts for any reason, those artifacts are 

removed to an unclassified list. This list can be separately presented to a forensics examiner who 

may manually examine the files for content using a different tool like Sleuthkit or FTK.  

5.1.4.1 Metadata Equivalence in AssocGEN 

AssocGEN allows the establishment of equivalence relationships between metadata tag names to 

support the identification of metadata matches across heterogeneous digital artifacts. In terms of 

the model, it allows the expansion of the similarity groups in each of the sources of digital 

evidence into association groups. I establish equivalence between the following sets of metadata: 

1. Ownership, author(s) in files and usernames in system and application logs; 

2. MAC timestamps, document metadata timestamps in files and log event timestamps in 

system and application logs and network packet timestamps in network packet captures; 

3. IP addresses and domain names from DNS lookups in browser logs and network packet 

captures; 

4. Filesizes from file system metadata with ‘Filesize’ and ‘Content size’ in document 

metadata; 

5. ‘Subject’ and ‘Title’ metadata in Microsoft Office documents; 

6. ‘Creator’ and ‘Publisher’ metadata in Microsoft Office documents; and 

7. ‘Source’ in packet captures with ‘Domain’ in browser logs. 
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In each case where metadata equivalence is established, the metadata tag names are treated as 

identical and value matches are determined. Each value match gives rise to an association group if 

the digital artifacts corresponding to that association were not already a part of any other 

association group.  

5.1.4.2 Configuring and Controlling Metadata Associations in AssocGEN 

Typically, AssocGEN extracts all metadata from each digital artifact and groups artifacts 

according to the inherent metadata matches. As this can be an exhaustive approach with 

significant computational complexity, I have also developed an alternate implementation for 

AssocGEN that allows a user to specify a subset of metadata from the digital artifacts (either 

based on apriori knowledge or based on a cursory manual examination of the file metadata), often 

based on their application type, in order to contain the number of metadata matches found and 

hence constrain the size of the groups formed. This approach enables a user to focus on the 

relevant sets of associations and quickly identify the relevant artifacts for further analysis. 

The AssocGEN user interface customized to analyze files from file systems is illustrated in Figure 

5.2 and Figure 5.3. The user interface is customized to determine patterns that are specific to the 

type of files being analyzed and relevant during an investigation. Each association class indicated 

in the snapshot results in a classification that is used to prime the process of identifying 

associations between the files across these classes. For example, when a camera based 

classification is chosen, the digital image files are organized according to their EXIF metadata and 

the digital images that are associated across different cameras are identified using metadata 

associations. An instance of this can be digital images taken with different cameras but edited 

with the same photo-editing software. The resultant groupings contain those digital images that 

are associated by their subsequent manipulation rather than containing images captured with the 

same digital camera. 



133 
 

 

Figure 5.2 AssocGEN User Interface to analyze collections of digital image files from Digital Evidence 

  

 
Figure 5.3 AssocGEN User Interface to analyze word processing documents from Digital Evidence 

  

During analysis a forensics examiner may need to analyze all related artifacts on a source together 

and determining such related items can be a strenuous task. As observed earlier, this can involve 

multiple keyword searches and analysis to determine those sets of artifacts that are considered 

“relevant”. The AssocGEN engine allows a user to simply select an artifact at random and 

generates a list of all artifacts on the same source or across all sources (as configured) by 

determining all associated artifacts. It is also likely that an artifact that is found during a search is 
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related to other artifacts on a different metadata name. However, for the purpose of analysis, it is 

necessary to take such associations into account. Therefore, AssocGEN also determines all second 

level, third level and further levels of searches until all artifacts that can be potentially associated 

across all possible metadata combinations are determined. Such an incremental approach adopts 

an incremental search method as given in Algorithm 5.2. The desired output is the association 

group corresponding to the seed artifact ai
j from the source si. This is represented by the set AG in 

the algorithm. 

Incremental Association Builder Algorithm 

Given: S = {s1, s2, s3, … sN}, the set of all discrete homogeneous sources of digital evidence 

 Ai = {a
i
1, a

i
2, a

i
3, … ai

Ni}, the set of all digital artifacts belonging to source si, i ∈ [1, N] 

Mi = {m
i
1, m

i
2, m

i
3, …, mi

Ni}, the set of all metadata vectors corresponding to each ai
j ∈ Ai, j ∈ [1, 

Ni] 

Seed: Vector mi
j corresponding to the jth artifact ai

j ∈ Ai for some source si, i ∈ [1, N] 

Output: AG, the association group corresponding to seed artifact ai
j for some  j∈ [1, Ni] on source si 

begin algorithm 

 SGi ← ∅ 

 procedure similarity group (input: seed artifact a
i
j): 

 for each mij
k ∈ mi

j corresponding to the jth artifact ai
j ∈ Ai do 

  sp
i
k
 ← {a

i
j | j ∈ [1, Ni], (∃v, mij

k = v)}  

 end for 

sgi ← 
1

M

k

sp
i
k 

SGi ← SGi sgi 

end similarity group 

Move all artifacts ai
j ∈ sgi to list L; remove seed artifact from L 

while L not empty do 

temp ← first artifact in L 

Perform similarity group (input: temp) 

Remove temp from L 

end while 

for each si ∈ S do 

for each a
i
j ∈ SGi do 

Determine artifacts on all other sources where metadata equivalence relationship 
exists 

Append artifacts to list L indexed as (artifact ai
j, source si); omit repetitions 

end for 

 end for 

while L not empty do 

temp ← first artifact in L 

Perform similarity group (input: temp) 
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Remove temp from L 

end while 

AG ←
1

N

i

SGi 

Display AG as output 

end algorithm 

Algorithm 5.2 Incremental association builder algorithm  

An interesting feature to note about the incremental algorithm is that since the associations are 

symmetric by definition, any artifact from a particular association group provided as seed input 

will result in the same association group. This provides a method to verify the correctness of the 

generated group by randomly testing the algorithms for any two artifacts belonging to the group. 

If the results do not coincide, it indicates that the transitive closure is not yet met and the 

algorithm must proceed to completion.  

In the sequel, I describe different metadata association algorithms that we’ve developed to answer 

the questions posed in Section 4.7 in the previous chapter. 

5.1.4.3 Metadata Association Algorithms to Determine Artifact Relationships 

The algorithms described in this section identify the relationships between artifacts as defined in 

Section 4.9. The relationships can exist based on an exact value match between two or more 

artifacts of the same type on the same homogeneous source or across heterogeneous artifacts 

based on a value match established through a metadata equivalence relationship on the 

corresponding metadata names across sources. In all the algorithms described below, the free-

running variable t accounts for the different disjoint similarity pockets or groups generated within 

a source and t is a member of the set of natural numbers N. 

In order to identify the digital artifacts belonging to the same source, I apply the source 

relationship (refer to Section 4.9.2) and identify all metadata associations that produce similarity 

pockets for each metadata in the source metadata family. Digital artifacts that produce multiple 

metadata matches are extracted from either similarity groups on a single source or from 

association group across multiple sources as per Algorithm 5.3. 

Source Identification Algorithm 

Given: S = {s1, s2, s3, … sN}, the set of all discrete homogeneous sources of digital evidence 

 Ai = {a
i
1, a

i
2, a

i
3, … ai

Ni}, the set of all digital artifacts belonging to source si, i ∈ [1, N] 
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Mi = {m
i
1, m

i
2, m

i
3, …, mi

Ni}, the set of all metadata vectors corresponding to each ai
j ∈ Ai, j ∈ [1, 

Ni] 

Set L of metadata corresponding to the source metadata family on each source si 

Output: A list of sources stored in orgn and the corresponding sets of digital artifacts SP
i 

begin algorithm 

orgn ← 0; SP
i ← ∅ 

for each si ∈ S do 

 repeat 

for each ai
j ∈ Ai do 

  for each mij
k ∈ mi

j and mij
k ∈ L do 

   sp
ik

t ← {a
i
j | j ∈ [1, Ni], (∃v, mij

k = v)}  

  end for 

  end for 

  SP
i ← {sp

ik
t | k ∈ [1, M], i ∈ [1, N], t ∈ N} 

orgn ← list v of values corresponding to each similarity pocket in SP
i 

until |orgn| = |SP
i| 

end for 

Generate a list orgn of individuals or devices from all sp
ik

t ∈ SP
i where j ∈ [1, Ni], k ∈ [1, M]  

Display orgn, SP
i as outputs 

end algorithm 

Algorithm 5.3 MAM based Source identification algorithm  

For this algorithm, the list L maintains a list of those metadata that record values corresponding to 

source devices or software that were used to generate the artifact it was attributed to. The source 

device or software can be different from the source of digital evidence that contains the artifact. 

For instance, on a file, the list for possible sources can include the metadata ‘Author’, ‘Owner’, 

and ‘Computer-Name’. Where necessary, the metadata equivalence relationships are established 

across artifacts belonging to heterogeneous artifacts before executing the algorithm. The sets of 

pockets generated are arranged according to the source name which then characterizes the 

associations among the artifacts contained.  

The verification condition ‘|orgn| = |SP
i|’ in the algorithm is used as a measure to test the 

completeness of the set of similarity pockets generated. When the verification condition is met, it 

indicates that transitive closure is achieved and that the algorithm can successfully terminate. 

When this condition is not met, the transitive closure is not yet achieved and the algorithm must 

iterate until the condition is satisfied. 
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Having grouped artifacts that demonstrate the same source associations, it may be necessary to 

also determine some artifacts from that set which are modified. Typically, this can imply that 

artifacts belonging to some source were doctored using same software. However when two 

artifacts demonstrate the software edited relationship, it may need to be established, with the 

presence of a third artifact, that in conjunction with the first artifact exerts a majority relationship. 

This is because, with regard to digital image files where this relationship holds forensic value, 

sometimes the absence of metadata can imply software activity, as in the case of digitally 

generated image files and image files downloaded from the Internet (for a detailed discussion, 

refer to Chapter 6). In order to identify all digital artifacts that were edited with a particular piece 

of software, I apply the unauthenticated modified relationship (refer to Section 4.9.7) and for each 

pair, identify a third digital artifact, two of which can exert a majority relationship (refer to 

Section 4.9.8) over the third for the ‘Software’ in the source metadata family as per 

Algorithm 5.4. For this task, the digital artifacts are homogeneous in nature and naturally will be 

contained within similarity groups. 

Edits Identification Algorithm 

Given: S = {s1, s2, s3, … sN}, the set of all discrete homogeneous sources of digital evidence 

 Ai = {a
i
1, a

i
2, a

i
3, … ai

Ni}, the set of all digital artifacts belonging to source si, i ∈ [1, N] 

Mi = {m
i
1, m

i
2, m

i
3, …, mi

Ni}, the set of all metadata vectors corresponding to each ai
j ∈ Ai, j ∈ [1, 

Ni] 

Output: A list sftw of software and corresponding sets of digital artifacts SP
i 

begin algorithm 

for each si ∈ S do 

 repeat 

 for each ai
j ∈ Ai do 

  for each mij
k ∈ mi

j corresponding to the jth artifact ai
j ∈ Ai do 

   sp
ik

t ← {a
i
j | j ∈ [1, Ni], (∃v, mij

k = v)}  

  end for 

  end for 

  SP
i ← {sp

ik
t | k ∈ [1, M], t ∈ N} 

Extract unauthenticated modification relationship {(ai
j, a

i
k) | a

i
j Rua a

i
k, j ∈ SP

i
, 

k ∈ SP
i} for each artifact ai

j from similarity pockets in SP
i  

  for each (ai
j, a

i
k) pair identified do  

Identify a third artifact ai
n such that ai

n Rm a
i
j for similarity pockets in SP

i 

end for 
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stfw ← source metadata name corresponding to the software that established the 
modified relationship Rm on triad ai

j, a
i
k, a

i
n from similarity pockets in SP

i 

until |sftw| = |SP
i| 

Display sftw, SP
i for si as outputs 

end for 

end algorithm 

Algorithm 5.4 MAM based algorithm to identify software edits in digital artifacts  

As in the case of Algorithm 5.3, the verification condition ‘|sftw| = |SP
i|’ in the algorithm is used 

as measure to test the completeness of the set of similarity pockets generated. When the 

verification condition is met, it indicates that transitive closure is achieved and that the algorithm 

can successfully terminate. 

In order to determine the origin of downloaded files, I apply the download relationship (refer to 

Section 4.9.4) and determine log record y to establish that a file is indeed downloaded. For each 

log record y, I find a happens before relationship (refer to Section 4.9.3) with log record x such 

that y   x. The source metadata for log record x contains the origin of the download. 

Resource Download Identification Algorithm 

Given: S = the set of sources consisting of a user file system, temp files and browser logs {s1, s2, s3} 
respectively 

 Ai = {a
i
1, a

i
2, a

i
3, … ai

Ni}, the set of all digital artifacts belonging to source si, i ∈ {1, 2, 3} 

Mi = {m
i
1, m

i
2, m

i
3, …, mi

Ni}, the set of all metadata vectors corresponding to ai
j ∈ Ai,for each Ai in 

source si, i ∈ {1, 2, 3}  

Output: List URL of resource download sources corresponding to files in source s1  

begin algorithm 

for each si ∈ S do 

 for each ai
j ∈ Ai do 

  for each mij
k ∈ mi

j corresponding to the jth artifact ai
j ∈ Ai do 

   sp
ik

t ← {a
i
j | j ∈ [1, Ni], (∃v, mij

k = v)}  

  end for 

  end for 

  SP
i ← {sp

ik
t | k ∈ [1, M], t ∈ N} 

  Identify all pairs of artifacts such that a2
j Rs a

1
k where a1

k ∈ SP
1 and a2

j ∈ SP
2 

 for each temp file a2
j,  

Find all log records x in s3 such that a3
x Rd a

2
j 

 end for 

 URL ← values for source metadata from each log record a3
x identified 
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 Display URL as output 

end algorithm 

Algorithm 5.5 MAM based algorithm to determine source of downloaded resources in user file system  

In order to determine all digital artifacts that occurred simultaneously, I apply the parallel 

occurrence relationship (refer to Section 4.9.5) to extract those digital artifacts that are grouped 

based on associations from the timestamp metadata family. When all digital artifacts belong to a 

single homogeneous source, these artifacts are grouped into similarity groups and the digital 

artifacts span multiple sources, and they will form association groups. A new group is formed for 

each timestamp value that generates associations. 

Simultaneous Access Algorithm 

Given:  S = {s1, s2, s3, … sN}, the set of all discrete homogeneous sources of digital evidence 

Ai = {a
i
1, a

i
2, a

i
3, … ai

Ni}, the set of all digital artifacts belonging to source si, i ∈ [1, N] 

Mi = {m
i
1, m

i
2, m

i
3, …, mi

Ni}, the set of all metadata vectors corresponding to each ai
j ∈ Ai, 

j ∈ [1, Ni]  

Set L of metadata corresponding to timestamp metadata family on each source si 

Output: List concurrent of sources and corresponding sets of digital artifacts SP
i 

begin algorithm 

for each si ∈ S do 

 repeat 

 for each ai
j ∈ Ai do 

  for each mij
k ∈ mi

j and mij
k ∈ L do 

   sp
ik

t ← {a
i
j | j ∈ [1, Ni], (∃v, mij

k = v)}  

  end for 

  end for 

  SP
i ← {sp

ik
t | k ∈ [1, M], t ∈ N} 

concurrent ← Number of timestamp values giving rise to similarity pockets in SP
i 

until |concurrent| = |SP
i| 

end for 

Display concurrent, SP
i as outputs 

end algorithm 

Algorithm 5.6 MAM based algorithm to determine all artifacts affected by parallel events  

As in the case of Algorithms 5.3 and 5.4, the verification condition ‘|concurrent| = |SP
i|’ in the 

algorithm is used as measure to test the completeness of the set of similarity pockets generated. 
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In order to determine all digital artifacts that are similar in structure, I apply the structural 

similarity relationship (refer to Section 4.9.6) using the application metadata family. Single 

metadata value matches will result in similarity pockets and multiple metadata matches are 

grouped into similarity groups. By virtue of structural similarity, this property applies to digital 

artifacts on a single type of homogeneous source, i.e., file systems, browser log files, network 

packets, etc. 

Similar Structure Identification Algorithm 

Given: S = {s1, s2, s3, … sN}, the set of all discrete homogeneous sources of digital evidence 

Ai = {a
i
1, a

i
2, a

i
3, … ai

Ni}, the set of all digital artifacts belonging to source si, i ∈ [1, N] 

Mi = {m
i
1, m

i
2, m

i
3, …, mi

Ni}, the set of all metadata vectors corresponding to each ai
j ∈ Ai, 

j ∈ [1, Ni]  

Output: List of lists L containing artifacts that are structure similar (in dimensions and formatting)  

begin algorithm 

L ← empty 

for each si ∈ S do 

 for each ai
j ∈ Ai do 

  for each mij
k ∈ mi

j corresponding to the jth artifact ai
j ∈ Ai do 

   sp
ik

t ← {a
i
j | (∃v, mij

k = v), j ∈ [1, Ni], t ∈ N}  

  end for 

 end for 

 SP
i ← {sp

ik
t | k ∈ [1, M], t ∈ N} 

end for 

for each sp
ik

t ∈ SP
i do 

sg
i
t ← largest union (until transitive closure) over those similarity pockets that 

overlap on artifacts across all metadata mij
k ∈ mi

j, for all k ∈ [1, M] 

end for 

SG ← {sg
i
t | i ∈ [1, N], t ∈ N} 

for each sg
i
t ∈ SG do 

agt ← largest union (until transitive closure) over those similarity groups that 
contain at least one metadata match based on a metadata equivalence 
relationship between the sources  

end for 

AG ← {agt | t ∈ N} 

for each agt ∈ AG do 

  Extract a similar structure relationship for each artifact ai
j ∈ agt such that for some artifact 

a
n

k ∈ agt there exists a relation Rss such that ai
j Rss a

n
k where i, n ∈ [1, N] and j ≠ k 

  For each Rss append to L the set of all artifacts from agt that are linked by this relation 

 end for 

 Display L as output 
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end algorithm 

Algorithm 5.7 MAM based algorithm to identify all similarly structured artifacts  

 

5.1.4.4 Mapping Forensic Discoveries to Digital Artifact Relationships 

Until now, I have described the algorithms that are implemented as part of the Evidence 

Composition layer in my AssocGEN analysis engine to determine artifact relationships based on 

metadata associations. The artifact relationships are indicative of one or more events of interest 

that may have transpired during the creation and/or modification of the artifacts concerned. 

During forensic analysis, it becomes necessary to discover such events in the context of an 

investigation. Often, this can involve pivoting on events specific to one metadata family. For 

instance, in a collection of digital images, a user may be interested in finding the makes and the 

models of all the digital cameras used to take digital photographs and corroborate file system 

timestamps extracted from these digital photographs against their EXIF timestamps. If the 

timestamp differences between the EXIF and the file system timestamps are large then, this can 

inform a user if a photograph may have resided on other sources before being created on this file 

system. On the other hand, if an investigation involved IP theft, the user may prioritize matches 

based on author and/or owner metadata tags to determine the names of individuals other than the 

owner and their photographs from the image collection. Similarly, in a collection of word 

processing documents, supposing the user is interested in identifying all the authors and their 

organizational affiliations, one can then select the ‘Author’ and the ‘Company’ metadata from 

word processing documents and analyze the association group generated. The multi pockets, thus 

generated, represent the sets of documents where the author name and the company name have 

identical values. The examiner may also refine an initial listing of association groups based on 

investigation requirements by modifying the set of matches sought by AssocGEN. Such 

refinements may be required where an initial grouping (using standard classification methods) 

does not reveal any interesting or anomalous activities. Therefore, AssocGEN allows an examiner 

to filter the set of metadata associations thereby controlling in the number of metadata matches 

discovered during analysis. 

While AssocGEN focuses on metadata value matches to determine associations between digital 

artifacts, I discussed the interpretation challenges relating to implementing such matches for the 

timestamps in metadata in Chapter 2. To address the challenge, I proposed the Provenance 

Information Model in Chapter 4 which incorporates the timestamp semantics relating to each 

homogeneous source and allow comparisons for the purpose of developing a unified timeline. In 
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the sequel, I present my design of the prototype toolkit called UniTIME implementing my 

Provenance Information Model. 

5.2 Prototype Development Two: UniTIME unified time-lining tool 

The UniTIME tool was designed to accept the sources of digital evidence as input and convert 

them into one or more homogeneous sources with corresponding Provenance Information Model 

information (refer to Section 4.10). The timestamps within and across multiple homogeneous 

sources are adjusted using the respective PIMs to generate a unified timeline. The contribution of 

UniTIME is three-fold: 

1. Computing unambiguous UTC time values for timestamps by overlaying a PIM to 

a corresponding homogeneous source 

2. Computing location or local time zone information based on a PIM; and 

3. Validating timestamp-based assertions that are recorded in a PIM for each 

homogeneous source. 

5.2.1 Design Overview 

UniTIME was developed in Java to traverse sources of digital evidence, such as forensic hard disk 

images, Internet browser logs and network packet captures and harmonize them using provenance 

information to generate a unified timeline. UniTIME can parse timestamps from file system and 

document metadata on files, the Internet Explorer and Mozilla Firefox browser history and cache 

logs, and PCAP packet captures. To parse timestamps from browser logs and network packet 

captures, I integrated third party applications to export log records and network packet trace as 

events in XML. The timestamps are then converted to UTC, and validated against related 

timestamps for consistency and sorted to generate the timeline. The relationships are determined 

based on grouping the events determined through metadata associations. The interpretation logic 

for acquiring the true timestamp from different homogeneous sources using PIM, implemented in 

UniTIME is shown in Figure 5.4 which illustrates the time reference embedded in the PIM for 

each homogeneous source and their respective resolution. Two values, one the UTC timestamp 

and the other, the local timestamp, are computed. Additionally, provenance metadata of the 

source, like the tag information [190], are included in the Provenance Information to identify 

inconsistencies. Tag information included with homogeneous sources in UniTIME includes:  
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1. date and time of the homogeneous source acquired;  

2. size and content list of folders; and  

3. total size of each homogeneous source. 

 

Figure 5.4 Timestamp interpretation logic for the digital time-lining tool 

  

5.2.2 UniTIME tool architecture 

The design of the UniTIME tool was based on the f-FIA and the functionality of timestamp 

analysis belongs to the Evidence Composition layer, as a part of the Knowledge Representation 

and Reasoning sub-layer. The tool traverses the sources and identifies the homogeneous sources 

from which the digital artifacts and their timestamps are accessed. These artifacts, if extracted, are 

stored in the Homogeneous source and Digital Artifact repository. Where it is necessary to only 

generate a timeline from the sources, it was sufficient to traverse the artifacts and parse the 

timestamps from metadata for run-time computation. On the other hand, if it is expected that the 

digital artifacts would be re-used (or possibly combined) with other information during analysis, 

then the extracted artifacts are stored into the repository. Separate file metadata parsers, Internet 

browser history and cache log parsers and network packet parsers were implemented to parse the 

metadata from the artifacts. If the metadata are expected to be re-used, they are extracted and 

stored into the Metadata & Timestamps repository. For each homogeneous source traversed, a 

reference PIM is created which stores the relevant information for timestamp interpretation. The 

PIM is populated from out-of-band information. The UniTIME tool architecture is shown in 

Figure 5.5. 
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Figure 5.5 UniTIME Architecture based on f-FIA 

  

5.2.3 Dataflow in UniTIME 

The timestamp corrections using the PIM were applied as follows: If the homogeneous source was 

a FAT file system, then the document metadata and the MAC file system metadata are time 

shifted to denote the time in the local time zone where the homogeneous source was acquired and 

in UTC. If the homogeneous source was a homogeneous NTFS file system or an Internet browser 

log, then the UTC timestamp is duly recorded and the local timestamp is computed using its PIM 

information and validated against the assertions. Files stored in an NTFS file system, which could 

have originated from a FAT file system or ZIP file archives, are identified39 prior to the timestamp 

corrections and treated as such. Figure 5.6 depicts the data flow corresponding to the timestamps 

corrections and validations conducted using the PIM. 

                                                           
39 I applied the hypothesis that timestamps within NTFS/EXT file systems which had 2-second resolution and 

represented timestamps in even-second intervals are likely to have originated from a FAT file system or a ZIP file. 
All such files are isolated and a correspondence is established to determine their PI. 
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Figure 5.6 UniTIME Dataflow during Timestamp analysis 

  

5.2.4 Maintaining Resilient Timestamps 

When the timestamps across all homogeneous sources are corrected, the events are digitally time-

lined. The tool provides the examiner the option to view these timestamps in UTC or in a selected 

local time zone according to its source. Additionally, the tool also provides the examiner the 

option of choosing to assert statements in the PIM after applying corrections to the timestamps. If 

the examiner chooses to assert, then the timestamps are validated against the assertions, otherwise 

the tool proceeds to the sorting of each list followed by the generation of the unified timeline. This 

ability enables an examiner to initially analyze the timestamps in an unbiased manner and assert 

afterward, to determine the differences, if any exist. To illustrate this feature, consider a scenario 

where an examiner is examining a set of emails and some documents from a file system. Let the 

assertion state, “the document metadata in documents found as attachments in emails should 

occur before the corresponding email server timestamps”. Once the appropriate PIM corrections 

are applied, the examiner can choose not to assert and generate a timeline of all activities, both the 

file timestamps and email timestamps from mail servers. While the activities may all appear 

consistent, if the examiner had asserted the statement, the examiner could have discovered that the 

documents were created after the email was received according to the timestamps in the document 
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metadata. Such anomalies are flagged by the tool. In the following section, I describe my 

experimental methodology. 

5.3 Mapping Forensic Context into MAM experiments 

The MAM discovers associations between digital artifacts that are inherent in the metadata. While 

traditional approaches for conducting forensic analysis rely on searching and classifying the 

digital artifacts in the sources of digital evidence, these techniques presume the existence of prior 

knowledge about the digital artifacts or the nature of an investigation. While that strategy may 

work within the scope of a focused investigation, during general forensic analysis, it is necessary 

to discover and report all relationships and higher-level associations that may exist between the 

digital artifacts. Unless some specifics with regard to the values being searched for or attributes 

that are likely to demonstrate any unique patterns are known a priori, keyword searches and 

classification offer limited help. However, even if an examiner does not have all the information 

needed to conduct the analysis, the metadata about the digital artifacts store this information, if 

only partially, that can be used to guide the process and extract the relationships. 

Naturally, the application of the MAM is more suited to analyzing collections of digital artifacts 

where only the end goal is known, which is the extraction of all relationships and higher level 

associations between the digital artifacts, but the means to achieve this is, at best, vague. The 

absence of any prior information to conduct an analysis makes the MAM readily suited to the 

analysis of collections of digital image files and word processing documents. Often, such helpful 

information is only available after the analysis has begun. When a single file or a few sets of files 

are not available to seed the analysis process, we may apply the MAM to that collection of digital 

artifacts and group them based on the metadata associations. 

5.3.1 Hypotheses for Experimentation 

In my work, I evaluated the metadata association model (MAM) by applying the model to specific 

collections of files and online application logs to identify the origins of files, files that were 

doctored (in content) and posed as originals and to determine the user activity sequence on an 

online download session. I conducted these experiments using the hypothesis based testing method 

[61, 149] as stated in Chapter 3. For my purposes, I developed the following hypotheses to 

evaluate the utility of MAM using the AssocGEN analysis engine. 



147 
 

1. If we apply the MAM to a collection of files and determine Rs on sets of artifacts, it 

will give rise to discrete sets of files created by the same 

source/owner/device/software. 

2. If we apply the MAM to a collection of files and determine Rss on sets of artifacts, 

it will give rise to sets of artifacts structurally identical with regard to file 

size/content type/encoding structure/file formatting information. 

3. If we apply the MAM to user files and application browser logs to determine Rd 

and Rh on the sets of artifacts, it will give rise to sets of artifacts (in an association 

group) which when sequenced will identify a particular user’s activities tracing the 

user’s browsing sessions and file downloads. 

5.3.1.1 Controllability of MAM experiments 

In the context of setting up a controlled environment, my experiments were conducted on isolated 

logical images of a user file system while the network packet captures and web browser logs were 

exported into XML. In my experiments designed to validate the model, inputs were drawn from 

digital artifacts across the sources. There were a finite number of metadata in each dataset40 and 

the values taken by each metadata were discrete and finite. Using AssocGEN, I parsed the 

metadata without altering the integrity of the files. The engine searched the metadata pool for 

exact and partial matches and grouped the files conforming to each match into similarity pockets. 

I merged overlapping groups into similarity groups across homogeneous sources on a single 

physical source and into association groups across multiple physical sources. Redundancy was 

eliminated by merging the associations that contained overlapping artifacts. The groups were then 

organized into appropriate relationships using the semantics of the associations. The resultant 

groupings (in textual form) were presented to us for further input. The inputs can range from 

specifying a subset of metadata and re-compute the metadata groupings or the identification of 

one or more association groups that are listed to analyze the relationships embedded in the 

member artifacts.  

5.3.1.2 Metrics and Measurements 

From my definition of a similarity group in Chapter 4, I know that it is the set of all those artifacts 

which are related either directly based on a metadata association or indirectly through one or more 

artifacts such that transitive closure is satisfied. Besides, I also established that the similarity 

                                                           
40 The datasets are described in Chapters 6 and 7 of this thesis 
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groups within a single source are mutually exclusive. Based on these two properties, to analyze 

the functional completeness of the metadata association model, I introduced a parameter called the 

association index (ai). The association index ai for a source is defined as the average of the ratio 

of the size of the similarity group that an artifact belongs to the total number of artifacts on that 

source. By definition, the range of values taken by ai is [0, 1.0], where ai = 0 indicates that the 

artifact in question is isolated while ai = 1.0 indicates that the artifact is highly connected and all 

artifacts are related to the said artifact. The following relationships hold with regard to the 

association index ai: 

0 1.0ai                            … (1) 

ai = 
1 | |

number of association groups

i

i

ag

N

 
 
 
                        … (2) 

where | |i

i

ag  is the number of digital artifacts in the association groups as determined using 

digital artifact i as the seed and N is the total number of digital artifacts being considered. In my 

experiments, on a given source, I computed the association indices for all the artifacts on the 

source and determine the mean ai value that is assigned to the source. 

To study the effectiveness of the metadata associations generated on files and their relative 

advantage when compared with the traditional techniques for individual file analysis, I define two 

parameters, the effort margin r and its complement, the grouping efficiency η as metrics. 

The effort margin is a measure of the fraction of effort as against individual file analyses when 

conducting a forensic analysis. The effort margin is computed as the ratio of the sum of the 

number of association groups to the number of groups to be analyzed in the worst case41. The 

value ranges from 0 to 1, where 0 represents zero effort for the examiner and 1 represents effort 

identical to that which is necessary to carry out the task of individual file analyses using 

traditional forensic tools. The effort margin can take a value 1 if and only if all the digital artifacts 

remain unassociated after applying the model, leading to a separate group for each digital artifact. 

The effort margin can take a value 0 only theoretically since the least value for the numerator in 

the ratio is 1 which results when all the digital artifacts get grouped into one association group.  

                                                           
41 In the worst case, the number of association groups equals the number of digital artifacts in the source. 
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The grouping efficiency is a measure of the degree of closeness between the digital artifacts in 

digital evidence, across all sources. It is computed as 1 – effort margin. The value for grouping 

efficiency ranges from 0 to 1, where 0 represents that no association groups were generated, 

implying that all the artifacts remained unassociated, while a value of 1 represents that all the 

digital artifacts were grouped together. The grouping efficiency can take a value 1 only 

theoretically since the effort margin can only take non-zero values in practical scenarios. In short, 

Effort margin r = 
number of association groups

number of association groups in the worst case
          … (3) 

Grouping efficiency η = 1 – r              … (4) 

The effort margin should be interpreted as the fraction of full effort necessary to analyze the 

digital evidence after applying the MAM. The full effort is deemed to be applied when the digital 

artifacts are analyzed individually. The grouping efficiency values should be interpreted as the 

percentage reduction in volume of digital evidence resulting from the application of the MAM to 

determine metadata based associations. The digital evidence is deemed to be at full volume when 

all the digital artifacts are unassociated. 

Although these metrics are defined using association groups which apply to the groups of digital 

artifacts across sources, without loss of generality, the same definitions can be interpreted even 

within a single source by replacing association groups in the ratio with similarity groups related 

within the source of digital evidence concerned. When this modified definition is applied to each 

individual source of digital evidence, it can provide a forensics examiner an assessment of the 

total effort involved in analyzing all the digital artifacts contained in that source, based on the 

degree of closeness exhibited by the artifacts. 

5.3.1.3 Reproducibility of MAM experiments 

For my experiments, each dataset (described in Section 6.4 and Section 7.3) was imaged (logical 

image) using the FTK imager tool and stored on the computer executing the AssocGEN analysis 

engine program. The digital evidence layer that can access evidence in raw format provided a 

handle to access this source. The digital artifact traversal and metadata parser layer traversed the 

digital artifacts (files) and parsed the metadata. The evidence composition layer provided us with 

the option to select the metadata tags thereby allowed us to main control over the number of 

associations sought and determined. After determining the metadata matches, the similarity 
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pockets were aggregated into similarity groups and associations groups. When I sought a 

particular file, the tool automatically listed the associated digital artifacts on a console and 

highlighted the nature of the association with the selected file. When I selected a file from the 

image, all the associated files were listed on a textual console. Figure 5.7 illustrates such a 

grouping on digital image files achieved using AssocGEN. The digital images shown in the figure 

were grouped based on the structural similarity relationship Rss identified using the application 

family metadata pertaining to image dimensions. 

 

Figure 5.7 Example of file grouping on digital image files 

  

After each experiment, I loaded the source on FTK 3.2 and examined the metadata in the user 

view mode. For each file suggested by the tool based on the metadata groupings, I compared the 

respective file metadata to verify the groupings. When file system metadata did not produce 

matches, the files were exported to the local file system and examined using FTK 3.2. 

In the sequel, I motivate the need for analyzing digital image files and word processing documents 

using the AssocGEN analysis engine to elicit answers relevant to the six forensic questions, viz., 

who, what, when, where, how and why. 
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5.4 Forensic Analysis of Digital Images & Word Processing Documents 

Digital image files are popular and it comes as no surprise that they form the subject matter of 

many digital investigations. When analyzing a collection of digital image files, one may begin 

with an image chosen at random and methodically analyze all related image files. Typically, the 

images in the collection can be classified in different ways to determine “related” image files. 

Such classification techniques can include, source, scene, time-instants, image dimensions, and so 

on. Unless the images in the collection were systematically captioned, keyword searches may be 

of little use.  

Forensic analysis of documents is a critical component to the process of forensic reconstruction of 

activities, especially on Microsoft Windows based computers. More than 80% of the world’s 

computers run the Windows operating system [198] and a considerable number of these use the 

Microsoft Office document suite. Therefore, it comes as no surprise that Windows based 

documents and in particular, Microsoft Office documents are commonly encountered during 

investigations. When analyzing a collection of documents, one may initially identify a subset of 

documents based on some keywords. Using the outcome from file analysis, one can identify 

further keywords or contents based on which other related documents are traversed.  

Traditional methods presume the existence of some prior knowledge about the files and hence 

cater to that presumption. Hence, one may not be able to determine the scope for all types of 

patterns that can be determined on a given collection using these traditional techniques. In 

situations where the presumption may not be relevant, this presumption has a tendency to mislead 

the analysis. It is therefore necessary for a grounded approach which evaluates the scope for 

analysis and establishes a framework to determine all patterns thereof. I demonstrate the 

application of MAM-based analysis to digital image files and word processing documents in 

Chapters 6 and 7. I frame one or more of the six forensic questions into MAM-based experiments 

and generate association groups based on metadata value matches using my AssocGEN analysis 

engine. 

5.5 Chapter Summary 

In this chapter, I presented my approach to designing practical experiments to evaluate the models 

proposed in my research. I developed three hypotheses to verify my proposed models, viz., the 

metadata association model implemented in the AssocGEN analysis engine and the provenance 
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information model implemented in the UniTIME timeline analysis tool and discussed the 

verification of my prototype implementations. I presented the design of two research prototypes, 

the AssocGEN analysis engine and the UniTIME unified time-lining tool and discussed how they 

implemented the MAM and PIM respectively. In the next two chapters, I demonstrate the use of 

the models through experiments using my prototypes. I discuss the characteristics of my datasets 

and rationalize their utility in regard to my experiments and present the insights gained by 

applying my approach. 
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“There is no such thing as a failed experiment, only 
experiments with unexpected outcomes.” 

- Richard Buckminster Fuller 

 

 

 

 

6. MAM Based Analysis of Digital Images 
In this chapter I focus on the application of my Metadata Association Model to collections of 

digital image files to elicit metadata based associations for analysis. I assume no prior knowledge 

of the digital image collections in my experiments in the application of the MAM. The experiment 

demonstrates the functional completeness of the model in two modes of operation: determining 

need-based and exhaustive image file associations. 

6.1 Classification vs. Association 

When analyzing a collection of digital image files, a typical analysis can involve classification. 

Image classification is of many types, image source-based, image dimension-based, digital 

camera-based, image timestamp-based, and so on [17, 18]. Source based classification, for 

instance, will decompose the collection into sets of digital photographs, edited photographs and 

digitally generated images. This process enables a forensics examiner to group similar or 

homogeneous image files so that they may be analyzed together. Traditional classification uses 

single or multiple parameters based on which digital image files are grouped for analysis [16-18]. 

However, such parametric classification is mostly syntactic and often the burden of determining 

related digital images falls on the individual. This task requires comparison of different classes 

which can involve the images being re-classified several times, using different sets of parameters, 
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to determine in how many distinct classes an image file may be classified. Often, the knowledge 

and experience relating to different types of classification which are likely to reveal such insights 

is not readily available [67]. 

Association based analysis focusses on identifying those digital images which are likely to occur 

across such groups and is not merely bound by the rules defined in traditional classification. This 

is illustrated in Figure 6.1. On the same collection of digital image files, while a classifier may 

take a classification parameter as the seed input around which to build a cluster of files, the MAM 

approach does not need any such input. Besides this, whereas a classifier may give rise to image 

classes containing similar image files that are homogeneous with regard to that classification 

parameter, the metadata association instead generates groups42 that contain image files “related” 

based on their metadata. 

 

Figure 6.1 Illustrating the differences in Image classification vs. association 

  

By identifying images on a given grouping that are “associated”, the MAM allows one to explore 

the scope for related or similar images when analyzing within a context. In my evaluation, I 

develop the context by classifying the digital images in each collection according to its source. I 

classify digital images in a given collection as: 

1. Digital photographs; 

2. Software processed or edited photographs; 

                                                           
42 While one may perceive digital artifacts being grouped based on metadata values as a classification process, the 

ability to group three or more digital artifacts together such that each pair demonstrate a different metadata match 
between them can be achieved using the MAM but not using any single classification process. 

Classifier

Seed input (classification parameter)

Image classes

MAM

Association groups

Digital Image collection

Related groups of images

Digital Image collection



155 
 

3. Digitally generated images; and 

4. Images with incomplete image metadata. 

Once these classes of digital images are determined, I identify metadata associations using value 

matches between the digital images across all the classes to form association groups. The 

association groups are then analyzed with regard to the six questions identified by Casey [32] that 

are relevant during forensic analysis. 

6.2 Conducting Forensic Analyses on Collections of Digital Images 

When analyzing a collection of digital image files as part of an investigation, many forensic 

questions can be raised during the analysis, of which some are listed below: 

1. How many digital cameras can be identified from the digital image metadata? How 

many image files belong to each of these cameras? 

2. How many digital photographs are doctored? How many Internet downloaded 

images are doctored? What photo-editing software was used? 

3. Are there other “similar” digital image files without source metadata? How can 

such related digital image files be identified? 

4. Which of the digital image files were downloaded from the Internet? If so, can the 

source of these image files be determined? 

While some of these questions can be answered in part or whole using traditional classification, 

often it is up to an examiner to analyze the individual classes to identify inter-image relationships. 

I believe that identifying such relationships can be useful to a forensic examiner during a digital 

forensic investigation. To determine answers to such questions, it is necessary to recognize that no 

single classification method can provide all the answers and it is necessary to determine 

relationships between the images to extract all higher-order associations that exist both within a 

particular source class and across such classes. Such a task requires exhaustive classification using 

all individual parameters (from metadata) as well as all combinations of multiple parameters to 

determine where the digital image files overlap and group them. The association groups generated 

from the MAM, on the other hand, achieve this task readily and simplify the task of identifying 

related images to a search task within an association group. Through its automation, the MAM 

integrates this task and eliminates the need to manually identify such related images. 
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6.3 MAM Based Analysis of Digital Image Collections 

The Metadata Association Model is intended to identify image files related through metadata and 

group them together. In the absence of a specific context, the MAM can be evaluated based on 

identifying quantifiable metrics identified in Section 5.3 When a particular context is provided, 

the MAM can be configured to seek specific patterns that extract the specified relationships 

inherent to the collection of digital image files. I demonstrate the two modes of evaluation in my 

experiments discussed in Section 6.5. In general, when applying the MAM to a digital image 

collection for analysis, there are two modes of operation, viz., need-based and exhaustive. 

1. Need-based. Given a single digital image file, it is always possible to exhaustively 

list all digital image files in a collection that are associated on metadata. 

2. Exhaustive. Using the MAM, it is possible to determine all metadata associated 

digital image files in the collection. 

We demonstrate both modes of operation using the MAM. In the need-based analysis mode, a 

forensics examiner may identify a small set of digital images and each image is then used to 

identify a chain of related digital images based on the metadata associations identified in the 

image collection. This would be suited to tracing the origin of digital image files if there is 

suspected online activity. The exhaustive analysis mode is suitable to group digital images in an 

arbitrary collection where a specific starting point for the analysis is unavailable. In this case, the 

digital image files are grouped first, based on their metadata, and the groupings are then used to 

guide the analysis. To achieve this, I have identified multiple collections of digital images 

obtained from different digital still cameras, images edited using photo-editing software and those 

downloaded from the Internet. Digital image files belonging to these classes vary in the number of 

metadata that affect the number of the associations that can be determined between them. 

6.3.1 Criteria for Selecting Digital Image Collections 

There are many criteria that govern the identification of associations in digital image files. In my 

work, I am concerned with the associations that exist in metadata. As discussed in Section 4.7, 

metadata can be classified into four families that are relevant to forensic analysis, source, 

ownership, timestamps and application; each type can contain one or more individual metadata 

that can produce matches leading to metadata associations between the digital image files.  
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The association index ai (defined in Section 5.3) is a measure for determining the quality of 

metadata associations that can be derived out of a given dataset. The index provides an estimate of 

how “connected” a dataset is and is given by the mean of the association index computed for all 

the image files in that dataset. An image file containing a large number of metadata is likely to 

generate a large number of metadata associations and is likely to be highly connected. On the 

other hand, an image file which contains few metadata may give rise to only a few metadata 

associations and thereby be less connected. An image file which does not generate any metadata 

associations is therefore “unconnected”. It is noteworthy that the association index for a given 

collection is correlated with the grouping efficiency η. The higher the value of association index 

ai, the higher the value of grouping efficiency η. 

To apply the MAM and analyze collections of digital image files for the case studies described in 

this chapter, it was necessary to identify digital image collections (experimental datasets) which 

span the spectrum of highly connected to less connected. Typically, digital image files that were 

captured using one or more digital still cameras may generate many metadata matches including 

those that pertain to source, ownership, timestamps and application. Consequently, collections 

containing such digital images are likely to be highly connected. On the other hand, collections 

where the digital image files were downloaded from different sources, e.g., downloaded from 

different websites while browsing, can produce very narrow groups of image files and hence are 

likely to result in less connected digital image files. Besides this, if such image files do not contain 

application metadata, the scope for finding such associations is further reduced.  

In order to determine answers to the questions we’ve posed in Section 6.2, the digital image files 

in a dataset are required to have certain properties in regard to their metadata. These properties are 

as follows: 

1. At least one metadata from each metadata family should be available: 

a. Metadata identifying one or more digital still cameras and/or computer 

software; 

b. Metadata pertaining to the format and structure of the digital image; or 

c. Metadata pertaining to time instants when specific events affected a digital 

image file. 

2. Digital artifacts referring to the same instance of a digital image must demonstrate 

existence and source relationships. 
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3. Digital image files with identical or similar filenames being stored in different file 

formats must demonstrate existence and source relationships. 

4. References to digital image files across log files must demonstrate a happens 

before relationship. 

5. All available file system and application metadata must be authentic. 

Corroboration of related digital image files has been an integral part of forensic analysis [26, 28, 

50]. In order to identify image files and corroborate, the dataset must contain digital image files 

with identical source metadata information (one or more metadata values corresponding to the 

source metadata can be equal, threshold association may also hold). When two or more digital 

image files with identical source metadata values are stored in different formats (as regular or 

backup or temporary files), the files must demonstrate the existence Re and source Rs relationships 

(metadata such as filename, file location, computer software). During analysis, it is customary to 

determine the sequence (timelines) of events involving the digital image files. To achieve this, a 

digital image file must support at least one timestamp metadata. 

6.3.2 Metadata & Metadata Families in Digital Image files 

We identify the digital image metadata at their respective metadata families relevant during 

forensic analysis in Figure 6.2. A collection of digital image files can be organized according to 

the image file names and their respective locations on a particular source of digital evidence. The 

metadata that allow one to do that belong to the source metadata family. Another metadata 

pertaining to this family, viz., ‘software’ metadata is usually found in digital images if the images 

were edited. When this metadata value is present and there are no discernible EXIF markers, it 

could indicate a digitally generated image file. 
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Figure 6.2 Digital image metadata tags of interest in Digital Investigations 

  

Digital image files also must be identified based on the device used to record or capture the digital 

image files and the metadata that allow us to do that are the EXIF metadata Camera make and 

model metadata tags. The EXIF metadata in the digital image files store information about the 

digital still camera and technical details about how a digital photograph was captured. Such 

groupings not only identify all the cameras used in generating the collection, but they can be used 

to identify the number of digital images generated by a camera of a particular make and model. 

These metadata belong to the ownership metadata family.  

The MAC timestamps and the EXIF timestamps, where available, belong to the timestamp 

metadata family and identify events corresponding to creation, modification and access of the 

image files.  

Image dimensions can help one gauge the granularity of digital image files and is a useful pre-

analysis metric; the higher the image dimensions, the better the level of detail in the image file. 

Such metadata and those such as image file size and image content type that provide information 

regarding the features of digital image files belong to the application metadata family.  

Digital image files do not store author information; rather they record the details pertaining to 

devices such as digital still cameras, computers and computer-based software used in creating or 
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editing these images. As a result, the software and camera devices are identified as source and 

ownership information pertaining to namesake metadata families in my experiments. 

6.4 Datasets 

While examining a source of digital evidence for digital images, an examiner is likely to discover 

images from different sources, viz., images recovered from carved data [50], images that are 

digital photographs, images edited or digitally generated using software and images downloaded 

from the Internet. These different types of digital images are shown in Figure 6.3.  

 

Figure 6.3 Different probable sources for digital images discovered in digital evidence 

  

Each collection of images has a different level of metadata associated with it that can either 

enhance or impede the grouping. Usually, images from carved data have incomplete or no 

metadata and hence a grouping based on metadata is likely to result in a high effort margin and 

low grouping efficiency. Images from the Internet can be downloaded in several ways and popular 

methods include downloading images from Google image search results and downloading 

compressed archives from where the images are then extracted. While the Google database may 

not include image metadata unless it is voluntarily provided during uploading, archives usually 

omit image metadata during compression. As a result, the chances that metadata is present in such 

images is likely to be low, which could also lead to a high effort margin r and low grouping 

efficiency η. Images that are digital photographs store a variety of metadata provided by digital 

technology for better management. As these images are rich in metadata, they are likely to result 

in low r and high η. Digitally generated images and those edited by software are increasingly 
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storing valuable information in the image metadata and hence fall in the same category for r and 

η. In any personal collection, the images found are usually a mixture of digital images across such 

sources, and hence the grouping efficiency is determined by the majority fraction of image 

sources. 

6.4.1 Digital Image Datasets 

We describe 5 datasets of digital image collections acquired from various sources to conduct my 

experiments and generate association groups. 

6.4.1.1 Drew Noakes Digital Photograph Collection 

The Noakes digital photograph collection [142] can be characterized as a personal collection that 

contains 126 digital images of which 124 are digital photographs taken with over 20 different 

digital cameras. Of these 124, 7 digital photographs were processed using Adobe Photoshop 6.0. 

Noakes had downloaded the remaining two image files from the Internet and did these files did 

not contain camera related metadata.  

6.4.1.2 NPS-Canon-Images: Digital Corpora Collection 

The NPS-Canon-Images can be characterized as a carved image collection that was obtained from 

Digital Corpora [68]. It contains a set of 6 digital forensic images43 containing 52 JPEG images44 

created as an exercise for image carving and analysis. Of these, 34 images can be fully recovered 

with valid metadata to perform association grouping. The remaining 18 images do not have 

sufficient metadata to lend themselves suitable for association grouping and were hence discarded. 

Each valid image is a still shot containing a screenshot of text either on a Mac computer or writing 

on a piece of paper. The image dimensions vary from 640 × 480 to 3072 × 2304 and the image file 

sizes range from 103 KB to 2.70 MB. All the images in this dataset have been captured from a 

single camera, viz., a Canon Powershot SD800 IS. All images were recorded on the 

aforementioned camera from the afternoon of 23rd Dec 2008 to late on 24th Dec 2008. The image 

resolution along the vertical as well as the horizontal is 180 dots per inch. None of the images 

have been modified by image processing software45. 

                                                           
43 This was a forensic digital image of the 6 different sources obtained from Digital corpora. Each forensic image was 

a raw image of the file system from a single digital camera in which all digital photographs were taken.  
44 Downloaded from URL http://digitalcorpora.org/corp/images/nps/nps-2009-canon2/ 
45 After corresponding with the author of the Digital Corpora collection, I concluded that these relatively high-

resolution digital photographs were not part of any particular digital investigation and were created as basic image 
forensic exercises. 
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6.4.1.3 Assorted Image Collection 

The assorted image collection can be characterized as a personal image collection that contained 

491 images from a volunteer’s laptop. There are 62 original camera images taken on two different 

cameras, viz., 34 from a Canon Powershot A400 and the 28 from a Samsung SGH F480 mobile 

phone camera. All images taken with the Canon camera are set to image dimensions 1280 × 960 

(1.2 MP) while those taken with the Samsung camera are set to 2560 × 1920 (5 MP). The image 

file sizes on the Canon camera range from 300 KB to 1.62 MB while those taken with the 

Samsung camera range from 1.26 MB to 1.42 MB. These digital images were genuine digital 

camera images and did not contain the metadata tag ‘software’. I intended to study which 

operation and what software introduces the “software” tag in a camera image. I identified Adobe 

Photoshop, GIMP, IrfanView, Paint.NET, Photoscape and Photostudio in my experiments and 

selected a set of 5 images at random from each camera and subjected them to a set of image 

transformations. Each image was subjected to lateral rotations, grayscale representations and a 

Gaussian filter by the different photo editing tools. This exercise generated a total of 250 images 

which were also part of this dataset. 

The remaining 179 images were downloaded image files. Of these, 55 images are screensaver 

images downloaded from the WarnerBros Harry Potter website [84] and among these 12 are 

computer generated images. Their dimensions range from 800 × 600 to 1050 × 800 and the image 

sizes range from 55 KB to 600 KB, and one computer generated image is 2.25 MB. There were 

another 124 images which were downloaded from the Internet in response to Google Image search 

queries concerning mobile phones, digital cameras, flash drives, computers, laptops, rack storage 

and Australian birds. These images ranged in file size from 2 KB to about 160 KB. 

6.4.1.4 Govdocs1: Digital Corpora Collection 

The Govdocs1 collection can be characterized as a downloaded image collection that contains 

2157 digital images. It was obtained from the Digital Corpora [70, 71] repository and had 1000 

folders each containing 1000 commonly found files such as documents, image files, text files, and 

HTML pages, from which I filtered the digital image files for my experiments. Of these 1000 

folders, I selected the first 10 folders (from 000 to 009) and 6 subset folders (from subset0 to 

subset5) and filtered only the digital image files46. The digital images in this collection were all 

                                                           
46 The statistical characteristics of the collection are given at http://digitalcorpora.org/corpora/files/govdocs1-simple-

statistical-report. Each folder in the repository is a random collection of files that are statistically congruent with 
the file distribution in a “regular” user workstation. Hence, the set of images in this dataset were representative of 
the entire collection and sufficient for my purposes to demonstrate the metadata association model. 
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downloaded by Garfinkel [70] from different sources from the Internet in response to Google 

Image search queries covering several topics and range from a 1 KB to a few hundred kilobytes in 

size. Of these 2157 digital images, 1891 have been edited on different versions of the Adobe 

Photoshop software, 124 are thumbnail images and none are computer generated images. Of the 

1891 digitally edited images, 207 were digital camera photographs taken using 7 different camera 

makes and 20 different camera models. All the image files in the collection had file system 

metadata as provided by the host workstation. 

Since all the images from this collection were downloaded from the Internet and did not generate 

sufficient number of metadata matches using EXIF metadata, I focused on highlighting the 

association groups generated based on image file sizes and the JPEG image dimensions, where 

available. Thumbnail images can be classified according to the NLA guidelines [135] to identify 

and separate the thumbnail image files. In my evaluation of the datasets, I have imposed an 

additional criterion that such an image file shall be less than 10 kilobytes in size. 

6.4.1.5 Dresden Image Database 

The Dresden image database [79] can be characterized as a digital photograph collection that 

contained 8896 digital photographs at the time of the download47. This database was created for 

the purposes of forensic investigation of digital still camera based photographs. These digital 

images have been taken with over 20 different camera models. Multiple cameras of the same 

make and model are also used to account for device variations and 36 devices have been used in 

all. Complete characterization of the digital images in this image collection is given by Gloe and 

Bohme [78]. 

6.4.2 Dataset Characteristics 

A summary of all the digital images datasets is presented in Table 6.1. It lists the metadata and the 

number of digital images in each dataset which contained these metadata. Additionally, it lists the 

images that contained image dimensions and MAC timestamp information. This characterization 

is used as reference in the following chapter to evaluate the accuracy how the association groups 

adhere to these categories.  

 

                                                           
47 At the time of download, the web repository was being updated. Since then, the repository has grown to 16,384 

digital photographs across 72 camera models. The latest statistics from the analysis are available on request. 
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   EXIF Metadata JPEG Metadata  File System 

Metadata 

Serial 

No. 

Dataset 

Volume 

Number 

of images 

in the 

dataset 

Digital 

Camera 

make 

and 

model 

Date/ 

Time 

Original 

Image 

dimen-

sions 

Soft-

ware 

tag 

ONLY 

file 

system 

meta-

data 

MAC 

time-

stamps 

File 

size 

1 374 MB 126 124 123 126 7 2 126 126 

2 126 MB 52 34 34 34 none none 34 34 

3 1.6 GB 491 312 153 491 53 179 491 491 

4 6.8 GB 2157 207 205 2157 1891 1891 2157 2157 

5 24.2 GB 8896 8896 8896 8896 none none 8896 8896 

Table 6.1 Image characteristics of the five datasets 

  

6.5 Conducting the Experiments 

In this section, I describe two experiments used to analyze a collection of digital images. The first 

experiment applies the need-based analysis method and the second experiment applies the 

exhaustive analysis method. 

6.5.1 Determining the Provenance of Downloaded files 

In this experiment, I developed a systematic method to identify the provenance of digital images 

downloaded from the Internet. Given a user’s file system, browser history and cache logs and 

emails, determining the origin of the files discovered from the sources of digital evidence is a non-

trivial task. Using my Metadata Association Model, however, I can group heterogeneous digital 

artifacts belonging to different sources of digital evidence together. Unlike classification, 

metadata associations, derived though metadata matches on the digital artifacts, can reveal certain 

higher-order relationships which can be used to determine the origin of a particular file. Using this 

method, the file in question is tracked from the user file system under examination to the different 

logs generated during online user activity to its point of origin in the Web. Since traditional 

forensic tools can find pieces of evidence for extraction, this methodology proposes a significant 

improvement in conducting and automating forensic analyses which have thus far been in the 

realms of human investigation and analysis. This experiment was demonstrated using Dataset 5 

summarized in Table 6.1. The image files in this dataset alone contain existence, source, and 

download metadata and the happens before relationship that was necessary to establish the image 
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files as downloaded resources and then trace their origins. If suitable sources were available for 

the other datasets, this can be repeated although similar results are likely to be observed. 

Given a snapshot of a user’s file system, it is necessary to determine the origin of the files 

discovered. Figure 6.4 displays the Downloads folder on the user file system where I am 

interested in the origin of the digital image highlighted. 

 

Figure 6.4 Snapshot of the user's file system containing some digital image files 

  

Since it was likely that the image files in question were downloaded during some form of Internet 

activity, the remaining file system was searched for files whose filenames resemble them. In this 

case, I discovered the presence of a copy in the temporary files folder corresponding to the user’s 

Internet Explorer browser activity. Figure 6.5 illustrates the discovery of an identical copy of the 

image file in the temporary files folder. 

 

Figure 6.5 Snapshot of the user’s temporary internet files 
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Having determined the existence of at least one file in the temporary Internet files folder, I 

extracted the browser cache, sought file matches and determined their respective attributes, as 

metadata. Figure 6.5 establishes the relationship between the resource discovered in the browser 

cache and the file discovered in the temporary Internet files folder. 

6.5.1.1 Method 

The method followed was as follows. Set up a virtual machine with Windows 7 operating system 

and create a user account. Generate the following constructed scenario.  

1. Login to the user account and set up a user email account.  

2. Capture steps 3-5 concerning user’s browsing activity using Wireshark network packet 

capture. 

3. Using the Internet browser, browse the Internet, arbitrarily choose a website and view the 

images on that website.  

4. Download images to the user’s computer.  

5. Access user’s email and view the messages. View the attached images using the browser 

and download attachment files to the user’s computer.  

6. Isolate the computer and create a virtual machine snapshot of the user file system. Isolate 

the Internet browser history and cache logs for analysis.  

7. Examine the sources using traditional forensic tools. Use FTK to examine the file system 

forensic image. Use web analysis tools to examine the Internet browser logs.  

8. Determine the origin of the images discovered on the user’s computer. Corroborate the 

results of the web analysis tools against the packet capture.  

9. Independently, use AssocGEN tool and load the different sources.  

10. Traverse the user’s computer using AssocGEN and determine the files containing 

Existence relationships. 

11. Determine Download relationships on these files and establish Happens before 

relationships from the log source.  

12. Using metadata associations, identify all relationships to determine the source of the files. 

Generate final groupings for analysis.  

Repeat the steps using a different Internet browser. 
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6.5.1.2 Basis for the experiment 

During a forensic examination, when a computer is identified, the traditional approach maintains a 

monolithic forensic image of the computer [171]. This forensic image is examined using a 

forensic toolkit like FTK to ascertain the file system’s contents. Once the contents are ascertained, 

each file is individually analyzed and its metadata is examined. By virtue of the monolithic nature, 

the files are examined in isolation and unless the origin of the file is stored in the file metadata, it 

is likely to be missed. Besides this, the user’s Internet activities can only be deciphered when the 

browser history file is examined. Since history files only record web access records, unless the 

forensic examiner simultaneously searches the browser cache records and compares it against the 

files in the user’s computer, the origin of the file cannot be determined. 

On the other hand, the AssocGEN tool, by design, segregates user documents, temporary Internet 

files, system and application logs including browser history and cache logs, and network traces as 

distinct sources. Since AssocGEN is developed based on the MAM, multiple digital artifacts can 

be accessed to determine associations. The associated artifacts are then grouped together, 

irrespective of the source they originated from. The dataset used in this experiment is summarized 

in Table 6.2. 

Characteristics  

User files 47, 699 (30 GB) 

Temporary Internet files 8916 

Browser history 115832 

Browser cache 128624 

Network packets in trace 35035 

Table 6.2 Summary of the evidence analyzed and their characteristics 

  

While FTK treats browser logs are mere files as identified in my review of forensic tools in 

Section 4.1, AssocGEN treats them as independent user activity logs and enables the identification 

of events that occurred on the file system affecting one or more files. Using the MAM, the log 

records are grouped with the related files tracing the event sequences to help an examiner.  
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6.5.1.3 Observations 

We use AssocGEN to first process the user file system and load the files and their metadata (after 

parsing) into the f-FIA repository. Figure 6.6 is a snapshot of AssocGEN loading the user files 

created using the procedure listed in Section 6.5.1.1 into the repository. 

 

Figure 6.6 AssocGEN analysis engine processing a user file 

  

Once the user files are completed, AssocGEN tracks all Internet based activity which includes 

traversing the temporary Internet files folder used by the web browser to temporarily store 

downloaded web resources. Figure 6.7 is a snapshot of AssocGEN traversing the temporary 

Internet files before parsing the metadata and loading them into the f-FIA repository. 

 

Figure 6.7 AssocGEN processing temporary Internet files 

  

After the files are processed, AssocGEN extracts the browser history and cache events which are, 

likewise, loaded into the repository with their respective attributes. After this, the analysis engine 

generates all metadata associations. Once the associations are generated and stored into the 

repository, it then discerns the relationships that exist among the associations which can provide 

the origins of the image files in question. Figure 6.8 is part of the Java source code of the 
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execution logic in AssocGEN used to determine metadata associations in evidence followed by 

the extraction of relevant relationships leading to the determination of the origin of the image 

files. 

 

Figure 6.8 AssocGEN code logic 

  

The existence relationships Re are determined to exist between the user files and their copies in 

the temporary Internet files folder, the happens before relationships Rh are determined between 

the browser logs obtained from the browser history and cache and the download relationships Rd 

are determined between the browser cache and the temporary files. The relationships determined 

from the metadata associations for the Internet Explorer browser are shown in Table 6.3. The 

results were found to be identical when I repeated this experiment with the Mozilla Firefox 

browser. 

Number of distinct relationships Internet Explorer 

Existence relationships Re 142 

Happens relationships Rh 424 

Source relationships Rs 3 

Download relationships Rd 424 

Table 6.3 The discovered metadata based relationships in the evidence 
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Since I was primarily interested in establishing the origin of the digital image files discovered on 

the user’s file system, I only focused on that set of image files, 142 in number. These were the 

digital image files that were discovered in the temporary files folder of the user’s computer. When 

I compared the browser logs (history and cache), I derived 424 relationships which aided in 

identifying 424 unique resources that were visited and downloaded. Each resource identified 

contained a happens before relationship Rh with a corresponding record in the browser history log. 

A similar relationship was also determined between the browser cache and the temporary files 

folder giving rise to 424 unique files being discovered in the temporary files folder. These 

included the 142 digital image files and other web resources such as validation scripts (.js) and 

bitmap images (.bmp). For the sake of this exercise, I only focused on identifying those download 

Rd and happens before Rh relationships identified between the user’s computer and the web 

domain ascertained as the origin. Other activities including normal web browsing activities of the 

user were omitted. 

The relationships also identified 3939 digital image files on the user’s file system which were 

captured using three distinct digital still cameras, namely, an AgfaSensor 505, a 

FugiFilm_FinePixJ50, and a Pracktika_DCZ5.9 as determined from their EXIF metadata. These 

digital image files indicated 3 respective source relationships with the digital image files whose 

origin is my subject of discussion.  

6.5.1.4 Analysis 

Once the relationships are determined in evidence, the files’ origins are determined by mapping 

the web page linked to the download of the resource leading to the identification of the files stored 

in the temporary Internet files folder and their presence in the user file system. Figure 6.9 shows 

the pairings of the image files discovered on the user’s computer and their respective web page 

origins. 
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Figure 6.9 AssocGEN pairing of the image files with their respective web page origins 

  

In each grouping that is shown in Figure 6.9, the image file name is printed first followed by the 

URL corresponding to the web page visited in the browser log. The groupings where multiple 

URLs are listed with a digital image, indicate multiple visit counts that represent the number of 

additional copies that were downloaded to the user file system. In all, there were 142 digital 

images that were downloaded from the specified web domain and also 282 other web resources 

such as validation scripts (.js) and bitmap files (.bmp) which were discovered on the user’s 

temporary Internet files folder. Besides this, the metadata associations determined that the user 

file system also contained 3939 digital image files which were taken with 3 different digital still 

cameras (an AgfaSensor 505, a FugiFilm_FinePixJ50, and a Pracktika_DCZ5.9) and exhibited 

structural similarity relationships with the digital image files downloaded from the specified web 

domain. These findings suggest that these digital images were also likely to have been 

downloaded from the same web domain, although there is no current trace of this in the evidence 

other than the image relationships determined. 

To corroborate the findings, I analyze the browser history logs (Figure 6.10) and determined the 

origin by tracking the URL in the attribute corresponding to the resource in question. In 

Figure 6.10, the presence of the image file on a website is identified which also provides us with a 

URL. 
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Figure 6.10 Analysis of Internet Explorer History - identifying the origin of download 

  

To corroborate this finding, I visited the website (webpage snapshot illustrated in Figure 6.11) and 

determined that the image file is indeed listed. In addition, I also noted the presence of other files 

which are likely to be present on the user file system.  

 

Figure 6.11 Snapshot of the specified webpage corroborating the listed files in the user's computer 

  

When the findings were corroborated against the network packet trace, I obtained a similar 

assessment as illustrated in Figure 6.12. However, if I were to incorporate the network trace as 

another source of evidence into AssocGEN, then the analysis engine will simply group the 

respective TCP sessions between the domain of origin and the user’s computer and incorporate it 

into the association groups corresponding to the appropriate relationships. 

This suggests that these image files were also likely to have been downloaded from the website, 

although a recent search reports that these image files have now been taken down from the 
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website. To corroborate that the user had indeed downloaded these image files from the identified 

origin, I analyzed the network trace using Wireshark which is illustrated in the Figure 6.12. 

 

Figure 6.12 Corroborating the findings with network trace analysis 

  

6.5.1.5 Conclusions 

Via this case study, I have thus demonstrated the use of the Metadata Association Model to 

determine relationships between different sources of digital evidence, viz., a user’s file system, 

browser logs and temporary Internet files to discover the origin of digital image files downloaded 

from the Internet. 

6.5.2 Image Analysis 

In this experiment, I develop a systematic method to grouping digital image files in a given 

collection for analysis. When we analyze collections of digital images, it is important to gain an 

understanding of how many digital photographs, digital generated composites, edited photographs 

and downloaded images exist in a collection. This is typically provided by standard classification 

techniques which identify the source based on a number of different known parameters. However, 

it is also important to determine those images that relate to certain images of interest which belong 

to a particular class. For instance, when we classify digital images according to their source, how 

do we determine the set of related images to a given digital photograph?  

(a) Which are photographs taken with the same camera model and that were edited? 

(b) Which are edited photographs from different camera models using the editing 

software discovered in step (a)? 

(c) Which are photographs that were digitally generated using the editing software 

discovered in step (a)? 
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(d) Which are photographs that are potentially downloaded images having identical 

image settings to the image of interest? 

By their very nature, these and other such questions necessitate one to study the relationships that 

exist in the documents, a task that requires content analysis, usually by an individual. I 

demonstrate the application of the Metadata Association Model to determine such information 

from diverse collections of digital image files. 

In regards to the nature of the analysis, it concerns the grouping of those metadata which belong 

to the families that elicit answers to the six questions identified by Casey [32] pertaining to 

forensic analysis. In this experiment, I studied the nature of associations that result in specific 

relationships as identified in Chapter 5 for varying values of association index ai across the 

datasets. The purpose of this experiment was to conduct a triage on collections of digital image 

files using the MAM eliciting common context across image files based on metadata based 

relationships. The effectiveness of the number of relationships discovered is measured using the 

grouping efficiency η. 

6.5.2.1 Method 

When analyzing a collection of digital images, classifying the source of the digital images is a 

common starting point. I classified each digital image collection based on source into four classes 

by grouping them using metadata which are only present under certain conditions. The source 

classification method is summarized in Table 6.4. The symbol ‘’ denotes the presence of the 

metadata and ‘×’ denotes the absence of metadata. 

 

 

Classification 

Category 

File System 

Metadata 

EXIF 

metadata 

JPEG 

metadata 

Editing 

Software 

metadata 

Digital 

Photographs 

   × 

Software 

Processed 

    

Computer 

Generated 

 ×   
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Incomplete 

Image 

Metadata 

 × × × 

Unclassified  ×  × 

Table 6.4 Image Classification based on source 

  

6.5.2.2 Expected Behavior 

Digitally processed photographs for instance, are likely to generate many association groups since 

the images in this class will be found both under the category for camera make and model and the 

photo-editing software. The file system metadata which is present in each of the 4 categories are 

also likely to generate several metadata matches. Besides this, the MAC timestamps and EXIF 

timestamps can be used to generate a unified timeline of the digital images. The JPEG metadata 

that describe the image dimensions can be used to classify images based on the image resolution. 

Oftentimes, however, images which are rather small in size and dimensions could just be 

thumbnails and may be ignored for the purposes of analysis. The complete implications of all the 

associations generated between the different categories are discussed in the following subsection. 

The set of possible associations that can be identified among the various lists is illustrated in 

Figure 6.13.  

 

Figure 6.13 Possible metadata associations between the different lists 

Digital Photographs

Software Processed 

Digital 

Photographs/Images

Computer 

Generated Images

Incomplete Image 

Metadata

Camera make and 

model

Photo-editing 

software

MAC + EXIF 

timestamps

Image dimensions

MAC timestamps

LEGEND – metadata tags that generate metadata matches

File name File size
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As Figure 6.13 shows, digital images from all collections can potentially generate metadata 

associations based on all file system metadata, i.e., Filename, File size and MAC timestamps. 

Where exact value matches were rare, a threshold margin of 20% was allowed. This was practiced 

on both numeric and string metadata values. On numeric metadata, the margin indicated a value ± 

20% of the reference value while on string metadata, the margin referred to difference in 

characters of up to 20% the size of the larger string. 

Since digital photographs taken with the same camera use identical software and hence tend to 

store digital images with similar file names, the metadata associations and the groups 

subsequently generated can be used to determine if such is the case. Where this hypothesis is 

falsified, an examiner would be able to conduct analysis on that specific association group to 

determine the cause. 

When digital images are associated based on image dimensions, it allows one to prune the set of 

thumbnail images which would have, under usual conditions, been downloaded by a browser 

when one visits a web page represented by a URI. In a collection such as the one identified in 

Dataset 4 which contains a significant number of images downloaded from the Internet, I believe 

that these associations and the groupings can aid a forensics examiner to focus on a smaller set of 

digital images, while excluding the thumbnail images from further analysis. However, if such a 

thumbnail was generated while processing an image using some photo-editing software, this will 

be determined by the source classification method as a computer generated image and the 

examiner can analyze that image as deemed necessary. 

6.5.2.3 Observations 

All the files that contained the EXIF metadata generated the source Rs relationship between them 

and between any two such image files f1 and f2, the relation f1 Rs f2 held, which was applied 

associatively. Similar associations led to the identification of the other classes. Digital 

photographs that were edited and stored in the same collection gave rise to the unauthenticated 

Rua relationship which was later confirmed after establishing the existence Re and majority Rm 

relationships on image files from temporary files. The existence relationship was established 

between the digital photograph and the temporary file while the photograph and the temporary file 

exerted the majority relationship over the edited image from the collection. 
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We also identified the high-resolution and thumbnail images in the digital image datasets by 

overlaying the image dimension information from the application metadata family. The set of 

digital images labeled “unclassified” were then presented to the user for separate analysis. The 

results of applying the common source identification method to my digital image datasets are 

shown in Table 6.5. 

 

Data-

set No. 

Dataset 

Volume 

Number 

of images 

in the 

dataset 

Digital 

Photo-

graphs 

Images 

Edited 

with 

Software 

Comp-

uter 

Gener-

ated 

Images 

High-

res 

images 

(> 1 

MB) 

Images 

with 

Incom-

plete 

Metadata 

Thumb-

nail 

Images (< 

10 KB) 

1 374 MB 126 124 7 0 23 2 0 

2 126 MB 52 34 0 0 3 0 0 

3 1.6 GB 491 312 53 12 48 179 82 

4 6.8 GB 2157 207 1891 0 0 189148 501 

5 24.2 GB 8896 8896 0 0 7919 0 0 

Table 6.5 Results of Common Source Identification for Image Datasets 

  

The set of discovered metadata associations between the different lists among the digital images 

from the different datasets is shown in Figure 6.14. Figures 6.14 (a) through (e) illustrate the 

number of metadata matches that were determined across the different source categories. 

We regard datasets that contained few metadata associations with the adjacent image classes as 

basic datasets (refer to Figure 6.14 (a), (b) and (e)). In such datasets, the image associations were 

predominantly within the images in the same source class. Dataset 1 contained 124 digital 

photographs of which 7 were processed with Adobe Photoshop and 2 images belonged to the 

category Incomplete Image metadata. Since the 7 Software Processed images was essentially a 

subset of the Digital Photographs, I was able to determine all possible metadata matches as shown 

in Figure 6.13 between these categories. Datasets 2 and 5 only contained digital photographs and 

hence there were no other categories to determine metadata matches with. However, I determined 

metadata name-value matches on all the metadata listed in the legend below with the exception of 

photo-editing software metadata tag amongst the images in the respective datasets. 

                                                           
48 These images were determined to be downloaded from the Internet based on the information provided in the Digital 

Corpora repository regarding the source of these digital images. 
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Figure 6.14 Metadata associations discovered among the digital images from across all the datasets 

  

We regard datasets that contained significantly large number of metadata associations across the 

different image classes as assorted datasets (refer to Figure 6.14 (c) and (d)). In Dataset 3, I 

discovered overlapping sets with regard to the Digital Photographs and the Software Processed 

Images. The set of Software Processed Images also overlapped with the set of images that 

contained Incomplete Image Metadata, primarily on the ‘Software’ metadata tag. There were 179 

images identified under the category of Incomplete Image Metadata, however, 53 of those 

contained the ‘Software’ metadata tag. Hence, between the two sets of categories Digital 

Photographs and Software Processed, and Incomplete Image Metadata and Computer Generated, I 
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(e) Dresden Image Dataset

Camera make and 

model

Photo-editing 

software

MAC + EXIF 

timestamps

Image dimensions

MAC timestamps

LEGEND – metadata tags that generate metadata matches

File name File size
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discovered all possible metadata associations as defined by Figure 6.13. Based on the overlaps 

observed between the categories Software Processed and Computer Generated, the only photo-

editing software found was Adobe Photoshop, albeit different versions. Some images in this 

collection were intended to be used as desktop background images and, therefore, were primarily 

found in standard image dimensions of 800 × 600, 1080 × 800 and 1200 × 1080. I observed that 

digital images that were similar in image dimensions were also similar in their file sizes. 

Dataset 4 had three distinct categories, Digital Photographs, Software Processed Images and 

Images with Incomplete Image Metadata, and the missing category was Computer Generated 

Images. Although the application of the classification method discovered 1891 images as 

belonging to Incomplete Image Metadata, the Digital Corpora repository identified all these image 

files as being downloaded from the Internet. All digital photographs in this dataset were processed 

using Adobe Photoshop and the Digital Photograph category is hence a subset of the set of 

Software Processed Images. Moreover, I observed that merely using the digital camera make and 

model alone failed to classify the images correctly since many of the images in this dataset 

contained EXIF metadata with the exception of the camera make and model. I believe that since 

all these Digital Photographs were processed using Adobe Photoshop, the camera details were 

stripped during one of the many editing operations that may have taken place. Based on my 

correspondence Simson Garfinkel, this may have occurred before it was copied to the repository. 

Between these different categories that were detected in this image dataset, I discovered all 

possible metadata associations as suggested in Figure 6.13. 

In datasets which contained both Digital Photographs as well as Software Edited Images, the 

number of associations discovered was the greatest since these digital images contained the most 

metadata that could generate interest during a forensic investigation. In contrast, the list of Images 

containing Incomplete Image Metadata were the most isolated group with the exception of Dataset 

3 where the images downloaded from the Harry Potter website and those downloaded in response 

to Google search queries generated metadata associations among each other on ‘File name’, ‘File 

size’ and the ‘last modified timestamp’49. This is due to the fact that these images were indeed 

Computer Generated Image files that were downloaded from the Internet and consequently 

belonged to both categories.  

                                                           
49 The other two MAC timestamps, namely, the creation timestamp and the last access timestamp, mimicked the value 

of the last modification timestamp, since this was accessed via the local file system into which the image collections 
were downloaded. 
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There were many associations discovered using the image dimensions but this can be attributed to 

the fact that images of a certain size tend to have a specific resolution which is relative common 

across many files. For instance, the image dimensions 800 × 600 and 1080 × 800 were commonly 

found in computer generated images which are also the standard desktop resolution ratios on 

common computer monitors. All Digital Photographs that were processed using software, for 

instance the images under both categories in Datasets 3 and 4, were found to have similar image 

dimensions. Many of these image files also had the same or similar file names and were hence 

pocketed together, based on the Filename metadata tag. A snapshot of the results displayed on 

Dataset 3 using AssocGEN is shown in Figure 6.15.  

Where the digital image files contained insufficient metadata, I correlated the available metadata 

with the temporary files and Internet browser logs50. In cases where I observed the existence Re 

and the download Rd relationships and a source match using file name metadata, I labeled those 

image files as potentially downloaded files. This was later established as a fact when I determined 

the happened before Rh relationship between the browser logs. The potentially downloaded files 

were present in the temporary files and the filename metadata matched against the resource name 

in the browser cache logs. 

 
Figure 6.15  Snapshot of AssocGEN displaying the results of classifying digital image files based on source 

  

By tracking the domain name identified in the browser log, I identified the URLs on the browser 

history log that corroborated with the timestamps against the cache log. The results of association 

grouping applied to all the digital image datasets is shown in Table 6.6. My findings are discussed 

                                                           
50 It is presumed that the activities were tracked and logged to generate the necessary sources for analysis. 



181 
 

below. In the effort margin reported in column 7, I have listed each unassociated digital image as 

a single association group for computing the r and η values. My observations are analyzed in the 

sequel. 

 

Data-

set 

No. 

Dataset 

Volume 

Number of 

images in 

the dataset 

Association 

index (ai) 

Assoc-

iation 

groups, 

Unassoc-

iated 

images 

Effort 

margin 

(w/o 

unassoc-

iated 

images) 

Effort 

Margin 

(inclusive 

of unassoc-

iated 

images) 

Group-

ing 

effic-

iency η 

1 374 MB 126 0.42 4, 2 0.032 0.048 0.952 

2 126 MB 52 0.21 1, 18 0.029 0.366 0.634 

3 1.6 GB 491 0.06 7, 179 0.022 0.379 0.621 

4 6.8 GB 2157 0.001 10, 1891 0.037 0.888 0.112 

5 24.2 GB 8896 0.86 36, 0 0.004 0.004 0.996 

Table 6.6 Results of association grouping to Image Datasets 

  

6.5.2.4 Analysis 

In Dataset 1, I discovered 4 different camera makes and models that were used to take the Digital 

Photographs, of which 7 were edited using Adobe Photoshop 6. Two images with Incomplete 

Image Metadata remained unassociated. With regard to the grouping efficiency η, it is very close 

to 1 given the number of images that were grouped based on metadata associations, η = 
(4 2)

1
126


  

= 0.952. All valid digital images in Dataset 2 belonged to Digital Photograph and captured with a 

single camera. With regard to the efficiency η, it is low owing to the large number of unassociated 

files. Since 18 of the 52 images did not have sufficient metadata, those files remained 

unassociated bringing down the overall value for grouping efficiency. However, all the 34 digital 

photographs were grouped together and thus η =
(1 18)

1
52


  = 0.634. In Dataset 3, the original set 

of 62 photographs, in addition to the 250 digital images generated using various photo-editors, 

resulted in 312 digital photographs. Of these, only 35 photographs were discovered with the 

‘Software’ metadata tag from Adobe Photoshop. Among the images in this collection with 

Incomplete Image Metadata, 12 were identified as Computer Generated Images as they contained 
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the ‘Software’ metadata tag in addition to file system metadata. With regard to η, there were 6 

association groups resulting from the digital photographs and one separate association group for 

all the Computer Generated Images. Additionally, there were 179 images without sufficient 

metadata and this impacted the overall value for grouping efficiency. Therefore, η =
(7 179)

1
491


  

= 0.621. In Dataset 4, I observed the presence of metadata tags for camera make and model only 

in 207 digital images among the entire collection. The ‘Software’ tag on the other hand was 

detected in 1891 digital images. Other types of EXIF metadata however were present in all these 

1891 digital images. Hence, these digital images are categorized as Software Processed Images 

and not Computer Generated51 Images. With regard to η, there were 10 association groups 

generated from the set of 207 Digital Photographs and 1891 unassociated images. Naturally, this 

Dataset had the lowest value for grouping efficiency. Therefore, η =
(10 1891)

1
2157


  = 0.112. All 

the digital images in Dataset 5 were Digital Photograph images and none of them contained the 

‘Software’ metadata tag. Since there were no unassociated files, all the digital photographs were 

grouped into 36 association groups. Each association group obtained in this case corresponded to 

the distinct cameras used in generating this collection. Therefore, this set has the largest efficiency 

with η =
(36 0)

1
8896


  = 0.996. 

In order to compare the values for the effort margin r against the reduction factor proposed in 

theory, it must be noted that reduction factor only applies to the groups sans the unassociated 

artifacts. Therefore, I compute the effort margin values discounting the unassociated digital 

images from the Datasets and have listed the values in Table 6.4 for column labeled effort margin 

(w/o unassociated images). I observe that these effort margins are a fraction of the effort required 

to analyze the individual image files for Dataset 5; this is due to the fact that there were no 

unassociated digital images and all the image files formed distinct groups of related digital 

photographs. In the presence of metadata associations leading to grouping of image files, the 

effort involved in analyzing the images reduces to a fraction of the total effort needed to analyze 

them individually. 

The digital image collections that contained digital photographs typically contained multiple 

photographs from the same digital camera. All digital photographs from the same camera generate 

                                                           
51 The description of these images on the Digital Corpora website shows that none of the images were specifically 

generated using a computer, which was taken into account in this classification.  
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source relationships between each other and consequently are grouped together in the same 

association group. Naturally, each digital image in that group finds all other digital images from 

the same group. As a result, if one of the digital images in an association group had an ai value of 

0.3, all the other digital images in that group also had the same value. In general, we may state 

that each digital image had an ai value which is the fraction of the total number of digital images 

in the Dataset that were associated with that image. Therefore, Datasets that contained digital 

photographs (both normal and edited) produced higher values for ai as against datasets that 

contained fewer digital photographs. In Datasets 1 and 5, I found high averages for the ai values 

since there were little or no unassociated digital images. In Dataset 2, while most digital images 

were digital photographs and associated based on source and ownership relationships, a third of 

the Dataset was unassociated which resulted in a lower average value for ai. In Datasets 3 and 4, I 

observed very low values for the average ai since a significant number of digital images in these 

Datasets were unassociated. 

6.5.2.5 Ground Truth  

The macro-level classification was determined to be accurate on Datasets 2 and 5 where the 

digital image files were primarily digital photographs and were not edited. However, Datasets 3 

and 4 involved a significant number of digital image files downloaded from the Internet, and in 

the absence of sufficient metadata or alternate sources to corroborate the evidence like temporary 

Internet files or browser logs associated with the image file downloads, the Existence Re, the 

Download Rd and the Happened Before Rh relationships cannot be established. As a result, the 

precise nature of the different operations performed on these digital images could not be 

established. The unassociated digital images were removed to an unclassified list. Such files were 

individually analyzed by examining the corresponding forensic images under FTK. 

6.5.2.6 Conclusions 

Through the case study in this section I have thus demonstrated the use of the Metadata 

Association Model to determine which files are related to a particular matter of interest by using 

standard image classification groups and identifying cross linkages using metadata based value 

matches. 
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6.6 Discussion 

During forensic investigations, investigations often require information on the circumstances and 

conditions prevalent during periods of interest. The semantics associated with metadata usually 

relate to events (e.g., timestamps) and consequently, determining matching metadata values 

correspond to identifying identical or related events. Metadata underlines the context to describe 

the situational similarity during the life cycle of the digital images stored in digital evidence. 

Using metadata associations, we can automatically identify and group: 

1. a digital photograph and any altered version of itself together; 

2. an edited image with digital generated images using a particular software; 

3. digital image files with log records that identify the event sequence tracing the file 

download from the Internet; 

4. a digital photograph or a digital generated image with image files that are related or 

similar containing partial metadata; and 

5. all thumbnail image files. 

The ability to automatically identify and group such related sets of digital image files based on 

metadata associations simplifies the process of analysis for an examiner. Metadata associations 

can be used to validate hypotheses by comparing different metadata values across the digital 

images from a known source and establish consistency among them. 

We now present a brief discussion on the parameters used in my study and the use of digital 

image relationships based on metadata associations to conduct analysis. 

6.6.1 Association Index ai vs. Grouping Efficiency η 

The association index ai assesses a collection of digital artifacts holistically and is an average 

measure of the number of associated digital images that can be discovered by pivoting on a single 

digital image in a collection. The grouping efficiency η quantifies the number of association 

groups and it quantifies the benefit perceived in the analysis after applying the MAM in 

comparison with traditional file-based methods. Although efficiency η is influenced by the 

association index ai, its values are generally larger that ai values in my datasets. This is due to the 

relatively large number of unassociated digital artifacts that effectively result in single member 
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association groups (treated so, for the purpose of analysis). Each member association group has a 

small association index
 
and when averaged over a large collection, it can bring down the overall 

value of ai for that collection. On the other hand, η is a ratio of the number of association groups 

to its worst case scenario. In cases where there are single member association groups, its 

contribution is moderated over the collection. 

6.6.2 Digital Image relationships and analysis 

When it is suspected that one or more digital image files were downloaded, this can be established 

by identifying the download Rd and the happens before Rh relationships between the image files 

and the respective browser log files. Digital image files that demonstrate an existence Re 

relationship indicate the presence of another copy of that image and this can be used to determine 

duplicate image files in a collection. Besides this, when such pairs of image files also exhibit a 

source Rs relationship along with unmodified authentication Rua relationship, an edited image file 

is likely to be present whose original image is identified using the existence Re relationship. 

Naturally, during image analysis, these image files can be starting points when no other 

information is available regarding the image collection. Each camera make and model identified 

through a source Rs relationship is a potential source of digital evidence discovered. Digital image 

files that demonstrate a parallel occurrence Rpo relationship are likely to have been operated on 

using some software if there is an exact metadata match and further analysis of the content may be 

warranted in cases where a Rua relationship is not observed. Digital image files which exhibit the 

structural similarity Rss relationship are likely to possess identical image resolution capability and 

encoding indicating that their content can be analyzed using the same tool. This can be useful if an 

unknown application format is detected during the examination of the image collection. Images 

with incomplete image metadata, unless they contained illicit content, can be spared from 

unnecessary analysis. However, that may be ascertained only through content processing using an 

alternate tool. 

6.7 Chapter Summary 

In this chapter, I studied the use of the Metadata Association Model to analyze collections of 

digital image files. Depending on the nature of the forensic analysis, I demonstrated two methods, 

viz., need based and exhaustive to determine metadata associations and group the related digital 

images. I discussed the formation of association groups across multiple source classes by 

determining metadata matches between them. I illustrated the use of digital image file 
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relationships to determine instances of image downloads and identify the origin of these 

downloads. 

While image processing attempts to capture the content-related information about a digital image, 

the metadata, on the other hand, records and transports the situational information of the digital 

image. Using metadata belonging to the four metadata families, I have shown that it is possible to 

determine digital image relationships through metadata associations to find answers to questions 

pertaining to the analysis of digital image collections. 

In the following chapter, I demonstrate the use of the Metadata Association Model to analyze 

word processing documents. 
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“I read, I forget;  

I see, I remember;  

I do, I understand.” 

- Confucius 

 

 

 

 

7. MAM Based Analysis of Word Processing Documents 
In this chapter, I focus on the application of my Metadata Association Model to collections of 

word processing documents to elicit metadata based associations and scope a forensic analysis. I 

assume no prior knowledge of the word processing document collections in my experiments. This 

chapter demonstrates the functional completeness of the model in two modes of operation: 

determining need-based and exhaustive document associations. When analyzing word processing 

documents, it becomes necessary to determine some important parameters:  

1. The authors, and authors’ affiliations;  

2. File names and patterns;  

3. The range of file sizes;  

4. The applications used and their frequency of use;  

5. The authors who created the most number of documents; and so on.  
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In my research, I apply my method to group the metadata matches into groups and determine 

these characteristics. 

7.1 Conducting Forensic Analysis on Collections of Word Processing 

Documents 

When collections of digital image files are analyzed as part of an investigation, many forensic 

questions can be raised during the analysis, some of which are as follows. 

1. How many document authors can be identified from the word processing document 

metadata? How many documents belong to each of these authors? 

2. How many document files were downloaded? If any, can the source of these files 

be determined?  

3. How many downloaded documents are edited? What was the editing software 

used? 

4. Are there other “similar” document files without ownership/authorship metadata? 

5. Which of the document files were downloaded via Emails? If any, can the parties 

of the email be identified? What were the mail carriers? Is there a mail client with a 

copy of the relevant emails? 

To determine answers to such questions, it is necessary to recognize that no single classification 

method can provide all the answers and it is necessary to determine relationships between the 

word processing documents to extract all higher-order associations that exist both within a 

particular source class and across such classes. Such a task requires exhaustive classification using 

all individual parameters (from metadata) as well as all combinations of multiple parameters to 

determine where the document files overlap and group them. 

Word processing documents store metadata relating to the author and owner of a document which 

I use to determine the names of individuals and the names of computer software that were used to 

create/modify the document. Documents also have metadata which record characteristics 

pertaining to the structure of a document, word count, page count and so on. These metadata are 

useful in determining how documents were created, and stored on a file system. When this 

metadata is used in conjunction with the author/owner metadata, it can determine all users who 

created similar documents. 
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7.2 MAM Evaluation Using Word Processing Document Collections 

While traditional approaches in analysis have presumed the existence of knowledge regarding the 

digital artifacts in the sources of digital evidence, the Metadata Association Model does not 

assume the existence of prior knowledge. I demonstrate the two modes of evaluation in my 

experiments discussed in Section 7.4. In general, when applying the MAM to a collection of word 

processing documents for analysis, there are two modes of operation, viz., need-based and 

exhaustive, as described in the previous chapter. 

7.2.1 Criteria for Selecting Word Processing Document Collections 

The association index ai (defined in Section 5.3) is a measure for determining the quality of 

metadata associations that can be derived out of a given dataset. The index provides an estimate of 

how “connected” a dataset is and is given by the mean of the association index computed for all 

the documents in that dataset. A document that is likely to generate a large number of metadata 

associations is likely to be highly connected while a document that contains few metadata may 

give rise to only a few metadata associations and thereby be less connected. A document which 

does not generate any metadata associations is therefore “unconnected”. As previously mentioned 

in Chapter 5, the higher the value of association index ai for a source, higher is the value of the 

grouping efficiency η. 

In order to determine answers to the questions we’ve posed in Section 7.1, the word processing 

documents in a dataset are required to have certain properties in regard to their metadata. These 

properties are as follows: 

1. At least one metadata from each metadata family should be available: 

a. metadata identifying one or more software applications; 

b. metadata pertaining to the format and structure of the word processing 

document; or 

c. metadata pertaining to time instants when specific events affecting the word 

processing documents occurred. 

2. Digital artifacts referring to the same instance of a word processing document must 

demonstrate existence and source relationships. 

3. Word processing documents with identical or similar filenames being stored in 

different file formats must demonstrate existence and source relationships. 
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4. References to word processing documents across log files must demonstrate a 

happens before relationship. 

5. All available file system and application metadata must be authentic. 

Corroboration of related word processing documents has been an integral part of forensic analysis 

[26, 28, 50]. In order to identify word processing documents and corroborate them, the dataset 

must contain word processing documents with identical source metadata information (threshold 

association may also hold). When identical copies of word processing documents are stored in 

different formats (as regular or backup or temporary files) are discovered, they must demonstrate 

the existence Re and source Rs relationships (metadata such as filename, file location, computer 

software). During analysis, it is customary to determine the sequence (timelines) of events 

involving the word processing documents. To achieve this, a word processing document must 

support at least one timestamp metadata. 

7.2.2 Metadata & Metadata Families in Word Processing Documents 

We identify the digital image metadata at their respective metadata families relevant during 

forensic analysis in Figure 7.1. A collection of word processing documents can be organized 

according to the image file names and their respective locations on a particular source of digital 

evidence. As discussed earlier, title or subject metadata can often throw light on understanding 

whether or not the document has been used as a template in creating the material while leaving the 

metadata untouched. ‘Creator’ and ‘Publisher’ metadata help identify some of the additional 

software used in generating the content. Such metadata belong to the source metadata family. 
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Figure 7.1 Word processing document metadata tags of interest in Digital Investigations 

  

When dealing with documents, it may be necessary to identify the author(s), their affiliations with 

an organization or company, when and who last modified the document and so on. The metadata 

that allow one to do that belong to the ownership metadata family.  

The MAC timestamps and the document timestamps, where available, belong to the timestamp 

metadata family and identify events corresponding to creation, modification and access of the 

word processing documents.  

Metadata such as the number of pages, slides, etc., retain some content context. ‘Keywords’ is 

another metadata which, if available, could provide alternate keywords to examiners while 

exploring related documents or other digital artifacts from one or more sources of digital 

evidence. Such metadata that provide information regarding the features of word processing 

documents belong to the application metadata family. 

In the sequel, I describe the use of metadata associations to automatically corroborate a fact, in 

this case, to solve the classical file ownership problem introduced by Buchholz and Spafford [22]. 

S

O

U

R

C

E

O

W

N

E

R

S

H

I

P

A

P

P

L 

I

C

A

T 

I

O

N

T

I

M

E

S

T

A

M

P

S

Created

Last Modified

Last Accessed

Document name

Location of document

Computer name

Document owner

Author/Last author

Title/Subject

Content type

Document file size

Total edit time 

# Pages/slides

keywords

Version no.

Organization

Creator/Publisher

Last Printed

Last Saved



192 
 

7.3 Ascribing File Ownership Using Association Groups 

Buchholz and Spafford noted that when sufficient metadata is recorded, it can aid in determining 

answers to the six questions listed by Casey [32] concerning forensic analysis. The metadata 

associations model takes this approach one step further by determining metadata based 

associations across digital artifacts to discover relationships and provide answers to investigation 

related questions.  

7.3.1 File Ownership Problem 

Consider the problem described by Buchholz and Spafford [22] where the owner of a document 

and the involvement of individuals is under investigation. I have adapted this problem to illustrate 

the benefits of using my framework to examine multiple sources of digital evidence and the model 

to identify metadata associations for solving this problem. There are three users, User A, User B 

and User C. User A creates a file F. User A then communicates with User B and transfers a copy 

of file F and User B in turn transfers a copy to User C. The ownership of the document is 

transferred to User B and then User C once each of them received a copy of the file F. The 

question for an examiner posed by Buchholz and Spafford [22] is who is responsible for file F? I 

interpret this question as who is the author of the contents found in file F? I illustrate this file 

ownership problem in Figure 7.2. From the description of the problem, I inferred that initially an 

examiner has access to some form of digital evidence, one source each from User B and User C, 

without loss of generality. 

 
Figure 7.2 The file ownership problem 
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7.3.2 Discovering User A 

Since file system metadata only records the last known owner, the involvement of User A in the 

generation of the document cannot be traced from a simple examination using any forensic tool. 

Buchholz and Spafford [22] have observed that in the presence of only file system metadata, and 

particularly, the owner of the document, this problem cannot be solved. Moreover, they note that 

in the presence of a finite sized field to hold user information, the question cannot be answered, in 

general. In my work, I relax the assumptions slightly to include the use of document metadata in 

addition to file system metadata for identifying the original owner. Document metadata which are 

inherent to the document they are associated with are persistent across file copies over networks 

and this can be utilized in determining the provenance of the file. 

From a digital forensics standpoint, Buchholz and Spafford advocate that if a forensics examiner 

is uncertain as to who (or which process) is responsible for an artifact, especially when multiple 

candidates exist (Users A, B and C are listed as the owners in their own copy of file F), one has to 

simply assume that all of them are responsible and retain information supporting that hypothesis. 

If the above scenario was investigated using conventional forensic toolkits, then some form of a 

digital evidence source would have been seized from User B and User C. Despite the potential for 

forensic tools to examine the two sources together, merely using file system metadata will identify 

both User B and User C simultaneously as the owners of file F, which is a fallacy. User A is never 

identified during the examination. Therefore, it is likely that the original author cannot be traced 

or could be wrongly identified.  

However, using my approach, the sources acquired from User B and User C can be examined 

together using AssocGEN thereby allowing the examiner to corroborate the sources of digital 

evidence, in a tool-supported manner. This would then allow the parsing of not only file system 

metadata, but also the document metadata from the two copies of file F. The document metadata 

from the two copies of file F, from User B and User C, generates metadata matches and forms 

association groups that include the metadata ‘Author’ and ‘Filesize’; the metadata value based on 

which the group was generated identifies User A, who remained undiscovered previously. Then, if 

a copy of the file F is also acquired from User A for analysis using AssocGEN, the metadata 

matches generated between this file and the two copies from Users B and C in addition to a 

timeline of the event timestamps from the three copies of the file F shows that User A is the actual 

owner. 
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7.3.3 Automatic Corroboration of Evidence Using Association Groups 

With AssocGEN, a user can configure the tool to determine all metadata associations. The tool 

traverses the two sources and identifies the different digital artifacts and parses the respective 

metadata. After parsing the metadata, it identifies the metadata matches and groups them into 

similarity pockets (refer to Section 4.5). The similarity pockets containing overlapping digital 

artifacts are grouped and presented to the user. In short, these are the set of steps that take place: 

1. Mount the two sources of digital evidence. 

2. Traverse the sources and parse metadata from all digital artifacts. 

3. Identify all metadata name-value pair matches and combine the respective files to 

form similarity pockets. 

4. Merge overlapping similarity pockets into association groups. 

5. Present the groupings to the forensic examiner. 

Once the groupings are presented, the examiner can skim the groupings and find metadata 

matches that relate to the provenance of file F. In this context, the metadata tags ‘Author’, the 

MAC and document timestamps and the ‘Filesize’ are relevant. When the examiner studies the 

groupings, it will be found that the two copies of file F, one each from Users B and C are grouped 

together based on the metadata tag ‘Author’. Interestingly, the value contained is neither User B 

nor User C, but ‘User A’ although the owners of these files are listed respectively as User B and 

User C. Since internal metadata persist when documents are copied over networks, the ‘Author’ 

metadata generates a match between the two files identifying User A.  

7.3.4 Conclusions 

Application metadata in tandem with file system metadata will also generate multiple matches that 

correspond to information that relate to who, when, where and how, leading to association groups 

that characterize the similarity of the two copies of file F. Using AssocGEN, I was able to 

determine inherent Source and Application metadata relationships between these files that shows 

that neither User B nor User C was the original owner of the file. For the purpose of 

completeness, the provenance of the file can be established if a copy of the file is obtained from 

User A for comparison against the two copies of the file from Users B and C. Besides, the 
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timestamps recorded on the application metadata, which will predate the MAC timestamps52 

discovered on copies of file F with B and C, will establish User A as the original author of file F. 

Hence, the use of metadata associations can aid in attributing the ownership of the file to the 

correct individual.  

7.4 Datasets 

To evaluate the MAM, it was necessary to identify datasets which span the spectrum of highly 

connected to weakly connected artifacts. Typically, word processing documents that were created 

by users from the same organization may generate multiple metadata matches including those that 

pertain to ownership, timestamps and document structure and template. Consequently, such 

collections are likely to result in highly connected documents. On the other hand, collections 

where the word processing documents were downloaded from different sources, e.g., downloaded 

from different websites while browsing can produce very narrow groups of image files and hence 

are likely to result in weakly connected or unconnected documents.  

7.4.1 Word Processing Document Datasets 

We describe two document datasets acquired from two different sources to conduct my 

experiments and generate association groups. In my datasets, the documents are largely created 

using the Microsoft Office application and therefore always generate metadata matches with 

regard to the application metadata. However, for the purposes of my research, I have limited my 

definition of a homogeneous source with regard to the MIME type associated with the document 

files and omitted the metadata match arising from the application metadata since this can render 

the association group formed trivial. 

7.4.1.1 Desktop Dataset 

The desktop Dataset was a collection of Microsoft Office documents from a personal computer 

containing 976 Microsoft documents. The computer was provided by a student volunteer that 

contained 49703 files in total. The period of data accumulation was between 2008 and 2011. The 

files contained in the collection were related to the student’s research work over this period. This 

collection has 752 Word documents, 154 PowerPoint files and 70 Excel spreadsheets. More than 

half of the remaining files were system and application files, 4,533 were Adobe PDF files, 10715 

                                                           
52 The document timestamps were created according to User A’s copy which will persist despite the copy. Since the 

MAC timestamps on the file for Users B and C are created after the file was copied from User A, the document 
timestamps will predate the MAC timestamps. 
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were digital image files, a few HTML files, logs files and several programming script files. The 

documents do not belong to any particular investigation. Primarily, most of the documents in this 

collection belonged to the volunteer and created by the volunteer, albeit with different user names 

and with multiple organization affiliations and while a few PowerPoint files were downloaded 

from the Internet. The collection contains multiple author names and 7 distinct organizations 

overall. The minimum file size is 10 KB and the maximum file size is 11.62 MB in this collection. 

Both Word documents and the PowerPoint files in this collection have template (.POT) files 

which were downloaded from the Internet. Word documents which are modified and updated as 

different versions share the same title in the metadata field. This dataset is summarized in the first 

row of Table 7.1.  

Amongst the application metadata, the document’s author was the most commonly occurring 

metadata tag in this dataset, in 822 out of the 976 documents. The documents recorded this field 

differently and I obtained the count from both ‘Author’ and the ‘Last-Author’ metadata53 tags. 

When a document is created, the title of the document is recorded by Microsoft Office (Windows 

version) in the metadata tag ‘Title’ or ‘Subject’ which was the next most commonly occurring 

metadata tag. During document analysis, comparing the filename and this particular metadata tag 

could inform one if the document was created on its own or was derived from another document. 

In the latter case, the title could differ from the filename which would indicate that it is derived 

from another document. The organization the author is affiliated with is denoted by metadata tag 

‘Company’ which was found in a little fewer than half of the documents in this dataset. 

‘Application-Name’ which records the specific version of the application that created that file and 

the ‘Last-Modified-Date’ or ‘Last-Printed-Date’ was found in a little fewer than 600 documents54. 

I was always able to extract the MAC timestamps and other file system metadata (such as file 

name, file path, and file size) for all the documents in the dataset. 

7.4.1.2 Govdocs1: Digital Corpora Collection 

The second Dataset was obtained from the Digital Corpora [68, 70, 71] repository containing 

several Microsoft Word documents, PowerPoint files and Excel spreadsheets. The document 

collection was downloaded from the corpora which contained documents and other files 

                                                           
53 Although the values for metadata tag ‘Author’ need not coincide those of ‘Last-Author’, in my dataset, these values 

coincided where both were available. Hence, I deemed the tags to be equivalent in my experiments. Among the set 
of documents where both tags were present, I arbitrarily chose to count from metadata tag ‘Author’ and omitted 
‘Last-Author’. 

54 There were several documents in which the metadata tag was present but the corresponding value was NULL. Such 
documents were not included in the counting. 
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downloaded from the Internet by Simson Garfinkel for digital forensic research purposes. I 

downloaded folders 000 to 010 and subset0 to subset5 totaling 17399 files. The documents from 

this source contained a large number of metadata and adequate metadata per file to be included in 

my experiments. Within the documents in my collection, there were 2970 documents of which 

there were 1282 Word documents, 1044 PowerPoint files and 644 Excel spreadsheets. The 

remaining files were Adobe PDF files, HTML files, text and digital image files. The documents 

do not belong to any particular investigation and have been acquired from several different 

authors. These files were downloaded by Garfinkel and loaded in the Digital Corpora repository 

directly without any additional modifications to files, excepting the change in filenames [71]. 

These documents were downloaded from this repository and used in as-is condition in my 

experiments. The collection contains 103 different authors and over 80 distinct organizations 

overall. The minimum file size is 6 KB and the maximum file size is 58.6 MB in this collection. 

All files in this repository are numbered sequentially from 000 followed by the subfolder ID 

further followed by a 3-digit file ID between 000 and 999. The filenames themselves have been 

assigned arbitrarily. The filenames hence do not have any connection with the content of the file. 

Since all the files in this dataset were downloaded from the Internet and renamed, the file system 

metadata for the documents in this collection were taken from my local file system into which 

these files were downloaded. The file system metadata values are accurate from the point of the 

download, which are used in subsequent metadata based associations. The application metadata 

that were present at the time of download are used to report the values. This dataset is summarized 

in the second row of Table 7.1. 

Amongst the application metadata, the document’s author, taken both from ‘Author’ and ‘Last-

Author’ metadata tags, was the most commonly occurring metadata tag in this dataset, appearing 

in 2921 out of the 2970 documents. The metadata tag ‘Company’ was found in 2702 documents in 

this dataset. The metadata tag ‘Title’ was discovered in 2406 documents. ‘Application-Name’ was 

found in 2760 documents and the ‘Last-Modified’ or ‘Last-Printed-Date’ was found in 1723 

documents. I was always able to extract the MAC timestamps and other file system metadata 

(such as file name, file path, and file size) for all the documents in the dataset. 
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  Microsoft Document Metadata File System 

Metadata 

Serial 

No. 

Dataset Dataset 

Volume 

Author

/Last 

author 

Company

/Organi-

zation 

Appli-

cation 

name 

Key-

wo-

rds 

Last 

modi-

fied/ 

printed 

date 

Title

/sub-

ject 

MAC 

Time-

stamps 

File size 

1 Desktop 

(956) 

1.6 GB 822 440 577 334 583 660 976 976 

2 Digital 

corpora 

(2970) 

6.8 GB 2921 2702 2760 1362 1723 2406 2970 2970 

Table 7.1 Summarizing the Microsoft document metadata from the different datasets 

  

7.4.2 Metadata Availability in Document Datasets 

To gain a comprehensive understanding of the metadata distribution on documents within a 

standard file system, I calculated the frequency of occurrence of metadata from multiple 

collections of Microsoft Office documents. Based on my study of 10 workstations, a standard 

workstation was found to contain documents of different file formats (e.g., .DOC, .PPT, .XLS, 

.DOCX, .PPTX, .PPS, PDF, .TXT, .LOG, etc.) and from across different versions recording 

metadata to varying degrees of detail. Such a preliminary study was required in my research to 

understand the metadata distribution so that we may utilize the most frequently occurring 

metadata to determine associations and derive inferences during a forensic investigation. 

7.4.2.1 Documents & Metadata Distribution 

In the desktop machine, all the files across the entire file system were counted and reported. In the 

Digital Corpora dataset, the number of files downloaded from the main repository were counted 

and reported. Each metadata tag name was counted exactly once. The documents from each of the 

three formats and the respective cumulative number of metadata discovered on each type are 

shown in Table 7.2. 
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Source 

Machine 

Name of 

files on 

Source 

MS-WORD, No. 

Of distinct 

metadata 

MS-PPT, No. 

Of distinct 

metadata 

MS-XLS, No. 

Of distinct 

metadata 

Desktop 

machine 

49703 752 Word docs, 38 

metadata 

154 

presentation 

docs, 38 

metadata 

70 spreadsheet 

docs, 17 

metadata 

Digital 

Corpora 

17399 1282 Word docs, 

59 metadata 

1044 

presentation 

docs, 36 

metadata 

644 

spreadsheet 

docs, 17 

metadata 

Table 7.2 Preliminary statistics of relative metadata richness of different Microsoft Office document types 

  

In Table 7.2 there were over 30 metadata tags in MS-WORD and MS-PPT files in comparison to 

fewer than 20 for MS-XLS files. Among these MS-WORD files (DOC extension), Microsoft 

Office 2007 Word files (DOCX extension) are the most metadata rich image files and similarly 

for MS-PPT, Microsoft Office 2007 PowerPoint (PPTX extension) documents. An interesting 

finding from my analysis of metadata in Microsoft Office document collections was that the same 

metadata could be referred to by different tags depending on the application version. For instance, 

while Word documents belonging to Word 2003 or earlier used the metadata tag ‘Last-Save-

Date’, Word 2007 documents used the metadata tag ‘Last-Modified’ to refer to the timestamp 

when the document was last modified. While ‘Application-Name’ metadata tag was used on Word 

2003 and the document version referred to the application name, the metadata tag ‘Creator’ was 

used on Word 2007 to refer to the same value. These results identified MS-WORD and MS-PPT 

as the document types containing the maximum number of metadata describing a document 

among the various word processing files analyzed in my Datasets. 

Largely, Microsoft Word files were found to contain the most number of metadata closely 

followed by the PowerPoint files. Both sets of documents contain metadata that describe the user 

context on who created and/or modified the document. This includes metadata such as ‘Author’, 

‘Last Author/Group’, ‘Creator’ and ‘Organization’. The metadata also describe the application 

context that was used in creating/modifying the document. The metadata that come under this 

category include ‘Application-name’, ‘Application-ver’ and ‘Publisher’ etc.  

Notably, not all metadata tags were discovered in all Microsoft Office documents, even within the 

same type. Often, this can be attributed to the fact that Microsoft Office applications have evolved 
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over the years and some of the earlier versions did not record as much metadata as compared with 

recent versions. For instance, Microsoft Office 97 only recorded the ‘Author’ name and did not 

record application metadata which were only introduced since Microsoft Office 2003. 

7.4.2.2 Metadata Availability & Frequency 

In this section, I compute the frequency of metadata tags found in the documents from the two 

datasets. The purpose of the metadata frequency study is to estimate the most commonly 

occurring metadata in Microsoft Office documents which can be relied upon to determine 

metadata matches. I have tabulated the relative percentage occurrence of the most relevant 

metadata in Microsoft Office documents files with regard to forensic investigations. The value 

was computed as the ratio of the number times that particular metadata was found in that 

collection to the total number of documents in the collection expressed in percentage. This is 

shown in Table 7.3. The application metadata tags listed in this table were discovered in all the 

three different Microsoft Office document types, although the percentage of occurrence in MS-

XLS documents alone was marginally lower (between 5–10% lower) compared to MS-WORD 

and MS-PPT. The highest percentage of occurrence was discovered for ‘Author’ metadata in MS-

WORD documents which was as high as 99% and the lowest was for metadata tags ‘Manager’ 

and ‘Security’ in MS-PPT, which was as low as 3–4%. 

In Table 7.3, ‘Author’ represents the metadata naming the author of the document. In some cases, 

when the author is logged in as part of an organization as listed by metadata ‘Company’, the 

author is listed by their username within that organization. I believe that identifying these aliases 

can be very useful during forensic investigations. Often, the aliases could provide reference to the 

user’s email account within that organization which can subsequently be searched for evidence if 

required. I was always able to extract the MAC timestamps and other file system metadata (such 

as filename, file path and file size) for all documents in each of the collections; hence the 100% 

availability. 

  Word Processing Document Metadata File system 

Metadata 

Machine 

source 

Total No. of 

all 

documents in 

the collection 

Auth-

or 

Comp

-any 

Title/ 

Subject 

Last-

Printed 

Date 

Last-

Save

-

Date 

Total/Edit 

Time 

MAC 

time-

stam-

ps 

File 

size 

Desktop 976 86 % 46 % 69 % 57 % 61 % 79 % 100 % 100 % 
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Digital 

Corpora 

2970 95 % 91 % 81 % 58 % 96 % 66 % 100 % 100 % 

Table 7.3 Percentage occurrence of metadata tags from across all word processing documents 

  

The ‘Last-Printed-Date’ and ‘Last-save-Date’ metadata recorded by the corresponding 

applications can often be used to validate if a document has been tampered with. These 

timestamps could be corroborated with the MAC timestamps to establish timestamp consistency. 

Frequently, documents are iteratively modified and each version of the modification is stored with 

similar or different filenames. Interestingly, the original document records the ‘Title’ when it is 

created, which is often duplicated on all subsequent iterations. In my experiments to determine 

metadata associations on the Desktop dataset, I discovered several documents that were multiple 

iterations of a single document and all these documents shared the same value for metadata tag 

‘Title’, although the filename was differently recorded in these documents.  

The aforementioned situation is also often observed when a particular document is modified based 

on revisions and new content is added into iterative versions of the same document. In this 

scenario, the documents may contain the same subject or title in metadata but a different filename 

for each file. I believe that such discoveries can help forensic examiners rule out documents which 

need not be included for subsequent analysis. Metadata recording the last printed date and total 

edit time can often inform examiners on any recent activity on these document(s) or if an 

unusually large or small amount of time has been spent in editing. 

7.4.3 Dataset Characteristics 

Metadata pertaining to the ownership metadata family can provide answers to Question 1 listed in 

Section 7.1 and identify the different individuals connected with a single document or a set of 

documents. This information was, by and large, available on both the document datasets. The 

source metadata family identified that all documents were created on a Microsoft Windows XP 

SP2 machine using the Microsoft Office 1997–2003 software products. In some cases, I also 

determined the specific names of the computer systems on which the documents were created. 

This allowed us to group the documents that were created on the same machine, and hence 

possibly by the same individual. Where I noticed deviations from this expected behavior, it was 

found to be due to the machine being a shared computer within an organization as identified by 

the ownership metadata. The timestamp metadata family indicated that the files were last operated 

on at least six months prior to creation of the dataset. Documents that were created on the same 
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date and time as those modified or accessed were identified as “derived” documents whose 

content was obtained from the modified or accessed documents. A one-to-one relationship was 

established using the source relationship and the structural similarity relationship. 

In the following section, I discuss the experiments conducted using AssocGEN by applying my 

metadata association model to collections of documents for analysis. 

7.5 Conducting Experiments 

During forensic investigations when examiners are faced with the challenge of analyzing several 

documents, they may begin the process by conducting keyword and/or string searches on the 

collection and lists the set of documents that match the criteria [50]. However, since this is purely 

based on string matches, some context may be missed. One of the advantages of my Metadata 

Association Model is that the similarity pockets and association groups can aid in discovering 

missed context, stored in document metadata. My first experiment demonstrates a method to 

expand the scope of basic string search techniques using my method. 

Given an arbitrary document collection, it may be necessary to determine document 

characteristics such as those listed in Section 7.1. These characteristics will provide a better 

understanding of the document collection (for triage purposes) for an examiner to take informed 

decisions during analysis. In my second experiment, I illustrate how to determine document 

characteristics by identifying metadata matches and generating association groups. I group the 

similarity pockets from individual metadata matches into association groups to identify documents 

of importance during document analysis in two document datasets. I generate the association 

groups in two different ways: 

1. obtain metadata from the set of files identified by keyword search and determine 

metadata associations to generate association groups against the rest of the 

document collection; and 

2. determine metadata associations automatically based on primary metadata to 

characterize the document collection in terms of number of authors, file name and 

size similarity, number of organization affiliated with authors, the most active 

author and so on. 

Approach 1 is suitable when there is a subset of documents that are of interest to a forensics 

examiner and hence, one is interested in identifying those documents that are related the set of 
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interesting documents. Approach 2 may be suited for situations when an examiner is examining a 

collection to identify what’s contained in them. It can automatically identify and group the related 

documents and it is then sufficient for an examiner to study the groups generated rather that 

examine the individual documents. Each group, by virtue of the metadata associations embedded 

within, are likely to contain related information.  

7.5.1 Identifying relevant documents with limited context 

When I use keyword searches during analysis, the goal is to obtain all search hits for the values 

that pertain to the keywords. However, it may also be important to determine what other 

documents are related to the set of files that were identified from the search hits and thereby 

expand the scope of the search. Typically, this would involve examining each file from the search 

hit list and determining additional keywords and conducting further searches. As we’ve discussed 

in Chapter 2, this approach is not scalable both in volume and diversity. For instance, if a 

Microsoft Word document was identified using a search keyword, how would I identify the image 

files that were created/downloaded along with such a file?  Metadata based associations provide a 

scalable model to determine such related files and group them, and the approach is amenable to 

automation. 

We used two datasets, the Desktop dataset and another containing a user’s Internet activity. This 

dataset was created by combining sets of Web documents and Microsoft Office documents that 

were downloaded from the Internet in response to Google search queries “bomb” and “explosion”. 

This produced 154 files consisting of 3 Word documents, 4 PowerPoint presentations, 2 Excel 

spreadsheets, 20 HTML files, 56 GIF image files, 18 JPEG image files, 38 JavaScript files and 13 

Cascading Style Sheets.  

7.5.1.1 Method 

We identified 3 keywords for each case study and discovered 18 document matches in the first 

and 16 in the second. I identified the keywords “architecture”, “evidence” and “research” for the 

Desktop dataset. The keywords for the second case study were obtained from filenames in the 

responses to search queries. I identified the keywords “explosion”, “bomb” and “c4” for this 

dataset. In this case study, the matches were determined from the Microsoft Office documents in 

addition to the HTML files in the collection. Consequently the metadata associations determined 

were primarily based on matches in filenames and download timestamp matching with the file 

creation timestamp from the file system. 
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We used the AssocGEN analysis engine to extract metadata from the files identified in the 

keyword search to determine metadata name-value matches with the remaining documents in the 

collection. The results of the metadata associations discovered are summarized in Table 7.4. 

Datasets Association 

index (ai)  

Grouping 

efficiency 

η 

No. of 

Documents 

discovered 

from 

keyword 

search 

Total No. of 

metadata 

associations 

discovered  

No. of 

Documents 

discovered 

from 

metadata 

associations 

Avg. No. of 

associations 

per file  

(Col #3 / 

Col #2) 

Desktop 
Dataset 

(976 files) 

0.21 0.43 18 108 68 6 

User’s 
Internet 
activity 

files (154 
files) 

0.62 0.87 16 132 82 8.25 

Table 7.4 Outcomes from determining metadata associations on keyword matches 

  

7.5.1.2 Observations 

In the Desktop dataset, I discovered 18 files that matched from a total of 976 files for the 3 

keywords. Since all the files in this collection were Microsoft Office documents, I used the 

metadata name-values from these 18 documents to list the set of all other documents in the 

collection which generated similarity pockets. When I discovered multiple sets of documents 

matching on more than one metadata tag, I combined them into association groups and listed the 

set of all metadata matches discovered among them. For this dataset, the metadata associations 

were determined based on primary metadata since secondary metadata was not sufficiently 

populated to generate many associations. The metadata that did generate associations were 

document Author, Organization, file size and file name similarity. This resulted in the discovery 

of 68 other documents in the collection that were associated with the documents identified from 

the keyword search.  

In the second dataset, I discovered 16 files that matched from a total of 154 files for the 3 

keywords. The files determined by the keyword matches contained 2 Microsoft Word documents 

and 3 PowerPoint documents in addition to HTML files. The metadata associations for this case 

study were primarily determined from file system metadata, viz., filename, filesize and file 

creation timestamp. As discussed earlier in this section, I corroborated the download timestamp 

with the file creation timestamps and additionally discovered associations based on metadata 
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filename and filesize. On the Microsoft Office documents, I discovered that the ‘Author’ was 

identical in one Word, one PowerPoint and two Excel spreadsheet documents. Moreover, file 

name and file size similarity measures generated additional matches which enabled the discovery 

of 82 other documents from this collection. 

The number of metadata associations discovered from the Desktop dataset was 108, an average of 

6 associations per file identified from the keyword search. Although not all files generated that 

many associations, the average value is indicative of the relationships exhibited between the 

documents in that collection. The number of metadata associations discovered from the user’s 

Internet activity dataset was 132, an average of 8.25 associations per file identified from the 

keyword search.  

7.5.1.3 Conclusions 

We have thus demonstrated the use of the metadata association model to determine files related to 

a particular matter of interest that were not readily discovered using the keyword search 

technique. 

7.5.2 Document Analysis 

When I analyze large collections of documents, it is useful to determine characteristics such as the 

total number of authors, the number of single author documents, the number of authors who 

appear in exactly one file, the largest number of documents authored by a single individual and so 

on. Typically, classification techniques can identify these characteristics and as discussed in 

Chapter 6, each classification process uses unique parameters to determine the classes that exist. 

However, during analysis, it is also necessary to identify documents related to those found in a 

particular class. For instance, if we were to classify all documents into Microsoft Word 

documents, PowerPoint slides and Excel spreadsheets, how do we determine all the co-authors of 

a particular set of documents  

i. who have authored single-author Word documents; and 

ii. who have co-authored PowerPoint slides or Excel spreadsheets? 

If such authors exist, then are the set of co-authors identical or different? Some other questions 

that can be posed during analysis include how do we determine which PowerPoint slides were 

created, modified, used or downloaded along with a Word document and how many Excel files 

were used during the time that the document was edited? By their very nature, these questions 
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necessitate one to study the relationships that exist in the documents, a task that requires content 

analysis, usually by an individual. Traditional forensic tools offer little help in identifying such 

critical information when analyzing document collections. If we were able to propose an 

automated approach to identify such relationships and group the documents, it can save significant 

human effort. I have identified 12 characteristics for document collections and propose the use of 

the Metadata Association Model to determine these characteristics using the metadata.  

7.5.2.1 Method 

On each dataset, I provided the documents from the collection to the AssocGEN analysis engine 

which traversed the documents and identified multiple homogeneous sources55. The parsed 

metadata determined metadata matches leading to source relationships, existence relationships and 

structural similarity relationships. In my work, I have focused on the metadata that pertain to the 

source and ownership metadata families. This focus stems from the need to attribute documents 

and determine related documents and individuals when conducting the analysis. Naturally, the 

characteristics identified for this experiment use metadata like ‘Author’, ‘Organization’, 

‘Filename’, ‘Filesize’ and so on. I have also included the application metadata family to identify 

documents created using the same software application with identical or different release versions. 

The results are tabulated in Table 7.5 and discussed in the sequel.  

Charact-

eristic No. 

Dataset Characteristics Desktop 

(976) 

Digital 

Corpora (2970) 

 Number of association groups 108 1892 

Association index (ai) 0.21 0.004 

Grouping efficiency η 0.856 0.293 

1 No. of distinct authors 158 3300 

2 Most number of documents by one 

author 

170 228 

3 No. of authors who have authored 

more than one document 

126 2599 

4 Most number of documents 

similarly named by a single author 

36; 

Stefan 

17; J. Scott 

Peterson
56 

5 Most number of documents of 98; 9; Jon Heal 

                                                           
55 Documents belonging to the same application of the identical software version were treated as coming from a single 

homogeneous source, differentiated based on document MIME type. 
56 Since all the files in this repository were renamed (and named similarly) after they were downloaded by Simson 

Garfinkel, this value is merely the single largest similarity pocket based on ‘Author’. 
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similar file size belonging to one 

author 

Stefan 

6 Most number of Organizations 

single author is affiliated with 

4; Stefan 257 

7 No. of distinct Organizations 71 1098 

8 Most number of documents 

generated within the same 

Organization 

79; QUT 50; US Dept of 

Agriculture 

9 Most number of authors from a 

single Organization 

13; QUT 11; US Dept of 

Agriculture 

10 No. of Organizations generating 

multiple documents 

27 336 

11 No. of distinct application names 16 20 

12 No. of distinct document titles 207 1703 

Table 7.5 Results from determining dataset characteristics for the two datasets 

  

7.5.2.2 Observations 

For the desktop dataset, besides the metadata ‘Author’ and ‘Organization/Company’, the metadata 

‘Filesize’ and ‘Filename’ generated the largest number of metadata matches. After combing the 

overlapping similarity pockets, I discovered 108 association groups. In addition to this, there were 

32 documents that were removed to the unclassified list as they lacked sufficient metadata. Such 

files were individually analyzed by examining the forensic image under FTK. Consequently, the 

efficiency η = 
(108 32)

1
976


  = 0.856. This implies that for this collection, more than 85% of the 

documents are associated with one or more documents and is indicates that several documents 

were created, accessed or modified under similar contexts. Besides this, providing a reduction in 

the number of independent documents for further analysis can help a forensics examiner to triage 

the dataset and quickly focus on a smaller set of documents.  

For the Digital Corpora dataset, there were not many common points with regard to where the 

documents were downloaded from and, therefore, it resulted in a much larger set of association 

groups. Metadata ‘Author’ and ‘Organization/Company’ generated the largest number of matches 

amongst their documents. Filesize matches, although present, had few other metadata matches and 

resulted in a small number of association groups. In all, I determined 1892 association groups and 

209 documents in the unclassified list. Therefore, the efficiency for this dataset is computed as η =

                                                           
57 More than one author was affiliated with 2 organizations. Since there is multiplicity, no name is specified. 
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(1892 209)
1

2970


  = 0.293. Since these documents were downloaded from the Internet from diverse 

sources, the relative association factor was, expectedly, low. Notwithstanding, metadata matches 

and association groups enable one to group similar documents and analyze related documents 

together, eliminating the need to repeated or unnecessary analysis. The characteristics defined in 

Table 7.5 are generic pertaining to the analysis of documents and can be applied to any collection 

of documents as described below. 

The number of distinct authors (Characteristic 1 in Table 7.5) and number of distinct 

organizations (Characteristic 7) are computed by counting the value field for the ‘Author’ and 

‘Company’ metadata tags respectively. Since the author field is also multi-valued and a document 

can have more than one author, each unique author is counted when this is the case. Wherever 

multiple authors from the same organization are discovered, the individual similarity pockets are 

merged into association group(s). Thus, I integrate multiple association groups and the size of the 

largest similarity pocket for metadata tag ‘Company’ provides the organization generating the 

largest number of documents. The largest multi pocket generated from the similarity pockets for 

‘Author’ and ‘Company’ provide the values for Characteristics 2 and 8 in Table 7.5. The number 

of non-singleton similarity pockets identified for ‘Author’ and ‘Company’ provide the values for 

Characteristics 3 and 10. 

By grouping the pockets for ‘Author’ and ‘Filename’ similarity the size of the largest multi pocket 

provides the values for Characteristic 4 in Table 7.5. When I substitute the similarity pockets 

generated by ‘Filename’ with those by ‘Filesize’, then the largest multi pocket thus formed 

provides the values for Characteristic 5 in Table 7.5. Superimposing the similarity pockets 

obtained from the ‘Author’ and ‘Company’ metadata then reveals the set of authors who share the 

same organization affiliation. The largest multi pocket formed by superimposing the similarity 

pockets for ‘Author’ with the ones for ‘Company’ provides the values for Characteristic 9 in 

Table 7.5. Characteristics 11 and 12 are determined in the same manner as Characteristics 1 and 2 

using the metadata Application-Name and Title. 

7.5.2.3 Conclusions 

We have thus demonstrated the application of the MAM to generate metadata associations using 

the exhaustive mode to determine critical parameters to document analysis. The approach is 

amenable to automation by virtue of the ubiquity of metadata and the generation of associations 

leads to the identification of source and ownership relationships during analysis. 
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In this thesis, I have hitherto established the existence of associations between files based on 

metadata value matches and demonstrated them for collections of digital image files (refer 

Chapter 6) and word processing documents (in this chapter). However, I showed in Chapter 2 how 

the establishment of associations based on timestamps, particularly across files stored across 

heterogeneous sources can contribute to interpretation challenges. I developed the Provenance 

Information Model in Chapter 4 to address this challenge and developed a prototype toolkit called 

UniTIME in Chapter 5. In the sequel, I demonstrate the utility of the model using UniTIME by 

applying it to two hypothetical case studies. 

7.6 Generating Unified Timelines Using PIM 

We present here two case studies that use the UniTIME digital time-lining tool; the first case 

study is based on the DFRWS forensic challenge 2008 [51] which contains four distinct 

homogeneous sources, maintaining different time references and the second case study is based on 

synthetic user documents based on a FAT32 file system to detect timestamp inconsistencies by 

comparing the MAC timestamps against the document metadata timestamps. 

7.6.1 Evaluation Criteria 

With regard to evaluating the prototype, the following criteria were tested through my 

experimentation. 

1. Did the tool generate a unified timeline? 

2. Does the generated timeline include all the events recorded in evidence in the 

homogeneous sources? 

3. Is the generated timeline consistent with the expected outcome? 

4. Did the tool identify all timestamp related inconsistencies in the homogeneous 

sources? 

For a successful implementation, the expected answer for all these criteria is ‘yes’. If otherwise, it 

could indicate either a design flaw or an incomplete implementation in software. The most 

common reason for the tool’s inability to provide a complete timeline was determined as the 

inability to complete the extraction of timestamps owing to inaccurate parsing of the timestamps 

from the homogeneous sources. 
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7.6.2 Repeatability in Generating Unified Timelines – A Case Study 

In this case study, my goal was to generate a unified timeline of the events for the DFRWS 

Forensic Challenge 2008 [40]. The timestamp interpretation was a challenge due to the fact that 

the source of digital evidence being a ZIP archive of the userspace folder, the Mozilla Firefox 

browser history and cache logs and a packet capture, each corresponding to a distinct 

homogeneous sources on the source58. In all, there are four sets of homogeneous sources,  

1. a user folder (with US/Eastern time zone reference),  

2. the Firefox59 browser history (with US/Eastern time zone reference),  

3. the Firefox browser cache (with US/Eastern time zone reference), and  

4. a packet capture (with UTC time zone reference).  

A brief case outline is provided below. 

7.6.2.1 DFRWS 2008 Challenge Case Outline 

Mr. Steve Vogon, an employee at Saraquiot Corporation, was suspected of smuggling confidential 

Saraquiot information to an outsider using the company’s resources. The source was a hashed 

archive of the aforementioned contents. Based on the case brief, I set the location of the activities 

as the east coast of the United States and accordingly the Provenance Information Model for each 

homogeneous source, i.e., the user folder, the browser logs and the packet capture was set to UTC 

0500. The activities on the source were recorded between May 2007 and December 2007. The 

packet capture contains a network session in December 2007 captured on the IP assigned to the 

user’s machine. I separated the homogeneous sources and parsed the contents for analysis. The 

homogeneous sources were provided as inputs to UniTIME which extracted the timestamps from 

the metadata and interpreted them using the PIM.  

The list of significant findings for this investigation was recorded by Cohen et al. [40]. A merged 

timeline of the events was reported by Jokerst et al. [94]. While Cohen et al. apply a fixed time 

zone offset using Pyflag to interpret the timestamps; Jokerst et al. did not interpret the timestamps, 

                                                           
58 The original forensic image provided for the DFRWS 2008 challenge also contains a memory capture from Mr. 

Steve Vogon’s computer. However, for the purpose of this case study, the memory capture has been omitted. 
59 Although the Firefox browser stores history and cache log timestamps internally in UTC with a local time zone 

offset, the timestamps were all converted into local time zone when there were compressed into the ZIP format. 
Besides this, the time zone information was not encapsulated within the archive and hence lost. 
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but merely used the locally rendered values. In their case, the source was extracted in the same 

time zone (US/Eastern) as that of the source, which rendered the interpretations unnecessary. 

However, the approach was not repeatable for corroboration of results. When I retraced the steps 

reported by Jokerst et al. [94] in a different time zone (AEST), it resulted in an inconsistent 

timeline where the network activities were found to occur after the reported source acquisition. I 

demonstrate how my Provenance Information Model was used to address this issue and how I 

implemented a repeatable solution for generating a unified time-lining using UniTIME. 

7.6.2.2 Experiment 

In regards to this experiment, the individual homogeneous sources were isolated and preserved 

along with their respective Provenance Information Model data. The user folder was provided as a 

forensic image with no explicit time zone bias, since this is achieved using its PIM. The browser 

logs and the network trace were pre-processed into XML form following which they were also 

added as sources into UniTIME. The tool was then executed and the generated timeline was 

compared against the manually enumerated sequence. 

7.6.2.3 Applying PIM corrections 

Since the source was provided as a compressed zip archive, the files contained within the user 

folder could only store one timestamp reliably, namely, the last modified timestamp and that only 

to a 2-second precision. The timestamps on the browser logs, however, are stored differently 

(UNIX timestamps) with a 1-second precision. The PIM for each homogeneous source is designed 

specifically for this purpose which was taken to be UTC 0500. In order to obtain the timestamps 

in UTC, the homogeneous sources had to selectively corrected; i.e., only the timestamps on the 

user folder and the browser history and cache had to be corrected, by being shifted forward in 

time 5 hours. The packet capture internally records timestamps in UTC and the values were 

readily available. To compute the local timestamps, only the packet capture timestamps had to be 

shifted back in time 5 hours, while the others were readily available. Thus, each event in each of 

the homogeneous sources now had one timestamp in UTC and a corresponding timestamp in local 

time. 

7.6.2.4 Verifying Timestamp Resilience 

Once the PIM corrections were applied, the timestamps were checked for consistency by 

validating any assertions pertaining to timestamps for verifying the event sequence that an 

examiner may record during analysis. In this case study, the assertions pertained to validating the 
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file system timestamps against the packet timestamps in the network capture. Basically, the 

timestamps obtained from the user folder correspond to one of three file activity events (create, 

modify and access). The timestamps obtained from the network packet capture correspond to a 

packet sent/arrival time. Since it was mentioned in the case brief that the network activity was 

discovered from within the user folder, it implied that the network packet capture was created 

before the last file activity event in the user folder. In other words, the network packet timestamps 

should precede the last file activity as recorded from the user folder. The timestamps from each 

homogeneous source were sorted and I compared the last timestamp from the user folder against 

the last timestamp on the packet capture. The snapshot of the partial timeline after harmonizing 

the provenance information across different sources is shown in Figure 7.3. The time zone 

provided in the figure is in reference with the Pacific Eastern time zone (UTC -0500). 

 

Figure 7.3 Snapshot of the partial timeline obtained sing UniTIME after harmonizing the provenance 

information between the different sources of digital evidence 

 

7.6.2.5 Conclusions 

Once the timestamps passed the consistency checks, they are digitally time-lined and rendered. 

The resultant timeline was in agreement with the timelines produced by Cohen et al. and Jokerst 

2007-12-16 23:06:39 SYSLOG of goldfinger dhclient: DHCPREQUEST on eth0 to 192.168.151.254 port 67

2007-12-16 23:06:39 SYSLOG of goldfinger dhclient: DHCPACK from 192.168.151.254

2007-12-16 23:06:40 SYSLOG of goldfinger dhclient: bound to 192.168.151.130 -- renewal in 869 seconds.

2007-12-16 23:06:51 PCAP of Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.8.0.12) Gecko/20071020 CentOS/1.5.0.12-6.el5.centos Firefox/1.5.0.12 
http://corporate.disney.go.com/corporate/conduct_manufacturers.html

2007-12-16 23:06:52 PCAP of Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.8.0.12) Gecko/20071020 CentOS/1.5.0.12-6.el5.centos Firefox/1.5.0.12 
http://hb.disney.go.com/stat/Hitboxcode.js

2007-12-16 23:08:18 MODIFICATION of .mozilla/firefox/n5q6tfua.default/Cache/CA145DAFd01 ( Non-ISO extended-ASCII English text, with very long lines)

2007-12-16 23:08:19 HISTORY First Browse of http://corporate.disney.go.com/environmentality/index.html

2007-12-16 23:08:19 HISTORY Last Browse of http://corporate.disney.go.com/environmentality/index.html

2007-12-16 23:08:20 MODIFICATION of .mozilla/firefox/n5q6tfua.default/Cache/0C72616Dd01 ( JPEG image data, JFIF standard 1.02)

2007-12-16 23:08:20 MODIFICATION of .mozilla/firefox/n5q6tfua.default/Cache/B652618Ad01 ( JPEG image data, JFIF standard 1.02)

2007-12-16 23:08:20 MODIFICATION of .mozilla/firefox/n5q6tfua.default/Cache/56A7DF65d01 ( JPEG image data, JFIF standard 1.02)

2007-12-16 23:08:20 MODIFICATION of .mozilla/firefox/n5q6tfua.default/Cache/90F04203d01 ( JPEG image data, JFIF standard 1.02)

2007-12-16 23:08:20 MODIFICATION of .mozilla/firefox/n5q6tfua.default/Cache/3B2FF872d01 ( JPEG image data, JFIF standard 1.02)

2007-12-16 23:08:20 MODIFICATION of .mozilla/firefox/n5q6tfua.default/Cache/DE92D282d01 ( JPEG image data, JFIF standard 1.02)

2007-12-16 23:08:24 MODIFICATION of .mozilla/firefox/n5q6tfua.default/cookies.txt ( Web browser cookie text)

2007-12-16 23:08:39 PCAP of Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.8.0.12) Gecko/20071020 CentOS/1.5.0.12-6.el5.centos Firefox/1.5.0.12 
http://corporate.disney.go.com/environmentality/index.html

2007-12-16 23:18:48 PCAP of Agent: Mozilla/5.0 (X11; U; Linux i686; en-US) Gecko/20071126 http://en.wikipedia.orghttp://en.wikipedia.org/wiki/Main_Page

2007-12-16 23:21:08 PCAP of Agent: Mozilla/5.0 (X11; U; Linux i686; en-US) Gecko/20071126 http://en.wikipedia.orghttp://en.wikipedia.org/wiki/Lee_Smith_%28baseball_player%29

2007-12-16 23:24:05 SETTING (sources) change of .gconf/apps/evolution/addressbook/%gconf.xml

2007-12-16 23:24:06 SETTING (interface) change of .gconf/apps/ekiga/protocols/%gconf.xml

2007-12-16 23:24:06 SETTING (output_device) change of .gconf/apps/ekiga/general/sound_events/%gconf.xml

2007-12-16 23:24:06 SETTING (public_ip) change of .gconf/apps/ekiga/general/nat/%gconf.xml

2007-12-16 23:24:06 SETTING (input_device) change of .gconf/apps/ekiga/devices/video/%gconf.xml

2007-12-16 23:24:06 SETTING (input_device) change of .gconf/apps/ekiga/devices/audio/%gconf.xml

2007-12-16 23:24:06 SETTING (output_device) change of .gconf/apps/ekiga/devices/audio/%gconf.xml

2007-12-16 23:24:08 MODIFICATION of .gnome2/gnomemeeting ( ASCII text)

2007-12-16 23:24:09 SETTING (size) change of .gconf/apps/ekiga/general/user_interface/druid_window/%gconf.xml

2007-12-16 23:24:09 SETTING (position) change of .gconf/apps/ekiga/general/user_interface/druid_window/%gconf.xml

2007-12-16 23:24:11 SETTING (position) change of .gconf/apps/ekiga/general/user_interface/main_window/%gconf.xml

2007-12-16 23:24:22 PCAP of Agent: Ekiga http://ekiga.net/ip/

2007-12-16 23:25:04 MODIFICATION of .gconf/apps/ekiga/protocols/%gconf.xml ( XML)

2007-12-16 23:25:04 MODIFICATION of .gconf/apps/ekiga/general/sound_events/%gconf.xml ( XML)

2007-12-16 23:25:04 MODIFICATION of .gconf/apps/ekiga/general/nat/%gconf.xml ( XML)

2007-12-16 23:25:04 MODIFICATION of .gconf/apps/ekiga/general/user_interface/druid_window/%gconf.xml ( XML)

2007-12-16 23:25:04 MODIFICATION of .gconf/apps/ekiga/general/user_interface/main_window/%gconf.xml ( XML)

2007-12-16 23:25:04 MODIFICATION of .gconf/apps/ekiga/general/user_interface/%gconf.xml ( empty)

2007-12-16 23:25:04 MODIFICATION of .gconf/apps/ekiga/general/%gconf.xml ( empty)

2007-12-16 23:25:04 MODIFICATION of .gconf/apps/ekiga/devices/video/%gconf.xml ( XML)

2007-12-16 23:25:04 MODIFICATION of .gconf/apps/ekiga/devices/audio/%gconf.xml ( XML)
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et al. [40, 94] and was found to be repeatable as I obtained an identical timeline by repeating this 

experiment for 3 other different time zones. 

7.6.3 Validating Document Consistency Using Assertion Testing in PIM – A 

case study 

For this case study, I created a synthetic user folder to detect timestamp inconsistencies on 

documents during analysis. While earlier research [19, 23, 171, 184] has used only file system 

timestamps to detect anomalies, I have considered timestamps both from the file system and 

document metadata. The user folder was generated on a FAT32 file system as shown in Figure 

7.4. The folder contained an archive file and a directory, both called Sample; the directory 

contained multiple sub-directories and files. 

7.6.3.1 Experiment 

In this directory, 4 Microsoft Word document files (Doc1.docx, Doc2.docx, Doc3.docx and 

Doc4.docx) were created at different levels in the hierarchy and the system was set to a different 

time zone (the time zone changed from UTC +1000 to UTC +0500). Since FAT32 does not record 

the time zone, the current system time will be regarded as the source for recording these 

timestamps. All directories and the text files were created earlier than mid-2009 and were 

therefore insensitive to the time zone shift applied in June 2011. After the time zone change, the 

Word documents were accessed a few times. Among the Word documents, Doc1.docx and 

Doc4.docx were updated while the other two were merely read. This action would ensure that the 

document timestamps and the file system timestamps corresponding to LAST_MODIFIED and 

LAST_ACCESS are updated in accordance with the present system time zone. Then, I imaged 

(using DD) the folder and analyzed it using UniTIME. 
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Figure 7.4 The synthetic User folder structure for detecting timestamp inconsistencies 

  

7.6.3.2 Setting up Assertions 

At the time of acquiring the source, the system time zone was UTC +0500 and was set in the 

Provenance Information Model. The first of my two hypothetical assertions recorded into the PIM 

is given below: 

1. Document creation times must always precede document last modification and last 

access times.  

Since the documents were regarded as being generated according to the current system time, it was 

expected that all files are first created ahead of file operations such as file access or file modify. 

When a document breaches this assertion, it can indicate one of two possibilities, i.e., the 

document was a copy (either direct or altered) of a document from some removable or network 

storage or the timestamps were intentionally tampered with. While the former can be a common 
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occurrence in a file system (usually in FAT and NTFS file systems, as noted in Footnote 60, p. 

216), there is still value in identifying such documents, especially in an automated manner using 

the PIM. The second hypothetical assertion recorded was: 

2. File system MAC timestamps on documents should be greater than or equal to the 

document metadata timestamps.  

The application is responsible for modifying the document metadata while the operating system 

controls the file system metadata. Hence all modifications by the application on documents should 

have occurred before the operating system modified the respective MAC timestamps. When a 

document breaches this assertion, it can indicate timestamp tampering. 

7.6.3.3 Testing Assertions to Detect Inconsistencies 

The UniTIME tool traversed the file system hierarchy on the forensic image and applied the 

provenance information model corrections to the timestamps in metadata. All text files passed the 

assertions but the 4 Microsoft Word documents breached them. This is attributed to the fact that 

when the Word documents were modified after the time zone was changed, the 

LAST_MODIFIED timestamps were updated according to local system time and since the system 

time was temporally behind the CREATION timestamps on the respective documents. The output 

from the result of the breach is shown in Table 7.6. The tool identified the files in breach and 

flagged a message stating the type and nature of the inconsistency discovered. 

Sl. No. Artifact name Alert TYPE Details 

1 Doc1.doc alert for TS inconsistency file metadata inconsistent 

2 Doc4.doc alert for TS inconsistency file metadata inconsistent 

3 Doc3.doc alert for TS inconsistency file metadata inconsistent 

4 Doc3.doc alert for TS inconsistency metadata and MAC 

inconsistent 

5 Doc2.doc alert for TS inconsistency file metadata inconsistent 

6 Doc2.doc alert for TS inconsistency metadata and MAC 

inconsistent 

Table 7.6 Output from temporal assertion testing 
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7.6.3.4 Conclusions 

The message “file metadata inconsistent” was flagged when the tool determined that the document 

metadata had an inconsistency on Assertion 1, i.e., the Microsoft Word metadata “Creation-Date”, 

“Last-Saved-Date” and “Last-Printed-Date” were found to be out of order. The message 

“metadata and MAC inconsistent” was flagged when MAC timestamps (one or more) were less 

than the document metadata timestamps. Such inconsistencies are detected and alerted for 

preemptive corrective actions on the identified documents60 during analysis. 

7.7  Discussion 

Metadata underlines the context to describe the situational similarity during the life cycle of the 

documents and files stored on digital sources. Document metadata store a variety of information 

regarding who and how a document was created and operated on such as author, organization, 

document format, application type, application version, MAC timestamps and document 

timestamps. Such information are related to who created the document and how (formatting 

information) it was created. Document metadata may also record information about where it was 

created (geo-tagging), number of pages/slides, formatting type, encoding type and so on.  

Rowe and Garfinkel [165] have analyzed a large repository of documents to determine anomalous 

documents. They computed statistical characteristics using directory metadata and identified the 

top and bottom 5 percentile in the repository as outliers. These statistical characteristics are 

applicable to file size, number of similarly named files, related files residing in the same directory 

and so on. Their dataset does not pertain to a single investigation and hence the anomalies 

identified correspond to misnamed files and duplicate copies of files. In a similar vein, by 

applying the MAM to document collections, not only can one identify such anomalies (files with 

unusually large file sizes and similarly named files will generate their own respective similarity 

pockets), those files would be grouped together informing the forensic examiner of exactly how 

many files there are in each category and also identifying any additional metadata similarity that 

associate these documents. Identifying metadata associations among the documents will group 

documents that stand out from the rest and thus could assist an examiner in filtering out the subset 

                                                           
60 The apparent inconsistency in timestamps as demonstrated in this case study can also occur when a Microsoft Word 

document is copied across computers, especially set to different time zones. The Microsoft Word application which 
manages the document metadata does not often modify these timestamps on a copy/move operation which always 
affects MAC timestamps. The document metadata are only changed when the application is used to operate on the 
file. Therefore, such an inconsistency does not always imply malicious activity. However, whenever such an 
inconsistency is discovered, the tool prompts the examiner who may then choose the appropriate course of action. 
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of documents from a large collection that require further analysis while simultaneously identifying 

those that can be safely excluded, reducing the number of digital artifacts requiring manual 

analysis. For example, if an examiner comes across an unusually large association group (for my 

purposes, the particular set of metadata that were involved in the generation of this association 

group is not relevant), the examiner may determine one of two things: 

1. the documents in the association group all belong to one principal author; or  

2. the documents in the association group belong to multiple different authors all of 

whom have co-authored with the principal author on different documents. 

7.8 Chapter Summary 

In this chapter I evaluated the Metadata Association Model on word processing documents. I 

discussed the identification of metadata pertaining to the four metadata families as identified in 

Chapter 5. I grouped large collections of documents based on the metadata associations identified 

in a manner that facilitated document analysis.  

In the next chapter, I summarize the research challenges addressed and my research outcomes in 

this thesis. I present a discussion on the scope of this research and identify areas for future work. 

  



218 
 

This page is intentionally left blank 

  



219 
 

“An expert is one who knows more and more about less and less 
until he knows absolutely everything about nothing.” 

- Nicholas Murray Butler 

 

 

 

8. Conclusions and Future Work 
Digital forensics concerns the analysis of electronic artifacts to reconstruct events such as 

cybercrimes. Rapid technological advances during the last decade have resulted in a proliferation 

of digital devices. Besides this, it is becoming increasingly common for individuals to own 

multiple digital devices; today, any individual chosen at random is likely to possess a workstation, 

a laptop, mobile phone, a couple of USB flash drives, and a GPS receiver, not to mention online 

user profiles depicting their personal information. During a digital investigation, such 

heterogeneous devices have to be forensically examined and analyzed. Therefore, contemporary 

digital forensics is forced to contend with such heterogeneity. Two major challenges surface as a 

result, viz., diversity and volume. To address the diversity and the volume challenges, I identified 

associations among digital artifacts across heterogeneous sources of digital evidence that represent 

the syntactic and semantic relationships. I used metadata as the instrument to determine these 

associations (based on metadata value matches). 

This research produced a framework to support forensic analyses by identifying associations in 

digital evidence using metadata. It showed that metadata based associations can help uncover the 

inherent relationships between heterogeneous digital artifacts thereby 

aiding in the reconstruction of past events by identifying artifact dependencies and time 

sequencing. It also showed that metadata association based analysis is amenable to automation by 

virtue of the ubiquitous nature of metadata across forensic disk images, files, system and 

application logs and network packet captures. The results prove that metadata based associations 
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can be used to extract meaningful relationships between digital artifacts, thus potentially 

benefiting real-life forensics investigations. 

8.1 Research Objectives & Contributions 

We developed a framework for automatically identifying source metadata-based associations in 

digital evidence and for grouping the related artifacts. I have shown experimentally that my 

approach can be used for answering the six forensic questions of who, what, when, where, how 

and why posed by Casey [32]. 

8.1.1 Objectives of this Research 

In accordance with the goals and objectives stated in Chapter 1, the following objectives were 

targeted in this research. 

1. To develop an understanding for the treatment of metadata in digital evidence by different 

forensic and analysis tools and to integrate the functionalities of different existing tools for 

analyzing digital evidence. 

2. To develop an understanding of how to generate metadata associations based on syntactic 

and semantic relationships between digital artifacts, using metadata matches across 

arbitrary types of digital artifacts. 

3. To develop an understanding for the semantics linked to metadata associations and their 

interpretation in a forensic context, to allow us to produce intuitive groupings of digital 

artifacts, of both homogeneous and heterogeneous natures, for forensic analysis. 

8.1.2 Contributions from this Research 

Based on the understanding arising out of achieving the goals and objectives of this project, the 

following were the salient contributions from this research: 

1. We conducted a review of contemporary forensic and analysis tools to abstract the 

different functionalities supported to analyze different sources of digital evidence. This 

review culminated in the design of the functional Forensic Integration Architecture which 

consolidated these functionalities and defined a new layer to group artifacts based on 

metadata associations. I developed a prototype toolkit called AssocGEN analysis engine 

based on the f-FIA architecture which spans over 20000 lines of Java code and consists of 
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multiple modules. The modules are pluggable at runtime and can access and parse files 

and folders from most common file systems such as FAT32, NTFS, EXT2, EXT3 and 

HFS+, web page visitation and cache logs on browser applications and network packets 

contained within packet captures. 

2. We conducted experiments to elicit the syntax and semantics associated with metadata 

associations which were determined through the identification of metadata matches. I 

generalized my findings which resulted in the Metadata Association Model (MAM) for 

identifying metadata-based associations across the digital artifacts from multiple sources 

of digital evidence. I also developed the associated theory to study the formation of 

metadata based matches across heterogeneous sources of digital evidence and algorithms 

to identify specific artifact relationships that can be of interest during forensic analysis. 

3. The identification of data items from homogeneous and heterogeneous sources, whether 

regarding files, log records or network packets, to discover the higher-order associations 

or relationships via the metadata. This was demonstrated by the successful grouping of 

digital image files and word processing documents belonging to different file formats and 

discussed the formation of association groups across multiple source classes by 

determining metadata matches between them.  

a. We studied the use of the Metadata Association Model to analyze collections of 

digital image files and demonstrated two methods of grouping the related digital 

images. I illustrated the use of digital image file relationships to determine 

instances of image downloads and identify the origin of these downloads. 

b. We studied the use of the Metadata Association Model to analyze collections of 

word processing documents and demonstrated two methods of grouping the related 

documents. I illustrated the use of word processing documents relationships to 

determine instances of document doctoring during analysis. 

4. The development of the Provenance Information Model (PIM) to provide timestamp 

resilience in metadata for interpretation. I developed a prototype toolkit called UniTIME 

unified timelining tool based on the f-FIA architecture which spans over 6000 lines of 

Java code and consists of multiple modules. The modules are pluggable at runtime and 

can access and parse timestamps from files and folders on file systems such as FAT32, 

NTFS, EXT2, EXT3 and HFS+, web page visitation and cache logs on browser 
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applications and network packets contained within packet captures. I demonstrated the 

execution of this tool to generate unified timelines using contemporary case studies 

involving FAT32 file systems and ZIP file formats and validating event consistency 

across heterogeneous sources. 

8.2 Limitations & Future Directions 

The Metadata Association Model (MAM) developed in this thesis has explored the realms of 

representing the interdependencies between digital artifacts on one or more sources of digital 

evidence. In view of the goal of digital forensics which attempts to develop a scientific method to 

reconstruct past events, I indicate future directions for my research in this section. 

Exploring Domain Heuristics for Computational Benefit. The metadata association model is a 

novel way to look at digital artifacts and their interdependencies as similarity pockets and 

association groups based on metadata value matches. Even though I used deterministic algorithms 

to elicit artifact relationships, one may have to contend with exponentially large number of 

associations as the volume of digital evidence increases. It is worthwhile exploring whether 

heuristics based on domain specific information are likely to yield computational benefits and aid 

in the identification of targeted analysis. This, in the author’s opinion, is likely to open new vistas 

in digital forensics. 

Uniform Representation for Digital Artifacts. In my research I explored the analysis of digital 

artifacts such as files, log records and network packets based on the associations identified using 

respective metadata present in them. It may be worthwhile to look at the development of standards 

to unify the creation of metadata and the identification of metadata based value matches to aid in 

the forensic reconstruction process. While doing so, one may develop a mapping between 

semantically equivalent metadata values to identify metadata associations and progressively 

establish an up-to-date ontology of digital artifacts across contemporary sources of digital storage. 

8.3 Conclusion 

Metadata represents an important component of a digital artifact and contain contextual and 

situational information. I showed that metadata can be invaluable during analysis and can aid in 

the identification of key relationships across heterogeneous sources of digital evidence. I believe 

that my framework and the metadata association model are inherently capable of absorbing future 
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growth in metadata both in relation to context and situations. I believe that, in time, my Metadata 

Association Model could be integrated into mainstream forensic toolkits for use in day-to-day 

investigations. I hope that my research has provided the necessary stimulus to achieve unified 

forensic analyses. 
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