
Received January 18, 2019, accepted February 5, 2019, date of publication February 25, 2019, date of current version March 12, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2901691

A Framework for Image Denoising Using First
and Second Order Fractional Overlapping
Group Sparsity (HF-OLGS) Regularizer

AHLAD KUMAR , M. OMAIR AHMAD , (Fellow, IEEE), AND M. N. S. SWAMY , (Fellow, IEEE)
Department of Electrical and Computer Engineering, Concordia University, Montreal, QC H3G 1M8, Canada

Corresponding author: M. N. S. Swamy (swamy@ece.concordia.ca)

This work was supported in part by the Horizon Postdoctoral Fellowship and Research Chair Programs, Concordia University, in part by

the Natural Sciences and Engineering Research Council (NSERC), Canada, and in part by the Regroupement Strategique en

Microelectronique du Quebec (ReSMiQ).

ABSTRACT Denoising images subjected to Gaussian and Poisson noise has attracted attention inmany areas

of image processing. This paper introduces an image denoising framework using higher order fractional

overlapping group sparsity prior to sparser image representation constraint. The proposed prior has a

capability of avoiding staircase effects in both edges and oscillatory patterns (textures). We adopt the

alternating direction method of multipliers for optimizing the proposed objective function by converting it

into a constrained optimization problem using variable splitting approach. Finally, we conduct experiments

on various degraded images and compare our results with those of several state-of-the-art methods. The

numerical results show that the proposed fractional order image denoising framework improves the peak

signal to noise ratio of an image by preserving the textures and eliminating the staircases effects. This leads to

visually pleasant restored images which exhibit a higher value of Structural SIMilarity score when compared

to that of other methods.

INDEX TERMS Image denoising, fractional-order, Gaussian and Poisson noise, overlapping group sparsity,

alternating direction method of multipliers.

I. INTRODUCTION

Digital images play an important role in our lives as they are

used in a variety of applications such as television, astronomy

and traffic monitoring systems. The techniques involved in

acquiring these images introduce various types of noise and

artifacts. Preserving the details of an image and removing

unwanted random noise as much as possible is the goal

of image denoising. Moreover, the noisy image produces

undesirable visual quality and reduces the visibility of low

contrast images. Hence the task of image denoising in digital

applications is to enhance and recover finer details that are

present in the data.

Images are often degraded due to Gaussian and Poisson

noise during the process of acquisition or transmission. As a

result, it is one of the most important issues which needs to

be resolved for its proper use in the field of computer vision

and graphics community. The degradation model in the case
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of Gaussian noise is defined by the following linear space

invariant system:

g = Hu+ n (1)

while in the case of Poisson noise, the model can be statisti-

cally modelled as

g = Poiss(Hu) (2)

where g is the obtained degraded image, H denotes the blur

kernel commonly known as the point spread function (PSF),

u is the desired original image, n is the zero mean Gaussian

white noise and Poiss(v) is an independent and identically

distributed (iid) Poisson random vector with the Poisson

parameter v.

The aim of image restoration is to recover u from g and

is often known to be a classic ill-posed inverse problem,

which is highly sensitive to noise degradation even if the blur

kernel H is known exactly. In order to solve this ill-posed

nature of the problem, one resorts to solving the following
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minimization objective

min
u

{E(u, g) + λR(u)} (3)

where E is the data fidelity term that measures how close

the estimated u is to the observation g, while R is the reg-

ularization prior and λ is the regularization parameter that

balances the two terms. Various priors have been devel-

oped in the literature to regularize the ill-posed problem

in (3), such as the zero-mean mixture-of-Gaussian model [1],

sparse approximation [2], hyper-Laplacian [3] and normal-

ized sparisity measure [4]. There are several methods for

denoising the image, but our focus in this paper is on image

denoising framework that involves total variation (TV) and

its variants. The Rudin-Osher-Fatemi (ROF) model [5] is

one of the standard ways of denoising the images and pro-

vides a good trade-off between edge preservation and noise

removal. However, this method tends to produce staircase

effects at the sharp edges of an image. In order to alle-

viate this issue, several solutions have been proposed in

the literature. One of the solutions is to replace the tra-

ditional total variation (TV) by a higher-order TV norm

that results in a piecewise linear solution which better fits

the smooth intensity changes. Chan et al. [6] proposed an

improved higher-order TV model by adding a fourth order

term to Euler Lagrange (EL) equations for the TV model.

Lysaker and Tai [7] proposed a method of combining fourth

order partial differential equation (PDE) with TV filter. The

combination helps to preserve the edges and avoid stair-

case effects created in smooth regions. Papafitsoros and

Schönlieb [8] proposed a higher order extension of ROF func-

tional by adding a non-smooth second order regularizer, and

employed split Bregman method to solve the corresponding

denoising framework. Noise removal using a fourth order

partial differential equation with its application to magnetic

resonance images is proposed in [9]. The use of nonlocal TV

model proves to be an effective image prior for overcoming

the staircase effects in noisy images [10].

The methods proposed for additive Gaussian noise are

not directly applicable to Poisson noise due to its image

dependent nature as given in (2). Moreover, the problem of

denoising images degraded due to Poisson noise is gain-

ing attention in recent years. Liu et al. [11] proposed a

higher-order TV norm along with traditional TV to balance

the edge and smoothness regions of the image degraded

due to Poisson noise. Zhou and Li [12] proposed the use of

fourth order partial differential equations for Poisson noise

removal. A new regularizer prior known as the total gen-

eralized variation (TGV) is proposed by Bredies et al. [13].

The proposed functional regularizes on different regular-

ity levels and does not produce any staircasing effect.

An iterative reweighed TGV is proposed later for effec-

tive Poisson noise removal [14]. Shi et al. [15] proposed a

Poisson based image deblurring using non-local total vari-

ational term. Here, the concept of framelet regularizer is

proposed to enhance the sparsity of the images. The overall

optimization problem is solved using split Bregman method.

Landi and Piccolomini [16] proposed an iterative method

for non-negatively constrained TV denoising for medical

images corrupted by Poisson noise and the effectiveness of

the method is evaluated on real and synthetic datasets. A pri-

mal dual method for deblurring the images degraded due to

Poisson noise is formulated having demonstrated the robust

convergence properties [17].

Recently, fractional order total variation models have been

proposed in the area of image denoising [18]–[20], image

inpainting [21] and super-resolution [22]. Moreover, the use

of fractional order partial differential equations applied to

the problem of image denoising is also gaining popularity.

Bai and Feng [23] solved the problem of image denoising

framework using nonlinear anisotropic fractional diffusion

equation which is based on Euler-Lagrange formulation.

Although total variation (TV)-based methods are effective in

preserving edges and details in an image, they tend to pro-

duce staircase effects. To solve this problem, Ding et al. [24]

proposed a new convex model based on TV with overalpping

group sparisty for restoring images degraded due to blur but

Cauchy noise. A new convex model has been proposed by

Zhao et al. [25] for restoring blurred images degraded bymul-

tiplicative noise. The task of image denoising has widespread

application in the field of medical imaging also [26]–[30]

Another way of denoising is first to decompose an image

into structural (edges) and texture (oscillatory) parts and

then to denoise each part. The structural part is represented

by a piecewise smooth function, while the texture com-

ponents by an oscillatory function. Such a decomposition

has been adopted in various variational models and wavelet

analysis [31]–[33]. Chen and Cheng [34] proposed a novel

hybrid variational model for deconvolving Poissonian image

by representing images as a composition of a structural

part and a detailed part. The structural part is characterized

using total variation, while the detailed part is characterized

using sparse representation over the wavelet basis. A spa-

tially adapted fractional order TV has been introduced for

different texture regions in [35]. The results are promising,

but finding the texture map is not an easy task. Providing

regularization with different orders make use of many neigh-

borhood cells that can result in undesired artifacts, especially

near the boundaries. Fractional order derivatives are also

suitable for denoising texture present in an image [36], [37].

A linear fractional integro-differential equation to control

the diffusion effect in image enhancement is proposed by

Cuesta et al. [38]. A novel fractional-order differentiation

model for low dose medical images is proposed in [39]. This

model is basically a weighted combination of fractional-order

TV model and fractional-order Perona-Malik (PM) model.

This is done in order to take advantage of TV, PM and

fractional-order models.

Liu et al. [40] proposed an effective regularization prior

comprising of overlapping group sparsity for image restora-

tion. This method of imposing the prior proved to be an

effective way of reducing the staircase effects in the struc-

tural (edges) component of an image. However, it is not
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effective in restoring the texture components present in an

image due the presence of staircase effects. It has been

observed that fractional order derivatives are effective in

restoring the texture components of an image [20]. In our

present paper, we have considered an extension of Liu’s

work by introducing higher order fractional based overlap-

ping group sparsity regularizers (HF-OLGS) to overcome this

deficiency of Liu’s method. Here, the denoising framework is

solved using well known optimization framework, the alter-

nating direction method of multipliers (ADMM) [41].

To summarize, the main contributions of this work are as

follows: (1) Image denoising model dealing with Gaussian

and Poisson noise is proposed using higher order fractional

based overlapping group sparsity (HF-OLGS) prior (2) The

proposed framework is capable of simultaneously preserving

the sharpness of the image edges and reducing the undesirable

staircase effects in the oscillating patterns that correspond to

the texture area in an image.

The rest of this paper is organized as follows. In Section II,

a brief discussion of the preliminaries which includes over-

lapping group sparsity, fractional-order and ADMM is dis-

cussed. Sections III and IV discuss the proposed model and

the image denoising framework respectively. Experimental

results are given in Section V. Finally, conclusions are given

in Section VI.

II. PRELIMINARIES

This section discusses some of the mathematical prelim-

inaries needed to understand the motivation for the pro-

posed image denoising framework. It starts with a discussion

of overlapping group sparsity followed by the concepts of

fractional calculus and its applications in image processing.

Lastly, a brief summary of the famous optimization frame-

work known as alternating direction method of multipli-

ers (ADMM) is discussed which will be used in our proposed

work.

A. OVERLAPPING GROUP SPARSITY (OLGS)

For one dimensional signal processing, the concept of over-

lapping group sparsity (OLGS) was first introduced in [42]

for the case of signal denoising. The concept of overlapping

group structure as signal prior was introduced in alleviating

the staircase effects when compared to standard total varia-

tion (TV) denoising. In [40], a K -point group of the vector

l ∈ Rn has been defined as

li,K = [l(i), l(i+ 1), . . . , l(i+ K − 1)] ∈ RK (4)

It can be observed that li,K can be seen as a block of K

contiguous sample of l starting at index i. Group sparsity

regularizer [43], [44] in one dimensional case is defined as

η(l) =

n∑

i=1

∥∥li,K
∥∥
2

(5)

where the group size is denoted by K . For two-dimensional

case, a K × K point group of the image u of size N × M is

defined as

ũi,j,K =




ui−m1,j−m1
ui−m1,j−m1+1 . . . ui−m1,j+m2

ui−m1+1,j−m1
ui−m1+1,j−m1+1 . . . ui−m1+1,j+m2

...
...

. . .
...

ui+m2,j−m1
ui+m2,j−m1+1 . . . ui+m2,j+m2




(6)

with m1 =

⌊
K−1
2

⌋
and m2 =

⌊
K
2

⌋
. Here, ⌊x⌋ denotes the

greatest integer not greater than x. The overlapping group

sparsity (OLGS) functional for a two-dimensional array is

defined as

φ(u) =

n∑

i,j=1

∥∥ui,j,K (:)
∥∥
2

(7)

where ui,K (:) is a vector obtained by stacking the columns

of matrix ũi,K (:). The regularization term φ(u) [40] based on

the image gradients in vertical and horizontal directions is

given as

φ(u) = φ(Dxu) + φ(Dyu) (8)

where D is the discrete gradient operator defined as

(Dx(u))i,j =

{
ui+1,j − ui,j, if i < M

u1,j − uM ,j, if i = M

(Dy(u))i,j =

{
ui,j+1 − ui,j, if j < N

ui,1 − ui,N , if j = N

B. FRACTIONAL ORDER PROCESSING

As the generalization of the integer-order derivative, this

paper utilizes the concept of fractional order derivative for

the purpose of image denoising. The fractional order deriva-

tives to be used in the regularizer of the proposed denoising

framework ( Sec. IV ) are defined as

Dα
x u(i, j) ≈

K∑

k=0

9α(k)u(i− k, j),

i = 1, . . . ,M j = 1, . . . ,N

Dα
y u(i, j) ≈

K∑

k=0

9α(k)u(i, j− k),

i = 1, . . . ,M j = 1, . . . ,N (9)

where 9α(k) = (−1)k Ŵ(α + 1)/[k! Ŵ(α − k + 1)]. Further

details regarding the properties of the fractional-order total

variation can be found in [41] and [46]. Here, Dα
x and Dα

y

are the discrete fractional-order derivatives of an image u of

size M × N at (i, j) in the vertical and horizontal directions

respectively. The complex conjugate operation corresponding

to (9) is defined as

(Dα
x )

∗u(i, j) ≈

K∑

k=0

9α(k)u(i+ k, j),

i = 1, . . . ,M j = 1, . . . ,N
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(Dα
y )

∗u(i, j) ≈

K∑

k=0

9α(k)u(i, j+ k),

i = 1, . . . ,M j = 1, . . . ,N (10)

Here ∗ denotes the complex conjugate operation and

(Dα
x )

∗,(Dα
y )

∗ are the complex conjugate operators corre-

sponding to (Dα
x ) and (Dα

y ) respectively. The parameter K

given in (9)-(10) is a sufficiently large integer. Further,

the magnitude of φα(k) tends to become zero very fast as

k → ∞. Hence, in this manuscript the value of K is taken

as 20 [19], [35], [45].

C. ADMM

A very powerful algorithm that is very well suited for con-

vex optimization and finds extensive role in the area of

applied statistics and machine learning is known as alternat-

ing direction method of multipliers (ADMM) [41]. It is an

efficient and effective technique for solving multi-parameter

constrained optimization problems, hence it will be used

for solving the proposed optimization framework discussed

in Sec. IV. The algorithm solves problems in the form as

follows:

min
x,y

f (x) + e(y),

s.t. Ax + By = b (11)

where f and e are convex functions. Further, A and B are the

two operators. With the Lagrangian multiplier λ to the linear

constraint stated in problem (11), the augmented Lagrangian

function [46] for the problem (11) is defined as L(x, y, λ) =

f (x)+ e(y)+λT (Ax+By−b)+ σ
2

‖Ax + By− b‖22, where σ

is the penalty parameter for the linear constraint. According

to the concept of ADMM, the optimal solution is obtained

by finding the saddle point of L(x, y, λ) using the alternating

minimization scheme, such as keeping x and λ constant when

minimizing L with respect to y. We obtain the following

ADMM iterative minimization algorithm




x i+1 = argmin
x

L(x, yi, λi)

yi+1 = argmin
y

L(x i+1, y, λi)

λi+1 = λi − σ (Ax i+1 + Byi+1 − b)

i = i+ 1;

(12)

III. PROPOSED HIGHER ORDER FRACTIONAL

OVERLAPPING GROUP SPARISTY (HF-OLGS)

REGULARIZER

In this paper, the proposed regularizer R termed as (HF-

OLGS) used for the image denoising framework is chosen

to be the sum of the fractional based overlapping group

sparsity (F-OLGS) and the second order version of the F-

OLGS, weighted using two positive parameters β1 and β2

respectively, i.e.,

Rβ1,β2,α(u) = β1

[
φ(Dα

x u) + φ(Dα
y u)

]

+ β2

[
φ(Dα

xxu)+φ(Dα
yyu)+2φ(Dα

xyu)
]

(13)

Here, Dα
x , Dα

y , Dα
xx , Dα

yy and Dα
xy the fractional operators

discussed in Section II-B and φ(.) is the OLGS operator

discussed in Section II-A.

To evaluate the performance of the regularizer proposed

in (13), we consider its 1D version as

Rβ1,β2,α(u) = β1

[
φ(Dα

x u)
]
+ β2

[
φ(Dα

xxu)
]

(14)

The motivation of incorporating the second order term in

the F-OLGS regularizer in (14) is to simultaneously preserve

the sharpness of the image edges and further reduce the

undesirable staircase effects in the oscillating patterns which

correspond to the texture area in the image. We now consider

two test signals to prove the effectiveness of the regularizer

in (14). The first signal u(n) is selected in such a way that it

represents a combination of the edge and texture (Edges +

Texture) profiles, as shown in Fig.1(a). The corresponding

noisy observation g(n) is plotted in Fig.1(b). The restored

signals û(n) obtained using TV, OLGS, first and second order

derivatives (H-OLGS) and the proposed HF-OLGS regu-

larizers, are shown in Figs.1(c),(d),(e) and (f), respectively.

It can be observed from Fig.1(c) that the conventional TV

regularizer creates staircase artifacts in both the edge and

texture profiles. However, the OLGS regularizer effectively

reduces the staircase effects in the edge profile region, but

its performance in the corresponding texture profile region

still contains staircase effects as seen from Fig.1(d). This

staircase phenomenon found in texture region is reduced

using H-OLGS regularizer as seen from Fig.1(e), but it results

in tapering off of the peaks of the signal in the texture part.

It can be observed from Fig. 1(f) that by using the proposed

regularizer, both the edge and texture profiles are restored

effectively with less staircase effects compared to that using

other regularizers. Also, we do not observe any tapering phe-

nomenon using our proposed regularizer. The RMSE values

for the corresponding restored signals shown in Figs.1(c)-(f)

are 0.2868, 0.2644, 0.2412 and 0.2354, respectively, indi-

cating the lowest RMSE value for the proposed HF-OLGS

regularizer. Next, a second test signal, a combination of two

different texture profiles (Texture 1 + Texture 2), shown

in Fig. 2(a) is now considered. It can be observed that for these

two different texture profiles, both TV and OLGS exhibit

staircase effects, as seen from Fig. 2(c) and (d). But, the stair-

case effects in OLGS are slightly less than that from using TV,

resulting in RMSE values of 0.4223 and 0.3567, respectively.

With the use of H-OLGS regularizer, the staircase effect is

reduced in the two texture profiles, as seen from Fig. 2(e).

However, the reconstruction at the lower part of Texture 2

signal suffers from some noisy component being present.

But, with the use of the proposed HF-OLGS regularizer,

the staircase effects are very minimal compared to that using

TV, OLGS or H-OLGS regularizer, as seen from Fig. 2(f).

Further, the reconstruction quality of the restored signal is

good, as seen from the corresponding RMSE value for the

restored signal, which is 0.2725. Thus, the effectiveness of

the proposed regularizer in terms of its ability in reducing

the staircase effects for both the edge and texture regions is
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FIGURE 1. Restoration of test signal (Edge + Texture) using TV, OLGS, H-OLGS and HF-OLGS regularizers.
(a) Original signal. (b) Noisy signal. (c) TV. (d) OLGS. (e) H-OLGS. (f) HF-OLGS.

demonstrated in this section using one dimensional signals.

In the next section, we discuss the proposed image denoising

framework using the 2D version of the regularizer given

in (14).

IV. PROPOSED IMAGE DENOISING FRAMEWORK

Total variation is one of the standard techniques for removing

the noise effectively from an image by suppressing the ringing

effects and preserving the sharp edges. However, it still has

a shortcoming of creating staircase effects which are not

desirable. In order to take advantage of TV regularization

and relieve from staircase effects, we propose a higher order

fractional overlapping group sparsity (Sec. III)-based image

denoising framework defined as

min
u

{
Z = E(u, g) + β1

[
φ(Dα

x u) + φ(Dα
y u)

]

+β2

[
φ(Dα

xxu) + φ(Dα
yyu) + 2φ(Dα

xyu)
]}

(15)
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FIGURE 2. Restoration of test signal (Texture1 + Texture2) using TV, OLGS, H-OLGS and HF-OLGS regularizers.
(a) Original signal. (b) Noisy signal. (c) TV. (d) OLGS. (e) H-OLGS. (f) HF-OLGS.

where the data fidelity term is given as

E(u, g) =

{
||Hu− g||22, Gaussian.

Hu− g log(Hu), Poisson.
(16)

This framework is formulated to evaluate the restoration

quality of the images degraded due to Gaussian and Pois-

son noise using the proposed regularizer. The alternating

direction method of multipliers (ADMM) method having

the capability of rapidly obtaining the stable convergence

is used in the proposed optimization framework. With the

introduction of new auxiliary variables v1 = [v1:x v1:y]
T

and v2 = [v2:xx v2:yy v2:xy]
T , the minimization problem

stated in (15) can be formulated as an equivalent constrained

minimization problem as

min
u,v1,v2

{
Z = E(u, g) + β1

[
φ(v1:x) + φ(v1:y)

]

+β2

[
φ(v2:xx) + φ(v2:yy) + 2φ(v2:xy)

]}
(17)

such that v1:x = Dα
x u, v1:y = Dα

y u, v2:xx = Dα
xxu, v2:yy = Dα

yyu

and v2:xy = Dα
xyu. The augmented Lagrangian function cor-

responding to the minimization problem (17) can be written

VOLUME 7, 2019 26205
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as

Lγ1,γ2 (u, v1, v2)

=

{
E(u, g) + β1

[
φ(v1:x) + φ(v1:y)

]

+β2

[
φ(v2:xx) + φ(v2:yy) + 2φ(v2:xy)

]

+
γ1

2

[∥∥∥∥D
α
x u− v1:x +

p1:x

γ1

∥∥∥∥
2

2

+

∥∥∥∥D
α
y u− v1:y +

p1:y

γ1

∥∥∥∥
2

2

]

+
γ2

2

[ ∥∥∥∥D
α
xxu−v2:xx+

p2:xx

γ2

∥∥∥∥
2

2

+

∥∥∥∥D
α
yyu− v2:yy+

p2:yy

γ2

∥∥∥∥
2

2

+2

∥∥∥∥D
α
xyu− v2:xy +

p2:xy

γ2

∥∥∥∥
2

2

]}
(18)

where β1, β2 > 0 and p1 = [p1:x p1:y]
T and p2 =

[p2:xx p2:yy p2:xy]
T are the Lagrangian multipliers.

According to ADMM (Sec. II-C), we need to solve the

subproblems involved with variables u, v1 and v2 present

in the Lagrangian defined in (18) one by one. We now

investigate the first sub-problem involving the variable u.

This sub-problem corresponds to the following optimization

problem:

min
u

{
E(u, g) +

γ1

2

[ ∥∥∥∥D
α
x u− v1:x +

p1:x

γ1

∥∥∥∥
2

2

+

∥∥∥∥D
α
y u− v1:y +

p1:y

γ1

∥∥∥∥
2

2

]

+
γ2

2

[ ∥∥∥∥D
α
xxu− v2:xx +

p2:xx

γ2

∥∥∥∥
2

2

+

∥∥∥∥D
α
yyu− v2:yy +

p2:yy

γ2

∥∥∥∥
2

2

+2

∥∥∥∥D
α
xyu− v2:xy +

p2:xy

γ2

∥∥∥∥
2

2

]}
(19)

With the image degraded due to Gaussian noise, the data

fidelity term in (19) is given asE(u, g) = ||Hu−g||22, resulting

in the following optimization problem:

min
u

{
‖Hu− g‖22 +

γ1

2

[ ∥∥∥∥D
α
x u− v1:x +

p1:x

γ1

∥∥∥∥
2

2

+

∥∥∥∥D
α
y u−v1:y+

p1:y

γ1

∥∥∥∥
2

2

]
+

γ2

2

[ ∥∥∥∥D
α
xxu− v2:xx+

p2:xx

γ2

∥∥∥∥
2

2

+

∥∥∥∥D
α
yyu−v2:yy+

p2:yy

γ2

∥∥∥∥
2

2

+2

∥∥∥∥D
α
xyu−v2:xy+

p2:xy

γ2

∥∥∥∥
2

2

]}

(20)

The minimization of sub-problem stated in (20) with respect

to u is the standard least square problem which is equivalent

to the (21), as shown at the bottom of this page.

Here, i is the iteration variable and the fast Fourier trans-

form and its inverse is denoted by F and F−1 respec-

tively. It should be noted that the operators in (21) i.e. H ,

Dα
x ,D

α
y ,D

α
xx,,D

α
yy and Dα

xy are highly structured matrices.

However, their exact structure depends on the boundary con-

ditions imposed on the image under consideration. In this

work, we have adopted the periodic boundary conditions that

enable these operators to have block circulant with circu-

lant blocks (BCCB) structure. This helps in computing these

BCCB matrices using fast Fourier transforms.

Next, if the image is degraded due to Poisson noise, the data

fidelity term in (19) is given as E(u, g) = (Hu− g log(Hu))

resulting in the following optimization problem:

min
u

{
(Hu− g log(Hu)) +

γ1

2

[ ∥∥∥∥D
α
x u− v1:x +

p1:x

γ1

∥∥∥∥
2

2

+

∥∥∥∥D
α
y u−v1:y+

p1:y

γ1

∥∥∥∥
2

2

]
+

γ2

2

[ ∥∥∥∥D
α
xxu−v2:xx+

p2:xx

γ2

∥∥∥∥
2

2

+

∥∥∥∥D
α
yyu−v2:yy+

p2:yy

γ2

∥∥∥∥
2

2

+2

∥∥∥∥D
α
xyu−v2:xy+

p2:xy

γ2

∥∥∥∥
2

2

]}

(22)

With the introduction of the auxiliary variable w = Hu,

the optimization problem stated in (22) can be reformulated

as

min
u,w

{
(w−f logw)+σ ‖Hu−w+b1‖

2
2

+
γ1

2

[ ∥∥∥∥D
α
x u−v1:x+

p1:x

γ1

∥∥∥∥
2

2

+

∥∥∥∥D
α
y u−v1:y+

p1:y

γ1

∥∥∥∥
2

2

]

+
γ2

2

[ ∥∥∥∥D
α
xxu−v2:xx+

p2:xx

γ2

∥∥∥∥
2

2

+

∥∥∥∥D
α
yyu−v2:yy+

p2:yy

γ2

∥∥∥∥
2

2

+2

∥∥∥∥D
α
xyu−v2:xy+

p2:xy

γ2

∥∥∥∥
2

2

]}
(23)

The minimization of (23) with respect to u is given as

min
u

{
σ ‖Hu−w+b1‖

2
2+

γ1

2

[ ∥∥∥∥D
α
x u−v1:x+

p1:x

γ1

∥∥∥∥
2

2

+

∥∥∥∥D
α
y u−v1:y+

p1:y

γ1

∥∥∥∥
2

2

]
+

γ2

2

[ ∥∥∥∥D
α
xxu−v2:xx+

p2:xx

γ2

∥∥∥∥
2

2

+

∥∥∥∥D
α
yyu−v2:yy+

p2:yy

γ2

∥∥∥∥
2

2

+2

∥∥∥∥D
α
xyu−v2:xy+

p2:xy

γ2

∥∥∥∥
2

2

]}

(24)

The solution of (24) is similar to that of (20) i.e. the stan-

dard least square problem whose solution is obtained using

the (25), as shown at the bottom of the next page.

ui+1 = F−1

{
F−1

{
H∗g+γ1

[(
Dα
x

)∗(
vi
1:x

−
pi
1:x
γ1

)
+

(
Dα
y

)∗(
vi
1:y

−
pi
1:y
γ1

)]
+γ1

[(
Dα
xx

)∗(
vi
2:xx

−
pi
2:xx
γ2

)
+

(
Dα
yy

)∗(
vi
2:yy

−
pi
2:yy
γ2

)
+2

(
Dα
xy

)∗(
vi
2:xy

−
pi
2:xy
γ2

)]

H∗H+γ1

[(
Dα
x

)∗(
Dα
x

)
+

(
Dα
y

)∗(
Dα
y

)]
+

[
γ2

(
Dα
xx

)∗(
Dα
xx

)
+

(
Dα
yy

)∗(
Dα
yy

)
+2

(
Dα
xy

)∗(
Dα
xy

)]
}}

(21)
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The minimization of (23) with respect to the auxiliary

variable w is given as

min
w

{
(w− f logw) + σ

2
‖Hu− w+ b1‖2

}
(26)

The solution to (26) is obtained as

wi+1 =
1

2




(
Hui+1+bi1−

1

σ

)
+

√(
Hui+1+bi1−

1

σ

)2

+
4g

σ




(27)

The variable b1 is updated as

bi+1
1 = bi1 + (Hui+1 − wi+1) (28)

The restored image u degraded due to Gaussian or Poisson

noise is obtained via the solutions stated in (21) and (25)

corresponding to the optimization problems (20) and (24),

respectively. Once the variable u is optimized, the compo-

nents of the auxiliary variable v1 which is common to both

types of noise is minimized using (18) as the following sub-

problems

vi+1
1:x = argmin

v1:x


β1φ(v1:x) +

γ1

2

∥∥∥∥∥D
α
x u

i+1 − v1:x +
pi1:x
γ1

∥∥∥∥∥

2

2




(29)

vi+1
1:y = argmin

v1:x


β1φ(v1:y) +

γ1

2

∥∥∥∥∥D
α
y u

i+1 − v1:y +
pi1:y

γ1

∥∥∥∥∥

2

2




(30)

Similarly the components of the vector v2 are minimized as

vi+12:xx = argmin
v2:xx


β2φ(v2:xx)+

γ2

2

∥∥∥∥∥D
α
xxu

i+1−v2:xx+
pi2:xx
γ2

∥∥∥∥∥

2

2




(31)

vi+12:yy = argmin
v2:yy


β2φ(v2:yy)+

γ2

2

∥∥∥∥∥D
α
yyu

i+1−v2:yy+
pi2:yy

γ2

∥∥∥∥∥

2

2




(32)

vi+12:xy = argmin
v2:xy


β2φ(v2:xy)+

γ2

2

∥∥∥∥∥D
α
xyu

i+1−v2:xy+
pi2:xy

γ2

∥∥∥∥∥

2

2




(33)

The solution to the above minimization problem stated

in (29)-(33) can be solved effectively using the method of

majorization and minimization for which the details can be

Algorithm 1 Solving the Optimization Framework (15) for

Gaussian Noise
Initialization:

Starting point: (v1, v2 = g); (p1, p2 = 0);

(β1, β2, γ1, γ2 > 0) , K

Iterations:

For i = 1 to MaxIter

1) Compute ui+1 according to (21)

2) Compute vi+1
1 according to ( 29)-(30)

3) Compute vi+1
2 according to (31)-(33)

4) Compute pi+1
1 according to ( 34)-(35)

5) Compute pi+1
2 according to ( 36)-(38)

6) until a stopping criterion is satisfied stated in (39)

Algorithm 2 Solving the Optimization Framework (15) for

Poisson Noise
Initialization:

Starting point: (v1, v2, w = g); (p1, p2, b1 = 0);

(β1, β2, γ1, γ2, σ > 0) , K

Iterations:

For i = 1 to MaxIter

1) Compute ui+1 according to (25)

2) Compute vi+1
1 according to ( 29)-(30)

3) Compute vi+1
2 according to (31)-(33)

4) Compute wi+1 according to (27)

5) Compute bi+1
1 according to (28)

6) Compute pi+1
1 according to ( 34)-(35)

7) Compute pi+1
2 according to ( 36)-(38)

8) until a stopping criterion is satisfied stated in (39)

found in [40], [50], and [51]. Finally, the Lagrangian multi-

pliers. p1 and p2 are updated as

pi+1
1:x = pi1:x + γ1(D

α
x u

i+1 − vi+1
1:x ) (34)

pi+1
1:y = pi1:y + γ1(D

α
y u

i+1 − vi+1
1:y ) (35)

pi+1
2:xx = pi2:xx + γ2(D

α
xxu

i+1 − vi+1
1:xx) (36)

pi+1
2:yy = pi2:yy + γ2(D

α
yyu

i+1 − vi+1
1:yy) (37)

pi+1
2:xy = pi2:xy + γ2(D

α
xyu

i+1 − vi+1
2:xy) (38)

Based on the above discussion, the proposed optimization

framework for Gaussian and Poisson noise is presented as

Algorithms 1 and 2, respectively.

ui+1 = F−1

{
F

{
σH∗(wi−bi

1
)+γ1

[(
Dα
x

)∗(
vi
1:x

−
pi
1:x
γ1

)
+

(
Dα
y

)∗(
vi
1:y

−
pi
1:y
γ1

)]
+γ1

[(
Dα
xx

)∗(
vi
2:xx

−
pi
2:xx
γ2

)
+

(
Dα
yy

)∗(
vi
2:yy

−
pi
2:yy
γ2

)
+2

(
Dα
xy

)∗(
vi
2:xy

−
pi
2:xy
γ2

)]

σHTH+γ1

[(
Dα
x

)∗(
Dα
x

)
+

(
Dα
y

)∗(
Dα
y

)]
+γ2

[(
Dα
xx

)∗(
Dα
xx

)
+

(
Dα
yy

)∗(
Dα
yy

)
+2

(
Dα
xy

)∗(
Dα
xy

)]
}}

(25)
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A. CONVERGENCE ANALYSIS

The convexity of the energy function defined in (15) is

convex for both the Gaussian and Poisson cases. Please see

Appendix A for proof. In view of this convexity, the conver-

gence of algorithms 1 and 2 is guaranteed via the ADMM

theory [41]. The system governing variables involved in the

algorithms, namely, u, v1, v2 and w is decoupled into their

own sub-problems and these sub-problems have closed form

solutions. For instance, the sub-problem involving variable

u is solved using conjugate gradient method [49], which

is convergent with structured matrices (Dα
x )

∗Dα
x , (D

α
y )

∗Dα
y ,

(Dα
xx)

∗Dα
xx , (D

α
yy)

∗Dα
yy and (Dα

xy)
∗Dα

xy being positive definite

and invertible. Here, we assume periodic boundary conditions

that enable these matrices to be block circulant with circulant

blocks (BCCB) structure. The variables v1 and v2 are solved

using majorization-minimization algorithm which is proved

to be convergent in [40]. The sub-problem involving variable

w is a differential function which can be easily minimized.

The stopping criterion used in the two algorithms is

RelErr =

∥∥ui+1 − ui
∥∥
2∥∥ui+1

∥∥
2

< 10−3 or i = MaxIter (39)

we set MaxIter = 100 in this paper. Here, ui is the com-

putationally accepted approximation of the original image

when the relative difference between the consecutive approx-

imations satisfies the stopping criterion. Fig. 3 shows the

evolution of RelErr as a function of the number of iterations

for the two algorithms. It can be observed from this figure that

the error decreases monotonically with iterations, confirming

the convergence behaviour of the two algorithms.

FIGURE 3. Evolution of RelErr as a functions of the number of iterations
for the two algorithms.

V. EXPERIMENTAL RESULTS AND ANALYSIS

The aim of this section is to demonstrate the performance of

the proposed HF-OLGS based image denoising framework.

For this purpose, simulations are carried on using six different

gray-scale images of varying texture content shown in Fig 4.

To prove the effectiveness of the proposed algorithm on real

databases, we have selected LIVE [50] database for evalua-

tion. To quantify the quality of the restored image, widely

used image metrics peak-signal-to-noise ration (PSNR) and

Structural SIMilarity (SSIM) [51] index are adopted. These

metrics are evaluated as follows: PSNR is defined as

PSNR = 10 log10




2552MN

M−1∑
i=0

N−1∑
i=0

(u(i, j) − û(i, j))2


 (40)

where u is the original image and û is the denoised image.

Higher the PSNR value, better is the image quality. The

Structural SIMilarity (SSIM) index is a method for measuring

the similarity between two images. SSIM index can be viewed

as a quality measure of one of the images being compared,

provided the other image is regarded as of perfect quality.

SSIM for the two images x and y is defined as

SSIM (x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ 2
x + σ 2

y + c2)
(41)

where µx and µy are the averages of x and y respectively,

σ 2
x and σ 2

y are the variances of x and y, σ 2
xy is the covariance

of x and y while c1, c2 are the two variables to stabilize the

division with weak denominator. SSIM is less than or equal

to 1 and it is maximal when the two images are coincide.

All the experiments are carried out on Mac OS 10.12 and

MATLAB v15 running on a desktop equipped with an Intel

Core i7 CPU 2.2 GHz and 16 GB of RAM.

A. STUDY ON GROUP SIZE (K) AND FRACTIONAL

ORDER (α)

With the use of fractional order derivatives in the proposed

regularizer presented in (13), it has been observed that the

performance of the regularizer depends on the optimal selec-

tion of group size (K ) and fractional order (α). Hence,

it becomes important to understand the role played by these

parameters in order to achieve an effective state of the art

denoising results. Furthermore, as discussed in Sec.III regard-

ing the performance of the proposed regularizer in case of

one-dimensional signal, a similar analysis needs to be car-

ried out for two dimensional signals in order to justify the

applicability of the proposed regularizer. In order to do this,

six standard test images of baboon, barbara, cameraman,

parrot , lena and house are selected for evaluation as shown

in Figs.4(a)-(f). The first 3 test images, namely, (a) Baboon,

(b) Barbara and (c) Cameraman are of size 512 × 512, while

the last three images; (d) Parrot, (e) Lena and (f) House

are of size 256 × 256. These images are selected based on

their varying texture content as shown in Figs.4(g)-(l). Here,

the black region corresponds to plain patches, grey region

corresponds to edge patches and white region corresponds to

texture patches. The reason for arranging them in terms of the

texture content is to show the effectiveness of the proposed

regularizer in restoring the texture content as was done in the

case of one-dimensional signals shown in Figs. 1-2. There are

several methods proposed in the literature for carrying out

image decomposition into plain (P), edge (E) and texture (T)
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FIGURE 4. (a)-(f) Standard test images of baboon, barbara, cameraman, parrot , lena and house. (g)-(l) Plain, Edge and Texture
classification map of test images. Here, black corresponds to plain patch, grey corresponds to edge patch and white corresponds to
texture patch. Images are arranged from left to right in descending order of the texture contribution.

FIGURE 5. Effect of group size (K ) and fractional order (α) on PSNR of the restored images degraded by (a)-(c) Gaussian noise
(d)-(f) Poisson noise. (a) baboon. (b) barbara. (c) cameraman. (d) parrot . (e) lena. (f) house.

blocks [52]–[56]. In this paper, we have adopted the method

proposed by Zhang et al. [53] that utilizes discrete cosine

transform (DCT) coefficients for carrying out the image

decomposition task.

The values of (K , α) are selected based on experimental

work as follows. Figs. 5 and 6 show the PSNR and SSIM vari-

ations as a function of parameters K and α for the test images

shown in Figs. 4(a)-(f). The first three images are subjected to

Gaussian noise of standard deviation 20, while the last three

are subjected to Poisson noise. It can be observed that the

maximum value of PSNR as well as that of SSIM is achieved

for K = 3 and α = (1.2, 1.3, 1.4). This shows that the selec-

tion of the parameter K is independent of the texture content

in an image. However, the value of the fractional coefficient α

depends on the texture content. Further, the selected value of

α confirms the findings in [20] regarding the optimal values

of α for effective texture restoration. Other parameters used

in the algorithms are taken as follows: Algorithm 1: β1 =

1e − 6, β2 = 0.8, γ1 = 0.33e − 6 and γ2 = 0.26. For

Algorithm 2: β1 = 1e − 3, β2 = 0.1, γ1 = 0.25e − 3,

γ2 = 0.04 and σ = 1e4.

B. TEXTURE ANALYSIS

The discussion carried out in Figs. 5 and 6 is a kind of

quantitative evaluation of the proposed algorithm. In order

to see the impact of the parameters (K , α) on the quality of

the image restored, visual comparisons are performed using

various values of (K , α) on the images of parrot and barbara
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FIGURE 6. Effect of group size (K ) and fractional order (α) on SSIM of the restored images degraded by (a)-(c) Gaussian noise
(d)-(f) Poisson noise. (a) baboon. (b) barbara. (c) cameraman. (d) parrot . (e) lena. (f) house.

FIGURE 7. Noisy images of (a) parrot (b) barbara subjected to Gaussian
and Poisson noise respectively.

degraded due to Gaussian of standard deviation 20 and Pois-

son noise, respectively. Fig. 7 shows the degraded images of

parrot and barbara, whereas Figs.8-9 show their respective

restored versions. The results in Fig 8 show that for (K = 3,

α = 1.2), the proposed fractional model preserve the fine

textures in an image. However, for other values of (K , α),

the fine textures of the restored images are degraded due to

the presence of small Gaussian noise appearing in the texture

images as shown in Figs. 8(e)-(g). Similarly for the case of

restored versions of barbara image shown in Fig 7, it can

be observed that effective texture restoration is obtained for

(K = 3, α = 1.4) while for other cases some Poisson noise

penetrates into the texture component of the restored images

as shown in Figs. 9(e)-(g).

C. COMPARATIVE ANALYSIS

The proposed denoising framework is developed for restor-

ing the images degraded due to Gaussian and Pois-

son noise. Hence, it becomes essential to compare the

quality of the restored image with the other state-of-the-

art algorithms. For this purpose, in the case of Gaus-

sian noise we have selected the methods proposed by

Cuesta et al. [38], fractional-order total variation using prox-

imity algorithm (FTV-PA) [57], R-NL [58], Adaptive Regu-

larization with the Structure Tensor [59]., the full fractional

anisotropic diffusion (FFAD) [60] and overlapping group

sparsity (OLGS) [40] for comparative analysis. For the case

of Poisson noise, comparison is performed with the meth-

ods such as fourth-order partial differential equation fil-

ter (FOPDEF) [12], TV-Poi [61], OGS-ADM [62], Framelet

based (BPID-FR) [63], spatially adaptive (RLSATV) [64]

and sparse based (TV-L0) [65]. The work of TV-Poi and

OGS-ADM is based on the TV and overlapping group

sparsity based prior for Poisson noise image deblurring.

The FOPDEF algorithm uses higher order partial differ-

ential equations for removing Poisson noise with staircase

reduction.

In this work, we consider blurring operator H to be

Gauss (G) blur kernel [66]. It has two parameters to its def-

inition, namely, bandwidth (s) and standard deviation (η).

In our set of experiments, we set these parameters as s = 11

and η = 2.3. In order to simulate noisy operations after

blurring the original images with G, two sets of experiments

are created. In the first set, we add Poisson noise to the

image using poissrnd function from the MATLAB toolbox to

generate blurred and noisy images shown in Figs 10(a) and

11(a). The magnitude of the noise directly depends on the

absolute image intensities. In the second set, an additive white

Gaussian noise (AWGN) with standard deviation of 20 and
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FIGURE 8. (a)-(d) Visual comparison of the restored image of parrot shown in Fig. 7(a) for various values of the parameters K
and α. (e)-(h) Corresponding texture details. (a) K = 3, α = 0.8. (b) K = 3, α = 1.0. (c) K = 3, α = 1.4. (d) K = 3, α = 1.2.
(e) K = 3, α = 0.8. (f) K = 3, α = 1.0. (g) K = 3, α = 1.4. (h) K = 3, α = 1.2.

FIGURE 9. (a)-(d) Visual comparison of the restored image of barbara shown in Fig. 7(b) for various values of the parameters K
and α. (e)-(h) Corresponding texture details. (a) K = 3, α = 0.8. (b) K = 3, α = 1.0. (c) K = 3, α = 1.3. (d) K = 3, α = 1.4.
(e) K = 3, α = 0.8. (f) K = 3, α = 1.0. (g) K = 3, α = 1.3. (h) K = 3, α = 1.4.

30 is added to the test images blurred using G as shown

in Figs 12(a) and 13(a) respectively.

For the first set of experiments dealing with Poisson noise,

we have taken images of cameraman and house for our

study. Both of these images are blurred using Gauss blur

and additionally contaminated using Poisson noise as shown

in Figs 10(a) and 11(a). For the case of cameraman image,

Figs. 10(b)-(h) show the restoration results using seven dif-

ferent methods. It is not difficult to observe that the pro-

posed method (HF-OLGS) is better than the other methods

in restoring the textures of an image. The face and nose

of the cameraman and the texture of the building in the

background are restored well using TV-L0 and our method

when compared to other methods. Furthermore, undesirable

staircase effects are minimized using the proposed method,

thus providing better image visual quality. Similarly, for

the house image, Figs. 11(b)-(h) shows the restored quality

obtained using different methods. It can be observed that the

roof texture and the edges around the windows as well as

around the boundary of the house are preserved to a greater

extent when compared to that in the other methods.

For the second set of experiments dealing with Gaus-

sian noise, images of lena and barbara are taken for test-

ing the effectiveness of the proposed algorithm. Both of

these images are blurred using Gauss blur of size s = 11

and additionally degraded using additive white Gaussian
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FIGURE 10. Denoising results for the image cameraman under the Gauss blur (G) and Poisson noise (a) Noisy image
(b) FOPDEF, PSNR (SSIM) = 27.82(0.751); (c) BPID-FR, PSNR (SSIM) = 28.04(0.781); (d) OGS-ADM, PSNR (SSIM) = 28.18(0.802);
(e) RLSATV, PSNR (SSIM) = 28.78(0.821); (f) TV-Poi, PSNR(SSIM) = 29.06(0.841); (g) TV-L0, PSNR(SSIM) = 29.52(0.883)
(h) HF-OLGS, PSNR(SSIM) = 30.37(0.912). (a) Noisy image.

FIGURE 11. Denoising results for the image house under the Gauss blur (G) and Poisson noise (a) Noisy image (b) FOPDEF,
PSNR (SSIM) = 26.12(0.724); (c) BPID-FR, PSNR (SSIM) = 27.04(0.732); (d) OGS-ADM, PSNR (SSIM) = 27.78(0.747); (e) RLSATV,
PSNR (SSIM) = 28.18(0.809); (f) TV-Poi, PSNR(SSIM) = 28.87(0.863); (g) TV-L0, PSNR(SSIM) = 29.12(0.873) (h) HF-OLGS,
PSNR(SSIM) = 30.12(0.903). (a) Noisy image.

noise with standard deviation of 20 and 30, respectively,

as shown in Figs. 12(a) and 13(a). Their corresponding

restored versions using seven different methods are shown

in Figs. 12(b)-(h) and Figs. 13(b)-(h), respectively. It can be

observed clearly that the proposedmethod restores the texture

components present in the hat and hair of lena effectively. The

texture components present in the table-mat and the clothes

of barbara are also effectively restored. This is not visible in

other cases where the texture profiles are smeared out and

are not sharply visible. Further, the proposed algorithm is

successful in restoring the sharp edges of the images of lena

and barbara thereby improving to the total image quality.

In order to further justify the claims about the effectiveness

of the proposed algorithm in restoring the textures and edges

of an image simultaneously, an extensive study is carried out

using the LIVE database [50] images as shown in Table 1.

Here, the images are arranged in descending order of the

texture (T) contributions. The corresponding image decom-

position into texture (T), edge (E) and plain (P) of each

individual image is given in percentage. Further the best

value of group size K and fractional order α is also reported.

All the images in LIVE database are subjected to Gauss

blur of size s = 11 with varying additive white Gaussian

noise of standard deviation (SD) 20 and 40. These images
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FIGURE 12. Denoising results for the image Lena degraded due to Gauss blur (G) and Gaussian noise having standard
deviation of 20 (a) Noisy image (b) R-NL, PSNR (SSIM) = 29.34(0.831); (c) Cuesta, PSNR (SSIM) = 27.04(0.753); (d) Ada-Reg,
PSNR (SSIM) = 30.12(0.813); (e) FTV-PA, PSNR (SSIM) = 27.69(0.752); (f) OLGS, PSNR(SSIM) = 30.27(0.832); (g) FFAD,
PSNR(SSIM) = 29.43(0.831) (h) HF-OLGS, PSNR(SSIM) = 31.12(0.874). (a) Noisy image.

FIGURE 13. Denoising results for the image Barbara degraded due to Gauss blur (G) and Gaussian noise having standard
deviation of 30 (a) Noisy image (b) R-NL, PSNR (SSIM) = 28.96(0.761); (c) Cuesta, PSNR (SSIM) = 26.80(0.749); (d) Ada-Reg,
PSNR (SSIM) = 28.78(0.731); (e) FTV-PA, PSNR (SSIM) = 25.31(0.753); (f) OLGS, PSNR(SSIM) = 29.31(0.841); (g) FFAD,
PSNR(SSIM) = 27.92(0.776) (h) HF-OLGS, PSNR(SSIM) = 29.37(0.852). (a) Noisy image.

are restored using the seven different methods and the qual-

ity of the restored images is evaluated using image quality

metrics such as PSNR and SSIM. It can be observed from

the table that with images having varying texture and edge

contributions, the proposed algorithm restores the image well

in most of the cases. This observation is made based on the

values reported in terms of PSNR(SSIM) scores in the table.

In some case GMM produces good quality scores compared

to our method. But when compared with other methods our

method produces more pleasing and artifacts-free restored

images.

Another important factor to measure the effectiveness of

the denoising methods is run time. Table 2 shows the run time

for various methods in case of Gaussian noise of standard

deviation 40. It can be observed from the table that our pro-

posed method is considerably faster than the other methods.

D. COMPARISON WITH DEEP LEARNING METHODS

Recently, deep learning based methods are gaining atten-

tion due to their remarkable denoising performance. There-

fore, it is of interest to compare the performance of the
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TABLE 1. Images are selected from LIVE database and categorized into Texture (T), Edge (E) and Plain (P) blocks. Arranged in decreasing order of their
Texture (T) contribution. Denoising performance of the images subjected to Gaussian (G) blur with s = 11 and η = 3.3 for different noise levels (SD) is
evaluated in terms of PSNR in dB (SSIM). The best group size K and fractional order α for each image is also reported.

TABLE 2. Run time (in seconds) results of different denoising algorithms on LIVE dataset images degraded due to Gaussian noise with standard deviation
(SD) of 40.

proposed method with that of the recently introduced deep

learning methods, namely DnCNN [67] and FFDNet [68].

These two denoising schemes are tested on LIVE dataset. The

average PSNR(SSIM) values for Gaussian noise level (SD)

of 40 are 29.16(0.833) for DnCNN and 29.32(0.837) for

FFDNet. The corresponding values for our proposed work are

29.03(0.820). One can observe that the average PSNR(SSIM)

of the proposed method are slightly lower than that of deep

learning methods. But, the main advantage of using the pro-

posed method is to preserve the texture present in an image.

It is true that deep learning frameworks have provided good

results, but in order to implement the deep nets, we need a

huge database for their training. It should be noted that when

we are dealing with two different kinds of noise, Gaussian

and Poisson as done in this paper, the only modification that

is required mathematically is the change in the data fidelity

term whereas the regularizer term remains the same ((16)

and (17)). However, if we have to carry out the same task via

deep learning, we need twice the amount of data for training,

i.e., one for each type of noise. Hence, in terms of time

and computational resources needed to achieve denoising

results, it is clear that the proposedmathematical optimization

technique has advantages over deep learning technique

VI. CONCLUSION

A higher order fractional-based overlapping group spar-

sity (HF-OLGS) prior is introduced in this paper. It has

been shown that the proposed HF-OLGS prior is capable

of not only reducing the staircase effects present in the

edges but also preserving the texture. The use of frac-

tional derivatives in the optimization framework are solved

using an efficient numerical scheme. In order to solve the

image denoising framework formulated as a minimization

problem, the energy function has been optimized using

ADMM scheme. A detailed discussion about the parame-

ter selection criteria needed to run the algorithm properly

has been carried out. Restoration of images degraded by

Gaussian or Poisson noise is considered in this paper. The

restoration performance of the proposed denoising frame-

work has been analysed on LIVE dataset which consists of

images having varying texture, plain and edge contributions.

Further, the optimal fractional order α and group size K

for which the solution is feasible has also been provided

for each image. The experimental results presented in this

work show that with proper parameter settings, the algo-

rithm yields good PSNR and SSIM scores comparable with

that of the other methods. Moreover, the visual effects,
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especially in high oscillatory regions (textures), are greatly

improved.

Appendix A PROOF OF CONVEXITY OF THE ENERGY

FUNCTION

We prove first the convexity for the case of Gaussian noise.

Using (15) and (16), the energy function Z can be re-written

for the Gaussian case as

Z (u) = (Hu− g)2 + β1[φ(D
αu)] + β2[φ(D

α
2u)] (42)

where

Dα
2 =




Dα
xx

Dα
yy

Dα
xy

Dα
yx


 and Dα =

[
Dα
x

Dα
y

]

Therefore, the convexity of Z in this case is assured if we

establish

Z (tu+ (1 − t)v) ≤ tZ (u) + (1 − t)Z (v), ∀ 0 ≤ t ≤ 1

for any u and v. Letting u to tu+ (1 − t)v in (42) , we get

Z (tu+ (1 − t)v) =

{
t2(Hu− g)2 + (1 − t)2(Hv− g)2

+2t(1 − t)(Hu− g)(Hv− f )

β1[φ(D
α(tu+ (1 − t)v))]

β2[φ(D
α
2 (tu+ (1 − t)v))]

}
(43)

Using the fact that φ(A+ B) ≤ φ(A) + φ(B) results in

Z (tu+ (1 − t)v) ≤

{
t2(Hu− g)2 + (1 − t)2(Hv− g)2

+ t(1 − t)
(
(Hu− g)2 + (Hv− g)2

)

tβ1[φ(D
αu)] + (1 − t)β1[φ(D

αv)]

tβ2[φ(D
α
2u)] + (1 − t)β2[φ(D

α
2 v)]

}

(44)

A re-arrangement of the right side expression gives

Z (tu+ (1 − t)v)

≤

{
t(Hu− g)2 + tβ1[φ(D

αu)]

+tβ2[φ(D
α
2u)] + (1 − t)(Hv− g)2

+(1 − t)β1[φ(D
αv)] + (1 − t)β2[φ(D

α
2 v)]

}

≤ tZ (u) + (1 − t)Z (v) (45)

This completes the proof for the Gaussian case.

Similarly, it can be shown that the energy function Z

corresponding to the Poisson case is also convex.

REFERENCES
[1] R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman,

‘‘Removing camera shake from a single photograph,’’ ACM Trans. Graph.,

vol. 25, no. 3, pp. 787–794, 2006.

[2] J.-F. Cai, H. Ji, C. Liu, and Z. Shen, ‘‘Blind motion deblurring from a

single image using sparse approximation,’’ in Proc. IEEE Conf. Comput.

Vis. Pattern Recognit. (CVPR), Jun. 2009, pp. 104–111.

[3] D. Krishnan and R. Fergus, ‘‘Fast image deconvolution using hyper-

laplacian priors,’’ in Proc. Adv. Neural Inf. Process. Syst., 2009,

pp. 1033–1041.

[4] D. Krishnan, T. Tay, and R. Fergus, ‘‘Blind deconvolution using a normal-

ized sparsitymeasure,’’ inProc. IEEEConf. Comput. Vis. Pattern Recognit.

(CVPR), Jun. 2011, pp. 233–240.

[5] L. I. Rudin, S. Osher, and E. Fatemi, ‘‘Nonlinear total variation based noise

removal algorithms,’’ Phys. D, Nonlinear Phenomena, vol. 60, nos. 1–4,

pp. 259–268, 1992.

[6] T. Chan, A. Marquina, and P. Mulet, ‘‘High-order total variation-based

image restoration,’’ SIAM J. Sci. Comput., vol. 22, no. 2, pp. 503–516,

2000.

[7] M. Lysaker and X.-C. Tai, ‘‘Iterative image restoration combining total

variationminimization and a second-order functional,’’ Int. J. Comput. Vis.,

vol. 66, no. 1, pp. 5–18, 2006.

[8] K. Papafitsoros and C.-B. Schönlieb, ‘‘A combined first and second order

variational approach for image reconstruction,’’ J.Math. Imag. Vis., vol. 48,

no. 2, pp. 308–338, 2014.

[9] M. Lysaker, A. Lundervold, and X.-C. Tai, ‘‘Noise removal using fourth-

order partial differential equation with applications to medical magnetic

resonance images in space and time,’’ IEEE Trans. Image Process., vol. 12,

no. 12, pp. 1579–1590, Dec. 2003.

[10] G. Gilboa and S. Osher, ‘‘Nonlocal operators with applications to image

processing,’’Multiscale Model. Simul., vol. 7, no. 3, pp. 1005–1028, 2008.

[11] J. Liu, T.-Z. Huang, Z. Xu, and X.-G. Lv, ‘‘High-order total variation-based

multiplicative noise removal with spatially adapted parameter selection,’’

J. Opt. Soc. Amer. A, Opt. Image Sci., Vis., vol. 30, no. 10, pp. 1956–1966,

2013.

[12] W. Zhou and Q. Li, ‘‘Poisson noise removal scheme based on fourth-order

PDE by alternating minimization algorithm,’’ Abstr. Appl. Anal., vol. 2012,

Nov. 2012, Art. no. 965281.

[13] K. Bredies, K. Kunisch, and T. Pock, ‘‘Total generalized variation,’’ SIAM

J. Imag. Sci., vol. 3, no. 3, pp. 492–526, 2010.

[14] X.-D. Wang, X.-C. Feng, W.-W. Wang, and W.-J. Zhang, ‘‘Iterative

reweighted total generalized variation based Poisson noise removal

model,’’ Appl. Math. Comput., vol. 223, pp. 264–277, Oct. 2013.

[15] Y. Shi, J. Song, and X. Hua, ‘‘Poissonian image deblurring method by non-

local total variation and framelet regularization constraint,’’Comput. Elect.

Eng., vol. 62, pp. 319–329, Aug. 2016.

[16] G. Landi and E. L. Piccolomini, ‘‘An efficient method for nonnegatively

constrained total variation-based denoising of medical images corrupted

by Poisson noise,’’ Comput. Med. Imag. Graph., vol. 36, no. 1, pp. 38–46,

2012.

[17] S. Bonettini and V. Ruggiero, ‘‘On the convergence of primal–dual hybrid

gradient algorithms for total variation image restoration,’’ J. Math. Imag.

Vis., vol. 44, no. 3, pp. 236–253, 2012.

[18] D. Chen, Y. Chen, and D. Xue, ‘‘Fractional-order total variation image

restoration based on primal-dual algorithm,’’ Abstr. Appl. Anal., vol. 2013,

Sep. 2013, Art. no. 585310.

[19] J. Zhang, Z. Wei, and L. Xiao, ‘‘Adaptive fractional-order multi-scale

method for image denoising,’’ J. Math. Imag. Vis., vol. 43, no. 1, pp. 39–49,

2012.

[20] Z. Jun and W. Zhihui, ‘‘A class of fractional-order multi-scale variational

models and alternating projection algorithm for image denoising,’’ Appl.

Math. Model., vol. 35, no. 5, pp. 2516–2528, 2011.

[21] Y. Zhang, Y. F. Pu, J. R. Hu, and J. L. Zhou, ‘‘A class of fractional-order

variational image inpainting models,’’ Appl. Math. Inf. Sci., vol. 6, no. 2,

pp. 299–306, 2012.

[22] Z. Ren, C. He, and Q. Zhang, ‘‘Fractional order total variation regu-

larization for image super-resolution,’’ Signal Process., vol. 93, no. 9,

pp. 2408–2421, 2013.

[23] J. Bai and X. C. Feng, ‘‘Fractional-order anisotropic diffusion for image

denoising,’’ IEEE Trans. Image Process., vol. 16, no. 10, pp. 2492–2502,

Oct. 2007.

[24] M. Ding, T.-Z. Huang, S. Wang, J.-J. Mei, and X.-L. Zhao, ‘‘Total varia-

tion with overlapping group sparsity for deblurring images under cauchy

noise,’’ Appl. Math. Comput., vol. 341, pp. 128–147, Jan. 2019.

VOLUME 7, 2019 26215



A. Kumar et al.: Framework for Image Denoising

[25] X.-L. Zhao, F. Wang, and M. K. Ng, ‘‘A new convex optimization model

for multiplicative noise and blur removal,’’ SIAM J. Imag. Sci., vol. 7, no. 1,

pp. 456–475, 2014.

[26] Z. Gao et al., ‘‘Motion tracking of the carotid artery wall from ultrasound

image sequences: A nonlinear state-space approach,’’ IEEE Trans. Med.

Imag., vol. 37, no. 1, pp. 273–283, Jan. 2018.

[27] Z. Gao et al., ‘‘Robust estimation of carotid artery wall motion using

the elasticity-based state-space approach,’’ Med. Image Anal., vol. 37,

pp. 1–21, Apr. 2017.

[28] Z. Gao et al., ‘‘Robust recovery of myocardial kinematics using dual H∞

criteria,’’Multimedia Tools Appl., vol. 77, no. 17, pp. 23043–23071, 2018.

[29] S. Parameswaran, C.-A. Deledalle, L. Denis, and T. Q. Nguyen, ‘‘Accel-

erating GMM-based patch priors for image restoration: Three ingredi-

ents for a 100× speed-up,’’ IEEE Trans. Image Process., vol. 28, no. 2,

pp. 687–698, Feb. 2018.

[30] M. Gong, K. Zhang, T. Liu, D. Tao, C. Glymour, and B. Schölkopf,

‘‘Domain adaptation with conditional transferable components,’’ in Proc.

Int. Conf. Mach. Learn., 2016, pp. 2839–2848.

[31] M. K. Ng, X. Yuan, and W. Zhang, ‘‘Coupled variational image decom-

position and restoration model for blurred cartoon-plus-texture images

with missing pixels,’’ IEEE Trans. Image Process., vol. 22, no. 6,

pp. 2233–2246, Jun. 2013.

[32] S. Ono, T. Miyata, and I. Yamada, ‘‘Cartoon-texture image decomposition

using blockwise low-rank texture characterization,’’ IEEE Trans. Image

Process., vol. 23, no. 3, pp. 1128–1142, Mar. 2014.

[33] X. Liu, ‘‘A new TGV-Gabor model for cartoon-texture image decomposi-

tion,’’ IEEE Signal Process. Lett., vol. 25, no. 8, pp. 1221–1225, Aug. 2018.

[34] D.-Q. Chen and L.-Z. Cheng, ‘‘Deconvolving Poissonian images by a novel

hybrid variational model,’’ J. Vis. Commun. Image Represent., vol. 22,

no. 7, pp. 643–652, 2011.

[35] R. Chan, A. Lanza, S. Morigi, and F. Sgallari, ‘‘An adaptive strategy for

the restoration of textured images using fractional order regularization,’’

Numer. Math., Theory, Methods Appl., vol. 6, no. 1, pp. 276–296, 2013.

[36] Y. Pu, ‘‘Fractional calculus approach to texture of digital image,’’ in Proc.

8th Int. Conf. Signal Process., vol. 2, Nov. 2006, pp. 1–5.

[37] P. U. Yi-Fei, ‘‘Fractional differential analysis for texture of digital image,’’

J. Algorithms Comput. Technol., vol. 1, no. 3, pp. 357–380, 2007.

[38] E. Cuesta, M. Kirane, and S. A. Malik, ‘‘Image structure preserving

denoising using generalized fractional time integrals,’’ Signal Process.,

vol. 92, no. 2, pp. 553–563, 2012.

[39] Y. Wang, Y. Shao, Z. Gui, Q. Zhang, L. Yao, and Y. Liu, ‘‘A novel

fractional-order differentiation model for low-dose CT image processing,’’

IEEE Access, vol. 4, pp. 8487–8499, 2016.

[40] J. Liu, T.-Z. Huang, I. W. Selesnick, X.-G. Lv, and P.-Y. Chen, ‘‘Image

restoration using total variation with overlapping group sparsity,’’ Inf. Sci.,

vol. 295, pp. 232–246, Feb. 2015.

[41] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, ‘‘Distributed

optimization and statistical learning via the alternating direction method

of multipliers,’’ Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122,

Jan. 2011.

[42] I.W. Selesnick and P.-Y. Chen, ‘‘Total variation denoisingwith overlapping

group sparsity,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.

(ICASSP), May 2013, pp. 5696–5700.

[43] G. Peyré and J. Fadili, ‘‘Group sparsity with overlapping partition func-

tions,’’ in Proc. 19th Eur. Signal Process. Conf., Aug. 2011, pp. 303–307.

[44] M. Figueiredo and J. Bioucas-Dias, ‘‘An alternating direction algorithm for

(overlapping) group regularization,’’ Signal Process. Adapt. Sparse Struct.

Represent., 2011.

[45] J. Zhang, Z. Wei, and L. Xiao, ‘‘A fast adaptive reweighted residual-

feedback iterative algorithm for fractional-order total variation regularized

multiplicative noise removal of partly-textured images,’’ Signal Process.,

vol. 98, pp. 381–395, May 2014.

[46] M. R. Hestenes, ‘‘Multiplier and gradient methods,’’ J. Optim. Theory

Appl., vol. 4, no. 5, pp. 303–320, 1969.

[47] D. R. Hunter and K. Lange, ‘‘A tutorial onMM algorithms,’’ Amer. Statist.,

vol. 58, no. 1, pp. 30–37, 2004.

[48] M.A. T. Figueiredo, J.M. Bioucas-Dias, and R. D. Nowak, ‘‘Majorization–

minimization algorithms for wavelet-based image restoration,’’ IEEE

Trans. Image Process., vol. 16, no. 12, pp. 2980–2991, Dec. 2007.

[49] M. R. Hestenes and E. Stiefel,Methods of Conjugate Gradients for Solving

Linear Systems, vol. 49, no. 1. Washington, DC, USA: NBS, 1952.

[50] H. R. Sheikh, Z. Wang, L. Cormack, and A. C. Bovik. (2016). LIVE

Image Quality Assessment Database Release 2. [Online]. Available:

http://live.ece.utexas.edu/research/quality

[51] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, ‘‘Image quality

assessment: From error visibility to structural similarity,’’ IEEE Trans.

Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[52] X. K. Yang,W. S. Ling, Z. K. Lu, E. P. Ong, and S. S. Yao, ‘‘Just noticeable

distortion model and its applications in video coding,’’ Signal Process.,

Image Commun., vol. 20, no. 7, pp. 662–680, Aug. 2005.

[53] X. H. Zhang, W. S. Lin, and P. Xue, ‘‘Improved estimation for just-

noticeable visual distortion,’’ Signal Process., vol. 85, no. 4, pp. 795–808,

2005.

[54] X. Zhang, W. Lin, and P. Xue, ‘‘Just-noticeable difference estimation with

pixels in images,’’ J. Vis. Commun. Image Represent., vol. 19, no. 1,

pp. 30–41, Jan. 2008.

[55] Z. Wei and K. N. Ngan, ‘‘Spatio-temporal just noticeable distortion profile

for grey scale image/video in DCT domain,’’ IEEE Trans. Circuits Syst.

Video Technol., vol. 19, no. 3, pp. 337–346, Mar. 2009.

[56] A. Liu,W. Lin,M. Paul, C. Deng, and F. Zhang, ‘‘Just noticeable difference

for images with decomposition model for separating edge and textured

regions,’’ IEEE Trans. Circuits Syst. Video Technol., vol. 20, no. 11,

pp. 1648–1652, Nov. 2010.

[57] D. Chen, Y. Chen, and D. Xue, ‘‘Fractional-order total variation image

denoising based on proximity algorithm,’’ Appl. Math. Comput., vol. 257,

pp. 537–545, Apr. 2015.

[58] C. Sutour, C.-A. Deledalle, and J.-F. Aujol, ‘‘Adaptive regularization of

the NL-means: Application to image and video denoising,’’ IEEE Trans.

Image Process., vol. 23, no. 8, pp. 3506–3521, Aug. 2014.

[59] V. Estellers, S. Soatto, and X. Bresson, ‘‘Adaptive regularization with

the structure tensor,’’ IEEE Trans. Image Process., vol. 24, no. 6,

pp. 1777–1790, Jun. 2015.

[60] M. Janev, S. Pilipović, T. Atanacković, R. Obradović, and N. Ralević,

‘‘Fully fractional anisotropic diffusion for image denoising,’’ Math. Com-

put. Model., vol. 54, no. 1, pp. 729–741, 2011.

[61] S. Tao, W. Dong, Z. Xu, and Z. Tang, ‘‘Fast total variation deconvolution

for blurred image contaminated by Poisson noise,’’ J. Vis. Commun. Image

Represent., vol. 38, pp. 582–594, Jul. 2016.

[62] X.-G. Lv, L. Jiang, and J. Liu, ‘‘Deblurring Poisson noisy images by total

variation with overlapping group sparsity,’’ Appl. Math. Comput., vol. 289,

pp. 132–148, Oct. 2016.

[63] H. Fang, L. Yan, H. Liu, and Y. Chang, ‘‘Blind Poissonian images deconvo-

lution with framelet regularization,’’Opt. Lett., vol. 38, no. 4, pp. 389–391,

2013.

[64] L. Yan, H. Fang, and S. Zhong, ‘‘Blind image deconvolution with spa-

tially adaptive total variation regularization,’’ Opt. Lett., vol. 37, no. 14,

pp. 2778–2780, 2012.

[65] X. Gong, B. Lai, and Z. Xiang, ‘‘A L0 sparse analysis prior for blind Pois-

sonian image deconvolution,’’Opt. Express, vol. 22, no. 4, pp. 3860–3865,

2014.

[66] J. G. Nagy, K. Palmer, and L. Perrone, ‘‘Iterative methods for image

deblurring: A MATLAB object-oriented approach,’’ Numer. Algorithms,

vol. 36, no. 1, pp. 73–93, 2004.

[67] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, ‘‘Beyond a Gaussian

Denoiser: Residual learning of deep CNN for image denoising,’’ IEEE

Trans. Image Process., vol. 26, no. 7, pp. 3142–3155, Jul. 2017.

[68] K. Zhang, W. Zuo, and L. Zhang, ‘‘FFDNet: Toward a fast and flexible

solution for CNN-based image denoising,’’ IEEE Trans. Image Process.,

vol. 27, no. 9, pp. 4608–4622, Sep. 2018.

AHLAD KUMAR received the B.Tech. degree

in electronics and communication engineering

from Jamia Millia Islamia, India, in 2005,

the M.Tech. degree from ABV-IIITM, in 2005,

and the Ph.D. degree from the University of

Malaya, in 2016. He is currently a Postdoc-

toral Fellow with Concordia University, Montreal,

Canada. He has published several papers in inter-

national journals. His research interests include

image denoising, low voltage analog, and mixed

signal design. He has served as a Reviewer for several international journals

and conferences.

26216 VOLUME 7, 2019



A. Kumar et al.: Framework for Image Denoising

M. OMAIR AHMAD (S’69–M’78–SM’83–F’01)

received the B.Eng. degree in electrical engi-

neering from Sir George Williams University,

Montreal, QC, Canada, and the Ph.D. degree in

electrical engineering from Concordia University,

Montreal. From 1978 to 1979, he was a Faculty

Member with the New York University College,

Buffalo, NY, USA. In 1979, he joined the Faculty

of Concordia University as an Assistant Professor

of computer science. Subsequently, he joined the

Department of Electrical and Computer Engineering, Concordia University,

where he was the Chair of the Department, from 2002 to 2005, where

he is currently a Professor. He was a Founding Researcher of Micronet,

a Canadian Network of Centers of Excellence, from 1990 to 2004. He was

a Guest Professor with Southeast University, Nanjing, China. He is also

the Concordia University Research Chair (Tier I) in multimedia signal pro-

cessing. He has authored in signal processing and holds four patents. His

current research interests include image and speech processing, biomedical

signal processing, watermarking, biometrics, video signal processing, object

detection and tracking, deep learning techniques in signal processing, and

fast signal transforms and algorithms. In 1988, he was a member of the

Admission and Advancement Committee of the IEEE. He was a recipient

of numerous honors and awards, including the Wighton Fellowship from the

Sandford Fleming Foundation, an induction to Provosts Circle of Distinction

for Career Achievements, and the Award of Excellence in Doctoral Super-

vision from the Faculty of Engineering and Computer Science, Concordia

University. He was the Local Arrangements Chairman of the 1984 IEEE

International Symposium on Circuits and Systems. He has served as the

Program Co-Chair for the 1995 IEEE International Conference on Neural

Networks and Signal Processing, the 2003 IEEE International Conference

on Neural Networks and Signal Processing, and the 2004 IEEE International

Midwest Symposium on Circuits and Systems. He was the General Co-Chair

of the 2008 IEEE International Conference on Neural Networks and Signal

Processing. He is the Chair of the Montreal Chapter IEEE Circuits and

Systems Society. He was an Associate Editor of the IEEE TRANSACTIONS ON

CIRCUITS AND SYSTEMS Part I: FUNDAMENTAL THEORY AND APPLICATIONS, from

1999 to 2001.

M. N. S. SWAMY (S’59–M’62–SM’74–F’80)

received the B.Sc. degree (Hons.) in mathematics

from the University of Mysore, Mysore, India,

in 1954, the Diploma degree in electrical commu-

nication engineering from the Indian Institute of

Science, Bengaluru, India, in 1957, and the M.Sc.

and Ph.D. degrees in electrical engineering from

the University of Saskatchewan, Saskatoon, SK,

Canada, in 1960 and 1963, respectively. He was

conferred with the title of Honorary Professor by

National Chiao Tong University, Hsinchu, Taiwan, in 2009. He is currently

a Research Professor with the Department of Electrical and Computer

Engineering, Concordia University, Montreal, QC, Canada, where he served

as the Founding Chair of the Department of Electrical Engineering, from

1970 to 1977, and the Dean of Engineering and Computer Science, from

1977 to 1993. During that time, he developed the faculty into a research

oriented one, from what was primarily an undergraduate faculty. Since 2001,

he has been the Concordia Chair (Tier I) in signal processing. He has also

taught at the Department of Electrical Engineering, Technical University of

Nova Scotia, Halifax, NS, Canada, the University of Calgary, Calgary, AB,

Canada, and the Department of Mathematics, University of Saskatchewan.

He has published in number theory, circuits, systems, and signal processing,

and holds five patents. He has co-authored nine books and five book chapters.

He was a Founding Member of Micronet, a Canadian Network of Centers

of Excellence, from 1990 to 2004, and also a Coordinator of Concordia

University. He is a fellow of the Institute of Electrical Engineers, U.K.,

the Engineering Institute of Canada, the Institution of Engineers, India,

and the Institution of Electronic and Telecommunication Engineers, India.

He was inducted to the Provosts Circle of Distinction for career achieve-

ments, in 2009. He was a recipient of many IEEE-CAS Society awards,

including, 1986, Guillemin-Cauer Best Paper Award, the Education Award,

in 2000, and the Golden Jubilee Medal, in 2000. He has served as the

Program Chair for, 1973, IEEE Circuits and Systems (CAS) Symposium,

the General Chair for, 1984, IEEE CAS Symposium, the Vice Chair of, 1999,

IEEE CAS Symposium, and a member of the Board of Governors of the CAS

Society. He has been the Editor-in-Chief of the Journal Circuits, Systems

and Signal Processing (CSSP), since 1999. Recently, CSSP has instituted

the Best Paper Award in his name. He has served as the Editor-in-Chief

for the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I, from 1999 to 2001,

and an Associate Editor for the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS,

from 1985 to 1987. He has served the IEEE in various capacities, such as the

President Elect, in 2003, the President, in 2004, the Past President, in 2005,

the Vice President (publications), from 2001 to 2002, and the Vice President,

in 1976.

VOLUME 7, 2019 26217


	INTRODUCTION
	PRELIMINARIES
	OVERLAPPING GROUP SPARSITY (OLGS)
	FRACTIONAL ORDER PROCESSING
	ADMM

	PROPOSED HIGHER ORDER FRACTIONAL OVERLAPPING GROUP SPARISTY (HF-OLGS) REGULARIZER
	PROPOSED IMAGE DENOISING FRAMEWORK
	CONVERGENCE ANALYSIS

	EXPERIMENTAL RESULTS AND ANALYSIS
	STUDY ON GROUP SIZE (K) AND FRACTIONAL ORDER ()
	 TEXTURE ANALYSIS
	COMPARATIVE ANALYSIS
	COMPARISON WITH DEEP LEARNING METHODS

	CONCLUSION
	REFERENCES
	Biographies
	AHLAD KUMAR
	M. OMAIR AHMAD
	M. N. S. SWAMY


