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A framework for learning depth from a flexible

subset of dense and sparse light field views
Jinglei Shi, Xiaoran Jiang, Christine Guillemot Fellow, IEEE

Abstract—In this paper, we propose a learning based depth
estimation framework suitable for both densely and sparsely
sampled light fields. The proposed framework consists of three
processing steps: initial depth estimation, fusion with occlusion
handling, and refinement. The estimation can be performed from
a flexible subset of input views. The fusion of initial disparity
estimates, relying on two warping error measures, allows us to
have an accurate estimation in occluded regions and along the
contours. In contrast with methods relying on the computation
of cost volumes, the proposed approach does not need any prior
information on the disparity range. Experimental results show
that the proposed method outperforms state-of-the-art light fields
depth estimation methods, including prior methods based on deep
neural architectures.

Index Terms—light fields, depth estimation, deep neural net-
work, occlusion handling.

I. INTRODUCTION

L IGHT fields, by recording the radiance of light rays along

different orientations yield a very rich description of the

scene, enabling 3D scene geometry estimation and 3D scene

reconstruction. Scene depth (or equivalently disparity) estima-

tion methods have been recently proposed for light fields that

can be broadly classified in two categories. The first category

of approaches analyze specific linear structures in Epipolar

Plane Images (EPI) [1] [2] for depth computation from dense

light fields. Indeed, the corresponding pixels in different views

of a light field form a line in EPI, whose slope is proportional

to the disparity value [3]. Another category of methods adopts

techniques from classical stereo reconstruction, i.e., matching

corresponding pixels in all sub-aperture images (SAI) or views

of the light field, essentially using robust patch-based block

matching [4] [5] [6]. A cost volume is constructed in [4] to

evaluate the matching cost defined as similarity between the

sub-aperture images and the central image shifted at different

sub-pixel locations.

EPI based methods are only suitable for densely sampled

light fields. While stereo methods allow estimating larger

disparities, they need to discretize the disparity space to

compute cost volumes, using also some prior knowledge

on the disparity range. A high discretization level improves

estimation accuracy but yields a heavy computational cost,

leading often to estimating depth at the central viewpoint

only. The authors in [6] estimate disparity maps for every

viewpoint from only a subset of light field views (in partic-

ular the four corner views). These estimated disparity maps

are then propagated by warping to the target view, using

This project has been supported by the EU H2020 Research and Innovation
Programme under grant agreement No 694122 (ERC advanced grant CLIM).

a low rank completion approach to cope with holes due to

occlusions. The author in [5] recently proposed an empirical

Bayesian framework to estimate scene-dependent parameters

for inferring scene depth. In [7], by dividing a light field into

several stereo image pairs, the authors estimate corresponding

disparities through a multiscale and multiwindow (MSMW)

stereo matching method and then process them with an optical

flow based interpolation. The final disparity is obtained by a

median fusion of the initial disparities.

Besides the above disparity estimation methods, a disparity

map can be also estimated with an optical flow estimator, as

both disparity and optical flow measure pixel displacement

between two images. Recently, the field of optical flow esti-

mation has known significant advances thanks to the use of

deep neural networks trained in a supervised or unsupervised

manner. An end-to-end trainable encoder-decoder network,

called FlowNet, is proposed in [8] for optical flow estimation.

The architecture is further improved in [9] by stacking several

elementary networks, each of them being similar to FlowNet.

The resulting architecture, called FlowNet 2.0, significantly

improves the prediction accuracy and is further refined in [10]

to improve the performance in occluded regions and contours.

A pyramid structure for flow estimation is proposed in [11],

which generates competitive results with less parameters. The

authors in [12] achieve state-of-the-art results by combining

a pyramid structure, warped features correlation and cost

volume. Deep learning methods have also been successfully

applied to many light fields processing tasks such as view

synthesis [13] [14] and super-resolution [15] [16]. Although

a few architectures have been proposed for scene depth (or

disparity) estimation from dense light fields based on EPI [17],

[18], very few methods have been proposed so far for sparse

light fields.

In this paper, we propose a supervised deep learning frame-

work for estimating scene depth, taking at the input a flexible

subset of light field views. In order to compute scene depth,

the proposed approach estimates disparity maps for every

viewpoint of the light field. Hence, in the rest of the paper, we

will refer to disparity estimation only. The use of subsets of

input views allows us, compared to stereo estimation methods,

to increase the estimation accuracy, while limiting compu-

tational complexity. Initial disparity estimates are computed

between aligned stereo pairs using the FlowNet 2.0 optical

flow estimation architecture that we fine-tuned to be suitable

for disparity estimation in dense and sparse light fields. These

initial estimates are used to warp a flexible set of anchor

views onto a target viewpoint. The fusion of these initial

estimates relying on a winner-takes-all (WTA) strategy with
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two measures of warping errors reflecting disparity inaccuracy

in occlusion-free and occlusions respectively, allows us to

have an accurate disparity estimation in occluded regions and

along the contours. A refinement network is then proposed

to learn the disparity maps residuals at different scales. The

proposed new architecture relies in part on the one considered

in [19], by however extending the approach into a more

general framework, which enables to perform estimation from

a flexible subset of input views.

The training of the proposed neural networks based archi-

tecture requires having ground truth disparity (or depth) maps.

Although a few synthetic datasets exist for dense light fields

with ground truth depth maps, no such dataset exists for sparse

light fields with large baselines. This lack of training data

with ground truth depth maps is a crucial issue for supervised

learning of neural networks for depth estimation. We therefore

created two datasets, called SLFD and DLFD, respectively

containing sparsely and densely sampled synthetic light fields.

DLFD contains light fields having a disparity range within the

interval [-4,4] between adjacent views, i.e. of the same order

of magnitude as light fields captured with plenoptic cameras.

SLFD contains light fields with a larger disparity range, i.e.

within the interval [-20,20], which is comparable to the one

of light fields captured with camera rigs. To our knowledge,

SLFD is the first available dataset providing sparse light field

views and their corresponding ground truth depth and disparity

maps. The created datasets will be made publicly available

upon acceptance of the paper, together with the code and the

trained models.

According to the metrics defined in [20] [21], experimental

results show that the proposed approach outperforms state-of-

the-art light field disparity estimation methods for both densely

and sparsely sampled LF. In addition, it does not require any

prior information on disparity range as in [2], [4], [5] for

example.

II. RELATED WORK

A. Stereo depth estimation

Depth estimation from stereo image pairs is a highly-studied

vision problem. Scene depth is indeed needed for a variety

of processing problems such as 3D reconstruction and view

synthesis. The scene depth can be derived by computing the

disparity between a stereo pair of views. As categorized in

[22], most stereo algorithms consist of the following opera-

tions: matching cost computation, cost aggregation, disparity

optimization and refinement. The matching cost measuring

pixel dissimilarity can be based on the l1 or l2 norms computed

within a fixed or adaptive window. The authors in [23] [24]

use a winner-takes-all strategy to optimize the final disparity

by choosing at each pixel the disparity associated with the

minimal cost value. Other methods like graph cut [25] or

coarse-to-fine refinement [26] are instead used for optimizing

the final disparity. Besides the above methods computing cost

volumes, methods based on statistical models, i.e. on Markov

Random Field (MRF) [27] and Conditional Random Fields

(CRFs) [28], have also been proposed.

While classical algorithms for extracting depth information

from a rectified image pair compute pixel dissimilarity within

a finite window as a matching cost, the authors in [29] train a

CNN (convolution neural network) to predict similarity scores

between two image patches, and compute the stereo matching

cost. The authors in [30] propose a deep embedding model

to map intensity values of image patches into an embed-

ding feature space. Pixel dissimilarities are then measured

by computing Euclidean distances between feature vectors.

While the above methods compute matching costs on feature

representations of rectified image pairs, the estimation problem

still requires regularization or left-right consistency checks to

have reliable estimates. The authors in [31] propose instead an

end-to-end CNN framework with 3D convolutions to learn to

regularize the cost volume as well as a soft argmin function

to regress sub-pixel disparity values from the disparity cost

volume.

In parallel of the above methods for estimating dispar-

ity between rectified image pairs, deep learning techniques

have given momentum to a significant progress in optical

flow estimation. The authors in [8] developed an end-to-end

trainable encoder-decoder architecture with a correlation layer

that explicitly provides matching capabilities between image

pairs. Being a variant of FlowNet, instead of considering 2D

correlation, DispNet [32] considers 1D correlation to better

adapt to the disparity estimation task. The FlowNet network

has been improved in FlowNet 2.0 [9] by stacking several

elementary networks similar to FlowNet. The structure of

two parallel branches of sub-networks, one for large dis-

placements prediction and another for small displacements,

makes FlowNet 2.0 applicable for variable flow ranges. In the

continuity of their work, the authors in [10] perform a joint

estimation of occlusions and optical flow in order to improve

accuracy in occluded regions and along the contours. The

authors in [11] construct a spatial pyramid using deep neural

networks to learn the optical flow in a coarse-to-fine manner. A

pyramid structure is also used in [12] to avoid computing a full

cost volume that is computationally prohibitive for real-time

optical flow estimation. Partial cost volumes are constructed

by computing the distance between warped features of the

second image and the features of the first image, within

a limited search range, at each pyramid level. In [33], the

authors propose a cascade network to refine the initial disparity

estimation by learning, in a supervised fashion, residual signals

across multiple scales.

B. Light field depth estimation

Different types of approaches have been proposed for scene

depth estimation from light fields. A first category of methods

derives the disparity by analyzing the epipolar plane images

(EPI). Pixels in the different views corresponding to the same

3D point form a line in the EPI, whose slope is proportional

to the disparity between the views [3]. The authors in [1] use

structure tensors to locally estimate these slopes, this local

estimation being then placed in a global optimization frame-

work using a variational approach. The authors in [2] propose

a spinning parallelogram operator for disparity estimation in

the EPI, accompanied with a confidence measure to handle

ambiguities and occlusions.
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In contrast to EPI-based methods, the authors in [4] [5] [6]

estimate disparity by searching for pixel matches between sub-

aperture images (SAI). The authors in [4] estimate disparity

by computing a matching cost volume between the central

sub-aperture image and sub-aperture images warped using the

phase shift theorem. The approach in [6] consists in estimating

disparities between the four corner views, then propagating

them to the target viewpoint. Correlation between viewpoints

is exploited by a low rank approximation model to cope with

occlusions. The authors in [5] employ an empirical Bayesian

framework to estimate scene-dependent parameters for infer-

ring scene disparity. This algorithm is free of additional cues

exploiting dense view sampling, hence it is relevant for both

dense and sparse light fields.

A deep learning architecture is proposed in [17] by introduc-

ing 3D convolutions on EPI volumes. The recently proposed

EPINet approach [18] using a multistream approach achieves

state-of-the-art performance. Each stream exploits one angular

direction of light field views, horizontal, vertical, left or right

diagonal directions. But these approaches are well suited for

dense light fields only. The goal here is to design a neural

architecture that would work well for both dense and sparse

light fields.

III. ARCHITECTURE OVERVIEW

Let L(x, y, u, v) denote a 4D representation of a light field,

where (x, y) denote the spatial coordinates and (u, v) denote

the angular coordinates. To simplify the notations, we will

refer to a light field view by the index of its angular position,

e.g., Li where i = (ui, vi), and denote d
j
i the disparity between

two views Li and Lj normalized by the distance between the

two views.

The proposed learning framework to estimate depth (or

disparity) for any light field viewpoint, from a subset of input

views is depicted in Fig. 1. The approach is composed of three

main steps, i.e. stereo estimation, fusion and refinement. We

denote Lt the target view for which the disparity map is to

be estimated. Multiple coarse disparity maps on this target

position are first estimated by a convolutional network trained

for stereo estimation. The model, that we call FN2-ft-stereo,

is obtained by fine-tuning a pre-trained FlowNet 2.0 network

with light field stereo pairs (the details of this fine-tuning

process will be explained in Section IV-A). Each of these

disparity maps is computed between Lt (shadowed in blue)

and a stereo view Ls located on the same row (framed in

yellow) or on the same column (framed in red). For vertical

image pairs, a rotation of 90 degrees is applied such that the

displacement flow between these two images only contains

the horizontal component. Accordingly, the obtained disparity

map should be also rotated by 90 degrees in the reversed

direction. The disparity maps between the target and the stereo

views are denoted dst, s ∈ S, with S being the set of used

stereo view positions.

These multiple estimates of the disparity information on

the target view Lt should be fused to a single disparity

map. To achieve this, we leverage the warping error from a

set of anchor views (framed in blue) La, a ∈ A, with A

denoting the set of anchor view positions. The disparity value

corresponding to the smallest error per pixel is selected for

the fused disparity map. In order to better handle the object

boundary, the warping error is computed differently for pixels

within occlusion areas or those within occlusion-free areas.

This fusion is simple and efficient, but is prone to noise

and discontinuity because the decision is made pixel by pixel.

Further refinement is realized by a second CNN which learns

in a supervised fashion the residual signals of the disparity

at multiple scales by an encoder-decoder architecture. Our

network structure is flexible with respect to the anchor views,

i.e. anchor views can be located at any viewpoint of the light

field, and no additional training is required if the anchor view

positions are changed.

IV. PROCESSING WORKFLOW

A. Fine-tuned FlowNet 2.0 for disparity estimation

FlowNet 2.0 (FN2) [9] is an efficient CNN-based optical

flow estimator. Two parallel branches of sub-networks are

combined, the first specialized in large displacements estima-

tion and the second in small displacements. The final stage of

the network merges the two previously estimated flows taking

into account the flow magnitude. Thanks to this structure, it

is relevant to apply FN2 to estimate disparity for light field

views with variable disparity ranges.

Let us denote f(Li, Lj) = (fx
i→j, f

y
i→j)

⊤
the flow estimation

operator between the views Li and Lj. Assuming that the

light field is well rectified and regularly spaced in both

angular directions, the disparity map between the view Li

and Lj, normalized by the distance between the views, can

be computed as

d
j
i =

fx
i→j

vi − vj
=

f
y
i→j

ui − uj

. (1)

In order to well adapt the operator f(·, ·) to disparity

estimation between two light field views, we fine-tune the pre-

trained FN2 model. Two strategies have been considered. The

first one feeds the model with pairs of light field views Li

and Lj with no constraint on view positions, and the model

learns dense optical flows both on the horizontal and vertical

directions. The obtained model is denoted FN2-ft. Another

approach is to learn the model using image pairs Li and Lj

on the same row (ui = uj) or on the same column (vi = vj).

Note that images on the same column are rotated 90 degrees

to become a horizontal stereo pair (rot(Li), rot(Lj)). The

obtained model is thus named FN2-ft-stereo. Formally, with

FN2-ft-stereo, the disparity map for the view Li is computed

as

d
j
i =





fx
i→j

vi−vj
, if ui = uj

rot−1(fx
i∗→j∗ )

ui−uj
, if vi = vj

(2)

where fx
i∗→j∗ denotes the horizontal flow component between

Li∗ and Lj∗ with Li∗ = rot(Li). The symbols rot(·) and

rot−1(·) are counterclockwise and clockwise rotation of 90◦.

In Fig. 2, we compare the estimation accuracy of the

FN2-ft-stereo model against three other models: FN2 (the pre-

trained FlowNet 2.0 model), FN2-ft and DispNet-ft, which is
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Fig. 1. Overview of proposed framework. We take a 5 × 5 LF as example. The blue masked view, called target view Lt, is the view for which we search
to estimate the disparity. Views in the yellow and red rectangles are respectively horizontal and vertical stereo views denoted Ls. Target and stereo views are
used to compute the initial disparity maps di using a fine-tuned FlowNet 2.0 model. Anchor views La (in dark blue rectangles) can be any subset of views,
except the target view, that are used to compute the warping error for the fusion of initial estimates. A multi-scale residual learning network corrects fusion
artifacts and smoothes the final disparity map in a last refinement step.

obtained by finetuning a pre-trained DispNet model [32] with

our stereo light field views. The models FN2 and FN2-ft can

estimate displacement both in x and y dimensions, whereas

DispNet-ft and FN2-ft-stereo focus on 1D (horizontal or verti-

cal displacements) estimation. On one hand, FN2-ft-stereo per-

forms better than FN2 and FN2-ft, which shows the necessity

of concentrating on 1D estimation. In addition, FN2-ft-stereo

is significantly better than DispNet-ft, both being finetuned

using the same training set of stereo light field views.

Therefore, we choose to use FN2-ft-stereo for computing a

set Dt

Dt = {dst, s ∈ S} (3)

of multiple estimates of disparity dst between the target view

Lt and one of the stereo views Ls. As each of the candidates

dst is normalized by the distance between the views in the

considered pair, it represents the amount of disparity between

the view and its immediate neighboring views. In the sequel,

we will denote this set of normalized disparity maps as Dt =
{dk, k = 1..K}, with K the number of candidate maps.

B. Fusion based on warping error maps

Although our FN2-ft-stereo model provides satisfying re-

sults for disparity estimation with stereo pairs, information in

other available views of the light field is not exploited. In this

subsection, we propose to fuse the candidate maps in Dt into a

single disparity map based on the error of warping the anchor

views La, a ∈ A onto the target view.

Based on one of the disparity maps dk ∈ Dt, backward

warping is applied to project the anchor view La to the

target position t. The warped view is denoted L̃k
a→t. The

(a) FN2 (b) FN2-ft (c) DispNet-ft (d) FN2-ft-stereo

Fig. 2. Disparity estimation errors (display range between 0 and 1) using
different models: (a) FN2, (b) FN2-ft, (c) DispNet-ft and (d) FN2-ft-stereo.
The first row corresponds to the estimation errors using a stereo pair L2,2

and L2,8. On the second and third row, for FN2 and FN2-ft, the estimation
has been done between the views L5,5 and L8,8, and the horizontal (second
row) and vertical (third row) flow components are shown. Since DispNet-ft

and FN2-ft-stereo only take stereo pairs, the horizontal flows are estimated
between L5,5 and L5,8 (the second row), and the vertical flows are estimated
between L5,5 and L8,5 (the third row).

corresponding warping error eak is computed by summing on

the three R, G, B color channels:

∀a ∈ A, eak =
∑

R,G,B

(Lt − L̃k
a→t)

2 (4)

Warping errors are then fused by taking into account all the

warped views L̃k
a→t with a ∈ A. The fusion is performed
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Fig. 3. Disparity error (compared to the ground truth) at each step of the fusion process. d−
1
, d

−

2
and d

+

1
, d

+

2
are coarse disparity estimates using FN2-ft-stereo,

computed with horizontal or vertical image pairs (‘-’ indicates horizontal image pairs and ‘+’ indicates vertical ones). dnocc and docc are respectively fused

disparity maps via emean and emin, and d̃ is the final resulting map using the binary mask Mf .

either by the “average” or by “min” operations as

emean
k (p) = meanae

a
k(p), a ∈ A (5)

emin
k (p) = minae

a
k(p), a ∈ A. (6)

Both the error maps emean
k and emin

k suggest the reliability on

values in the disparity map dk, but possess complementary

properties. The error map emean
k reflects well the disparity

inaccuracy in the occlusion-free zones, since it averages the

contribution from all the warped views. Nevertheless, in oc-

cluded areas, interpolation in large holes becomes the main

cause of warping errors instead of disparity inaccuracy. In this

case, emin
k turns out to be a more relevant measure. Indeed,

at a pixel p that can be seen in the warped view L̃k
a′ , but

not in another warped view L̃k
a,a ∈ A,a 6= a′, the value

emean
k (p) is misleading because of the high contribution of the

error eak(p). On the contrary, the “min” operation gets rid of

the perturbation from the occluded views. However, if a pixel

p is occluded in all the warped views, neither emean
k (p) nor

emin
k (p) gives a reliable measure of disparity inaccuracy. It is

preferable that the anchor view positions a are dispersed in

the light field such that a pixel occluded in one view may be

seen in another view. The impact of anchor view positions

on the quality of the final disparity map will be discussed in

Section VII-B.

To fuse at each pixel p the candidate disparity values

dk(p), k = 1..K, a winner-takes-all strategy is employed

according to error values emean
k (p) and emin

k (p):

k′ = argmin
k

emin
k (p) (7)

docc(p) = dk′(p) (8)

and

k′′ = argmin
k

emean
k (p) (9)

dnocc(p) = dk′′(p) (10)

Two fused disparity maps are obtained, dnocc for occlusion-

free zones and docc for occluded areas. To reduce local

inconsistency, a 3× 3 mean filter is applied on the error maps

emean
k and emin

k . A binary mask Mf defined as

Mf (p) =

{
1 mink(e

mean
k (p)) > θ

0 otherwise
(11)

is used to merge these two resulting disparity maps. The value

Mf (p) equals to 1 if mink(e
mean
k (p)) exceeds a certain scene-

dependent threshold θ, which is fixed at the value at the 90

percentile (errors at the occluded pixels are generally higher

than those at the non-occluded ones). Note that Mf is not the

real occlusion mask contrary to that used in [6]. However, it

can be computed much more efficiently, and it approximates

well the real mask.

Finally, one unique disparity map at the target position t is

obtained as

d̃t = dnocc ⊙Mf + docc ⊙ (1−Mf ) (12)

where ⊙ denotes pixel-wise Hadamard product. Fig. 3 demon-

strates the gain in the fusion process. The errors on the

estimated disparity compared to the ground truth are illustrated

for each step of the process.

C. Multi-scale disparity refinement

The fusion step enables us to take advantage of multiple

estimates and significantly improves the estimation accuracy.

Nevertheless, as the fusion is implemented by a per pixel

winner-takes-all (WTA) selection, discontinuity may exist in

the resulting disparity map. Further refinement operation is

useful for quality enhancement.

The work in [33] proposed a two-stage disparity learning

framework. The learned disparity between a stereo pair is

refined with a multi-scale residual learning network. As input,

their network takes two stereo color images, the previously
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estimated disparity map, the warped image, as well as the

corresponding warping error image. In a multi-view stereo

scenario where we exploit the color information from multiple

stereo views Ls, s ∈ S and anchor views La,a ∈ A, it is

obvious that this structure is no longer applicable. Indeed,

the large number of input views, as well as the number of

initialized disparity maps, will rapidly enlarge the size of the

network and increase the computational cost during training.

Moreover, the scheme is not flexible with respect to the

varying number of input views.

The fusion of disparity estimates (Section IV-B) partially

resolves this problem. Regardless of the variable number

of stereo views, as well as that of the initialized disparity

maps, only one single disparity map d̃t has been obtained

for the target position t. Besides d̃t, two other images are

fed to our refinement network: the target view Lt serving

as color guidance and a binary mask M indicating contour

misalignment. The mask M is computed as

M = |Γ(Ψ(d̃t))− Γ(Ψ(d̃t))⊙ Γ(Ψ(Lt))| (13)

with Γ(·) being the dilation operator and Ψ(·) being the canny

contour detector.

Compared to the network used in [33], we change the inputs

and the first layer of the refinement network, and we construct

a 9-layer convolutional encoder to extract features and a 16-

layer decoder to retrieve the estimated disparity map. The pro-

posed network contains about 3.6× 107 trainable parameters.

During training, the residual signals of the disparity are learned

at different resolution scales n ∈ [0, N ], supervised by the

ground truth disparity. At each scale n, the network generates

the residual signal R(n), which is added to the downsampled

disparity map d̃
(n)
t

d̂
(n)
t = d̃

(n)
t +R(n), (14)

where d̂
(0)
t denotes the final obtained full resolution disparity

map.

The loss is summed over all the resolution scales n ∈ [0, N ]
as

L =

N∑

n=0

µnL
(n), (15)

where µn is the contribution weight for the loss at the scale

n and L(n) is the sum of two losses

L(n) = λ1N (d̂
(n)
t , d

(n)
GT ) + λ2G(d̂

(n)
t , d

(n)
GT ), (16)

where N denotes the sum of absolute differences (SAD)

N (d1, d2) =
∑

p

|d1(p)− d2(p)| (17)

and where G is a gradient term defined as

G(d1, d2) =
∑

p

‖G(d1, d2,p)‖2 (18)

with

G(d1, d2,p) =
(
∇xd1(p)−∇xd2(p),∇yd1(p)−∇yd2(p)

)⊤

.

(19)

V. DATASETS

The effectiveness of data-driven algorithms significantly

depends on the quality and the quantity of training data.

Supervised learning of neural models for depth or disparity

estimation [32] [17] requires large datasets with ground truth

disparity information. A few datasets of synthetic light fields

are publicly available. The MIT Light Field Archive [34]

includes 17 light fields with angular resolution of 5×5 or 7×7
views, but the ground truth disparity maps are not provided.

Two HCI synthetic light field datasets exist. The dataset [35]

contains 8 light fields with disparity information for all the

views, each light field containing 9 × 9 views of 768 × 768
pixels. Recently, a second dataset [20] is released containing

24 light field scenes with a spatial resolution of 512×512 and

an angular resolution of 9 × 9. Among them, 16 scenes are

provided with disparity maps for all the views, whereas for

the 8 others the disparity information is available only for the

central view. In addition, these datasets are limited to densely

sampled light fields with narrow baselines.

Since our goal is to propose a framework applicable to both

densely and sparsely sampled light fields, we have created

two synthetic datasets: a Sparse Light Field Dataset (SLFD)

including 53 scenes with disparity range [−20, 20] pixels

between adjacent views, and a Dense Light Field Dataset

(DLFD) containing 43 scenes with disparity range [−4, 4]
pixels. Each light field has the same resolution 512×512×9×9
as those in the HCI dataset [20]. Both SLFD and DLFD are

provided with the disparity and the depth maps for every

viewpoint in the light fields. To the best of our knowledge,

SLFD is the first sparse synthetic light field dataset which

provides ground truth depth and disparity information for

every light field view.

The rendering of the light field scenes is performed with the

open source software Blender [36]. The elementary models are

downloaded from the websites Chocofur [37] and Sketchfab

[38] with a non-commercial CC license, and are assembled to

create various 3D, mostly indoor scenes. The scenes contain

textureless background, specular reflection, diffusion and ob-

ject occlusion, which makes our dataset useful to measure the

effectiveness of depth estimation algorithms. The 3D scene

models in SLFD and DLFD are partly shared, but they are

rendered with different camera baselines.

The dataset SLFD is split into a training set of 44 scenes and

a valid set of 9 scenes, whereas DLFD is split into a training

set of 38 scenes and a test set of 5 scenes. Fig. 4 shows some

examples of light field scenes and their corresponding disparity

maps. For training the network, we have also used 16 scenes

of the HCI 4D light field benchmark dataset [20] together with

our DLFD.

VI. IMPLEMENTATION DETAILS

A. Training data preparation

For fine-tuning FlowNet 2.0, stereo views are extracted

on the same row or the same column of a light field. Im-

age pairs located on the same column are rotated with a

counterclockwise 90◦ to convert vertical pixel displacement

to horizontal displacement. The two images in an extracted
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Furniture Lion Toy bricks Electro devices

[−13.55, 12.61] [−3.19, 14.38] [−0.40, 10.94] [−4.85, 8.23]

White roses Bowl&chair Kitchen board Toy friends

[−1.52, 3.38] [−1.87,−0, 04] [−1.61,−0.10] [−2.02, 2.54]

Fig. 4. Examples of scenes from our two datasets, the 1st and 2nd rows
show three scenes and the corresponding disparity maps from SLFD, while
the 3rd and the 4th rows show three examples of scenes and the corresponding
disparity maps from DLFD.

pair are separated by an angular distance corresponding to

a view index difference l ∈ [2, 3, ...8] for dense light fields,

which corresponds to a disparity range within [-32,32] pixels,

whereas for sparse light fields, this distance is set to be

l ∈ [1, 2, 3], corresponding to a disparity range within [-60,60]

pixels. In both cases, the extraction of views is done in such

a way that the different distances (or disparities) are well

represented (with same probability) in the training data.

B. Data augmentation

The authors in [8] [17] performed geometrical and chro-

matic transformations to increase diversity in the training data.

In our experiments, however, we have found that geometrical

transformations such as rotation, translation or scaling that

involve data interpolation bring extra errors in the ground truth

disparity values, and thus harm the learning convergence. As a

consequence, only chromatic transformation has been applied

by changing the hue, saturation, contrast and brightness of

training images. Concretely, we convert the images from the

RGB space to the HSV space, add an offset to the hue and

saturation channels, and then convert the images back to RGB

color space. The hue and saturation offsets are uniformly

picked from [−0.3, 0.3] and [0.7, 1.3]. To perform contrast

augmentation, we compute the mean pixel values c̄ of each

image channel c, then adjust c to (c− c̄)× ζ+ c̄, where ζ is a

contrast factor uniformly picked from [0.7, 1.3]. The brightness

augmentation is implemented by adding a brightness offset to

each of the RGB channels of an image, which is randomly

picked from [−0.1, 0.1].

C. Learning details

Different learning schedules are employed for fine-tuning

the FN2-ft-stereo model and for training the refinement net-

work. In the finetuning step, thanks to the pre-trained model,

a shorter learning schedule can be adopted with an initial

learning rate set to 0.0001 for the first 500 epochs. The

learning rate is then decreased by half every 200 epochs.

For the training of the refinement network which is randomly

initialized, the schedule is longer with an initial learning rate

of 0.0001 for the first 1200 epochs. The learning rate is then

divided by 2 every 200 epochs. We use the Adam optimizer

[39], and becaused of the limited GPU memory, a batch size of

4 is used. Tensorflow [40] is used to implement our network.

It takes about 2 days to train our network with a NVIDIA

Tesla P100 GPU with 16G memory.

VII. EXPERIMENTAL RESULTS

A. Setup

To validate the effectiveness of our proposed framework,

we conduct experiments on both public and self-rendered

synthetic datasets and with real light fields.

1) Synthetic Dataset: For sake of comparison, we use the

synthetic light fields of the HCI datasets [20] [35] and keep

the same test light fields as in [6]: Stilllife, Buddha, Butterfly,

MonasRoom from [35] and Boxes, Cotton, Dino, Sideboard

from [20]. The 12 additional scenes of [20] are added in the

training set as detailed in Section V.

We also evaluated the proposed framework using our own

sparse light fields datasets (that will be made publicly available

at the time of the paper publication). Four test light fields

Furniture, Lion, Toy bricks, Electro devices are used for eval-

uation. The scene Lion contains a single object and the other

three scenes contain multiple objects.

2) Real Light Fields: We have also tested our frame-

work with dense real light fields, using datasets captured by

plenoptic Lytro Illum cameras (we used light fields in the

INRIA [41] and EPFL [42] datasets). Compared with synthetic

datasets, light fields captured by plenoptic cameras are more

challenging due to the fact that the extracted views contain

noise and geometrical distortions. These real light fields have a

spatial resolution of 434×625 pixels and an angular resolution

of 15× 15 views. Finally, experiments have been also carried

out for sparse real world light fields captured with wide

baseline camera arrays [43].

B. Impact of the anchors views

In contrary to other deep learning frameworks [17], [18],

our network is flexible with respect to the number and the

positions of the input views. Indeed, it is possible to arbitrarily

select a subset of light field views as anchor views.

Fig. 5 evaluates the percentage of pixels below a certain

error threshold for different strategies to select anchor views.

The higher is this percentage, more accurate is the estimation.
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(a) Varying the number of anchor views:(i) 4 corner views; (ii) 12 views
on the diagonals; (iii) 24 border views.

(b) Anchor views at different positions: (i) 4 anchor views = 4 stereo views;
(ii) 4 anchor views = 4 corner views; (iii) 4 views located in the same
quadrant; (iv) 4 views randomly selected such that each quadrant contains
one anchor view.

Fig. 5. Percentage of pixels below a certain error threshold for different strategies to select anchor views: (a) varying the number of anchor views; (b) with
a fixed number (4) of anchor views at different positions.

TABLE I
QUANTITATIVE COMPARISON WITH NON-LEARNING-BASED METHODS ON SYNTHETIC LIGHT FIELDS DATASETS

Light fields
MSE BP1 BP2 BP3

[4] [2] [5] [6] Ours [4] [2] [5] [6] Ours [4] [2] [5] [6] Ours [4] [2] [5] [6] Ours

Stilllife 2.02 1.72 1.53 2.56 1.07 81.2 76.2 76.0 71.3 70.5 51.0 32.1 41.0 25.0 24.8 20.9 6.8 16.2 9.2 5.8

Buddha 1.13 0.97 0.49 0.82 0.41 57.7 41.2 52.6 34.9 35.3 24.4 14.8 15.0 12.3 7.7 10.1 6.7 2.9 5.4 2.2

MonasRoom 0.76 0.58 0.66 0.53 0.39 46.0 42.5 48.2 38.6 39.0 22.1 17.8 20.2 18.6 13.7 11.7 7.8 10.4 8.2 6.1

Butterfly 4.79 0.74 0.80 1.84 0.58 82.5 78.9 83.4 70.8 73.4 49.1 48.5 50.9 36.0 42.0 15.4 14.1 17.6 6.7 6.3

Boxes 14.15 8.23 11.30 12.71 9.16 72.7 62.3 87.2 65.8 68.4 45.5 28.1 65.0 37.7 38.5 26.4 15.8 42.0 23.9 22.1

Cotton 9.98 1.44 2.04 1.18 0.94 60.5 41.7 75.8 42.6 38.2 23.3 11.1 37.5 10.7 10.6 8.9 2.7 10.4 4.1 3.3

Dino 1.23 0.29 0.67 0.88 0.50 76.6 57.5 84.8 49.1 45.6 48.4 17.9 57.2 20.0 14.5 20.9 3.4 24.1 9.5 4.7

Sideboard 4.16 0.92 1.34 10.31 1.37 67.8 64.3 78.6 61.7 63.6 39.3 31.0 44.1 37.5 26.3 23.0 10.4 15.0 19.6 10.1

Average 4.78 1.86 2.35 3.85 1.80 68.1 58.1 73.3 54.4 54.3 37.9 25.2 41.4 24.7 22.3 17.2 8.5 17.3 12.1 7.6

Furniture - - 0.37 1.94 0.39 - - 86.3 41.3 40.7 - - 73.1 41.3 23.0 - - 36.0 20.2 8.6

Lion - - 0.10 0.87 0.09 - - 35.9 73.0 47.6 - - 23.9 59.5 9.0 - - 5.5 9.5 2.6

Toy bricks - - 0.22 1.10 0.56 - - 59.5 66.4 50.5 - - 33.2 44.6 23.7 - - 4.7 11.2 12.4

Electro devices - - 0.20 0.63 0.19 - - 76.9 60.7 52.8 - - 57.4 43.4 30.5 - - 22.5 18.6 8.7

Average - - 0.22 1.14 0.31 - - 64.7 64.7 47.9 - - 46.9 47.2 21.6 - - 17.2 14.9 8.1

*Number of input views: [4]-49 views, [2]-49 views, [5]-5 views, [6]-4 views, Ours-5 views

*For the first 8 scenes (dense LFs), MSE denotes 100*Mean Square Error, BP1, BP2, BP3 denote Bad Pixel Ratios with thresholds 0.01, 0.03, 0.07.
*For the last 4 scenes (sparse LFs), MSE denotes Mean Square Error, BP1, BP2, BP3 denote Bad Pixel Ratios with thresholds 0.05, 0.1, 0.3.

We consider the 7×7 central views of the light field “Boxes” is

studied. Fig. 5(a) assesses the impact of the number of anchor

views on the final estimation accuracy. The 4 corner views, the

12 views on the diagonals and the 24 views on the border of

the light field are respectively used as the subset A of anchor

views. We observe that using more anchor views is useful

for improving estimation accuracy, though the improvement

may be limited. This suggests that when the time consumption

or GPU memory is the bottleneck, less anchor views can be

exploited without too much degrading the estimation accuracy.

In Fig. 5(b), the number of anchor views is fixed to 4, and

we evaluate the impact of the anchor view positions on the

performance. The assessed sets A of the anchor views can be:

(i) 4 stereo views (A = S), (ii) 4 corner views, (iii) 4 views

located in the same quadrant (the light field can be divided

into four quadrants, “northeast”, “southeast”, “southwest” and

“northwest”, according to the location with respect to the

target view), and (iv) 4 views randomly selected such that

each quadrant contains one anchor view. The strategy (iii)

achieves the worst performance, since the 4 views located in

the same quadrant do not contain occlusion information of the

other quadrants. The use of the stereo views as anchor views

(i) obtains worse performance than (ii), since the geometry

information of the stereo views is already exploited in the

coarse estimation step. And indeed, for a dense light field

such as “Boxes”, geometry information of the 3D scene can

be mostly recovered from the 4 corner viewpoints.
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(a) Jeon et al. [4] (b) Zhang et al. [2] (c) Huang [5] (d) Jiang et al. [6] (e) Ours (f) GT (g) Image

Fig. 6. Qualitative comparison with non deep learning-based methods. Each row shows the estimated disparity maps with two zoomed areas (homogeneous
area framed in red and contour area framed in blue) for different methods: (a) Jeon et al. [4], (b) Zhang et al. [2], (c) Huang [5], (d) Jiang et al. [6], (e) Our

framework. The (f) Ground truth and (g) Color image are also shown.
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TABLE II
QUANTITATIVE COMPARISON WITH LEARNING-BASED METHODS ON

SYNTHETIC LIGHT FIELDS DATASETS

Light fields
MSE BP1 BP2 BP3

[17] [18] Ours [17] [18] Ours [17] [18] Ours [17] [18] Ours

Stilllife 3.02 1.96 1.14 84.2 77.3 71.0 56.2 39.4 25.8 22.9 11.5 6.2

Buddha 0.52 0.26 0.43 75.9 39.9 35.7 37.3 5.2 8.0 9.1 1.4 2.3

MonasRoom 1.06 0.60 0.41 76.8 42.5 39.6 41.9 14.5 14.3 16.2 7.8 6.4

Butterfly 1.13 1.41 0.57 85.5 84.3 72.4 57.2 59.7 40.2 22.4 24.1 6.0

Boxes 9.06 5.20 9.97 82.5 62.4 68.4 53.7 27.4 39.6 30.5 15.1 23.6

Cotton 0.97 0.25 0.76 77.8 51.7 36.6 42.0 4.9 10.0 10.9 0.9 2.9

Dino 1.25 0.19 0.53 83.6 41.0 45.1 54.4 6.6 14.6 23.7 1.9 5.0

Sideboard 2.33 0.80 1.45 82.9 58.6 66.0 54.1 21.0 27.9 24.6 6.6 10.9

Average 2.42 1.33 1.91 81.2 57.2 54.4 49.6 22.3 22.6 20.0 8.7 7.9

Furniture 9.18 1.73 0.42 96.4 85.1 40.2 92.8 71.3 23.0 78.8 38.4 8.9

Lion 1.59 3.41 0.09 95.3 87.4 48.7 90.6 76.4 8.7 72.9 56.3 2.6

Toy bricks 3.70 0.36 0.57 96.0 85.1 49.5 92.0 70.6 23.3 76.5 29.6 12.6

Electro dev 7.82 0.74 0.20 95.0 80.3 51.5 89.9 60.6 29.2 72.0 22.8 8.9

Average 5.57 1.56 0.32 95.7 84.5 47.5 91.3 69.7 21.1 75.0 36.8 8.3

*Number of input views: [17]-7 views (dense), 3 views (sparse), [18]-25

views (dense), 9 views (sparse), Ours-5 views, MSE and BP are kept as
same as those in Table I.

(a) Heber et al. [17] (b) Shin et al. [18] (c) Ours

Fig. 7. Qualitative comparison to deep learning-based methods, with methods
(a) Heber et al. [17], (b) Shin et al. [18], (c) Ours.

C. Results with Densely Sampled Synthetic Light Fields

We compare our approach with both traditional and learning

based state-of-the-art methods for densely sampled light fields.

First, 4 reference methods [2] [4] [5] [6] using traditional

approaches are considered. The disparity range is discretized

for the methods [2], [4], [5]. As suggested in the light field

depth estimation challenge held in 2017 LF4CV workshop

[21], the number of disparity levels is set to 100 for the

method [4] and 256 for the method [2]. For the method

[5], the disparity step is set to 0.01, which corresponds to

the minimal threshold of bad pixel ratios that we use. Both

explicit and implicit discretization operations in [4] [2] [5]

need disparity ranges as priors. To estimate the disparity map

for the central view, the methods [2] [4] exploit the whole light

field containing 49 views. The method in [6] takes four corner

views to infer the central view disparity while the method

in [5] chooses 5 images in the crosshair with target view in

the center. For our framework, we employ the same crosshair

pattern as [5] with 4 images serving as stereo and anchor views

at the same time.

The upper part of Table I compares the estimation accuracy

obtained with 8 HCI test scenes using different metrics:

Mean Square Error (MSE) and Bad Pixel Ratios (BP) with

thresholds 0.01, 0.03 and 0.07 (BP represents the percentage

of pixels having an error superior to a certain threshold). In the

experiment, we consider the central 7×7 sub-aperture images

of the light field and estimate the disparity of the central

view. The experiment shows that our framework achieves

superior performances compared with other methods for most

of the scenes both in terms of MSE and BP. In some cases,

our framework yields the second best results with a slight

difference only with the method ranked first. Compared with

the methods in [2] [4] which exploits all the light field views,

our method gives better results in spite of the fact that we

use only a subset of light field views. In comparison with the

other two methods [5] [6] using a subset of light field views,

our method is competitive and sometimes wins with a large

margin.

Fig. 6 shows the estimated disparity maps for the central

view. Readers are recommended to zoom and view these

results on the screen for visual comparison. The methods in

[4] and [6] obtain disparity maps with distorted boundaries,

while the method in [5] loses precision on slanted surfaces

where disparity values gradually vary. In contrast, the methods

[2] [5] as well as our framework can estimate disparities

with more precise boundaries. Our method, although it may

suffer from a subtle smoothness along boundaries, it yields

less artifacts within homogeneous and slanted areas, and gives

more visually pleasing results.

We also compare our method against two state-of-the-art

methods based on deep learning [17], [18]. Both of them

exploit epipolar geometry of the light field. The method in

[17] retrieves disparity values by exploiting 3D EPI volumes

containing texture information on two spatial dimensions and

one angular dimension, whereas the method in [18] constructs

the input volume by taking views on four different angular

directions: horizontal, vertical, left and right diagonals. As

these trained models are not publicly available for 7× 7 light

field views, we re-trained the models following the instructions

in the corresponding papers. Since the network in [18] was

implemented without zero-padding after each convolutional

layer, the resulting disparity map loses 11 pixels at each border.

For the sake of comparison, we cropped the same amount of

bordering pixels for the method in [17] and our method as

well (this explains the slight difference of measurement of our

method in Table I and Table II). Quantitative results are shown

in Table II. Our proposed method has several advantages. 1/-

With less input views (the number of input views for the

methods [17], [18] and our method are respectively 7, 25
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and 5), our method outperforms [17] and achieves competitive

results against [18]. 2/- Our method benefiting from the WTA

fusion and the CNN based refinement is more robust and

generates less artifacts for some light field scenes (c.f. Fig.

7). 3/- As [17], our method can predict disparity at each

viewpoint, whereas the method [18] only predicts for the

center view. 4/- Compared to EPI based learning frameworks,

training our model is less demanding. Indeed, it is required

in [18] to manually mark out and exclude all the reflection,

refraction and textureless regions when preparing training data,

which can be very time-consuming with a large dataset.

As learning-based methods may fail when characteristics

in the input images differ from that in the training dataset,

we have tested the robustness of our framework by adding

Gaussian noise to the test light fields in comparison with two

other learning-based methods [17], [18]. Fig. 8(a) shows the

averaged MSE and Bad Pixel Ratio (threshold 0.07) over 8

synthetic LFs as a function of the standard deviation of the

Gaussian noise. When increasing the standard variance of the

noise, the performances of all the reference methods degrade,

while the quality of depth maps estimated with the proposed

framework remains more stable. To explain this difference

in terms of robustness, we show in Fig. 8(b) 8(c), a clean

and a polluted EPI. The added Gaussian noise destroys the

geometric structures in the EPI that are used by methods like

[17], [18] for depth estimation, while our framework exploits

spatial information of each sub-aperture image, hence stays

more robust against noise. Apart from the above experimental

results on synthetic data, Fig. 10 also shows disparity maps

estimated from light fields captured by plenoptic cameras,

hence that are prone to noise and distortions. Fig. 10 shows

that our framework can still estimate satisfying disparity maps.

A general flexibility and complexity comparison is summa-

rized in Table III for all the compared methods. The proposed

framework can adapt to light fields with wide baselines and,

unlike methods using plane sweep volumes, does not require

a discretized depth range at the input. Furthermore, some

methods may be limited by their specific viewpoints selection

pattern and cannot be used for estimated disparity maps for

views located at the border of the light field. In contrast, the

proposed approach uses a flexible stereo and anchor view

selection pattern that allows us to estimate disparity maps

for all light field views. In terms of computational cost, our

framework takes less than 2 seconds to estimate one disparity

map, that is much faster than traditional methods, but a bit

slower than the two learning-based methods [17], [18]. Note

that the implementations of the methods [6], [17] estimate

disparity maps for all the views in a light field or for views

on one row at one time, consequently we divided their costs

by the number of estimated views. Since the codes of four

traditional methods are not available for GPU, they are tested

on an Intel i7 CPU with 16G RAM, whereas the three learning-

based methods are tested on a NVIDIA Tesla P100 GPU with

16G memory.

Additionally, Table IV gives the contribution of each build-

ing block to the performance of the proposed framework.

Thanks to our new dataset and our new finetuning strategy,

FN2-ft-stereo significantly improves the accuracy of the esti-

(a) Evolution of the MSE and BP (threshold = 0.07) measures obtained
with three learning-based estimation methods when increasing the
standard deviation of Gaussian noise added to the input light fields
∼ N (0, σ2).

(b) EPI without Gaussian noise

(c) EPI with additive Gaussian noise ∼ N (0, 0.022)

Fig. 8. (a) Impact of noise on the quality (in terms of MSE and BP) of
estimated depth maps. (b) EPI from scene stilllife without Gaussian noise. (c)
Same EPI but with Gaussian noise.

TABLE III
FLEXIBILITY COMPARISON

Property [4] [2] [5] [6] [17] [18] Ours

Adaptability to wide baselines × × √ √ × × √

Estimation for any view × × √ √ √ × √

Without disparity discretization × × × √ √ √ √

Computational cost (one view) 960s >1h 127s 16s 0.04s 0.52s 1.93s

mated disparity maps compared with the original FN2 model.

By taking into account multiple anchor views at different

viewpoints (the occluded regions for these views are unlikely

all overlapping), the disparity fusion step is able to cope with

errors in occluded regions. And the refinement aims at coping

with disparity discontinuities that may be introduced by the

fusion step. However, due to the fact that the occluded regions

have a much smaller pixel number compared to the whole

image, the fusion and refinement steps bring less quantitative

improvement on the entire disparity map than the stereo

estimation step.

TABLE IV
CONTRIBUTION OF EACH BLOCK IN FRAMEWORK

Processing step FN2 FN2-ft-stereo Fusion Refinement

MSE 10.94 2.27 2.00 1.91

BP 90.5 63.6 56.2 54.4

*MSE denotes 100*Mean Square Error, BP denotes Bad Pixel Ratios with
threshold 0.01. The values for FN2 and FN2-ft-stereo are averaged values
of the estimations between 4 stereo views and the target view.
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D. Results with Sparsely Sampled Synthetic Light Fields

Among the state-of-the-art approaches mentioned above, the

methods in [2] and [4] derive the disparity estimate from

EPI analysis, thus are hardly applicable for sparse light fields

with large baselines. For sparsely sampled light fields, we

compare our framework with the methods in [6], [5], [17] and

[18], using the objective metrics: Mean Square Error (MSE)

and Bad Pixel Ratios with larger thresholds 0.05, 0.1, 0.3.

We consider the central 3 × 3 views of the light field, and

the evaluation is performed for the estimated disparity of the

central view. The step length in the method in [5] is set to 0.05,

corresponding to the minimal Bad pixel ratio threshold. Both

the input view number in [17] and the stream length in [18] are

set to be 3. The rest of the setup is identical to the experiments

for dense light fields. The lower parts of Table I and II show

that our framework yields better Bad Pixel Ratios with large

margins when compared with other methods. In terms of MSE,

our method ranks the second, slightly lagging behind [5]. The

first two columns in Fig. 9 show disparity maps estimated

with different methods. Compared with the first two non deep

learning-based methods, our algorithm functions well in both

contours and homogeneous zones. Although our method gives

smoother boundaries than those with [5], it works well in

slanted zones where the method in [5] tends to fail. For the

two deep learning-based methods [17], [18], even though we

have re-trained the corresponding models with our sparse light

field data, the results contain severe deformations and artifacts,

since epipolar line continuity is no longer guaranteed with

sparse light fields.

E. Results with Real Light Fields

To assess the disparity estimation performance of our net-

work with real light fields, we consider both dense light

fields (7 × 7 central views are considered) captured with the

Lytro Illum plenoptic camera [41] [42] and sparse light fields

(3 × 3 central views are considered) captured with camera

arrays [43]. Because of the lack of ground truth disparity

values, the prior disparity range required by these methods

is set using our estimation results, with a margin of 10%:

[dmin−0.05(dmax−dmin), dmax+0.05(dmax−dmin)]. Fig. 10

shows the estimated disparity maps for dense light fields using

different methods. Two sparse light fields are tested in Fig. 9.

Compared with other methods, our framework gives more

accurate estimates on object boundaries, especially for the

scenes which have more texture details. Among all results,

our disparity maps have less artifacts in spite of the fact that

relatively less views are used for the estimation. Note that our

network has been trained with only noise-free synthetic light

fields. An additional fine-tuning with noisy images could still

improve the estimation accuracy of our network for real light

fields.

Overall, regardless their limitations in terms of view number

and view selection, the methods in [4], [6] show inaccuracies

at the boundaries, while methods in [2], [5] can give relatively

more accurate estimates at the boundaries. The method in

[2] often contains artifacts in homogeneous regions, while

the method in [5] fails on slanted surfaces. Our experiments

Fig. 9. Visual comparison for estimated disparity maps for sparse light fields.
The first two columns are obtained with synthetic data, while the last two
columns are obtained for real-world data. From top to the bottom: Huang [5],
Jiang et al. [6], Heber et al. [17], Shin et al. [18], and ours. The final row is
the ground truth disparity (when available) or the color image of the central
viewpoint.

with noisy light fields have shown that the performance of the

learning-based methods [17] and [18] depends on the quality

of EPI. On the contrary, our method can estimate accurate

depth maps both at the boundaries of objects, and in homo-

geneous and slanted regions with an acceptable computational

cost. It has also been show to be more robust to noise than

the other two learning-based methods.

VIII. CONCLUSION

In this paper, we have proposed a learning based approach

to estimate disparity maps between all light field views. The

algorithm takes a variable subset of input views and estimates

accurate disparity maps for both densely and sparsely sampled

LF data.

The proposed framework starts with a stereo estimation step

which takes a flexible number of light field views to give first

disparity maps estimates. A fusion step then aggregates these

disparity maps into a single one by conducting pixel-wise

selection based on the warping error. A multiscale residual
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Fig. 10. Qualitative comparisons for estimated disparity maps. The first three light fields are from the INRIA Dataset [41], and the last two light fields are
from the EPFL dataset [42]. From top to bottom, figures show the disparity maps estimated with methods in Jeon et al. [4], Zhang et al. [2], Huang [5],
Jiang et al. [6], Heber et al. [17], Shin et al. [18] and our proposed method. The final row shows the central views of the light fields.

refinement step is then used to eliminate noise and improve

spatial coherence. In order to train the model so that it can

apply to both sparsely and densely sampled light fields, we

have also created two synthetic light fields datasets with

different disparity ranges. To our knowledge, this is the first

publicly available dataset for sparsely sampled synthetic light

fields given together with ground truth disparity maps for all

the views.

The effectiveness of our algorithm has been demonstrated

with both synthetic and real light fields datasets, in comparison

with several state-of-the-art reference methods. The proposed

algorithm outperforms state-of-the-art algorithms despite of

the use of less input views. It is robust in both homogeneous

areas and along the contours, as well as in slanted zones. Ex-

perimental results with real light fields show that our algorithm

estimates consistent objects boundaries, and preserves details

in the scene, although the network has been only trained using

synthetic data.
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