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Abstract

This paper describes a framework that enables robots to effi-

ciently learn human-centric models of their environment from

natural language descriptions. Typical semantic mapping ap-

proaches are limited to augmenting metric maps with higher-

level properties of the robot’s surroundings (e.g., place type,

object locations) that can be inferred from the robot’s sensor

data, but do not use this information to improve the metric map.

The novelty of our algorithm lies in fusing high-level knowl-

edge that people can uniquely provide through speech with met-

ric information from the robot’s low-level sensor streams. Our

method jointly estimates a hybrid metric, topological, and se-

mantic representation of the environment. This semantic graph

provides a common framework in which we integrate informa-

tion that the user communicates (e.g., labels and spatial rela-

tions) with metric observations from low-level sensors. Our

algorithm efficiently maintains a factored distribution over se-

mantic graphs based upon the stream of natural language and

low-level sensor information. We detail the means by which

the framework incorporates knowledge conveyed by the user’s

descriptions, including the ability to reason over expressions

that reference yet unknown regions in the environment. We

evaluate the algorithm’s ability to learn human-centric maps of

several different environments and analyze the knowledge in-

ferred from language and the utility of the learned maps. The

results demonstrate that the incorporation of information from

free-form descriptions increases the metric, topological and se-

mantic accuracy of the recovered environment model.

1 Introduction

Until recently, robots that operated outside the laboratory were

limited to controlled, prepared environments that explicitly pre-

vent interaction with humans. There is an increasing demand,

however, for robots that operate not as machines used in iso-

lation, but as co-inhabitants that assist people in a range of

different activities. If robots are to work effectively as our

teammates, they must become able to efficiently and flexibly

interpret and carry out our requests. Recognizing this need,

1The first two authors contributed equally to this paper.

The kitchen is 

down the hall

Figure 1: A user gives a tour to a robotic wheelchair designed

to assist residents in a long-term care facility.

there has been increased focus on enabling robots to interpret

natural language commands [31, 43, 8, 4, 5]. This capability

would, for example, enable a first responder to direct a micro-

aerial vehicle by speaking “fly up the stairs, proceed down the

hall, and inspect the second room on the right past the kitchen.”

A fundamental challenge is to correctly associate linguistic el-

ements from the command to a robot’s understanding of the

external world. We can alleviate this challenge by developing

robots that formulate knowledge representations that model the

higher-level semantic properties of their environment.

Semantic mapping [23, 51, 36] addresses this need by pro-

viding robots with human-centric models of their environment.

Approaches often take as input low-level sensor (e.g., LIDAR,

images) and odometry streams and infer metric, topological,

and semantic properties of the environment. Existing algo-

rithms populate the semantic map with scene attributes (e.g.,

room type) that can be inferred from image- and LIDAR-based

classifiers. However, general purpose classifiers are unable to

identify many useful properties of an environment, such as the

colloquial names associated with each region. For example, it

would be difficult to recognize and infer the meaning of the

question mark (Fig. 2) that indicates the location of the infor-

mation desk at MIT’s Stata Center, which people frequently use
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Figure 2: General-purpose sensor-based classifiers would find

it difficult to recognize the question mark that indicates the lo-

cation of an information desk.

as a reference point. Furthermore, the dependence on onboard

sensor streams prevents the algorithms from reasoning about

parts of the world that are outside the field-of-view of these sen-

sors. This has implications on the efficiency with which robot’s

can learn human-centric representations of their environment.

We describe an approach first presented by the authors [50]

that enables robots to efficiently learn human-centric models

of the environment from a narrated, guided tour (Fig. 1) by

fusing knowledge inferred from natural language descriptions

with conventional low-level sensor data. Our method allows

people to convey meaningful concepts, including semantic la-

bels and relations for both local and distant regions of the envi-

ronment, simply by speaking to the robot. The advantage is that

the robot can learn concepts that people are arguably better-able

to convey from its opportunistic interaction with humans. The

challenge lies in effectively combining these noisy, disparate

sources of information. A user’s descriptions convey concepts

(e.g., “the second room on the right”) that are ambiguous with

regard to their metric associations: they may refer to the re-

gion that the robot currently occupies, to more distant parts of

the environment, or even to aspects of the environment that the

robot will never observe. In contrast, the sensors that robots

commonly employ for mapping, such as cameras and LIDARs,

yield metric observations arising only from the robot’s imme-

diate surroundings.

To handle ambiguity, we propose a representation referred to

as the semantic graph that jointly combines metric, topologi-

cal, and semantic models of the environment. The metric layer

takes the form of a vector of poses for each region in the en-

vironment together with the resulting occupancy-grid map that

captures the perceived structure. The topological layer consists

of a graph in which nodes correspond to reachable regions of

the environment, and edges denote pairwise spatial relations.

The semantic layer contains the labels with which people refer

to regions. This knowledge representation is well-suited to fus-

ing concepts from a user’s descriptions with the robot’s metric

observations of its surroundings.

We estimate a joint distribution over the semantic, topolog-

ical and metric maps, conditioned on the language and the

metric observations from the robot’s proprioceptive and exte-

roceptive sensors. The space of semantic graphs, however, in-

creases combinatorially with the size of the environment. We

efficiently maintain the distribution using a Rao-Blackwellized

particle filter [7] to track a factored form of the joint distri-

bution over semantic graphs. Specifically, we approximate the

marginal over the space of topologies with a set of particles, and

analytically model conditional distributions over metric and se-

mantic maps as Gaussian and Dirichlet, respectively. The al-

gorithm updates these distributions iteratively over time using

descriptions and sensor measurements as they arrive. We model

the likelihood of natural language utterances with the General-

ized Grounding Graph (G3) framework [43]. Given a descrip-

tion, the G3 model induces a learned distribution over semantic

labels for the nodes in the semantic graph that we then use to

update the Dirichlet distribution. The algorithm uses the result-

ing semantic distribution to propose modifications to the graph,

allowing semantic information to influence the metric and topo-

logical layers.

This paper builds on our earlier work [50], which presents the

initial semantic graph framework. We better place the contribu-

tions of our method in the context of the current state-of-the-art

in semantic mapping and provide a more detailed description

of our estimation framework, including the means by which we

interpret natural language descriptions. Additionally, we de-

scribe a new capability whereby the method reasons over and

learns from anticipatory descriptions that refer to regions in the

environment not currently in the map. The user can then de-

scribe locations that the robot may or may not have previously

visited, enabling the robot to more efficiently learn semantic

maps of the environment.

We evaluate our algorithm through six “guided tour” ex-

periments that take place within mixed indoor-outdoor envi-

ronments. We show that, by maintaining a joint distribution

over the metric, topological, and semantic maps, the algorithm

learns models of the environment that are richer and more ac-

curate than can be achieved with existing language-based se-

mantic mapping algorithms. We analyze the effectiveness with

which the algorithm integrates semantic knowledge from nat-

ural language descriptions and demonstrate the utility of the

learned maps for navigation.

2 Related Work

The field is at the point where robots need to reason over

human-centric models of space due in large part to the exten-

sive progress that has been made in solving the Simultaneous

Localization and Mapping (SLAM) problem. Not only have

contributions to SLAM allowed robots to operate robustly in

unstructured environments like our homes, but many existing

2



approaches to semantic mapping are built upon SLAM algo-

rithms. Beginning with the seminal work of Smith and Cheese-

man [42], SLAM is predominantly concerned with building

either globally metric or, to a lesser extent, topological maps

for the purpose of navigation. Our algorithm differs in that

we represent the map as a hierarchy that jointly models the

metric, topological, and semantic properties of the environ-

ment. The latter two layers are particularly useful for human-

centric mapping as the semantic map models properties use-

ful in grounding natural language commands [43], while the

topology is consistent with the representation that humans use

to model space [27]. We use the topological layer in our seman-

tic graph to induce a pose graph in the same fashion as many of

the state-of-the-art SLAM algorithms [21, 9, 34]. Given this

topology, we represent the distribution over the metric map

as a Gaussian and, like information filter-based SLAM algo-

rithms [46, 9, 49, 18], parametrize the distribution in the canon-

ical form for computational efficiency.

Unlike the SLAM problem, semantic mapping [23, 51, 19,

15, 36] is primarily interested in learning higher-level proper-

ties of the robot’s environment. These properties include spa-

tial attributes (like metric mapping) as well as concepts such

each room’s type (e.g., “hallway,” or “kitchen”), their collo-

quial names (e.g., “Carrie’s office”), or the objects that they

contain. This information is useful for navigation, but also fa-

cilitates human-robot interaction, including more efficient com-

mand and control mechanisms.

Early work in semantic mapping includes the Spatial Seman-

tic Hierarchy (SSH) proposed by Kuipers [23] that represents a

robot’s spatial knowledge as a coupled hierarchy. At the low-

est level, the local environment is modeled as a collection of

control laws, each expressing the relationship between sensory

input and motor output, that facilitate localization and generat-

ing local geometric maps. Above the control level is the causal

level, which provides a discrete model of the actions that tran-

sition between each of the control laws. The topological level

represents the environment as a collection of regions, places,

and paths that abstract states and actions from the causal level.

While the topology serves as the primary global map of the en-

vironment, the local geometric maps from the control level can

be merged via the topology to formulate a global metric map.

Kuipers et al. [24] describe an extension to the SSH that em-

ploys a hybrid metric and topological representation to better

represent environments at both small and large scales. The

Hybrid SSH treats the environment as a collection of inter-

connected locations, each being small in scale. The method

employs metric maps to model the local geometry of distinct

regions from which they use local paths to induce a symbolic

global topology that describes the large-scale environment. By

decoupling the map in this manner, this approach more ef-

ficiently models ambiguities in large-scale loop closure with

multiple compact topologies, without requiring that the set of

local metric maps be registered consistently in a single global

reference frame. This is a distinct benefit over submap ap-

proaches to SLAM [25, 2] that similarly employ local metric

maps but also seek to ensure that these submaps are consistent

in a global reference frame. The authors have shown [33, 1]

that the representation allows uncertainties to be handled more

effectively by factoring them into individual components that

capture local metrical, global topological, and globally metri-

cal uncertainties. Our algorithm also consists of a hybrid metric

and topological representation and factors the joint distribution

into separate metrical and topological terms, employing differ-

ent hypotheses over the topological map to represent the distri-

bution over the space of loop closures. However, we maintain

a globally metric map of the environment with respect to a sin-

gle frame of reference, which can make our algorithm sensitive

to global inconsistencies within large environments. Another

difference lies in our definition of regions, which we segment

based upon distance traveled. The Hybrid SSH, in contrast, de-

fines regions based upon their local geometric structure (e.g.,

separated by doorways). Unlike our approach, however, the

Hybrid SSH does not model the semantic labels or colloquial

names associated with different regions of the environment.

More recent efforts similarly take a hierarchical approach to

representing semantic and spatial properties of a robot’s envi-

ronment. Many existing solutions [11, 29, 32, 48, 22, 51, 15,

36] build on the effectiveness of SLAM by augmenting a low-

level metric map with layers that encode the topological and

semantic properties of the environment. Typically, an off-the-

shelf SLAM implementation is used to build the metric layer.

One level up in the hierarchy is the topological map, taking

the form of a graph, where vertices denote different places in

the environment and edges model their connectivity. Layered

above the topology is the semantic map that represents abstract

properties associated with each place, such as their type or the

objects that they contain.

One distinction among existing approaches to semantic map-

ping, and topological mapping in general, is the means by

which the environment is segmented into different places.

Thrun et al. [45], for example, rely on a user to push a button

each time the robot transitions to a new region. A straightfor-

ward automatic strategy is to segment regions based upon dis-

tance, placing vertices at a fixed spacing as the robot travels in

the environment [51]. This is the approach that we take in this

paper. An alternative is to use heuristics such as door detec-

tions to separate regions [36], which yields segmentations that

can be more semantically meaningful within indoor environ-

ments. Meanwhile, others have found success partitioning the

environment by clustering observations of local metric [3] and

semantic [29] properties. Of particular relevance to this work,

Ranganathan and Dellaert [38] employ multiple methods to de-

fine regions, including manual segmentation at the location of

gateways (e.g., doorways, junctions) and automatic segmenta-

tion based upon changes in visual appearance [37].

The properties contained within the semantic map are most

often inferred from the robot’s sensor data (e.g., LIDAR scans

and camera images), using scene classifiers [35] and object de-

tectors [47, 19]. For example, Martı́nez Mozos et al. [29] use

a combination of boosted laser range features and image-based

object detections to classify the robot’s surround as it navigates

and show how this can be used to induce a topology for the

environment. Similarly, Meger et al. [32] layer a visual at-

tention system and image-based object recognition on top of a
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SLAM occupancy grid map to build semantic maps that encode

the locations of objects of interest within the environment. Va-

sudevan and Siegwart [48] describe a probabilistic framework

that uses clustered object detections to learn conceptual models

of space that express their hierarchical structure (e.g., that an

“office” may include a “workspace” and “meeting area”) and

the objects that they contain. They argue that this model is

amenable to a hierarchical metric-topological-semantic SLAM

framework, though they leave that for future work.

These solutions rely upon scene classifiers and object detec-

tors to infer the properties that make up the semantic map. The

effectiveness of these approaches is a function of the richness of

the training data. As such, they perform best when the environ-

ments have similar appearance and regular geometry, and when

the objects are drawn from a common set. Even in structured

settings, it is not uncommon for the regions to be irregular and

for the objects to be difficult to recognize, either because they

are out of context or are singletons (Fig. 2). Furthermore, scene

classification doesn’t provide a means to infer the specific la-

bels that humans use for a location, such as “Carrie’s office” or

the “Kiva conference room.”

Our algorithm, on the other hand, is capable of learning the

class and colloquial name for different spaces in the environ-

ment from a human’s description. Recognizing the efficiency

of human supervision during learning, several researchers have

proposed methods that incorporate user-provided spoken cues

into the semantic map [51, 15, 36]. Of particular relevance,

Zender et al. [51] use labels assigned by people to identify ob-

jects in the robot’s surround. They combine these labels with a

LIDAR-based place classifier to learn semantic maps for office

environments that encode the relationship between room cate-

gories and the objects that they contain. Similarly, Pronobis and

Jensfelt [36] describe a multi-modal probabilistic framework

capable of incorporating semantic information from a wide va-

riety of modalities. These include a user’s speech, which is

modeled just like any other sensor. The method seeks to learn

richer, more descriptive environment models by fusing seman-

tic cues from object detections, place appearance and geometry,

as well as human input into a single model.

Our algorithm differs from the existing state-of-the-art in se-

mantic mapping in three fundamental ways. First, our frame-

work employs a learned model of free-form utterances to rea-

son over expressions that are less constrained than those han-

dled by other methods. To be precise, we currently assume

that these descriptions involve labels for and spatial relations

between one or two locations, though the structure of these ex-

pressions is only limited by rules of grammar and the amount

of training data. Second, by using scene classification, exist-

ing methods can only infer semantic properties of areas that are

within the field-of-view of the robot’s sensors. Similarly, previ-

ous efforts to incorporate user-provided labels assume that the

object is within view or that the user is referencing the robot’s

current location. In contrast, our method reasons over more ex-

pressive descriptions that enable robots to learn concepts like

labels and spatial relations for distant areas as well as regions

of the environment that the robot has not yet visited. Third, ex-

isting methods allow updates to the metric layer to influence the

topological and semantic maps, but don’t use information at the

semantic layer improve the rest of the hierarchy. By maintain-

ing a joint distribution over the metric, topological, and seman-

tic properties of the environment, our framework uses updates

to any one layer to improve the other layers in the hierarchy.

For example, we show how the semantic map can be used to

recognize loop closures, a fundamental problem in SLAM, and

thereby add edges to the topology that, in turn, correct errors in

the metric map.

We note that semantic observations are not the only source of

information that is useful for place recognition. Many mapping

algorithms build local laser scan patches for each region and

correlate these patches to identify loop closures [12]. How-

ever, these techniques are prone to perceptual aliasing when

the local geometry is not distinctive, such as in the case of

hallways. More recent methods consider a region’s visual ap-

pearance as a more discriminative means of performing place

recognition [40, 6, 38]. Of particular note, Cummins and New-

man [6] learn a generative model of region appearance using a

bag-of-words representation that expresses the commonality of

certain features. By effectively modeling this perceptual ambi-

guity, the authors are able to reject invalid loop closures despite

significant aliasing, while correctly recognizing valid loop clo-

sures. This and related approaches in effect choose the max-

imum likelihood loop closure, relying on the assumption that

the place model is sufficiently descriptive that the resulting dis-

tribution over the space of loop closures is peaked around the

true correspondence. Our approach differs in that it uses se-

mantic information to maintain a distribution over the space of

loop closures rather than only that which is most likely.

This work incorporates user-provided labels and spatial re-

lations by interpreting the free-form descriptions in the con-

text of the semantic graph. As such, it is important to note

existing efforts to solve what Harnad [13] refers to as the

symbol grounding problem, the problem of mapping linguis-

tic elements to their corresponding manifestation in the ex-

ternal world. In the robotics domain, the grounding prob-

lem has primarily been addressed in the context of following

route directions and other natural language commands. One

class of solutions [41, 28, 8, 5, 31, 30] considers the prob-

lem as one of parsing free-form commands into their formal

language equivalent, which a planner takes as input. Other

approaches [20, 43, 44] function by mapping free-form utter-

ances into their corresponding object and action referents in the

robot’s world model. With the exception of MacMahon et al.

[28] and Matuszek et al. [30], existing methods assume the map

is known a priori. We take the latter approach to grounding spa-

tial language by inferring the locations that the user is referring

to in the map that is learned online. However, we allow these

locations to be unknown to the robot when the user provides the

descriptions.

3 The Semantic Graph

This section presents our approach to maintaining a distribu-

tion over semantic graphs, our environment representation that

consists jointly of metric, topological, and semantic maps.
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Figure 3: An example of a semantic graph.

The metric map models information contained in the robot’s

low-level sensor readings. The topological map models the

connectivity between regions that can be inferred from navi-

gation as well as natural language descriptions. The semantic

map represents categories that the user conveys.

3.1 Semantic Graphs

We model the environment as a set of places, regions in the en-

vironment a fixed distance apart2 that the robot has visited. We

represent each place by its pose xi in a global reference frame

and a label li (e.g., “gym,” “hallway”). More formally, we rep-

resent the environment by the tuple {Gt, Xt, Lt} that consti-

tutes the semantic graph. The graph Gt = (Vt, Et) denotes the

environment topology with a vertex Vt = {v1, v2, . . . , vt} for

each place that the robot has visited, and undirected edges Et

that signify observed relations between vertices, based on met-

ric or semantic information. The vector Xt = [x1, x2, . . . , xt]
encodes the pose associated with each vertex. The set

Lt = {l1, l2, . . . , lt} includes the semantic label li associated

with each vertex. The semantic graph (Fig. 3) grows as the

robot moves through the environment. Our method adds a new

vertex vt+1 to the topology after the robot travels a specified

distance, and augments the vector of poses and collection of

labels with the corresponding pose xt+1 and labels lt+1, re-

spectively. This model resembles the pose graph representation

commonly employed by SLAM solutions [18].

Our goal is to induce a distribution over the semantic graph,

including the locations, topology, and semantic labels given in-

formation about an environment obtained from a robot’s range

sensors, odometry readings, and the user’s descriptions of the

environment.

3.2 Distribution Over Semantic Graphs

We estimate a joint distribution over the topology Gt, the vector

of locations Xt, and the set of labels Lt. Formally, we main-

tain this distribution over semantic graphs {Gt, Xt, Lt} at time

t conditioned upon the history of metric exteroceptive sensor

data zt = {z1, z2, . . . , zt}, odometry ut = {u1, u2, . . . , ut},

and natural language descriptions λt = {λ1, λ2, . . . , λt}:

p(Gt, Xt, Lt|zt, ut, λt). (1)

2We use 5 m spacing for the results presented in this paper.

Table 1: Semantic Graph Notation

Symbol Description

Gt = (Vt, Et)

Graph representation of the topology at

time t that consists of a set of vertices

Vt = {v1, v2, . . . , vt} connected by undi-

rected edges Et.

Lt Set of labels lt,i associated with each place.

l
(i)
t,j Label distribution for node j in particle i.

λt
Parsed natural language description of the

environment at time t.

Xt Vector of landmark poses [x1, ..., xt]

zt
Set of sensor readings made up to time t by

sensors onboard the robot.

ut Set of odometry readings up to time t.

Each language variable λi denotes a (possibly null) utter-

ance, such as “This is the kitchen,” or “The gym is down the

hall.” Table 1 outlines our notation. We factor the joint poste-

rior into a distribution over the graphs and a conditional distri-

bution over the node poses and labels,

p(Gt, Xt, Lt|zt, ut, λt) = p(Lt|Xt, Gt, z
t, ut, λt)

× p(Xt|Gt, z
t, ut, λt)× p(Gt|zt, ut, λt). (2)

The left-most expression in this factorization explicitly models

the dependence of the labels on the topology and the location

of each region. The middle term encodes the conditional distri-

bution over the metric map given the topology and, in this way,

mimics pose graph formulations to SLAM, given the loop clo-

sure (i.e., the topology). The right-most expression denotes the

distribution over the graph conditioned upon the sensor history

and language.

The space of possible graphs for a particular environment is

spanned by the allocation of edges between nodes. The num-

ber of edges, however, can be exponential in the number of

nodes. Hence, maintaining the full distribution over graphs is

intractable for all but trivially small environments. To over-

come this complexity, we assume as in Ranganathan and Del-

laert [38] that the distribution over graphs is dominated by a

small subset of topologies while the likelihood associated with

the majority of topologies is nearly zero. In general, this as-

sumption holds when the environment structure (e.g., indoor,

man-made) or the robot motion (e.g., exploration) limits con-

nectivity [38]. In addition, conditioning the graph on the de-

scriptions further increases the peakedness of the distribution,

thereby increasing the validity of this assumption, because it

decreases the probability of edges when the labels and seman-

tic relations are inconsistent with the language.

The assumption that the distribution is concentrated around

a limited set of topologies suggests the use of particle-
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based methods to represent the posterior over graphs,

p(Gt|zt, ut, λt). Inspired by the derivation of Ranganathan

and Dellaert [38] for topological SLAM, we employ Rao-

Blackwellization to model the factored formulation (2),

whereby we accompany the sample-based distribution over

graphs with analytic representations for the conditional poste-

riors over the node locations and labels. Specifically, we rep-

resent the posterior over the node poses p(Xt|Gt, z
t, ut, λt) by

a Gaussian, which we parametrize in the canonical form. We

maintain a Dirichlet distribution that models the posterior dis-

tribution over the set of node labels p(Lt|Xt, Gt, z
t, ut, λt).

We represent the joint distribution over the topology, node

locations, and labels as a set of particles

Pt = {P (1)
t , P

(2)
t , . . . , P

(n)
t }. (3)

Each particle P
(i)
t ∈ Pt consists of the set

P
(i)
t =

{

G
(i)
t , X

(i)
t , L

(i)
t , w

(i)
t

}

, (4)

where G
(i)
t denotes a sample from the space of graphs; X

(i)
t

is the analytic distribution over locations; L
(i)
t is the analytic

distribution over labels; and w
(i)
t is the weight of particle i.

4 Building Semantic Maps with Language

Algorithm 1 outlines the process by which we recursively up-

date the distribution over semantic graphs (2) to reflect the

latest robot motion, metric sensor data, and utterances. In

the first step, we propagate each sample G
(i)
t−1, which repre-

sents the posterior p(Gt−1|zt−1, ut−1, λt−1) at time t − 1, by

adding a node for the robot’s new pose (connected by an edge

to the previous node) and proposing additional loop-closure

edges according to the current metric and label distributions.

This results in a sample-based estimate for the prior at time t,
p(Gt|zt−1, ut, λt). Next, we update the Gaussian distribution

over the node poses by incorporating the constraints induced

by the new loop-closure edges. We then proceed to update the

Dirichlet distributions based upon the structure of the graph and

parsed language λt, if available. Finally, we update the weight

w
(i)
t according to the likelihood of new metric measurements zt

and resample if needed. We repeat these steps for each particle,

yielding the particle set representation Pt of the new posterior

distribution at time t, p(Gt, Xt, Lt|zt, ut, λt). The following

sections explain each step in detail.

4.1 Graph Augmentation using the Proposal Distribution

Given the posterior distribution over the semantic graph at time

t− 1, we first compute the prior distribution over the graph Gt.

We do so by sampling from a proposal distribution that is the

predictive prior of the current graph given the previous graph

and sensor data, and the recent odometry and language:

p(Gt|Gt−1, z
t−1, ut, λt) (5)

We formulate the proposal distribution by first augmenting the

graph to reflect the robot’s motion. Specifically, we add a node

Algorithm 1: Semantic Mapping Algorithm

Input: Pt−1 =
{

P
(i)
t−1

}

, and (ut, zt, λt), where

P
(i)
t−1 =

{

G
(i)
t−1, X

(i)
t−1, L

(i)
t−1, w

(i)
t−1

}

Output: Pt =
{

P
(i)
t

}

for i = 1 to n do

1. Propagate the graph sample G
(i)
t−1 using the

proposal distribution p(Gt|G(i)
t−1, z

t−1, ut, λt),
using odometry ut and current distributions over

labels L
(i)
t−1 and poses X

(i)
t−1.

2. Update the Gaussian distribution over the node

poses X
(i)
t according to the constraints induced

by the newly-added graph edges.

3. Update the Dirichlet distribution over the current

and adjacent nodes L
(i)
t according to the language

λt.

4. Compute the new particle weight w
(i)
t based upon

the previous weight w
(i)
t−1 and the metric data zt.

end

Normalize weights and resample if needed.

vt to the graph that corresponds to the robot’s current pose with

an edge to the previous node vt−1 that represents the temporal

constraint between the two poses. We denote this intermediate

graph as G−

t . Similarly, we add the new pose as predicted by

the robot’s motion model to the vector of poses X−

t and the

node’s label to the label vector L−

t according to the process

described in Subsection 4.3.3

We formulate the proposal distribution (5) in terms of the

likelihood of adding edges between nodes in this modified

graph G−

t . The system considers two forms of additional edges:

first, those suggested by the spatial distribution of nodes and

second, by the semantic distribution for each node.

4.1.1 Spatial Distribution-based Constraints

We first propose connections between the robot’s current node

vt and others in the graph based upon their metric location.

We do so by sampling from a distance-based proposal distribu-

tion biased towards nodes that are spatially close. Doing so re-

quires marginalizing over the distances dt between node pairs,

as shown in equation (6), where we omit the history of language

observations λt, metric measurements zt−1, and odometry ut

for brevity. Equation (6a) reflects the assumption that addi-

tional edges expressing constraints involving the current node

etj /∈ E− are conditionally independent. Equation (6c) ap-

proximates the marginal in terms of the distance between the

3The label update explains the presence of the latest language λt.
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two nodes associated with the additional edge.

pa(Gt|G−

t , z
t−1, ut, λt) =

∏

j:etj /∈E−

p(Gtj
t |G−

t ) (6a)

=
∏

j:etj /∈E−

∫

X−

t

p(Gtj
t |X−

t , G−

t )p(X
−

t |G−

t ) (6b)

≈
∏

j:etj /∈E−

∫

dtj

p(Gtj
t |dtj , G−

t )p(dtj |G−

t ), (6c)

The conditional distribution p(Gtj
t |dtj , G−

t , z
t−1, ut, λt) ex-

presses the likelihood of adding an edge between nodes vt and

vj based upon their spatial location. We represent the distribu-

tion for a particular edge between vertices vi and vj a distance

dij = |xi − xj |2 apart as

p(Gij
t |dij , G−

t , z
t−1, ut, λt) ∝ 1

1 + γd2ij
, (7)

where γ specifies distance bias. For the evaluations in this

paper, we use γ = 0.2. We approximate the distance prior

p(dtj |G−

t , z
t−1, ut, λt) with a folded Gaussian distribution,

p(dij ;µ, σ) =
1

σ
√
2π

exp

(

− (−dij − µ)2

2σ2

)

+
1

σ
√
2π

exp

(

− (dij − µ)2

2σ2

)

(8)

where µ is the the mean and σ is the standard deviation, approx-

imated based upon a linearized model for the distance between

the normally distributed positions xi and xj . The probability is

0 for dij < 0.

The algorithm samples from the proposal distribution (6) to

identify candidate edges. Before adding these to the graph,

we use laser scans to build local maps around each node and

compare the maps associated with the two nodes using scan-

matching (Fig. 4). This matching allows the method to reject

most invalid edges, however it may still yield false positives for

areas with ambiguous local geometry. In order to reduce the

effects of this perceptual aliasing, we evaluate the likelihood of

the scan-matched estimates of the inter-region transformations

under our distribution over the metric map. The algorithm re-

tains edges according to their Mahalanobis distance and adds

edges deemed to be valid along with their estimated transfor-

mations.

4.1.2 Semantic Map-based Constraints

A fundamental contribution of our method is the ability for the

semantic map to influence the metric and topological maps.

This capability results from the use of the label distributions to

perform place recognition. The algorithm identifies loop clo-

sures by sampling from a proposal distribution that expresses

the semantic similarity between nodes. In similar fashion to

the spatial distance-based proposal, computing the proposal re-

(a) Rejected Edges (b) Rejected and Accepted Edges

Figure 4: In the proposal step, the algorithm hypothesizes

the addition of new edges in the graph based upon the esti-

mated distance between nodes. Candidate edges are (a) rejected

(black) or (b) accepted (red) based upon scan-matching.

quires marginalizing over the space of labels:

ps(Gt|G−

t , z
t−1, ut, λt) =

∏

j:etj /∈E−

p(Gtj
t |G−

t , λt) (9a)

=
∏

j:etj /∈E−

∑

L−

t

p(Gtj
t |L−

t , G
−

t , λt)p(L
−

t |G−

t ) (9b)

≈
∏

j:etj /∈E−

∑

l−t ,l−
j

p(Gtj
t |l−t , l−j , G−

t )p(l
−

t , l
−

j |G−

t ), (9c)

where we have omitted the metric, odometry, and language in-

puts for clarity. The first line follows from the assumption that

additional edges that express constraints to the current node

etj /∈ E− are conditionally independent. The second line rep-

resents the marginalization over the space of labels, while the

last line results from the assumption that the semantic edge like-

lihoods depend only on the labels for the vertex pair. We model

the likelihood of edges between two nodes as non-zero for the

same label

p(Gtj
t |lt, lj) =

{

θlt if lt = lj

0 if lt 6= lj
(10)

where θlt denotes the label-dependent likelihood that edges ex-

ist between nodes with the same label. In practice, we assume a

uniform saliency prior for each label. Equation (9c) then mea-

sures the cosine similarity between the label distributions.

We sample from the proposal distribution (9) to hypothe-

size new semantic map-based edges. As with distance-based

edges, we validate proposed edges by building local maps

for each region and performing scan-matching between these

maps. In practice, we additionally introduce a bias that penal-

izes matches between frequently occurring regions like hall-

ways. Figure 5 shows several different edges sampled from the

proposal distribution at one stage of a tour.4 Here, the algorithm

identifies candidate loop closures between different “entrances”

in the environment and accepts those (shown in green) whose

4Throughout the paper, we only visualize the semantic distribution for

nodes whose distribution is not uniform.
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Figure 5: The algorithm proposes new graph edges between

node pairs based on their label distributions, which are depicted

as pie charts for nodes whose distribution is not uniform. It

rejects invalid edges that result from ambiguous labels (black)

and adds the edge (green) that denotes a valid loop closure.

local laser scans are consistent. Note that some particles may

add invalid edges (e.g., due to perceptual or semantic aliasing),

but their weights will decrease as subsequent measurements be-

come inconsistent with the hypothesis.

4.2 Updating the Metric Map Based on New Edges

The proposal step results in the addition, to each particle, of

a new node at the current robot pose, along with an edge rep-

resenting its temporal relationship to the previous node. The

proposal step also hypothesizes additional loop-closure edges.

Next, the algorithm incorporates these relative pose constraints

into the Gaussian representation for the marginal distribution

over the map

p(Xt|Gt, z
t, ut, λt) = N−1(Xt; Σ

−1
t , ηt), (11)

where Σ−1
t and ηt are the information (inverse covariance) ma-

trix and information vector that parametrize the canonical form

of the Gaussian. We utilize the iSAM algorithm [18] to update

the canonical form by iteratively solving for the QR factoriza-

tion of the information matrix. We omit the details of the al-

gorithm for lack of space and refer the reader to Kaess et al.

[18] for more information. Figure 6 shows the resulting metric

poses and their uncertainties.

4.3 Updating the Semantic Map Based on Natural Lan-

guage

Next, the algorithm updates the distribution over the current set

of labels Lt = {lt,1, lt,2, . . . , lt,t} associated with each parti-

cle. This update reflects information regarding labels and spa-

tial relations that spoken descriptions convey, as well as se-

mantic concepts that are suggested by the addition of edges to

the graph. In maintaining the label distribution, we make the

assumption that the node labels are conditionally independent

Figure 6: The mean position and 1σ uncertainty ellipse for each

node, along with the resulting occupancy grid map.

given the topology and node poses

p(Lt|Xt, Gt, z
t, ut, λt) =

t
∏

i=1

p(lt,i|Xt, Gt, z
t, ut, λt). (12)

This assumption ignores dependencies between labels associ-

ated with nearby nodes, but simplifies the form for the distribu-

tion over labels associated with a single node. We model each

node’s label distribution as a Dirichlet distribution of the form

p(lt,i|λ1 . . . λt) = Dir(lt,i;α1 . . . αK)

=
Γ(

∑K
1 αi)

Γ(α1)× . . .× Γ(αK)

K
∏

k=1

lαk−1
t,i,k , (13)

where lt,i,k for k ∈ {1, . . . ,K} is the kth label associated with

node i at time t. We initialize the parameters α1 . . . αK to 0.2,

which results in a prior that is uniform over the different labels.

Given subsequent language input, this favors distributions that

are peaked around a single label.

We consider user-provided expressions that use spatial rela-

tions to describe one or two locations in the environment. The

first form are egocentric utterances (e.g., “This is the gym”)

that assign labels to the robot’s current location. A contribution

of our work is the ability to incorporate information from allo-

centric spatial language that express spatial relations and labels

that are associated with non-local, potentially distant regions

in the environment. By interpreting these expressions, such as

“The kitchen is through the cafeteria,” our framework enables

robots to learn rich semantic maps of their environment more

efficiently.

Learning from allocentric expressions is challenging because

their groundings are ambiguous—the places to which the user

refers are often not obvious. Consider the scenario outlined in

Figure 7. The semantic map includes an area that has a high

likelihood of being a “lobby” and a second believed to be a

“hallway.” As the robot (triangle) continues to explore the en-

vironment, the user utters the description “The gym is down the

hall.” Descriptions like these are often ambiguous. For exam-

ple, there may be multiple “hall” regions in the map or it may

8



Lobby!

Hallway!

? ?
?

?

Figure 7: The user utters the description “The gym is down the

hall” when the robot is at the location indicated by the triangle.

be that the robot has yet to visit the region that the user is refer-

ring to, or if it has, it is not aware of its label. Similarly, several

regions in the map are candidates for being the “gym,” but the

user may also be identifying a region that is not yet in the map.

In order to understand an expression like “The gym is down

the hall,” the system must first ground the landmark phrase “the

hall” to a specific entity in the environment. It must then infer

an entity in the environment that corresponds to the word “the

gym.” One can no longer assume that the user is referring to the

current location as “the gym” (the figure5) or that the location of

the “hall” (the landmark) is known (e.g., there are likely many

“halls” in the environment). We use the label distribution to rea-

son over the possible nodes that denote the landmark. In doing

so, we make the additional assumption that the landmark exists

in the graph and normalize the likelihoods for candidate “hall”

nodes. We later relax this assumption as we describe shortly.

We account for the uncertainty in the figure by formulating a

distribution over the nodes in the topology that expresses their

likelihood of being the figure. Formally, we model the likeli-

hood that each node vi is the figure by marginalizing over the

space of candidate landmarks

p(φf
vi = T) =

∑

vj

p(φf
vi = T|φl

vj = T) p(φl
vj

= T), (14)

where φl
vi

and φf
vi

are binary-valued random variables that in-

dicate that node vi is the landmark and figure, respectively. The

landmark likelihood p(φl
vj = T) follows from the normalized

label distributions, as described above. We arrive at the condi-

tional distribution p(φf
vi

= T|φl
vj

= T) using the G3 framework

to infer groundings for the different parts of the description. In

the case of this example, the framework induces a probability

distribution over nodes whose location is consistent with being

“down the hall” from each of the conditioned landmark nodes,

based upon the robot’s pose at the time the user offers the com-

5In spatial linguistic theory, this is often referred to as the trajector.

“the gym” “is down” “the hall”

γ1

λ
f
1

λ
r
2 λ

f
3

γ3, γ2,

Figure 8: The factor graph model for the utterance “The gym is

down the hall” that is used by the G3 algorithm.

munication. In this manner, we make the assumption that the

person is describing the environment in the robot’s frame of

reference. The grounding likelihood (14) simplifies with ego-

centric language as the figure is implicitly the robot’s current

location.

4.3.1 Grounding Natural Language Descriptions with G3

Before proceeding, we briefly describe the G3 algorithm, which

was initially proposed by Tellex et al. [43]. Given natural lan-

guage text Λ, G3 provides a distribution over the space of pos-

sible mappings between each word in the parsed description

and the corresponding groundings in the external model. This

distribution takes the general form

p(Φ|Γ,Λ,M), (15)

where Γ = {γ1, . . . , γn} denotes the set of possible ground-

ings and M represents the robot’s world model, which includes

the robot’s pose and a map of the environment. The corre-

spondence variable Φ contains boolean-valued variables φ for

each linguistic element λ ∈ Λ and grounding γ ∈ Γ, such

that φ = True iff γ corresponds to λ. In our application, the

groundings are the locations of the nodes in the semantic graph

the paths between nodes according to the metric map.

Taking advantage of the compositional, hierarchical struc-

ture of natural language [17], G3 parses the utterance into a set

of Spatial Description Clauses (SDCs). Each SDC is assigned

a type (event, object, place, or path) and consists of landmark

λl
i, figure λf

i , and relation λr
i phrases. For the purposes of this

work, we parse descriptions into place and path SDCs using a

learned grammar that includes possible labels and spatial rela-

tions. G3 then factors the distribution (15) into individual terms,

one for each linguistic element

p(Φ|Γ,Λ,M) =
∏

i

p(φi|λi,Γ,M). (16)

This factored distribution is represented as a graphical model

using a factor graph, such as the one shown in Figure 8 for the

“the gym is down the hall” utterance. The G3 algorithm uses a
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log-linear model for each of the factors

p(φi|λi,Γ,M) ∝ exp





∑

j

µjsj(φi, λi,Γ,M)



 , (17)

where µj are weights and sj are features that encode the rela-

tionship between the linguistic element λi and the groundings

Γ. For example, we use a feature that relates the length of the

path through the map from the landmark grounding γl
i and fig-

ure grounding γf
i when the relation λr

i is “down from”

s(γl
i, γ

f
i , λ

r
i ) , |xγl

i
− xγf

i

| ∧ (“down from” ∈ λr
i ). (18)

Similarly, features for other relations express the consistency

of the path between pairs of nodes with the uttered relation.

The set of relations for which we have trained feature weights

include “through,” “down from,” “near,” and “away from.” Ad-

ditional features include the likelihood of the landmark label

λl
i under the multinomial associated with the node’s γl

i label

distribution.

The G3 model learns the weights µk associated with each

feature by training on a corpus of SDCs from natural language

descriptions and the known groundings Γ and correspondences

Φ. In particular, we train our G3 model using a route direc-

tions corpus [20] that includes a set spoken directions through

an office building and positive and negative examples of paths

through the environment.

Given a particular spoken description, we use G3 to infer

groundings for the different parts of the utterance. In the case

of the current example, the framework uses the multinomial dis-

tributions over labels to find a node corresponding to the “hall”

landmark and induces a probability distribution over “gyms”

based on the nodes that are “down the hall” from the identified

landmark nodes. We ground relational utterances λr
i by consid-

ering the shortest path that travels from the robot’s pose at the

time of the description through the pair of landmark γl
i and fig-

ure γf
i node groundings. We use the A∗ algorithm [39] to solve

for the shortest path through the semantic graph topology. We

then use features over these paths (18) to evaluate their con-

sistency with the uttered relation (e.g., “down from,” “near,”

and “through”). The likelihood of this path is calculated for

each possible figure and landmark pair. We marginalize out the

landmarks to arrive at the likelihood of the figure region having

the described label

p(fj) =
∑

li

p(φj |fj , li, pj)p(li), (19)

where fj is the figure being evaluated, pj is the path from the

robot’s location at the time of the description to the figure, φj

is the corresponding likelihood of the grounding, and li is a

corresponding landmark.

For both types of expressions, the algorithm updates the se-

mantic distribution according to the rule

p(lt,i|λt = (k, i), lt−1,i) =

Γ(
∑K

1
αt−1

i
+∆α)

Γ(αt−1

1
)×...×Γ(αt−1

k
+∆α)×...×Γ(αK)

K
∏

k=1

lαk−1
t,i,k ,

(20)

where ∆α is the likelihood of the figure grounding. In the case

of egocentric language, when the robot’s position is implicitly

the figure, we set this likelihood to ∆α = 1 for the current node

in the graph. When the descriptions are ambiguous, we set ∆α
to the landmark likelihood computed via Equation 14.

An advantage of having a probabilistic model over the space

of groundings is that it provides a means of recognizing when

there is not enough information contained in the semantic graph

to ground the language. This allows us to recognize many of

the situations in which the user describes areas that either the

robot hasn’t yet visited or they reference landmarks whose la-

bels were never added to the map. For example, it’s not uncom-

mon for the user to mention regions that are within sight but

they have yet to reach (e.g., the user may say “The lab is across

the lobby,” but the robot has never been to the region being re-

ferred to as “the lab.”). We refer to descriptions of this form as

anticipatory.

We identify instances of anticipatory descriptions by using

our distributions over the landmark and figure locations to eval-

uate the likelihood that the landmark matches a labeled region

in the graph and that there are one or mode candidate figure re-

gions consistent with the language. When the method is suf-

ficiently confident in the ability to ground the language (we

use a threshold of 0.2), we update the label distributions as de-

scribed above. However, when the grounding likelihoods sug-

gest an anticipatory description, the algorithm adds the expres-

sion along with its timestamp to a per-particle queue of antici-

patory descriptions. As the robot proceeds through the environ-

ment and new nodes and semantic information are added to the

map, the algorithm continues to evaluate the grounding likeli-

hood (14) for the queued descriptions. Specifically, we consider

candidate pairs of landmark and figure nodes and determine the

landmark’s likelihood according to its label distribution. We

express the figure likelihood as the probability of the landmark-

to-figure path under the learned language model (16), where we

consider the shortest path that runs from the robot’s pose at the

time of the description, through the landmark region, and on to

the figure node. The logic is that the description is most useful

when the robot has visited the regions to which the user refers

and, thereby, the map has regions whose labels and inter-region

paths that are consistent with the expression. The algorithm

performs this process separately for each particle, which may

result in some particles incorporating the description sooner

than others.

In addition to input language, we also update the label dis-

tribution for a node when the proposal step adds an edge to

another node in the graph. These edges may correspond to tem-

poral constraints that exist between consecutive nodes, or they

may denote loop closures based upon the spatial distance be-

tween nodes that we infer from the metric map. Upon adding

an edge to a node for which we have previously incorporated

a direct language observation, we propagate the observed label

to the newly connected node using a value of ∆α = 0.5.

4.4 Updating the Particle Weights

Having proposed a new set of graphs {G(i)
t } and updated the

analytic distributions over the metric and semantic maps for
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each particle, we update their weights. The update follows from

the ratio between the target distribution over the graph and the

proposal distribution, and can be shown to be

w
(i)
t =

Target distribution

Proposal distribution
(21a)

=
p(G

(i)
t |zt, ut, λt)

p(G
(i)
t |G(i)

t−1, z
t−1, ut, λt)

w
(i)
t−1 (21b)

=
p(zt|G(i)

t , zt−1, ut, λt)

p(zt|zt−1)
· p(G(i)

t−1|zt−1, ut, λt) (21c)

∝ p(zt|G(i)
t , zt−1, ut, λt) · p(G(i)

t−1|zt−1, ut, λt) (21d)

w̃
(i)
t = p(zt|G(i)

t , zt−1, ut, λt) · w(i)
t−1, (21e)

where w
(i)
t−1 is the weight of particle i at time t−1 and w̃

(i)
t de-

notes the unnormalized weight at time t. We evaluate the mea-

surement likelihood (e.g., of LIDAR) by marginalizing over the

node poses

p(zt|G(i)
t , zt−1, ut, λt) =

∫

Xt

p(zt|X(i)
t , G

(i)
t , zt−1, ut, λt)

× p(X
(i)
t |G(i)

t , zt−1, ut, λt)dXt, (22)

which allows us to utilize the conditional measurement model.

In the experiments presented next, we model the measurement

as an observed transformation between poses, which we com-

pute via scan-matching. We model this distribution (first term

in the integral) as Gaussian, which we have empirically found

to be accurate.

After calculating and normalizing the new importance

weights, we periodically perform resampling based upon the

effective number of particles, as proposed by Liu [26],

Neff =
1

n
∑

i=0

w2
i

. (23)

When the effective number of particles Neff falls below the

threshold N/2, where N is the number of particles, we resam-

ple using the algorithm described by Doucet et al. [7].

5 Results

We evaluate our algorithm through six experiments that involve

a human giving a robotic wheelchair (Fig. 1) [15] a narrated

tour of several buildings and courtyards on the MIT campus.

The robot was equipped with forward- and rearward-facing LI-

DARs, wheel encoders, and an IMU. Speech was recorded us-

ing a wireless microphone worn by the user. In the first two

experiments, the robot was manually driven while the user in-

terjected textual descriptions of the environment. In the third

experiment, the robot autonomously followed the human who

provided spoken descriptions. Speech recognition was per-

formed manually.

5.1 Indoor/Outdoor: Small Tour

The first experiment (Fig. 9) took place on the first floor of

the Stata Center at MIT, which includes lecture halls, eleva-

tor lobbies, a gym, and a cafeteria, as well as the adjacent

courtyard. Starting at one of the elevator lobbies, the user pro-

ceeded to visit the gym, exited the building and, after navigat-

ing the courtyard, returned to the gym and finished at the ele-

vator lobby. The user provided textual descriptions of the en-

vironment, twice each for the elevator lobby and gym regions.

We compare the performance of our method based upon differ-

ent forms of language input against a baseline algorithm that

emulates the current state-of-the-art in language-augmented se-

mantic mapping. In all cases, the algorithms were run with

10 particles to approximate the distribution over the space of

topologies. The final topology contained 137 nodes.

5.1.1 No Language Constraints

We consider a baseline approach that directly labels nodes

based upon egocentric language, but does not propose edges

based upon label distributions. It does, however, propose loop

closures based upon the distribution over the metric map (Sec-

tion 4.1.1). The baseline emulates typical solutions by aug-

menting a state-of-the-art iSAM metric map with a semantic

layer without allowing semantic information to influence lower

layers.

Figure 9(a) presents the resulting metric, topological, and se-

mantic maps that constitute the semantic graph for the highest-

weighted particle. The accumulation of odometry drift results

in significant errors in the estimate for the robot’s pose when re-

visiting the gym and elevator lobby. Without reasoning over the

semantic map, the algorithm is unable to detect loop closures.

This results in significant errors in the metric map as well as the

semantic map, which hallucinates two separate elevator lobbies

(purple) and gyms (orange).

5.1.2 Egocentric Language

We evaluate our algorithm when the user provides descriptions

in the form of egocentric language, in which case there is no

ambiguity in the landmark and figure that are implicitly the

robot’s current location.

Figure 9(b) presents the semantic graph corresponding to the

highest-weighted particle that our algorithm estimates. By con-

sidering the semantic map when proposing loop closures, the

algorithm recognizes that the second region that the user la-

beled as the gym is the same place that was labeled earlier

in the tour. At the time of receiving the second label, drift

in the odometry led to significant error in the gym’s location

much like the baseline result (Fig. 9(a)). The algorithm imme-

diately corrects this error in the semantic graph by using the la-

bel distribution to propose loop closures at the gym and elevator

lobby, which would otherwise require searching a combinato-

rially large space. The resulting maximum likelihood map is

topologically and semantically consistent throughout and met-

rically consistent for most of the environment. The exception is

the courtyard, where only odometry measurements were avail-

able, causing drift in the pose estimate. Attesting to the model’s
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Figure 9: Maximum likelihood semantic graphs for the small tour. In contrast to (a) the baseline algorithm, our method incorpo-

rates key loop closures based upon (b) egocentric and (c) allocentric descriptions that result in metric, topological, and semantic

maps that are noticeably more accurate. The dashed line denotes the approximate ground truth trajectory. The inset presents a

view of the semantic and topological maps near the gym region.
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validity, the ground truth topology receives 92.7% of the prob-

ability mass and, furthermore, the top four particles are each

consistent with the ground truth.

5.1.3 Allocentric Language

Next, we consider the algorithm’s performance when the fig-

ure and landmark regions that the user’s descriptions reference

can no longer be assumed to be the robot’s current position.

Specifically, we replaced the initial labeling of the gym with an

indirect reference of the form “The gym is down the hallway,”

with the hallway labeled through egocentric language. The lan-

guage inputs are otherwise identical to those employed for the

egocentric language scenario and the baseline evaluation.

(a) Egocentric language (b) Allocentric language

Figure 11: Pie charts that compare the semantic map label dis-

tributions that result from (a) the egocentric language descrip-

tion “This is the gym” with that of (b) the allocentric language

description “The gym is down the hall.”

(a) Lobby (b) Cafeteria

Figure 12: Inset views of the (a) lobby and (b) cafeteria portions

of the semantic graph for the large tour experiment (Fig. 10(c)).

The algorithm incorporates allocentric language into the se-

mantic map using the G3 framework as described in Section 4.3

20 m

Gym
Elevator lobby
Courtyard

Cafeteria
Hallway
Amphitheater

Entrance
Lobby

Figure 13: Maximum likelihood map for the autonomous tour.

to infer the nodes in the graph that constitute the figure (i.e., the

“gym”) and the landmark (i.e., the “hallway”). This grounding

attributes a non-zero likelihood to all nodes that exhibit the re-

lation of being “down” from the nodes identified as being the

“hallway.” Figure 11 compares the label distributions that re-

sult from this grounding with those from egocentric language.

The algorithm attributes the “gym” label to multiple nodes in

the semantic graph as a result of the ambiguity in the figure’s

location as well as the G3 model, which yields high likelihoods

for several paths as being “down from” the landmark nodes.

When the user later labels the region after returning from the

courtyard, the algorithm proposes a loop closure despite sig-

nificant drift in the estimate for the robot’s pose. As with the

egocentric language scenario, this results in a semantic graph

for the environment that is accurate topologically, semantically,

and metrically (Fig. 9(c)).

5.2 Indoor/Outdoor: Large Tour

The second experiment (Fig. 10) considers an extended tour

of MIT’s Stata Center as well as two neighboring buildings and

their shared courtyard. In order to evaluate the algorithm’s abil-

ity to deal with ambiguity in the labels, the robot visited several

places with the same semantic attributes (e.g., elevator lobbies,

entrances, and cafeterias) and visited some places more than

once (e.g., one cafeteria and the amphitheater). We accompa-

nied the tour with 20 descriptions of the environment that took

the form of both egocentric and allocentric language.

As with the smaller tour, we compare our method against the

baseline semantic mapping algorithm. Figure 10(b) presents

the baseline estimate for the environment’s semantic graph.

Without incorporating allocentric language or allowing seman-

tic information to influence the topological and metric layers,

the resulting semantic graph exhibits significant errors in the

metric map, an incorrect topology, and aliasing of the labeled

places that the robot revisited. In contrast, Figure 10(c) demon-

strates that, by using semantic information to propose con-
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1: "The entrance is near the cafeteria"

2: "The lobby is through the entrance"

3: "The cafeteria is near the entrance"
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(a) Ground Truth
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(b) No language constraints
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(c) Allocentric language

Figure 10: Maximum likelihood semantic graphs for (a) the large tour experiment. (b) The result of the baseline algorithm with

letter pairs that indicate map components that correspond to the same environment region. (c) The result produced by our method

based upon allocentric language descriptions, with an indication of the loop closures recognized based upon the semantic map.
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straints in the topology, our algorithm yields correct topolog-

ical and semantic maps, and metric maps with notably less er-

ror. Figure 12 presents the inset views for the lobby and second

cafeteria portion of the map that were labeled with allocentric

descriptions. The resulting model assigns 93.5% of the prob-

ability mass to the ground truth topology, with each of the top

five particles being consistent with ground truth.

The results highlight the ability of our method to tolerate am-

biguities in the labels assigned to different regions of the envi-

ronment. This is a direct consequence of the use of semantic

information, which allows the algorithm to significantly reduce

the number of candidate loop closures that is otherwise combi-

natorial in the size of the map. This enables the particle filter to

efficiently model the distribution over graphs. While some par-

ticles may propose invalid loop closures due to ambiguity in the

labels, the algorithm is able to recover with a manageable num-

ber of particles. In this experiment, the algorithm employed 10

particles to approximate the distribution over topologies. The

final topology contained 213 nodes.

For utterances with allocentric language, our algorithm was

able to generate reasonable groundings for the figure and land-

mark locations. However, due to the simplistic way in which

we define regions, groundings for “the lobby” were not entirely

accurate due to the sensitivity to the local metric structure of

the environment when grounding paths that go “through the en-

trance.” We discuss this in more detail in Section 6.1.

5.3 Indoor/Outdoor: Autonomous Tour

In the third experiment, the robot autonomously followed a user

during a narrated tour along a route similar to that of the first ex-

periment [16]. Using a headset microphone, the user provided

spoken descriptions of the environment that included ambigu-

ous references to regions with the same label (e.g., elevator lob-

bies, entrances). The utterances included both egocentric and

allocentric descriptions of the environment. The speech was

recorded as it was uttered in synchronization with the LIDAR

and odometry data. The audio was later manually transcribed

into text that was inserted alongside the sensor observations ac-

cording to the time that the audio was initially recorded. In this

manner, the algorithm handled the text, LIDAR, and odome-

try data as they were received, emulating a scenario in which a

speech recognizer was used to parse the user’s utterances dur-

ing the tour.

The algorithm operated in this fashion using 10 particles to

approximate the distribution over the space of topologies. The

final topology contained 135 nodes. Figure 13 presents the

maximum likelihood semantic graph that our algorithm esti-

mates. By incorporating information that the descriptions con-

vey, the algorithm recognizes key loop closures that result in

accurate semantic maps. The resulting model assigns 82.9% of

the probability mass to the ground truth topology, with each of

the top nine particles being consistent with ground truth.

5.4 Stata Center Lab Tour

We consider an additional experiment in which the robot was

driven throughout different labs on the third floor of MIT’s

Entrance
Elevator lobby
Cafeteria

Conference Room
Hallway
Office
Lab
Lobby

11

22

3`

"The elevator 
lobby is down 
the hallway"

"The lobby is 
down the 
hallway"

"The lab is 
down the 
hallway"

Figure 14: Maximum likelihood semantic graph inferred from

the narrated tour of the Stata Center lab.

Stata Center. The narrated tour involved both egocentric and

allocentric descriptions of the environment, the latter of which

were anticipatory in nature with the user referencing locations

in the environment that the robot had not yet visited. Figure 14

presents the maximum likelihood semantic map that our frame-

work learned from the narrated tour using a total of 10 particles.

The final topology contained 71 nodes. The system correctly

grounds each of the allocentric descriptions despite the ambi-

guity that exists in the landmark and figure locations, as we

discuss in more detail shortly.

5.5 MIT 32-36-38 Tour

In order to verify the validity of the algorithm in different en-

vironments, we consider an extended tour of three connected
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Figure 15: Maximum likelihood semantic graph for the MIT

32-36-38 tour. The allocentric descriptions are shown with

numbers indicating their order.
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Hallway
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Hallway

3
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(c)

Hallway

4
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Figure 16: Inset views for the MIT 32-36-38 tour (Fig. 15) that

demonstrate the way in which the algorithm learns from allo-

centric descriptions (a) “The lobby is down the hallway” (an-

ticipatory, location 1) and “The elevator lobby is down the hall-

way” (location 2), (b) “The lobby is down the hallway” (an-

ticipatory), (c) “The office is near the hallway” (anticipatory,

location 3) and “The elevator lobby is down the hallway” (lo-

cation 5), and (d) “The lab is down the hallway” (anticipatory).

The dashed boxes denote the ground-truth boundaries for the

regions.

buildings on the MIT campus (buildings 32, 36, and 38). The

robotic wheelchair was manually driven throughout the office-

like environment, visiting offices, elevator lobbies, conference

rooms, and lab spaces whose appearance and structure var-

ied between each building. Text was added at several points

throughout the tour to emulate recognized natural language de-

scriptions. We provided both egocentric and allocentric utter-

ances, including several instances of anticipatory descriptions

when the robot had not yet visited the referenced portions of

the environment (both the figure and the referent). We ran

our framework with 10 particles to model the distribution over

topologies. The final topology contained 148 nodes. Figure 15

denotes the maximum likelihood semantic graph that resulted

from our algorithm. The text indicates the allocentric descrip-

tions that were given to the system in the numbered order.
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Figure 17: The maximum likelihood semantic map that results from a tour of MIT’s Killian Court.

5.6 Killian Court Tour

The final experiment considers a tour of Killian Court, a set of

interconnected buildings on MIT’s campus, which has served

as a benchmark environment for previous mapping algorithms.

We consider this environment in an effort to see how the al-

gorithm performs when tasked with mapping larger spaces that

involve significant geometric and semantic aliasing. Specifi-

cally, this part of the MIT campus consists primarily of several

long hallways with nearly identical structure, including the so-

called “infinite corridor” that serves as one of the main hallways

at MIT.

Starting in the north-east corner (Fig. 17), we gave the robot

a tour along the infinite corridor that spans from left to right in

the Figure. After entering one of the main lobbies (upper-left),

we proceeded through buildings 5 and 3 and then exited into

the courtyard. We took a U-shaped path outside, entered build-

ing 4, and then traveled through buildings 6, 6C, and 14 before

returning to the start. We provided both egocentric and allocen-

tric language descriptions at different points during the tour to

assign labels to and spatial relations between different regions.

These descriptions took the form of text that was interjected in

synchronization with the LIDAR and odometry streams as the

data was post-processed.

The algorithm learned a distribution over semantic maps

from the stream of descriptions, odometry, and LIDAR data,

using 10 particles to hypothesize the different topologies. The

final topology contained 276 nodes. Figure 17 shows the result-

ing maximum likelihood semantic graph overlaid on an approx-

imately aligned map of the MIT campus. Qualitatively, the map

is metrically, topologically, and semantically accurate with the

exception of the map of building 14 where a glass hallway be-

Table 2: Average Delay in Adding Node

Dataset Average Standard

Delay (s) Deviation (s)

MIT 32-36-38 0.532 3.138

Killian Court Tour 0.682 2.726

Indoor/Outdoor Large Tour 2.186 4.670

tween buildings 2 and 14 forced the algorithm to use odometry

for the inter-pose constraints. As with the previous evaluations,

we ran our framework without language-based constraints to

emulate the current state-of-the-art in language-augmented se-

mantic mapping. While we omit the figure for space, we note

that the resulting map is significantly warped.

5.7 Computational Requirements

We analyze the computational cost of the algorithm by con-

sidering the delay between when a node is first proposed (i.e.,

based on distance traveled) and the time at which it is added

to the map. This measure reflects the overall time required of

the algorithm, since it will not add nodes until it has finished

incorporating the most recent description and proposed loop

closures. We consider the delay for the three longest datasets,

namely the indoor/outdoor large tour, the MIT 32-36-38 tour

and the Killian Court tour. Table 2 summarizes the perfor-

mance for each of these datasets. Note that the implementation

has not been optimized to run in real-time, and each particle is

currently processed sequentially (i.e., particle updates are not
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Table 3: Semantic Map Accuracy

Indoor/Outdoor Killian Court MIT 32-36-38 Stata Center

Large Tour Tour Tour Tour

Type Baseline SG Baseline SG SG SG

Cafeteria 20% 36% 23% 45% - -

Entrance 43% 46% 12% 47% - -

Elevator Lobby 46% 46% 49% 49% 34% 40%

Hallway 8% 8% 18% 19% 36% 30%

Lobby 8% 13% 34% 47% 29% 21%

Lab - - 0% 47% 42% 37%

Amphitheater 25% 53% - - - -

Courtyard 12% 47% - - - -

Office - - - - 53% 56%

Conference Room - - - - 51% 56%

Gym 33% 48% - - - -

parallelized). The variance in the delays is due to periods of

increased computation that correspond to instances when lan-

guage annotations are processed. This delay is dominated by

two components of the algorithm. The first is the time required

to ground allocentric descriptions using the G3 framework for

all particles. The second is the time taken to scan-match the

semantic-based loop closures that are subsequently proposed

between nodes with updated label distributions. Allocentric

language grounding requires computational effort that is linear

in the number of unique particles. Similarly, the scan-match

verification is linear in the number of nodes that are updated

with new label information, which is independent of the size of

the map. The computational requirements for verification are

dominated by a scan-match procedure that is exhaustive in its

search due to the potentially large error in the prior pose-to-pose

transform.

5.8 Semantic Accuracy

Table 3 outlines the accuracy of the resulting semantic maps for

four datasets, where we calculate the accuracy as follows. First,

we identify the regions for which language contributed to their

label distributions. We compute the ground truth label for each

of these regions and compute the cosine similarity between the

ground truth multinomial (assumed to have a likelihood of 1.0

for the true label) and that of the label distribution.

For the indoor/outdoor large tour and the Killian Court tour,

we also compared the results for the maps that did not propose

language edges. Since large segments of these maps were met-

rically and topologically inaccurate, we assigned a minimum

score for regions that were significantly inaccurate. In effect,

this corresponds to assigning these regions a uniform multino-

mial over labels. As can be seen for the first two datasets, the

use of our approach improves the semantic accuracy of a num-

ber of regions. This improvement stems both from the metric

and topological accuracy of the learned maps as well as the al-

gorithm’s ability to integrate allocentric language. In the MIT

32-36-38 and the Stata Center tours, we also achieve reasonable

accuracy for most categories. We do note that in case of allo-

centric language, some expressions can be ambiguous, either

due to the presence of multiple potential landmarks or due to the

ambiguity in the expression. For example, given the description

“The lobby is down the hallway,” there may be multiple regions

whose location is consistent with being “down” the hallway, of

which only one is the lobby. In these situations, each of these

regions will receive high likelihood of being the figure and the

label distributions for each will be updated accordingly. Ad-

ditionally, we find that the accuracy of the semantic maps is

sensitive to our choice for region decomposition. For exam-

ple, hallways score fairly low under our fixed-size segmenta-

tion, which can significantly underestimate their spatial extent.

We see these issues as inherent to our definition of regions that

would be diminished with a more sophisticated segmentation

strategy that takes into account local appearance [3, 36, 37, 14]

and semantic [29] properties of the environment.

6 Discussion

6.1 Learning from Allocentric, Anticipatory Language

A contribution of our work is the use of natural language de-

scriptions to produce consistent semantic maps from spatial re-

lations and labels inferred from language. The advantage of

this capability is that it allows robots to more efficiently ac-

quire human-centric maps of their environment. The challenge

to learning from these expressions is that their groundings are

ambiguous—the user may refer to regions that may be distant

from the robot and outside the field-of-view of its sensors. Ad-

ditionally, it may be that the descriptions are anticipatory, when

the robot has yet to visit the figure that the user is describing

or the landmark that they are referencing. Figure 18 depicts
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(a) Anticipatory Description Given (b) Landmark is Added (c) Figure is Grounded

Figure 18: A depiction of the process of learning from an anticipatory description. (a) The user describes the “lobby” as being

“down the hallway,” yet the hallway has not been labeled and there is no node for the elevator lobby in the topology. (b) The user

labels the current region as the “hallway,” providing the landmark location. (c) Once nodes are added that are consistent with the

description, the algorithm updates the labels. The green box indicates the actual location of the lobby.

the process of learning from an anticipatory description as part

of the Stata Center lab tour (Fig. 14). Figure 18(a) shows the

robot traversing a hallway when the user states that “The ele-

vator lobby is down the hallway.” At this point, the semantic

graph includes several nodes with a high likelihood of having

the label “hallway.” However, the robot has yet to visit the spe-

cific hallway that the person is using as the landmark and, as

a result, the semantic graph does not include nodes for this re-

gion. The graph also lacks nodes for the region that the user

refers to as the “elevator lobby.” The algorithm attempts to

ground the description using the language model as described

in Section 4.3, which yields a likelihood for each pair of nodes

as being the landmark and the figure.

This algorithm performs this grounding process for each par-

ticle, and updates those for which the likelihood of the top pair

is sufficiently high (0.2). In this example, the likelihood of the

candidate groundings for most of the particles is low and the al-

gorithm postpones language integration. As the tour proceeds

(Fig. 18(b)), the guide labels the robot’s position as being the

“hallway,” which updates the label distribution for the adjacent

node. The algorithm again attempts to ground the language,

this time using the newly added hallway nodes as the landmark.

However, paths that start at the pose from which the description

was first given and pass through the landmark to other nodes do

not resemble the learned model for the “down” relation. After

the robot and user continue and more nodes are added to the

topology (Fig. 18(c)), the framework again attempts to ground

the description, this time returning highly-confident estimates

for the locations of the landmark and the figure, per the induced

path. However, not all of the inferred locations are correct,

which is consistent with what we see with other allocentric ex-

pressions. In this case, the system assigns “elevator lobby” la-

bels to nodes that preceded the hallway as well as several nodes

beyond the true location of the lobby (green box). We attribute

this to the difficulty in dealing with frame-of-reference when

grounding language as well as to using features for the “down”

relation that attempt to accommodate a wide range of scales

(i.e. the length of hallways differs significantly across the envi-

ronments that we consider).

In an effort to better understand the accuracy with which the

algorithm learns from environment descriptions, we consider

regions whose semantic properties were inferred from allocen-

tric utterances. Figure 16 presents close-up views of the regions

that were labeled as part of the multi-building tour (Fig. 15).

The portion of the semantic graph shown in Figure 16(a) results

from two descriptions, “The lobby is down the hallway” and

“The elevator lobby is down the hallway,” which were uttered

at the locations indicated by the numbers “1” and “2,” respec-

tively. The former utterance was anticipatory as the robot had

not yet visited the lobby area when the description was given.

Nonetheless, the framework successfully labels that region of

the environment when the robot later visits it, without any alias-

ing effects. However, grounding the second utterance results in

high likelihoods associated with some nodes that are not actu-

ally in the elevator lobby, causing the label to “bleed” into other

areas. We attribute this to the ambiguity that results from not

reasoning over frame-of-reference without which the nodes are

consistent with being “down” the hallway. The performance

improves for the anticipatory utterance in Figure 16(d) where

the algorithm waits to infer the location of the lab until it is vis-

ited. We see similar effects for the descriptions in Figure 16(c)

where the system correctly infers the location of another eleva-

tor lobby but attributes the “office” label to nodes that are actu-

ally in a hallway. This results from a simple set of features that

encode the “near” relation based upon distance. Additionally,

our algorithm uses a fixed separation to define regions and does

not reason over their geometry (e.g., the shape of hallways is

typically distinct from that of offices.) Meanwhile, Figure 12(a)

depicts the semantic information inferred for the utterance “The

lobby is through the entrance” from the large indoor/outdoor

tour where we see that the algorithm correctly grounds the lo-

cation of the lobby without any aliasing.

6.2 Navigation

A consequence of maintaining a joint distribution over each

layer of the semantic graph is that the framework is able to use

knowledge of the semantic properties of the environment to up-

date the topology and metric map. This improves the accuracy

of the resulting semantic graph and, in turn, facilitates naviga-

tion. To better understand the effects on navigation efficiency,

we consider the task of finding the optimal path between two
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Table 4: Average Length of the Optimal Path

Experiment Baseline SG

Small Indoor/Outdoor 41.59 m 23.50 m

Large Indoor/Outdoor 68.14 m 35.52 m

Autonomous 43.49 m 25.70 m

Killian Court 63.08 m 40.76 m

nodes in the topology, as if the robot were asked to use the se-

mantic graph to navigate from its current location to a named

region in the environment.

We examine the semantic graphs that we learned with and

without language-based constraints for the two indoor/outdoor

scenarios, the autonomous tour, and the Killian Court dataset.

For each, we randomly picked 1000 pairs of start and goal

nodes in the graph and used a graph search algorithm to find

the shortest path through the topology, with equal cost for each

edge in the graph. The same node pairs were used for each

of the semantic graphs for a given environment. Table 4 com-

pares the average optimal path length through the graphs that

result from our method and the baseline, which does not infer

constraints from the descriptions. The graphs that we estimate

when language influences only the semantic layer give rise to

optimal paths that are noticeably longer than the paths reflected

in the graphs that we learn by jointly estimating the semantic

graph. This difference stems from the fact that our represen-

tation provides semantic-based edges that allow the planner to

identify shortcuts in the topology that are otherwise not sug-

gested by the baseline map, which mimics the current state-of-

the-art in language-augmented semantic mapping.

6.3 Possibility of aliasing with language

When proposing edges to the topology based upon the label

distributions, we perform exhaustive scan-matching to check

the validity of each proposed loop closure. While this helps

to filter out the large majority of erroneous edges, the match-

ing may yield false positives in regions that are perceptually

aliased (Fig. 19). However, since the hypothesis space of po-

tential language edges is large, the likelihood that all particles

sample invalid edges is low, confining such occurrences to a

small subset of particles. Empirically, we have found that the

weight of these particles is quickly reduced as their metric maps

are inconsistent with subsequent sensor measurements. These

particles then tend to be removed during resampling.

7 Conclusion

We have described an algorithm that estimates metrically accu-

rate semantic maps from a user’s natural language descriptions.

The novelty lies in learning the joint distribution over the met-

ric, topological, and semantic properties of the environment,

which enables the method to fuse the robot’s sensor stream with

knowledge inferred from the descriptions. We have presented

results from several experimental evaluations that demonstrate

the algorithm’s ability to infer accurate metric, topological, and

semantic maps. However, there are several limitations to our

current approach.

A known issue with sample-based methods such as ours is

the problem of particle depletion [7] whereby a majority of

samples evolve to support regions of the distribution with neg-

ligible likelihood. This results in a poor approximation to the

target distribution and can cause the filter to diverge. Resam-

pling the particles based upon a measure of the variance in their

weights, as we do, reduces the likelihood of particle depletion.

In practice, we have not found depletion to occur, as suggested

by the results. We partially attribute this to using the distri-

bution over the semantic map as part of the proposal, which

reduces the frequency of erroneous samples. Nonetheless, par-

ticle depletion may occur and can be mitigated by adding addi-

tional particles to hypothesize new topologies in the event that

the distribution appears to misrepresent the target distribution,

for example, as suggested by the particle weights [10].

Our method is capable of inferring semantic information

only from the user’s descriptions. This means that the algorithm

can only model a region’s label if it was specifically referenced

by the user. Further, it precludes the method from incorporat-

ing allocentric descriptions for which the user never labels the

landmark. For example, the algorithm can not learn from the

description “The gym is down the hall” unless the user identi-

fies the location of the hallway. Our recent work [14] allevi-

ates this requirement by also using geometric- and appearance-

based scene classifiers to infer semantic information from LI-

DAR and vision.

An additional limitation of the algorithm is that it treats a

region’s colloquial name (e.g., “Carrie’s office”) and its type

(“office”) jointly as being labels. Thus, any subsequent refer-

ence to a labeled region is required to use the label that was

originally given. We have recently extended our representation

to model the type-name hierarchy for each region, where we

infer the type from the aforementioned scene classifiers [14].

The algorithm partions the environment by instantiating re-

gions at a fixed distance apart as the robot travels. This results

in regions that are not semantically meaningful, with multiple

regions being used to model the same area. Consequently, the

algorithm may ground language to the wrong node in the topol-

ogy, either by inferring an incorrect landmark or by diffusing la-

bels across multiple nodes. Our latest work [14] employs spec-

tral clustering to segment the environment into regions based

upon the consistency of their local LIDAR scans, yielding re-

gions that are more meaningful.

The information that we are currently able to infer from a

user’s descriptions is limited to a region’s colloquial name and

its relation to another region in the environment. It does not

support a user’s ability to convey general properties of the en-

vironment, such as “You can find computers in offices,” or

“nurses’ stations tend to be located near elevator lobbies.”

Our current framework was designed to learn a semantic map

of an environment from an initial tour, with the idea that this

map can then be used for localization, navigation, and ground-

ing natural language commands during long term operation. As

with most pose graph approaches to SLAM, our algorithm may
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(a) Incorrect loop closure added

(b) No incorrect loop closures

Figure 19: A demonstration of the effects of perceptual aliasing for the three building tour (Fig. 15) in which (a) the algorithm

accepts an invalid edge between different regions that have similar geometry for one particle. However, the majority of the

particles did not propose erroneous edges and the weight of this map soon decreases to 1/10th of that of the correct particle and

is removed upon resampling.

add regions that duplicate the same part of the environment,

building maps that grow with time rather than space. This is

particularly undesirable when the robot operates for extended

periods of time within the same environment. We have recently

updated our representation so as to reuse existing nodes in the

graph, updating their metric, topological, and semantic proper-

ties, rather than adding new redundant nodes [14].

In summary, we described an approach to learning human-

centric maps of an environment from user-provided natural lan-

guage descriptions. The novelty lies in fusing high-level infor-

mation conveyed by a user’s speech with low-level observations

from traditional sensors. By jointly estimating the environ-

ment’s metric, topological, and semantic structure, we demon-

strated that the algorithm yields accurate representations of its

environment.
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T. Massakowski, and R. J. Ross, “Specification of an on-

tology for route graphs,” Spatial Cognition IV: Reasoning,

Action, Interaction, vol. 3343, pp. 390–412, 2005.

[23] B. Kuipers, “The spatial semantic hierarchy,” Artificial In-

telligence, vol. 119, no. 1, pp. 191–233, 2000.

[24] B. Kuipers, J. Modayil, P. Beeson, and M. MacMahon,

“Local metrical and global topological maps in the Hy-

brid Spatial Semantic Hierarchy,” in Proceedings of the

IEEE International Conference on Robotics and Automa-

tion (ICRA), April 2004, pp. 4845–4851.

[25] J. Leonard and P. Newman, “Consistent, convergent, and

constant-time SLAM,” in Proceedings of the Interna-

tional Joint Conference on Artificial Intelligence (IJCAI),

Acapulco, Mexico, August 2003, pp. 1143–1150.

[26] J. Liu, “Metropolized independent sampling with com-

parisons to rejection sampling and importance sampling,”

Statistics and Computing, vol. 6, pp. 113–119, 1996.

[27] K. Lynch, The Image of the City. MIT Press, 1960.

[28] M. MacMahon, B. Stankiewicz, and B. Kuipers, “Walk

the talk: Connecting language, knowledge, and action in

route instructions,” in Proceedings of the National Con-

ference on Artificial Intelligence (AAAI), Boston, MA,

July 2006, pp. 1475–1482.

[29] O. Martı́nez Mozos, R. Triebel, P. Jensfelt, A. Rottmann,

and W. Burgard, “Supervised semantic labeling of places

using information extracted from sensor data,” Robotics

and Autonomous Systems, vol. 55, no. 5, pp. 391–402,

May 2007.

[30] C. Matuszek, E. Herbst, L. Zettlemoyer, and D. Fox,

“Learning to parse natural language commands to a robot

control system,” in Proceedings of the International Sym-

posium on Experimental Robotics (ISER), Québec City,
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