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Abst rac t .  The paper presents a framework for extracting low level fea- 

tures. Its main goal is to explicitely exploit the information content of the 

image as far as possible. This leads to new techniques for deriving image 
parameters, to either the elimination or the elucidation of "buttons", 

like thresholds, and to interpretable quality measures for the results, 
which may be used in subsequent steps. Feature extraction is based on 
local statistics of the image function. Methods are available for blind 
estimation of a signal dependent noise variance, for feature preserving 
restoration, for feature detection and classification, and for the location 

of general edges and points. Their favorable scale space properties are 
discussed. 
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1 I n t r o d u c t i o n  

Feature extraction is the first crucial step of all image analysis procedures which 

aim at symbolic processing of the image content. Basic features of nearly all 

symbolic, i. e. non-iconic image descriptions, are points, edges and regions. The 

research in feature extraction is rich and dozens of procedures have been pro- 

posed for the extraction of these feature types. However, no coherent theory 

seems to be available suited to extract features of all types simultaneously. The 

lack of a theoretical basis for feature extraction was the stimulus to search for the 

framework documented in this paper. It had to fulfill the following requirements: 

1. Since feature extraction is meant to support image interpretation, modelling 

needs to start  in object space, from which via the sensing model an image 

model can be derived. This excludes all models starting at the grid structure 
of the digital image. 

2. Feature extraction has to treat the basic features simultaneously in order to 

avoid the necessity of developing conflict resolution strategies. 

3. For self-diagnosis, only models including stochastic components for describ- 

ing the image content are suitable. This, at the same time, allows to reduce 

the number of "buttons" controlling the result and to retain those with a 
clear interpretation. 

4. The features should show "nice behaviour" over scale space (cf. [24]) and 

should have small bias supporting coarse-to-fine strategies. Therefore, only 

nonlinear filters seem to be suited for feature extraction (cf. [1]). 
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The proposed framework intentionally restricts to low level features. No at- 

tempt is made to include specific scene knowledge. The following four steps for 

low-level feature extraction are discussed: 1.) estimation of noise characteristics, 

2.) information preserving restoration 3.) feature detection and 4.) feature loca- 

tion. Unification of the steps is obtained by analysing the local autocovariance 

function or - equivalently - the local power spectrum. This technique has re- 

ceived a great deal of attention for more than 15 years, due to its versability 
in representing local image properties both using geometric and statistical tools 

(ef. [10], [17], [16], [2], [14], [23], [18]). 

The novelty of the proposed approach lies in the integration and - as a by 

product - in the simplification of existing techniques for feature extraction and 

the provision of statistically founded evaluation measures for making the quality 

of the individual steps transparent and objective. 

2 I m a g e  M o d e l  

Describing image analysis, with feature extraction being a part of it, require~s 

the setting up of models of the scene to be recovered, of the sensing process used 

for observation, of the image as information memory, and of the tools used for 

inverting the imaging process, yielding an estimated or inferred description of 

the scene (cf. [12], [20]). The image model is derived in three steps. 

T h e  Idea l  C o n t i n u o u s  Image :  We first assume the camera to be modelled 

as a pinhole camera, the lighting to be diffuse and the light sensitive image area 

to be of unlimited resolution. 
The image area Z therefore consists of the ideal or true homogeneous segments 

,~i, where the intensity function f (x ,  y) or some locally computable flmction of ] 

is assumed to be pieeewise smooth. The segments are assumed to show pieeewise 
smooth boundary lines s Points ~ are either boundary points of high curvature 

or junctions (cf. Fig. la). A classification of all image points (x, y) is thus possible: 

53 5~ ~ 

Z = 8 + ~ + ~ 5 =  Usi§ UP~ (1) 
i=1 j=-I 1:=1 

T h e  R e a l  C o n t i n u o u s  Image :  Assuming a real objective, more general 

lighting condition and a light sensitive image area of limited resolution, in gen- 

eral. leads to, though continuous, blurred images; the btur generally being non- 
homogenous and anisotropic. Due to the blurring defining a possibly local and 

anisotropic scale ~ l (x ,  y) we obtain segment-regions 8i, often referred to as blobs, 
line-regions s and point-regions Pk with a partitioning similar to eq. (1) (cf. 

Fig. lb). As far as they are observable, the true points "]hk and lines ~j are 

assumed to lie in the point- and line-regions. 

T h e  O b s e r v e d  Image :  The observed image is a sampled and noisy version 

of the real image, now referring to a row-columm grid (r, e): g(r, c) = f(r, c) + 
n(r, c). The noise is at least caused by the Poisson-process of the photon flux, 
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Fig. 1. shows the structure of the ideal image (a), with points, fines (edges), and 
segments as basic features and of the real image (b) containing point-, line- and seg- 

ment-type regions. (c) shows the classification tree for image features. 

Pa 

by the electronic noise of the camera and - in case g is rounded to integers - 

by the rounding errors. For modelling purposes an approximation of n(r, c) by 

a Gaussian distribution seems to be sufficient. The variance in general depends 

on the signal and in case of no over exposition can be assumed to be linearily 

dependent on f ,  thus cry(r, c) = a + bf(r, c). 

The task of feature extraction is to recover the position of the points and 

lines and the mutual relations between all features in order to obtain a relational 

description in the sense of a feature adjacency graph (cf. [9]) used for further 

processing steps. 

3 F e a t u r e  E x t r a c t i o n  

3.1 Local Image Characteristics 

We use measures for locally characterizing the image: the average squared gra- 

dient and the regularity of the intensity function with respect to junctions and 

circular symmetric features (cf. [8]). 

T h e  A v e r a g e  S q u a r e d  G r a d i e n t :  With the gradient Vg = (g~,gy)~ 
obtain the squared gradient ['g as dyadic product 

rg = vgvg T = ( g~ g~g~ 
) 

We 

(2) 

The rotationally symmetric Gaussian function with centre o and standard devi- 

ation a is denoted by G~(x, y) = Go(x) * Go(y). This yields the average squared 
gradient image 

y) = Go �9 r g =  (a) 

The three essential elements of ~ g  can be derived by three convolutions. 

Thus we have to distinguish two scales: 
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the natural scale (Q, which is used to describe the blurring process (cf. above) 

or to generate the classical, 'natural '  pyramids Go 1 �9 g. 

- the artificial scale ~r "- a2, which is used to integrate the nonlinear function 

Pg of g [15] [19] leading to the notion of an 'artificial' image pyramid Go~*Fg. 

R e m a r k :  The power spectrum Pg(u) can be characterized by the effective 

bandwidth Bg - f uuTPg(u)du/f Pg(u)du which, due to the moment theorem 

[22] is closely related to the average squared gradient by Bg = s with 

2 We will use this relation for estimating the natural the constant variance (rg. 

local scale. * 

Obviously the average squared gradient grasps essential parts of the statistics 

of the image function and - assuming local stationarity - may be estimated easily 

from (2) and (3). Oiagonalization Fgg = T A g T  T = +~l(g)tlt~ + ~(g) t2 t  T leads 

to an intuitive description of Fg with three parameters, each having very specific 

interpretations going beyond the ones discussed in [8], [5], and [13] and being 

the basis for the proposed framework: 

1. The trace h "- tr-~g = )~l(g) + ~2(g) = II Ug II 2 - '  a~, = ~r ~ + o 2 yields 
�9 g,~ 9y 

the total energy of the image function at (x, y), the edge busyness. We will 

use trI~g for measuring the homogeneity of segment-type features. It is ap- 

proximately X2m-distribnted, where m is the number of pixels involved in 

the integration, allowing to fix a threshold solely based on some prespec- 

ified significance level and the noise variance. Assuming the image model 

g = f + n  with white noise, cry, may be split into a signal and a noise compo- 

nent c~, = o-~, + a~,. This will be the basis for estimating the noise variance 

and for determining regularization factors during restoration. 

2. The ratio v = ~2/)~1 of the eigenvalues yields the degree of orientation or of 

an isotropy. If )~2 = 0, we have anisotropic texture or straight general edges 

with arbitrary cross-sections. Using the local approximation z = au + by 2 of 

a curved edge, one can easily show that  the square n2 of the curvature of 

the isophote is given [7]: tr 2 = v/~r 2, (I 2b ]<} a D. We will therefore use n 2 

for measuring the smoothness of line-type features. 

3. The largest eigenvalue is an estimate for the local gradient of the texture or 

the edge. Due to the squaring, the phase information is lost [16]. The variance 

of this orientation is proportional to ~2/()~1 - ~2)~ yielding an additional 

interpretation and showing that the variance of orientation is large for ~1 

R e g u l a r i t y  Measu re s :  Junctions and circular symmetric features can be 

distinguished by analysing the local gradient field. 

We use the weighted sums of the squared distances d(p, q) and d• q) of 

the reference point p to the line passing through q in the direction parallel and 

orthogonal to Vyg(q) resp. (cf. Fig. 2 a, b), where the weights are the squared 

gradient magnitude and the window is given by the Gaussian Ga(p). 
The regularity measure for junctions is given by 

[ f d2(P, q) I] Vg(q) [I 2 Go(p - q)dq = tr{IV(p) * [ppTGq(p)]} (4) S(p, 0) 
J y 
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Fig. 2. relation between p and a feature at q, the degree of fit of g(x, y) at p wrt. a 
junction (a), circular symmetric feature (b). 

Vg(q) q(~ 

D 

circular feature'~ Vg• 

for corners or junctions. S • (p, c~) is obtained by replacing d by d • 

Both types are unified by BIGUN [2] showing them to be special spiral type 

features. Whereas BIGUN USeS the regularity measures for classifying pixeIs, we 

will also use them for locating features. S and S • correspond to the keypoint 

map/~t in [23]). They, however, are simpler and - what is essential - again allow 

statistical testing, as they are independent and approximately x~-distributed, 

with m being the number of pixels involved (cf. [5]). 

A n  I m p o r t a n t  Link:  The measures F--gg, ,S' and S • have been independently 

motivated. However, they are not only loosely coupled by having the three ele- 

2 of the squared gradient Fg in common. Much more, they ments g~ , g=gy and gy 

are linked by a very important relation, namely by the covariance matrix Cpp 

of the estimated feature location/~ (cf. [8]). 

Assuming a fixed position P0 of the window minimizing Sp0 (p, or) = f f ( p  - 
q)TUg(q)XygT(q)(p -- q)G~(p o - q)dq with respect to p we obtain the estimate 

p(cr) = ( f  f Fg(p)Ga(po - p ) d p ) - l f  f Fg(p)G~(po-p)pdp. With (3)this  can 

be written as lb(a) = (F~g)-lr~g.p.  With the estimated variance factor ~r~ = 

S(p, cr)/(m - 2), assuming m pixels being used, the covariance matrix of the 

estimated position is given by 

C~p(~) = S(p, ~) 
m - 2 ' ( r ~ ) - i  ( 5 )  

The regularity measure S(/5, cr) = S(p, cr)--~T(~7) Fag ~(~7) at lb is reduced by the 

bias ~(cr) = /~ (c~) -p  weighted with ~ g .  Thus the average squared gradient ~ g  

and the regularity measure S are needed for determining the covari~nce of the 

location of a junction point. A similar reasoning holds for circular symmetric 

features, e.g.  isolated points, replacing S by S • and /" = Vg~YTg by ~ = 

~7•177 The weight of lb, being proportional to the inverse of (5), equals F~g, 
motivating the weight tr ig  = []Vgl[ 2 in (4). 

We are now prepared to discuss the four steps of feature extraction. 

3.2 S t e p  1: E s t i m a t i o n  of  Noise  C h a r a c t e r i s t i c s  

The noise characteristics are decisive for thresholding. Thresholding always is 
performing a hypothesis test of some kind. Therefore, thresholds should depend 
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on the distribution of the test statistic and the significance level. Whereas the 

distribution of the test statistic can be derived from the noise characteristics, 

the significance level may be fixed for all tests and/or be related to some cost 

function making the choice of thresholds a transparent operation. 

We have developed a blind estimation scheme for the case of a linear increase 
2 of the noise variance with the signal ~r n = a + b f  (cf. [3]), as real images show 

a significant linear portion in the noise variance. It is based on the ability to 

separate signal and noise in the distribution of g2 + gy2 (eft also [25]). The proce- 

dure also gives quality measures for these estimates, revealing them to be quite 

accurate, (in general < 10%) which is consistent with the simulation results in 

[21] and fully sufficient. 

3,3 Step 2: Information Preserving Restoration 

Restoration in general aims at recovering the original signal f from g, undoing 

the effects of blur and noise. This requires the estimation of the noise character- 

istics (cf. step 1), of the possibly local scale and of the image smoothness. We 

first discuss how to automatically estimate the image smoothness, assuming the 

local scale to be known, estimated (cf. below) or negligible. 

We want to apply an adaptive Wiener filter which exploits the local statistics 

of the image function referring to the image model. The homogeneity of the image 

function g is measured by the local variance of the gradient. As the gradient 

varies in direction, we use the diagonalization o f / ' g  which can be written as 

/'g V f +  u u r + r  + (a~ + o.~2)t2t2. The eigenvalues of ~ can = 2 r 

be split into the variances o.~ and cr~ of the slopes in the principle directions 1 

2 of the first derivative and 2 and the corresponding (equal) variances c ~2 and o.,~ 

- -  2 is known. of the noise, resp. allowing to estimate o .2 i = 1 2 f rom/ 'g ,  in case o.~ 

We can now restore the image by optimizing the energy fimction which explicitely 

reflects the image model, especially E(Vf)  = 0: 

?(r,c)) 
F ~ C  

( 6 )  

f i ( r ,  e), i = 1, 2 are the derivatives of the restored image in the local principle 

directions 1 and 2. As all standard deviations can be estimated from the data 

no tuning of  parameters is necessary. The procedure can be extended to second 

derivatives, thus a more general image model [26], and to more general surfaces 

[27]. 
The selection of a proper possibly tensor valued scale ~71 can also be based 

on the local image statistics [6] [19]. Approximating the local power spectrum by 
2 - - - 1  

a Gaussian, one can show 271 = ~%/~g (cf. the remark above). Using a small 
- -  9 

integration scale for /'g and a large integration scale for ~ ,  reduces bias and 

gathers the image contrast resp. 



389 

3.4 Step 3: Feature D e t e c t i o n  

The classification of all image pixels into the three classes can be interpreted as 

feature detection in the sense that only the existence and approximate location 

of the features is of primary concern. The segmentation of the image area (cf. 

Fig. lc) leads to a ternary image whose connected components give initial lim- 

itation of the search space and - in case of point- and line-regions - steer the 

location procedure. Moreover, a classification of the point- and line-regions can 

be performed. 

Given the discrete version L of the average squared gradient F~g and the 

regularity functions S and S • Since the covariance of an estimated point is 

D(p) cx S .  L -1 or D(p) c< S • . L •  the 2 • 2-matrix L and L • also have to 

be checked for size and form using the eigenvalues hl common to L and L • . 

D e t e c t i n g  Reg ions :  The procedure starts with the classification of pixels 

into homogeneous and nonhomogeneous ones by investigating L - t r L  = L l l  + 

L22 = ~1 + ~2. If L < Th, the pixel will be considered as homogeneous. 

Approximating the ~(~-distribution of h by a normal distribution which holds 

for windows larger than 5• the local threshold Th is given by Th(x) = c o n s t . .  

r (1 + z l - ~ / x / ~ )  where r is the local noise variance, const,  a factor 

depending on the convolution kernels for determining L,  e. g. 3/8 when using 

the Sobel-operator, m the number of pixels involved during integrations with G~ 

and Zl-~ the a-quantile of the normal distribution. The threshold only holds for 

unfiltered images. Otherwise the reduction in noise variance has to be taken into 

account, which for a Gaussian with ~rl leads to a reduction factor of 1/(4zr~r2). 

Class i fy ing  P o i n t  a n d  E d g e  Reg ions :  The second step is to investigate 

the form of L or L • It is described by the ratio v = ~2/A1. If v = 1, thus 

;~2 = A1 then the form of x T L ~  is circular indicating isotropy of the gradient 

caused by a corner, an isolated point or by isotropic texture. It easily can be 

derived from the form factor q = 4detL/ tr2JL = 4 ~ 2 / ( ~  + ~2) 2 via v = 

$2/~1 = (1 - VT-2--~/(1 + lv/]--~- q). As it is related to the curvature n 2 of the 

isophote by n 2 = v / r  2 (cf. above), it is useful to distinguish points and smooth 

edges. The threshold T~ should reflect the minimum curvature nm/~ required for 

an image curve to contain a corner. T~ can be made independent on the used 

scale ~. If I]nl] > T~ = ~ , ~ ,  the pixel will be considered to be a candidate for a 

point pixel, otherwise for an edge pixel. 

3.5 S t e p  4: F e a t u r e  L o c a t i o n  

The precise location of the point- and line-type features requires generic models 

which in principle allow to estimate the real-valued position of points and edges 

of the ideal image using the appropriate local scale of the feature. We use the two 

models for points, namely junctions and circular symmetric features, optimizing, 

i. e. minimizing, the regularity measures S (4) and S • from section 3.1.2. We 

may also use S for the location of edges, as they can be seen to be special 

junctions with two edges of the same orientation meeting. 
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Fig,  3. shows the ternary images (b, d; labels from left to right) indicating point and 
edge regions for a line entering an area (a). The local minima of S (bright) within the 

point, edge and segment regions are given in (c) and (e). Observe the unbiasedness of 

the optima. The integration scale is a = 4 in (b, c). The centre of the line not the two 
edges is indicated in (c). In (d) and (e) with ~r = 0.7 the two edges are detected, which 

are 3 pixels apart 

Fig .  4. shows the test image from ROSENTHALER et al. with (.he ternary image. All 

junctions and corners have been detected. The integration scale is o- = 2. 

L o c a t i n g  P o i n t - T y p e  F e a t u r e s :  There  are two ways to es t imate  the loca- 

t ion of point  features: 

-- One-Step Procedure:  First  pixels are classified as junct ions  or circular fea- 

tures  (cf. below). Pixels where S or S • shows a local m i n i m u m  in a 8- 

ne ighborhood are considered to be po in t - type  pixels. This  yields approxi-  

ma te  integer posi t ions (r0, co). A subpixel  posit ion (r, c) may  be ob ta ined  by 

a parabol ic  fit to S or S • , resp. 

- Two-Step  Procedure  [8]: We first search for a relative m a x i m u m  of the  weight 

1/ t r (L  -1) in a 8-neighbourhood.  Independent on the classification this yields 

the op t ima l  window posit ion,  i. e. where the  highest  accuracy for the  locat ion 

is to be expected.  After  classification the subpixel  posi t ion then is es t imated  

yielding SOb , rr). For circular features  similar  relat ions hold, yielding lb z and 

S • (~,• ,,). 

C l a s s i f y i n g  J u n c t i o n s  a n d  C i r c u l a r  S y m m e t r i c  F e a t u r e s :  The  classi- 

fication of points  (cf. Fig. lc) can be based on the  rat io  sp  = S / S  • ~ Fm,m [5], 

which again  is Fisher d is t r ibuted in case of white noise and or thogonal  kernels 

for de termining the derivatives g~(r, c) and gr c). Two one-sided tests m a y  be 
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Fig. 5. shows the recovery of the image structure with the proposed procedure (labels 

from left to right). The pixels of the original image (a) are classified into point, line, and 
segment regions (b), corresponding to the structure of the image model. The extracted 

and located points and edges are shown in (c) and (d) Including the blobs in (e), we 
obtain a partial reconstruction of the true image. The mutual relation between all 
feature types can be derived from the exoskeleton (f). 

applied: 1. If 8p < Frn,rn,o~ then S << S• the point is hypothesized to be a 

junction. 2. If  sp > Fm,,~,l-~ then S >> S• the point is hypothesized to be 

an isolated point or, more generally, a circular symmetric  feature. Otherwise no 

decision is made. It is meaningful to hypothesize a junction in this case. The 

neighborhood of p may still show regularities, e. g. being a spiral type feature 

[2], or may be pure texture. 

L o c a t i n g  E d g e s :  Similarily the location of edges may be performed in two 

ways: 

- One-Step Procedure: Pixels where S shows a local min imum in the direction 

of the maximal  gradient are considered as edge pixel. The direction of the 

gradient may be taken from the largest eigenvector of L. The procedure is 

then similar to the one of CANNY [4]. 
- Two-Step Procedure: Again we first maximize 1/tr(L -1) in the direction of 

the maximal  gradient. This may be performed to subpixel accuracy already 

yielding acceptable results (cf. Fig. 5d), The integer position can then be 

used as the centre of a window within the opt imal  edge position is estimated 

finally. 

C l a s s i f y i n g  E d g e -  a n d  L i n e - t y p e  F e a t u r e s :  The test whether a linear 

feature is a line or an edge (cf. Fig. lc) can be based on a test comparing the 
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significance of the vectors ( ~ , ~ y )  and (-gxx,-gxy,gyy) of the smoothed first and 

second derivatives with ~ = G~ * z. The test statistic 

+ 

SL t -%a F2,3 (7) 
+ + 

is used for a two-sided test: if SL < F2,3,~ the feature is supposed to be a line, if 

SL > F2,34-~ the feature is supposed to be an edge, otherwise it is assumed to 

be oriented texture. The kernels for the derivatives are supposed to be mutual ly 

orthogonal. The standard deviations are to be derived by error propagation. 

In both cases, the two-step-procedure gives satisfying results, as the locally 

opt imal  window for estimation is used. The one step procedure, however, is 

theoretically more transparent  allowing to analyze the scale behaviour more 

easily. 

The principle and an example for the techniques are shown in figures 3 to 5. 

3.6 Scale Space Properties 

The favorable scale space properties of this approach have been found be HEIKKI- 

L~: [15]. Compared to zero crossings of V2G~lg no bias occurs at corners. In 

addition less spurious effects occur when er becomes large. 

Fig. 6. 

(a) shows effect of the scale for zero crossings of ~]2G~g at a corner compared with 

the minima of the regularity measure S. Points are indicated thick: No bias occurs 

(taken from HE~KKILX 1989). (b) shows the scale behaviour of the zero crossings of 

V2G,~g and of the regularity measure S for a 1D-bar edge. The scale dependent bias (ef. 

BERZINS 1984) of the zero crossings is clearly visible. The bias of the feature location 

with S is below 10 % of the width of the bar edge, here with a width of 2a = 6. 

The interference of multiple edges can be studied analytically. We only give 

the result of a cross-section through a line, i. e. a bar-edge of width 2a. Assuming 

the squared gradient g~(x) = 6(x§  convolution with x2G~(x), the one 

dimensional version of 4, yields S(x, ~) = (x + a)2G~(x + a) + (x - a)2Go(z~ - a). 
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At larger scales the procedure selects dark or light lines instead of edges (cf. Fig. 

3). The bifurcation takes place at that  scale where the second derivative S(x, o') 

vanishes at x = 0. This is at cr = 2 a / ( 5 - x / ~ )  ~ 1.5a (of. Fig. 6). The maximum 

bias is approximately at scale (r = 1.2a and has a size of approximately 10% of 

the width of the bar. At scales below cr = a/2 the bias is negligible. 

4 S u m m a r y  

We have sketched a framework for an integrated approach to low-level feature 

extraction. It covers all steps from the raw digital image to an initial symbolic 

image description. The main scope was to provide statistically sound measures 

for steering the individual steps and for evaluating the results. All analysis steps 

are explicitely motivated by the chosen image model. The feature extraction 

allows an efficient implementation and shows favorable scale space properties. 

The techniques reveal fruitful links to existing ones suggesting to exploit 

these relations for further extension of the concept. This especially holds for 

transferring the techniques to range images or truely 3D/volumetric images, 

which can be achieved by using the 3D-version of the smoothness measures [11]. 

The extension to multispectral/multichannel is straight forward by weighting 

the channel information according to the individual noise characteristics [3], 

The extension towards texture analysis may" use the quadratic filter approaches 

[18] to an advantage. As the goal was not to explicitely include high-level or 

scene knowledge, the integration with interpretation modules having top-down 

queries to the low-level processing needs to be investigated. 
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