
A Framework for Measuring and Evaluating
Program Source Code Quality

Hironori Washizaki1, Rieko Namiki2, Tomoyuki Fukuoka2, Yoko Harada2,
and Hiroyuki Watanabe2

1 National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan
washizaki@nii.ac.jp

2 Ogis-RI Co., Ltd., MS-Shibaura Bldg., 13-23, Shibaura 4, Minato-ku, Tokyo, Japan
{Namiki Rieko,fukuoka tomoyuki,Harada Yoko,Watanabe}@ogis-ri.co.jp

Abstract. The effect of the quality of program source code on the cost
of development and maintenance as well as on final system performance
has resulted in a demand for technology that can measure and evaluate
the quality with high precision. Many metrics have been proposed for
measuring quality, but none have been able to provide a comprehensive
evaluation, nor have they been used widely. We propose a practical frame-
work which achieves effective measurement and evaluation of source code
quality, solves many of the problems of earlier frameworks, and applies
to programs in the C programming language. The framework consists of
a comprehensive quality metrics suiteC a technique for normalization of
measured values, an aggregation tool which allows evaluation in arbitrary
module units from the component level up to whole systemsC a visual-
ization tool for the evaluation of resultsC a tool for deriving rating levels,
and a set of derived standard rating levels. By applying this framework
to a collection of embedded programs experimentally, we verified that
the framework can be used effectively to give quantitative evaluations of
reliability, maintainability, reusability and portability of source code.

1 Introduction

In today’s world, where value is controlled in every corner of society by software
systems from the embedded to enterprise level, demand is increasing for a sys-
tem of technology to measure and evaluate system quality characteristics (e.g.
reliability) to use the evaluation results to maintain and improve the system.
In this paper we propose a quality evaluation framework based on quantitative
quality measures, for software engineers involved in development, maintenance
or procurement of software, or others involved in improvement of development
processes. We deal with quantitative measures of quality that take measurements
of program source code written in the C programming language.

There is great demand for practical technologies which can measure and eval-
uate quality with high precision and identify quality characteristics that will
cause problems or will need improvement, because the quality of the source code
has a significant effect on the overall system performance and cost of develop-
ment and maintenance. In the past, various techniques for measuring quality

J. Münch and P. Abrahamsson (Eds.): PROFES 2007, LNCS 4589, pp. 284–299, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Framework for Measuring and Evaluating Program Source Code Quality 285

have been proposed, but they generally have not covered quality characteris-
tics comprehensively and the metrics or measured results have not been widely
used[1].

In response, we propose a framework which applies to source code written in
the C programming language and implements quality measurements and evalu-
ation effectively. The framework is independent of any person/evaluator proper-
ties, and resolves the problems of conventional approaches.

2 Problems with Conventional Quality Measurements

From a quality point of view, measurement methods can be classified into four
types based on amount of information. A Metric contains the least amount of
information, and simply measures a particular property without relating it to
quality. A Quality Metric measures a property and includes a way to interpret the
measurement result in terms of a quality characteristics. Quality Metrics is used
to refer to multiple such metrics for a single quality characteristics and a Quality
Metrics Suite treats several quality metrics and systematically summarizes the
results of each.

Though many metrics have been proposed, it is generally difficult to select an
appropriate one from among them or to interpret the measurement results[2].
Further, they and measured values have not been broadly useful[1]. For qual-
ity measures which apply to source code in particular, the main problems are
summarized below.

(P1) Non-comprehensive suites: In order to take into account tradeoffs be-
tween different quality characteristics (e.g. time-behaviour vs. analysability), it
is desirable to be able to measure and evaluate all quality characteristics, which
effect the final system’s quality in use, at the same time. However, most of the
existing metrics which apply to source code do not relate measurement values
to quality, or provide a quality metric which measures quality based on only a
single characteristic. There are a few suites which handle source code, includ-
ing REBOOT[3], QMOOD[4], SPC suite[5], the suite from Ortega[6], the EASE
project result[7] and the ISO/IEC TR 9126-3 reference implementation[8]; how-
ever, they all require additional input besides the source code (e.g. a design
model) and/or they lack comprehensive coverage of the measurable and assess-
able source code characteristics specified by the ISO9126-1[9] (or equivalent)
quality model.

(P2) Lacking in ability to break-down or overall evaluation: Generally,
source code written in a high-level programming language has a layered struc-
ture, with inclusion relationships between multiple logical and physical modules.
For example, in the C programming language, generally functions are included
in files, files in directories, and directories in the system, giving a four-layer
structure. In this case, it is desirable to measure and evaluate the quality of
individual module units according to various objectives, such as comparing the
entire integrated system quality with another system and evaluating the quality

286 H. Washizaki et al.

of individual small modules in order to identify problematic parts. However, no
quality metrics suite has been proposed which can measure source code quality
for arbitrary units from component up to the overall system.

(P3) Difficulty in deriving standard rating levels: In order to evaluate
quality from measurement results, rating levels which determine the allowable
range of values for each type of measurement (i.e. thresholds), and assessment
criteria which evaluate the results in units of quality characteristic and can com-
bine them into an integrated result is required[10]. Generally, to derive rating
levels, a set of samples are used, which are then divided into superior and inferior
groups based on some criteria (e.g. a particular usage scenario[5] or qualitative
evaluations[11,12]). The distributions of measured values in both groups are com-
pared, and the upper and lower bounds of the range which statistically contains
most of the measurements from the superior group are used as the thresholds.
However, traditional techniques have required additional information, such as
usage scenarios or qualitative evaluations, in addition to the source code and it
has not always been easy to derive rating levels.

3 Proposed Framework for Quality Evaluation

We propose a practical framework which effectively measures and evaluates the
quality of programs from source code written in the C programming language.
The overall scheme, the solutions to the problems described above, and details
of each of the elements of the framework are described below.

3.1 Overall Approach and Solutions to Problems

The structure of the framework is shown in Figure 1. It is made up of five
elements: the quality metrics suite, an aggregation tool, a visualization tool,
a rating levels derivation tool, and actual derived rating levels. Note that the
framework does not include actual measurement tools. Rather, we make use of
existing tools (e.g. QAC[13] and Logiscope[14]) which both apply to C source
code and cover the metrics specified in the suite.

– Quality metrics suite: We extended the ISO9126-1 quality model to create a
more comprehensive model, and built a collection of metrics together with
associated quality characteristics based on this quality model by defining the
interpretation of measurements from a quality standpoint. This resolved the
problem P1 of conventional approaches.

– Aggregation and visualization tools: We resolved the problem P2 by imple-
menting a technique for normalizing the results of each measurement in the
suite to a value from 0 to 100 based on rating levels, and a mechanism for
aggregating and summarizing module scores in step-wise gradations. The vi-
sualization tool transforms the collection of totaled scores into an evaluation
report that is easier to understand intuitively.

A Framework for Measuring and Evaluating Program Source Code Quality 287

Source codes

……
……
……
……

Development/quality
assurance team

Develops /
procures

Measurement tools Measured values

Goal Question Metric

(a) Quality metrics suite Rating levels

(1) Inputs Outputs

(b) Rating level
deriving tool

Scores

Outputs

(2)(3) Inputs

(c) Aggregation
tool

Outputs

(d) Visualization
tool

Outputs

(3) Inputs (4) Inputs

Evaluation
reports

Correspondence

Quality measurement/evaluation framework

(5) Refers to

Fig. 1. Structure of the quality measurement/evaluation framework

– Rating level derivation tool and reference values: We resolved the problem
P3 by implementing a mechanism to derive rating levels statistically. The
mechanism requires a set of source codes that are acceptable from a quality
point of view. Then, by applying our metrics suite and the above three tools
to several existing embedded software programs, we derived some actual
rating levels and included them in the framework as reference values for
software in the same domain.

The process flow for using the framework is shown below. Step (2) is not
always required after rating levels have been derived for the target problem
domain; however the rating levels should be continuously improved by iterating
the process and accumulating measurement results, because the rating levels
highly depend on the set of source codes used for the level derivation.

(1) Measurements (measured values) are obtained by applying measurement
tools that handle the metrics specified in the quality metrics suite to the
source code being measured.

(2) If rating levels are to be derived, this is done by applying the rating level
derivation tool to measurements of source code that are acceptable from a
quality point of view. If such codes are not available, the framework uses
source codes which has been improved from a quality point of view, without
any significant changes in functionality.

(3) The measurements are entered into the aggregation tool to get the aggregate
result of all of the scores. Internally, the aggregation tool uses the quality
metrics suite as well as the derived rating levels.

(4) An evaluation report is created by entering the aggregate results into the
visualization tool.

(5) The report is used to identify problematic parts or quality characteristics
that need improvement and can be useful in resolving them.

288 H. Washizaki et al.

3.2 Details of Structural Elements

The details of the elements and techniques that compose the framework are
described below.

(a) Quality metrics suite
Using the ISO9126-1 general quality model as a starting point, we repeatedly
interviewed several software professionals to narrow-down to the internal quality
characteristics (static, not dynamic, qualities that can be measured and evalu-
ated) of program source code that are not dependent on a particular program-
ming language. The resulting quality model is shown in Figure 2. Note that
functionality and usability have been excluded because they are difficult to mea-
sure using the source code only.

Source code
internal quality

Reliability

Maintainability

Portability

Efficiency

Reusability

Maturity
Fault tolerance

Analysability

Time behaviour
Resource utilization

Changeability
(including Stability)
Testability
Adaptability
Portability compliance

Quality type Quality characteristics Quality sub-characteristics

Fig. 2. Quality model

– Reliability: The ability to maintain specified performance levels when used
under the specified conditions[9]. We take maturity and fault tolerance as
sub-characteristics, while recoverability and reliability compliance (not the
”reliability” itself) are excluded because they are difficult to measure and
evaluate from the source code only.

– Efficiency:The ability to provide appropriate performance relative to the
amount of resources consumed when used under clearly specified conditions[9].
Sub-characteristics are time behaviour and resource behaviour, while effici-
ency compliance has been excluded.

– Maintainability: The ease to which modifications can be made[9]. Sub-
characteristics are analysability, changeability and testability, while main-
tainability compliance has been excluded. Also, to avoid duplication, the
stability characteristic in ISO9126-1 is included under changeability.

– Portability: The ability to be transferred from one environment to another[9].
Sub-characteristics are adaptability and portability compliance, while instal-
lability, co-existence and replaceability have been excluded because they are
difficult to measure and evaluate from the source code alone.

A Framework for Measuring and Evaluating Program Source Code Quality 289

– Reusability: The extent to which a system or module-unit parts can be re-
used in a different environment. This is not regulated in ISO9126-1, but
considering its importance, particularly with respect to development effi-
ciency within the same problem domain, we have added it as another quality
characteristic separate from portability.

Next, we applied the Goal-Question-Metric (GQM) method[15], and assigned
a metric to each quality sub-characteristic in the quality model. The GQM
method is a goal-oriented method for mapping a goal to a metric by using a
question which must be evaluated in order to determine whether the goal has
been achieved or not. It is used within the framework to assign the metrics to
the quality characteristics being evaluated.

We posed questions so that the evaluation could be made independently of the
programming language of the source code being evaluated, and with the goals
being to measure and evaluate each of the quality sub-characteristics. Finally,
we narrowed down possible (programming-language dependent) metrics to those
which could provide answers to the questions by measured values. If a given ques-
tion was at a relatively high abstraction level, or was more removed from the
available programming-language-dependent metrics, we handled it by dividing
into sub-questions. In this way, the suite is structured in four layers, with the
goals and questions being independent of language, and the sub-questions and
metrics being basically language-dependent. This raises the reusability of the
framework by clearly separating the fixed part of the framework (i.e. common-
ality) from the part which may require modification (i.e. variability).

An excerpt from the suite is shown in Figuresuite1. The suite is made up
of 47 questions, 101 sub-questions and 236 metrics. As metrics, we used those
which are supported by existing tools for the C programming language (such as
QAC and Logiscope), the degree of conformance to existing coding style guides
for the C language (such as MISRA-C[17] and IPA/SEC’s guide[18]), and other
metrics which seemed necessary for particular questions or sub-questions where
currently available measurement tools did not apply. 19% of the metrics could
not be measured using currently available tools. One such example is the very
specialized measurement, ”number of branches due to macros.” Further, 29%
of the questions (either directly or via sub-questions) could not be assigned a
metric at all. In the future, we will reduce or eliminate the proportion of metrics
and questions that are not covered by developing new measurement tools. A
selection of metrics from the full list is shown in Table 1. The table includes the
following details to help the evaluator understand each metric.

– Type of measurement scope: System (ID: MSyXXX), Directory (MMdXXX), File
(MFlXXX) or Function (MFnXXX).

– Type of rating level[19]: Threshold (quality is interpreted to be best when
the measurement value is a particular value, or within a particular range),
Minimal (the smaller the better) or Maximal (the larger the better).

1 The entire suite is published in [16].

290 H. Washizaki et al.

– Scale type[20]: Nominal, Ordinal, Interval, or Ratio.
– Programming language dependency type: Not (not dependent on language),

Not-OO (non-object-oriented language dependent), OO (dependent on
object-oriented language), C (C programming language), C++ (C++), or
C&C++ (C or C++).

Table 1. List of metrics used (excerpt)

ID Metric name Rating Scale Dependency
MSy021 Number of recursive passes Minimal Ratio Not
MMd027 Number of elements located directly below the directory Threshold Ratio Not
MFl003 ELOC Threshold Ratio Not
MFn072 Cyclomatic number Minimal Ratio Not

MFn066 Max. nesting depth in
control structure.
MFn072 Cyclomatic number.
MFn069 Estimated no. of static
paths.

Q3702 Is the logic
not too complex?

MFn095 Depth of layers in call
graph

Q3701 Is the
function-call nesting
not deep?

Q3700 Are the functions
not too complicated?

Purpose: Evaluate
Issue： the easiness of
identifying styles,
structure, behaviour and
parts for maintenance
Object: source code
Viewpoint: developer

Analysability
Maintainabilit
y

……………………Fault tolerance

Msy021: Number of recursive
paths.

Q0401: Is there not
any recursive call?

Q0400: Is it possible to
estimate the size of
resources to be used?

MMd027: Number of sub
elements
MMd008: Number of functions
MFl003: Effective number of
lines.

Q0201: Is the
number of partition
elements
appropriate?

Q0200: Is the scope not
too large?

…………

MFl134: Number of un-initialized
const objects.
MFl107: Number of arrays with
fewer initialization values than
elements.
MFl133: Number of strings which
do not maintain null termination.
MFl169: Number of enumerations
not adequately initialized.

Q0101 Has memory
been initialized
properly?

Q0100: Is the code not
prone to faults?

Purpose： Evaluate
Issue： the frequency of
faults
Object: source code
Viewpoint: end-user

Maturity
Reliability

MetricSub-questionQuestionGoalSub-characteristicCharacteristic

MFn066 Max. nesting depth in
control structure.
MFn072 Cyclomatic number.
MFn069 Estimated no. of static
paths.

Q3702 Is the logic
not too complex?

MFn095 Depth of layers in call
graph

Q3701 Is the
function-call nesting
not deep?

Q3700 Are the functions
not too complicated?

Purpose: Evaluate
Issue： the easiness of
identifying styles,
structure, behaviour and
parts for maintenance
Object: source code
Viewpoint: developer

Analysability
Maintainabilit
y

……………………Fault tolerance

Msy021: Number of recursive
paths.

Q0401: Is there not
any recursive call?

Q0400: Is it possible to
estimate the size of
resources to be used?

MMd027: Number of sub
elements
MMd008: Number of functions
MFl003: Effective number of
lines.

Q0201: Is the
number of partition
elements
appropriate?

Q0200: Is the scope not
too large?

…………

MFl134: Number of un-initialized
const objects.
MFl107: Number of arrays with
fewer initialization values than
elements.
MFl133: Number of strings which
do not maintain null termination.
MFl169: Number of enumerations
not adequately initialized.

Q0101 Has memory
been initialized
properly?

Q0100: Is the code not
prone to faults?

Purpose： Evaluate
Issue： the frequency of
faults
Object: source code
Viewpoint: end-user

Maturity
Reliability

MetricSub-questionQuestionGoalSub-characteristicCharacteristic

Fig. 3. Quality metrics suite (excerpt)

For example, Figure 3 gives several language-independent questions (e.g.
Q3700) which help to evaluate how easy the source code is to analyze. Q3700
is quite abstract and difficult to measure directly, so it is broken-down into sev-
eral sub-questions, including Q3701 and Q3702. Finally, metrics are assigned to
each sub-question to make it possible to obtain data to answer them. The single
metric, MFn095, is assigned to Q3701, and three metrics, MFn066, MFn072 and
MFn069, are assigned to Q3702. By making these assignments, source code qual-
ity can be evaluated in quality-sub-characteristic units from the measurement

A Framework for Measuring and Evaluating Program Source Code Quality 291

values. For example, it is clear in Table 1, that the measured value for the cy-
clomatic number of a function[21] can be used to evaluate the analysability of
the source code. Also, since the type of rating level for cyclomatic number is
”Minimal”, the smaller the measurement value is, the better the analysability is
for that part of the code.

(b) Technique and tool for deriving rating levels
In order to evaluate the permissible range of values for a particular quality
characteristic from the measurements obtained using the suite, a rating level for
each metric is required. Within the framework, such a rating level is derived
using a collection of existing program source codes (denoted as the “acceptable
set”) that are acceptable from a quality point of view.

If such codes are not available, the framework uses source codes (denoted
as the “after-improvement set”) to which some quality improvements have been
made while not altering the functionality, as an alternative to the acceptable set.
Due to tradeoffs between different quality characteristics, there might be quality
characteristics that have got worse compared to the before-improvement set,
among all characteristics. However, we think the after-improvement set can be
regarded approximately as an acceptable one, because some developers or clients
accepted the set instead of the corresponding before-improvement in fact.

Measurements were made on the acceptable set or the after-improvement
set, and rating levels of three different types were derived using the upper and
lower hinges (i.e. 75th and 25th percentiles) of the statistical distributions of
measurements from each metric as described below:

– Minimal: The rating level is below the upper hinge.
– Maximal: The rating level is above the lower hinge.
– Threshold: The rating level lies between the upper and lower hinges.

This derivation technique was implemented using spreadsheet software func-
tions on the Excel worksheet. We applied this technique to three quality-improved,
industrial embedded software S1, S2, S3 (automobile or internal printer software)
that we were able to obtain. The measurement values for programscale, before and
after quality improvements, for the total of six programs are shown in
Table 2. Comparing the programs before and after improvements, the improved
versions appear to be implemented with a larger number of functions but the num-
ber of lines of code in each function is smaller.

As an example of another metric, the distribution of results from metric
MFn072, “Cyclomatic number,” before and after improvement, are shown in

Table 2. Scale totals for samples used

Type Number of files Number of functions ELOC
Before improvement 603 3,269 174,650
After improvement 842 4,873 116,015

Total 1,445 8,142 290,665

292 H. Washizaki et al.

1 1 11 1 1

11

16

8.5

5

7

4

2
3

1
0

2

4

6

8

10

12

14

16

18

(All) Before
improvement

After
improvement

C
yc

lo
m

at
ic

nu
m

be
r

Fig. 4. MFn072 – Distribution of cyclomatic numbers (box-plot diagram)

Figure 4 as a box-plot diagram. In the box plot, the upper and lower edges
of the rectangle indicate the upper and lower hinges, the value in the box is
the median value, and the lines above and below the box give upper and lower
adjacents. Figure 4 shows that compared to the before-improvement set, the
after-improvement set tends to yield smaller values. Since the rating level type
for the cyclomatic number values is ”Minimal” (as shown in Table 1), the rating
level allows values below the upper hinge of 4.

(c) Normalization/aggregation tool
To achieve an overall quality evaluation, we aggregate the measurements from
the various metrics in the suite into quality-characteristic and module units by
normalizing each measurement value, using the rating level, to a value from 0
to 100. More specifically, if a measurement value falls within the rating level
as described above, it receives a score of 100. If it falls above the upper outer
fence (upper hinge + 3·H-Spread) derived from the improved code set or below
the lower outer fence (lower hinge - 3·H-Spread), it receives a score of zero. ”H-
Spread” (i.e. interquartile range) means the value of ”upper hinge - lower hinge”.
A linear graph between these outer fences for each metric is created, and scores
are interpolated linearly from the graph.

As an example, normalized values for measurements of the cyclomatic number
are shown in Figure 5. According to Figure 4, the upper hinge for the improved
code set is 4, and H-Spread is 3 (= 4-1), so a straight line from a measurement
value of 4 to the value 4 + 3 · 3 = 13 is drawn in the score graph in Figure 5.
Then, if the cyclomatic number is 2, the score taken from the graph is 100.

By transforming measurement values to normalized scores using a continuous,
linear score graph in this way, small changes are reflected intuitively in the
score, and values from different metrics can be compared with each other. It
is also conceivable to construct the measurement normalization graphs using
other forms such as non-linear curves or discontinuous step functions[22], but for
the purpose of understanding overall trends in how small measurement values
affect quality characteristics, these other graph types do not improve the results
significantly, so linear graphs were selected as most appropriate.

A Framework for Measuring and Evaluating Program Source Code Quality 293

void foo(int p) {
if (p < LIMIT) {
bar();

} else {
baz();

}
}

Example of function: foo
Measured value:
cyclomatic number = 2

Measured
value

100

0

Score

2

Measured score
= 100

Measurement Normalization 1 4 13

Rating
level

Upper hinge,
after improvement

Upper outer fence
(Upper hinge + H-Spread x 3)

Score graph

Fig. 5. Calculating the score for cyclomatic number

Next, a weighting is applied to each of the normalized scores, and they are
aggregated in quality-characteristic, sub-characteristic and module units. The
weighting mechanism allows for the influence of each of the questions or met-
rics to be adjusted but the standard settings simply use an even distribution
(i.e. simply take the average). The aggregation model which forms the basis for
aggregating the scores is shown as a UML class diagram in Figure 6. Also, the
constraints related to scores in Figure 6 are given below in OCL[23].

context CharacteristicResult
-- Score is a weighted sum of the scores from each of the sub-characteristics
inv: score = SubCharacteristicResult->iterate(c:SubCharacteristicResult;

result:Real=0 | result+c.score*c.SubCharacteristic.weight)
-- The total of all sub-characteristic weights is 1
inv: SubCharacteristicResult->SubCharacteristic->collect(weight)->sum()=1
context SubCharacteristicResult
inv: Score=QuestionResult->iterate(q:QuestionResult;

result:Real=0 | result+q.score*q.Question.weight)
inv: QuestionResult->Question->collect(weight)->sum() = 1
context QuestionResult
inv: Score=MeasurementResult->iterate(m:MeasurementResult;

result:Real=0 | result+m.score*m.Metric.weight)
inv: MeasurementResult->Metric->collect(weight)->sum()=1
context MeasurementResult inv:
if underMeasurement.target <> Metric.target
-- Score is the average of the total of the same metric’s measurement
-- result scores of all of the target program module unit’s childs
score=underMeasurement->child->collect(MeasurementResult)->select(Metric.
id=self.Metric.id)->collect(score)->sum()/underMeasurement->child->size()
else
-- Scoreis equal to the measurement value normalized by using rating level
endif

An example of score calculation and aggregation based on the aggregation
model is shown as a UML object diagram in Figure 7. For simplicity, quality
characteristics and sub-characteristics, rating levels, directories and functions
have been omitted, and only evaluation of the reliability of the whole system,

294 H. Washizaki et al.

Characteristic
Result

Characteristic
Result

scorescore

SubCharacteristic
Result

SubCharacteristic
Result

scorescore

Question
Result

Question
Result
scorescore

MeasurementResultMeasurementResult

measuredValue
score
measuredValue
score

1* 1 *
1 *

* 1

sub

1 *

*

CharacteristicCharacteristic

namename
SubCharacteristicSubCharacteristic

score
weight
score
weight

GoalGoal QuestionQuestion

id
weight
id
weight

MetricMetric
id
target:{Sy, Md, Fl, Fn}
weight

id
target:{Sy, Md, Fl, Fn}
weight

RatingLevelRatingLevel

upperHinge
lowerHinge
upperHinge
lowerHinge

1 * 1 1 1..*

*

* 1

sub

1 *

1
1

1
*

1
*

1
*

1
*

ProgramModuleUnitProgramModuleUnit

SystemSystem

1

1*

1

child

target:{Sy, Md, Fl, Fn} target:{Sy, Md, Fl, Fn}

target=#Sytarget=#Sy
DirectoryDirectory

target=#Mdtarget=#Md
FileFile

target=#Fl target=#Fl
FunctionFunction

target=#Fn target=#Fn

underMeasurement

Fig. 6. Characteristic/module unit score calculation/aggregation model

S :SystemS :System

:MeasurementResult:MeasurementResult

score=40score=40

f1.c :Filef1.c :File

f2.c :Filef2.c :File

:CharacteristicResult:CharacteristicResult

score=71.25score=71.25
:QuestionResult:QuestionResult

score=52.5score=52.5

:QuestionResult:QuestionResult

score=90score=90

:CharacteristicResult:CharacteristicResult

score=85score=85
:QuestionResult:QuestionResult

score=85score=85
:MeasurementResult:MeasurementResult

score=100score=100

:MeasurementResult:MeasurementResult

score=70score=70

:CharacteristicResult:CharacteristicResult

score=20score=20
:QuestionResult:QuestionResult

score=20score=20
:MeasurementResult:MeasurementResult

score=30score=30

:MeasurementResult:MeasurementResult

score=10score=10

:MeasurementResult:MeasurementResult

score=65score=65

:MeasurementResult:MeasurementResult

score=90score=90

:Characteristic:Characteristic

name=Reliabilityname=Reliability
:Question:Question

id=Q0100id=Q0100

:Question:Question

id=Q0400id=Q0400

:Metric:Metric

id=MFl134id=MFl134

:Metric:Metric

id=MFl107id=MFl107

:Metric:Metric

id=MSy021id=MSy021

Scores at system level

Scores at file level

Scores at file level

Suite (excerpt)

Fig. 7. Example of calculating the score using the aggregation model

S, is shown. Further, the evaluation is made based on only two files, f1.c and
f2.c, and not on all directories. In Figure 7, the reliability score for S (71.25) is
calculated for two questions from the scores from three metrics. Since the metrics
MF1134 and MF1107 apply directly to the files, the average of the scores from
measurement values from f1.c and f2.c was used. Figure 7 shows that detailed
scores for each quality-characteristic or question can be obtained for the whole

A Framework for Measuring and Evaluating Program Source Code Quality 295

system or for individual module (file) units (e.g. the reliability score for f1.c
is 85). This normalization/aggregation technique has been implemented using
Excel macros.

(d) Visualization tool and example of use
We implemented a visualization tool which displays the scores obtained from
normalization and aggregation in module units for each quality characteristic,
and allows detailed inspection based on module-inclusion relationships. The tool
is implemented in Ruby and generates an evaluation report consisting of a col-
lection of linked HTML pages using the scores calculated in Excel. An example
is shown in Figure 8. The person evaluating the code can use the generated pages
to get a comprehensive understanding of quality trends from the module level
up to the overall system.

Fig. 8. Report examples (left: system/directory, right: characteristic in detail)

3.3 Applicable Scope of the Framework

Because the framework covers quality from the overall system down to a detailed
level, it can be used to evaluate quality over a wide range, from management
level down to the individual module developer. Specifically, the scores can be
used to identify and prioritize problematic characteristics or parts that need
quality improvements. Also, if a range of allowable scores (e.g. 75 to 100 points)
is set as an assessment criterion for an organization or project, scores can be
used as a non-functional requirement during the development or procurement
process.

The framework can be used in the following situations:

– Implementing or procuring C programs in the embedded software domain:
Entire framework can be reused.

– Implementing or procuring C programs in the non-embedded software do-
main: All of the framework except for the derived rating level described in
this paper can be reused if a collection of acceptable source code (or source
code to which some quality improvements have been made) is available in
the problem domain. If such a sample is not available, all of the framework

296 H. Washizaki et al.

except the rating level and technique for deriving a rating level can be reused,
and another technique for deriving a rating level can be incorporated in the
framework.

– Implementing or procuring programs in other languages: The goals and ques-
tions within the suite which are language independent can be reused.

4 Experimental Evaluation

In the following, we evaluate the validity and usefulness (especially quality im-
provement reflection capability) of the framework by using several real programs.

4.1 Validity of the Framework in Quality Evaluation

We evaluate the validity of the framework by comparing two evaluation results
for the same set of source codes: a qualitative evaluation by using a questionnaire,
and a quantitative evaluation by using the framework.

First, we created a table of questions to evaluate each quality sub-characteristic
with a four-level score (0, 50, 75 or 100 points), and applied it to the three em-
bedded software programs (S1, S2, S3) that were used to derive the rating level
in section 3.2. The programmer in charge of each program before improvements
or the person accepting the program after improvements was asked to perform
this qualitative evaluation by answering the questions. Table 3 shows the average
results of this evaluation in quality-characteristic units2. ”Before” and ”After” in
the table show the results for the code before and after quality improvements were
made. For two of the program, S1 and S2, the qualitative evaluation showed im-
provement for almost all quality characteristics.

Table 3. Qualitative quality results using the query table

Reliability Efficiency Maintainability Portability Reusability
Before After Before After Before After Before After Before After

S1 92 92 80 83 75 95 69 100 92 100
S2 59 79 67 71 54 78 76 88 60 83
S3 – 92 – 78 – 75 – 88 – 83

Next, we compared the results of the qualitative evaluation described above
with the quantitative results from the framework in order to verify the validity
of the framework. The quantitative evaluation results for each of the programs,
before and after improvement, are shown in Table 4. We examine the validity of
the framework for each quality characteristic below:

– Reliability, maintainability and reusability: As with the qualitative evalua-
tion results, the quantitative evaluation results for each of these characteristics

2 Due to some reasons, the before-improvement qualitative results for S3 were not
available.

A Framework for Measuring and Evaluating Program Source Code Quality 297

showed improvement, suggesting that the framework is valid for them. How-
ever, one program (S3) did not show improvement in reusability afterwards,
so it may be necessary to add additional metrics and corresponding quality
mappings.

– Portability: The quantitative result for programs S2 and S3 showed improve-
ment afterwards, so the framework may be useful for this evaluating this
quality characteristic. However, the improvement seen in the qualitative eval-
uation of S1 was not reflected in the quantitative evaluation, so it may be
necessary to adjust or add to the metrics or quality mappings used.

– Efficiency: For all programs, the quantitative evaluation results showed dif-
ferent tendencies than the qualitative evaluation results for before and after
quality improvements, suggesting that the metrics used were not appropri-
ate. One reason for this may be that it is fundamentally difficult to estimate
the final system’s efficiency by only using the source code[24]. We will need
to make revisions to the metrics used here.

From the above-mentioned results, it is found that the framework can be
used effectively to give quantitative evaluations of reliability, maintainability,
reusability and portability of source code.

Table 4. Quantitative quality evaluation results using the framework

Reliability Efficiency Maintainability Portability Reusability
Before After Before After Before After Before After Before After

S1 79 83 96 92 80 88 87 86 80 92
S2 88 99 99 96 74 89 94 96 0 95
S3 85 90 96 86 67 75 77 82 0 0

4.2 Quality Improvement Reflection Capability of the Framework

We used another embedded program which controls a Japanese shelf of gods for
verifying the quality improvement reflection capability of the framework. In an
earlier version, the program had maintenance problems such as the heavy use
of global variables and the very long main() function. To solve these problems,
we restructured the program by shifting global variables to non-global variables
(such as local variables) and by dividing long functions into small ones. The
excerpts of the programs before and after improvements are the following.

/*************** shrine.c, before improvements ***************/
extern int mic_threshold; extern int show_mic_value; ...
void main(void) {

MY_ADCSR.BYTE = 0x31; while(!MY_ADCSR.BIT.ADF);
PADDR = 0x7F; PADR.BIT.B2 = 0;
PADR.BIT.B3 = 0; PADDR = 0x0C | PADDR; ...

/*************** shrine.c, after improvements ***************/
int main() {

start_microphone(); init_switch(); init_motor(); ...

298 H. Washizaki et al.

Figure 9 shows the quantitative evaluation results using the framework for
each of the programs. The result of the after-improvement reflects a significant
improvement in maintainability since several metrics related to maintainability
provide different values. Regarding this example, it is found that the framework
has the quality improvement reflection capability. Note that efficiency has been
slightly decreased in the after-improvement due to the division of functions; this
is a typical example of tradeoff between maintainability and efficiency.

95.5 100

74.8

93.5

0

98.2
90.6 94.4 98.5

0

0

20

40

60

80

100

120

Reliability Efficiency Maintainability Portability Reusability

Before improvement

After improvement

Fig. 9. Quantitative results using the framework for shrine.c

5 Conclusion and Future Work

In this paper, we propose a framework for evaluating the quality of program
source code in order to resolve several problems faced by existing techniques.
The framework focuses mainly on the C programming language and incorporates
a quality metrics suite, a normalization and aggregation tool, a rating level
derivation tool, and a set of actual rating levels. The framework is useful mainly
for evaluating the quality of C language source code in module units from a
detailed level up to whole systems and from individual quality sub-characteristics
up to overall system quality. It would also be possible to apply the framework
to source code in other languages by changing the sub-questions and metrics in
the measurement suite. We verified that the framework can be used effectively
to evaluate programs for reliability, maintainability, reusability and portability
by applying it to several embedded software programs.

In further research, we plan to re-examine the metrics for some of the quality
characteristics (particularly efficiency) to improve the accuracy of our quality
evaluation by investigating the relation between the internal measured values
(obtained by the framework) and possible external measurement values. Also,
by applying the framework to many more programs, we will investigate how
effective it is, and how it depends on the problem domain.

References

1. Ogasawara, H., et al.: Evaluating Effectiveness of Software Metrics, Union of
Japanese Scientists and Engineers, 20SPC Research subcommittee report (2004)

2. Chaudron, M.: Evaluating Software Architectures, http://www.win.tue.nl/
mchaudro/swads/

http://www.win.tue.nl/ mchaudro/swads/
http://www.win.tue.nl/ mchaudro/swads/

A Framework for Measuring and Evaluating Program Source Code Quality 299

3. Sindre, G., et al.: The REBOOT Approach to Software Reuse, Journal of Systems
and Software, 30(3) (1995)

4. Bansiya, J., Davis, C.G.: A Hierarchical Model for Object-Oriented Design Quality
Assessment, IEEE Transactions on Software Engineering, 28(1) (2002)

5. Supervised by Kanno, A., et. al.: Software quality maintenance technology for the
21st Century, Union of Japanese Scientists and Engineers (1994)

6. Ortega, M., et al.: Construction of A Systematic Quality Model for Evaluating A
Software Product, Software Quality Journal, 11(3) (2003)

7. Monden, A.: A Study of Data Collection using EPM and Analysis using GQM. In:
4th Empirical Software Engineering Workshop (2005)

8. ISO/IEC TR 9126-3: Software engineering – Product quality – Part 3: Internal
metrics (2003)

9. ISO/IEC 9126-1: Information technology – Software product evaluation: Quality
Characteristics and Guidelines for their use (2001)

10. ISO/IEC 14598-1: Information technology – Software product evaluation: Part 1:
General overview (1998)

11. Washizaki, H., et al.: A Metrics Suite for Measuring Reusability of Software Com-
ponents. In: Proc. 9th IEEE International Software Metrics Symposium (2003)

12. Hirayama, M., et al.: Evaluating Usability of Software Components, Information
Processing Society of Japan Journal, 45(6) (2004)

13. Programming Research Ltd.: QAC, http://www.programmingresearch.com/
14. Telelogic: Logiscope, http://www.telelogic.com/corp/products/logiscope/
15. Basili, V.R., Weiss, D.M.: A Methodology for Collecting Valid Software Engineering

Data, IEEE Transactions on Software Engineering, 10(6) (1984)
16. http://www.ogis-ri.co.jp/otc/consulting/euml/documents/QAFramework.html
17. The Motor Industry Software Reliability Association: MISRA-C: 2004 – Guidelines

for the use of the C language in critical systems (2004), http://www.misra-c2.com/
18. IPA/SEC: C-Language Coding best practices for Embedded software Guide,

Shoeisha Inc. (2006)
19. Emi, K., Lewerentz, C.: Applying Design-Metrics to Object-Oriented Frameworks.

In: Proc. 3rd IEEE International Software Metrics Symposium (1996)
20. ISO/IEC 15939:2002, Software engineering – Software measurement process (2002)
21. McCabe, T.J., Watson, A.H.: Software Complexity, Crosstalk, Journal of Defense

Software Engineering, 7(12) (1994)
22. Kazman, R., et al.: Making Architecture Design Decisions: An Economic Approach,

CMU/SEI-2002-TR-035 (2002)
23. OMG: UML 2.0 OCL Specification, http://www.omg.org/docs/ptc/05-06-06.pdf
24. Washizaki, H., et al.: Experiments on Quality Evaluation of Embedded Software

in Japan Robot Software Design Contest. In: Proc. 28th International Conference
on Software Engineering (ICSE 2006), pp.551–560 (2006)

http://www.programmingresearch.com/
http://www.telelogic.com/corp/products/logiscope/
http://www.ogis-ri.co.jp/otc/consulting/euml/documents/QAFramework.html
http://www.misra-c2.com/
http://www.omg.org/docs/ptc/05-06-06.pdf

	Introduction
	Problems with Conventional Quality Measurements
	Proposed Framework for Quality Evaluation
	Overall Approach and Solutions to Problems
	Details of Structural Elements
	Applicable Scope of the Framework

	Experimental Evaluation
	Validity of the Framework in Quality Evaluation
	Quality Improvement Reflection Capability of the Framework

	Conclusion and Future Work

