
A Framework for Modelling and Analysis of
Software Systems Scalability

Leticia Duboc
Dept. of Computer Science
University College London

London WC1E 6BT
United Kingdom

l.duboc@cs.ucl.ac.uk

Prof. David S. Rosenblum
Dept. of Computer Science
University College London

London WC1E 6BT
United Kingdom

d.rosenblum@cs.ucl.ac.uk

Dr. Tony Wicks
Searchspace Ltd

80-110 New Oxford Street
London WC1A 1HB

United Kingdom

t.wicks@searchspace.com

ABSTRACT
Scalability is a widely-used term in scientific papers, techni-
cal magazines and software descriptions. Its use in the most
varied contexts contribute to a general confusion about what
the term really means. This lack of consensus is a poten-
tial source of problems, as assumptions are made in the face
of a scalability claim. A clearer and widely-accepted under-
standing of scalability is required to restore the usefulness of
the term. This research investigates commonly found def-
initions of scalability and attempts to capture its essence
in a systematic framework. Its expected contribution is in
assisting software developers to reason, characterize, com-
municate and adjust the scalability of software systems.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems—design studies, measurement techniques, modeling
techniques, performance attributes; D.2.8 [Software Engi-
neering]: Metrics—product metrics; D.2.11 [Software En-
gineering]: Software Architectures

General Terms
Design, Economics, Measurement, Performance

Keywords
design, microeconomics, requirements, scalability

1. WHY SCALABILITY?
Developers’ attitudes towards scalability have often been

to wait for the next generation of machines to appear and
speed up their applications for “free”. Nevertheless, the
gains that can be achieved with current technology advances
are reaching their limits. Speed increases on conventional
processor cores, for example, are being limited by practical
issues related instruction parallelism, pipelining and cool-
ing technologies [13]. The move to chip multiprocessors
(CMP) demonstrates this trend. This technology will au-
tomatically benefit throughput-oriented workload systems.
However, applications measured in terms of the execution
latency of individual tasks will require efforts on the part

Copyright is held by the author/owner.
ICSE’06, May 20–28, 2006, Shanghai, China.
ACM 1-59593-085-X/06/0005.

of the programmer. Such systems should take advantage of
CMPs while coping with high latency of distributed compu-
tational resources. Development will therefore have to enter
a new era requiring a proactive attitude towards scalabil-
ity. This paper describes initial research in the development
of a framework for proactive characterization, analysis and
understanding of software system scalability.

Building scalable systems is not trivial. The first obsta-
cle is the lack of a common conceptual understanding of
scalability. This problem was highlighted in 1990 by Mark
D. Hill in “What is Scalability?”, which concluded with the
following: “I then question whether scalability is useful and
conclude by challenging the technical community to either
rigorously define scalability or stop using it to describe sys-
tems.” [6]. The article was targeted at multiprocessors sys-
tems, but its claims could be made for computing in general.
Some researchers took the challenge and, for software in par-
ticular, attempted better definitions [5, 11, 2, 3]. Although
definitions in the literature could be argued, most of them
cannot be classified as entirely incorrect. They correspond
to an intuitive notion that scalability is related to a system’s
ability to accommodate the “scaling” of some dimension.

A dimension in the context of our research represents
some aspect of the application domain (as defined by Jack-
son [8]) whose scaling affects system behavior. We therefore
argue that, in a subjective field like scalability, a universal
definition should be avoided. Instead, one should concen-
trate on its essence: In order to support scaling of dimen-
sions, it is necessary to (1) clearly identify its causes and
effects, and (2) understand their relationship to guarantee
desired behavior when aspects related to the system vary.

The Problem: Stakeholders need a systematic
way to understand causes, effects and their rela-
tionships in a scaling system, to then judge the
extent of the system’s scalability.

2. RELATED WORK
Scalability has been studied in many contexts, such as

video imaging, mobile computing, simulation, data mining,
distributed systems, software process, among others. One of
the areas in which scalability has received more emphasis is
parallel systems, where a small number of well-defined met-
rics were established. Nevertheless, because of fundamental
differences between parallel computing and other classes of
systems, such metrics cannot be broadly applied.

949



Most uses of the term “scalability” in scientific papers im-
ply a desired goal or completed achievement, whose precise
nature is never defined but rather left to the readers’ imagi-
nation. Like ourselves, others have questioned the meaning
of scalability and propose definitions [6, 14, 2]. However, we
believe that definitions found in the literature either repre-
sent an intuitive ideal or are restricted to narrowly delimited
problems. Previous works have recognized this limitation,
stating that scalability has dimensions and should be seen
in the context of system requirements [5, 9, 3]. Neverthe-
less, accommodating all dimensions in clearly defined cat-
egories is very challenging, if not impossible. In addition,
measuring scalability purely against compliance with sys-
tem requirements can result in arguable classifications, such
as exponential use of machine resources, not to mention that
requirements may—and are likely to—change.

Related work can also be found in the characterization
and predictions of other software qualities, such as perfor-
mance and reliability. These works are normally based on
trend analysis of selected metrics as the system configura-
tion changes or alternative solutions are compared. Espe-
cially among the performance community, the use of well-
established models such as layered queuing networks, Petri
nets and stochastic process algebra are very popular. Many
solutions propose extensions to standards such as UML,
ADL, OWL-S and WSOL to incorporate performance at-
tributes [16, 7]. Others instead rely on monitoring capabili-
ties to model and predict performance [1].

Scalability prediction has to consider a dynamic view of
the world. More specifically, it requires the understanding
of how the system will respond to scaling aspects of this
world. Frameworks have been proposed especially for scala-
bility. We, however, see them as tackling only subsets of the
problem. Some solutions, for example, limit the study to
performance metrics [9, 12]. Others target specific classes of
problems or technologies [14, 10]. To the best of our knowl-
edge, there is not a general approach that can accommodate
all the different nuances of scalability.

3. REASONING ABOUT SCALABILITY
Stakeholders are often concerned about a system’s ability

to handle a varied workload, its response to an increase of
resources and/or the complexity of models/algorithms when
the problem size changes. Whatever the concern, the scaling
of a dimension is always present—as an intrinsic aspect of
a scalable system. Therefore, our first observation is that
the need to support the scaling of dimensions differentiates
systems that are required to be scalable from others.

Scalability is frequently associated with performance and,
at times, the terms are erroneously used interchangeably.
Performance, in our opinion, can be an indicator of scala-
bility only when the stakeholder’s interests are performance
indexes, such as throughput and execution time. Other-
wise, performance is simply another requirement to be met
by the system, like message reliability, memory usage and
other metrics associated with software qualities. For this
reason, we believe that the scalability of a system should be
seen in the context of its requirements.

It is an intuitive notion that scalability is related to the
system’s ability to accommodate the scaling of some dimen-
sion. This scaling is characterized by the system’s response
to changes in the application domain. We therefore state
that scalability is implicit on the relationship between cause

and effect. However, its classification as good or bad is ulti-
mately a matter of stakeholder’s interest.

Research Claim: Scalability is a quality of soft-
ware systems that is characterized by the rela-
tionship between cause and effect, namely the im-
pact that world and machine characteristics have
on measured system qualities. This quality can
be measured and analyzed in order to provide the
stakeholder the support required to judge the scal-
ability of a software system or compare the scal-
ability of alternative designs.

4. EXPRESSING SCALABILITY
This research attempts to capture the essence of scala-

bility by identifying, for the problem in hand, the causes,
effects and relationships that characterize scalability.

Proposed Solution A systematic framework to support the
process of reasoning, characterizing, adjusting and pre-
dicting the scalability of software systems.

The framework is defined in terms of:

Figure 1: Scalability Framework

Independent and dependent variables relate causes and
effects. Independent variables represent the subset of the
machine and application domains that affects the system
behavior. The subset belonging to the machine domain cor-
respond to properties of the system. The ones related to the
application domain express aspects of the world. Examples
within the machine domain are cache size, number of threads
and parallel processes. In the application domain, variables
can represent properties like nature and distribution of input
data, workload and number of concurrent users.

Dependent variables are aspects of the system behavior
(or qualities) that are affected by changes in the application
and machine domains. In the framework, they correspond
to metrics related to performance, cost, reliability and se-
curity, among others. Examples are throughput, storage
consumption and memory footprint.

The framework recognizes that not all qualities are equally
important. The relative significance of them is a matter of
stakeholder’s interest. The stakeholder may expect a subset
of these qualities to be at their optimal level, while oth-
ers can simply comply with minimum requirements. There-
fore, the framework recognizes a division between critical
and flexible qualities. The former represent the aspects of
the systems that should be optimized, while the latter can
be implemented more flexibly.

We plan to use multi-criteria optimization techniques to
analyze the trade-off between alternative machine configura-
tions across scaling dimensions. The appeal of multi-criteria

950



optimization is that it allows conflicting quantitative objec-
tives to be simultaneously optimized. The stakeholder’s in-
terest is formalized as a utility function, which expresses
the relative importance of dependent variables. A number
of utility functions can be used to compare alternative ma-
chine configurations. The chosen one will reflect the specific
requirements of the application being analyzed.

5. THE SEARCH FOR SCALABILITY
To the best of our knowledge no generic framework for

analyzing the scalability of software systems has been de-
veloped. Proposed frameworks are invariably aimed at nar-
rowly defined problems and cannot accommodate all the nu-
ances of scalability [9, 12, 14].

The relevance of the research increases as machines are
reaching physical limitations in hardware. Development will
have to adopt a more proactive attitude towards scalability,
requiring a clear and widely-accepted understanding of the
subject. Our research intends to set the grounds for this new
era. Ultimately this research aims to provide the following:

Research Contribution: (1) a precise defini-
tion that capture the essence of scalability across
a wide-range of software systems domains; and
(2) a sound method and prototype implementa-
tion framework to reason about, communicate,
characterize and predict the scalability of soft-
ware systems.

It is not our intent to provide an out-of-the-box solution,
with predefined formulas and rules of thumb. Although a
common ground may be possible, the specifics of the frame-
work instantiation will vary from system to system according
to their requirements. One could argue that software sys-
tems fit into categories, and that our work should attempt
to provide a catalog of framework instantiations. We are,
however, reluctant to adopt the idea, as it is often easy to
imagine exceptions to such rules. It also would be very chal-
lenging in the life-span of a PhD to investigate, formalize and
evaluate solutions to the whole range of software domains.
Nevertheless, others could use the proposed framework as
a starting point to develop specific solutions. This common
ground would enable a shared language to express scalability
concerns to people outside the specific problem domain.

A flexible solution imposes risks. Misleading results could
be derived if an inadequate framework instantiation was
chosen. This is, however, a problem faced by many other
model-based solutions, such as queuing networks. Adoption
could be jeopardized, especially among first-time adopters,
because the lack of hard rules may be intimidating. Never-
theless, the main challenge to be faced by this research will
be in determining the degree of utility and accuracy of its
analysis results. Approaches will have to be investigated to
overcome this problem.

In terms of assumptions, this work presumes that the
stakeholder has enough knowledge about the problem do-
main to choose a suitable set of variables to characterize the
application in hand. The stakeholder is also assumed to be
able to articulate requirements in terms of utility functions.

6. THE WAY TO SCALABILITY
As the research enters its eighth month, we can summarize

current results and the plan the research method for the
remaining time of the PhD:

Research Method.

• Critical literature review

• Identification and scope of the problem

• Formalization of a model for reasoning about, commu-
nicating, characterizing and predicting scalability

• Model refinement and evaluation through case studies

Research Progress. A critical literature review took place
in the first months of research. The objective was an un-
derstanding of the different contexts in which scalability has
been studied. In a second stage, proposed solutions to ana-
lyze and predict software system scalability were reviewed.
An overview of the state-of-the-art can be found in section 2.
Readings also targeted the area of performance prediction.
The two subjects are considered closely related in literature.
Although we believe there is a clear division between them,
many of the issues surrounding both topics are the same, and
proposed solutions for performance prediction can provide
valuable insights for a scalability study. The literature re-
view highlighted the many misunderstandings and concerns
on the subject. It also demonstrated that the field lacked a
clear, common, widely-accepted definition of scalability.

The following stage was devoted to the initial experiments
with a real-world system. A scalability problem was identi-
fied, and interactions with stakeholders started to shape the
analysis objectives. The comparison of the case study with
examples found in the literature highlighted what we now
believe to be the essence of scalability: its causes, effects and
their relationships. The development of a conceptual model
naturally followed from this observation. A framework was
formalized and applied to the case study. Metrics were col-
lected for distinct machines configurations and different val-
ues in the scaling dimension—in this case, the number of
distinct business entities.

The research is currently investigating ways to analyze
the data collected in the case study. Attention is being paid
to the multi-criteria optimization methods. The trade-off
between alternative machine configurations is being repre-
sented by a family of Pareto frontiers. Utility and social wel-
fare utilitarian functions are under investigation to formalize
the stakeholders’ interest and transform a multi-criteria op-
timization problem into a scalar one. Such models are com-
monly used in microeconomics to support the decision pro-
cess [15]. However, to the best of our knowledge, no study
has looked at understanding the scaling of Pareto frontiers
against varying dimensions.

Research Plan. The conceptual model developed is still
not complete. Once the problem has been expressed in
terms of independent and dependent variables, data has
to be gathered so that the relationship between scalability
causes and effects can be analyzed. Data may come from
two sources: measurement or inference. The first can be
used to analyze the scalability of existing software systems.
The second should enable the analysis of applications yet
to be developed. A possible approach is to derive data from
early life cycle development models, such as MDA and UML
diagrams [12].

In both cases, data also have to be extrapolated to account
for future demands. One should take care with extrapolation

951



because of uncertainty, which reflects unexpected changes in
the world and in the system’s behavior. We plan to use the
computational complexity of the different observable char-
acteristics of the system to estimate possible future values of
the scaling dimensions. The expected welfare of the system
can then be calculated by taking into consideration esti-
mated bahaviour of the system and the probability that the
scaling dimensions will reach certain levels.

Another area to be investigated further is the selection of
variables for the framework. The correct identification of a
system’s attributes is crucial for a useful and reliable scala-
bility analysis. Attributes may be correlated, measuring the
same or similar system properties. Statistical data analysis
techniques such as principal component analysis can assist
the selection of a representative set of variables [4].

Plan for Evaluation. Evaluation of the research claim will
represent a major challenge for this work. Ultimately, this
work aims to establish the usefulness of the term ”scala-
bility”. Usefulness is, however, a concept hard to prove.
Nevertheless, we can evaluate the accuracy, expressiveness
and adequacy of the proposed model by applying it to soft-
ware systems in distinct domains. More specifically we plan
to:

• Verify the accuracy of the prediction by applying the
conceptual model to source-controlled versions of soft-
ware systems.

• Analyze the system’s ability to deal with uncertainty
by comparing the results of consecutive releases of sys-
tems and analysing whether changes in the application
domain would have invalidated the analysis results.

• Apply the framework to a growing number of scaling
dimensions and compare the estimated scalability with
data empirically collected.

• Investigate the challenges and consequences of defining
and applying distinct utility functions to scalability
analysis.

• Study the impact of instantiating the framework with
different sets of variables.

• Collect stakeholders’ feedback to evaluate adequacy
and expressiveness of the model.

7. CONCLUSION
A more proactive approach to scalability is required as

current technology advances are reaching their physical lim-
its. To set the ground to this new era, a clear and widely-
accepted understanding of scalability is needed. In our opin-
ion, current solutions represent either an intuitive ideal or
are restricted to narrowly-defined problems. This research
claims that scalability is a software quality that can be mea-
sured and analyzed to support decision making in software
development. We attempt to capture its essence in a sys-
tematic framework to reason about, measure, analyze and
predict the scalability of software systems.

8. ACKNOWLEDGEMENTS
Leticia Duboc is funded under a studentship from UCL.

David Rosenblum holds a Wolfson Research Merit Award

from the Royal Society. The authors thank Wolfgang Em-
merich, Anthony Finkelstein, Damon Wischik and Rami
Bahsoon for their valuable contributions to this work.

9. REFERENCES
[1] A. Avritzer, J. Kondek, D. Liu, and E. J. Weyuker.

Software performance testing based on workload
characterization. In Proc. Third Int’l Workshop on
Software and Performance, pages 17–24. ACM Press,
2002.

[2] A. B. Bondi. Characteristics of scalability and their
impact on performance. In Proc. Second Int’l
Workshop on Software and Performance, pages
195–203. ACM Press, 2000.

[3] G. Brataas and P. Hughes. Exploring architectural
scalability. In Proc. Fourth Int’l Workshop on Software
and Performance, pages 125–129. ACM Press, 2004.

[4] L. Eeckhout, H. Vandierendonck, and
K. De Bosschere. Quantifying the impact of input
data sets on program behavior and its applications. J.
Instruction-Level Parallelism, 5, 2003.

[5] D. B. Gustavson. The many dimensions of scalability.
In COMPCON, pages 60–63, 1994.

[6] M. D. Hill. What is scalability? ACM SIGARCH
Computer Architecture News, 18(4):18–21, 1990.

[7] R. P. Hopkins, M. J. Smith, and P. J. B. King. Two
approaches to integrate UML and performance
models. In Proc. Third Int’l Workshop on Software
and Performance, pages 91–92. ACM Press, 2002.

[8] M. Jackson. Software Requirements & Specifications:
A lexicon of practice, principles and prejudices.
Addison-Wesley, 1995.

[9] P. Jogalekar and M. Woodside. Evaluating the
scalability of distributed systems. IEEE Trans.
Parallel and Distributed Systems, 11(6):589–603, 2000.

[10] Y. Liu and I. Gorton. Accuracy of performance
prediction for EJB applications: A statistical analysis.
In Proc. 2004 Workshop on Software Engineering and
Middleware, pages 185–198, 2004.

[11] E. A. Luke. Defining and measuring scalability. In
Proc. Scalable Parallel Libraries Conference, pages
183–186. IEEE Press, October 1993.

[12] S. Masticola, A. B. Bondi, and M. Hettish.
Model-based scalability estimation in inception-phase
software architecture. In Proc. ACM/IEEE 8th Int’l
Conference on Model Driven Engineering Languages
and Systems, pages 355–366, 2005.

[13] K. Olukotun and L. Hammond. The future of
microprocessors. ACM Queue, 3(7):26–29, 2005.

[14] M. van Steen, S. van der Zijden, and H. J. Sips.
Software engineering for scalable distributed
applications. In Proc. 22nd Int’l Computer Software
and Applications Conference, pages 285–293, 1998.

[15] H. R. Varian. Intermediate Microeconomics: A
Modern Approach. W. W. Norton, 6th edition, 2003.

[16] M. Woodside, D. C. Petriu, D. B. Petriu, H. Shen,
T. Israr, and J. Merseguer. Performance by unified
model analysis (PUMA). In Proc. Fifth Int’l
Workshop on Software and Performance, pages 1–12.
ACM Press, 2005.

952


