
A Framework for Multi-level SLA Management�

Marco Comuzzi1, Constantinos Kotsokalis2, Christoph Rathfelder3,
Wolfgang Theilmann4, Ulrich Winkler4, and Gabriele Zacco5

1 Eindhoven University of Technology, The Netherlands
2 Dortmund University of Technology, Germany

3 FZI Research Center for Information Technology, Karlsruhe, Germany
4 SAP Research, Karlsruhe, Germany

5 Fondazione Bruno Kessler, Povo (Trento), Italy
m.comuzzi@tue.nl, wolfgang.theilmann@sap.com

Abstract. Service-Oriented Architectures (SOA) represent an architec-
tural shift for building business applications based on loosely-coupled
services. In a multi-layered SOA environment the exact conditions under
which services are to be delivered can be formally specified by Service
Level Agreements (SLAs). However, typical SLAs are just specified at
the customer-level and do not allow service providers to manage their IT
stack accordingly as they have no insight on how customer-level SLAs
translate to metrics or parameters at the various layers of the IT stack.
In this paper we present a technical architecture for a multi-level SLA
management framework. We discuss the fundamental components and in-
terfaces in this architecture and explain the developed integrated frame-
work. Furthermore, we show results from a qualitative evaluation of the
framework in the context of an open reference case.

Keywords: Service Level Agreement (SLA), Service-Oriented Infras-
tructure (SOI), e-Contracting, Adaptive Infrastructures, Manageability,
Non-Functional Properties.

1 Introduction

The paradigm of Service-Oriented Architectures (SOA) has changed the way for
building IT-based systems [2]. Initially SOA was mainly applied to restructure
the IT stack within an organisation. More recently it has also evolved as a
common paradigm for cross-organisational service landscapes where services are
considered as tradeable goods. Consequently, services operate under a strong
business context where service customers can expect services to be provided
under well-defined and dependable conditions and with clearly associated costs.

Service Level Agreements (SLAs) are a common way to formally specify the
exact conditions (both functional and non-functional behaviour) under which
services are or shall be delivered. However, the current SLAs in practice are
just specified at the customer-level interface between a service provider and a

� Presented by the authors on behalf of the SLA@SOI consortium [1].

A. Dan, F. Gittler, and F. Toumani (Eds.): ICSOC/ServiceWave 2009, LNCS 6275, pp. 187–196, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

188 M. Comuzzi et al.

service customer. Customer-level SLAs can be used by customers and providers
to monitor whether the actual service delivery complies with the agreed SLA
terms. In case of SLA violations, penalties or compensations can be directly de-
rived. Customer-level SLAs do not allow service providers to either plan their
IT landscapes according to possible, planned or agreed SLAs; nor do they allow
understanding why a certain SLA violation might have occurred. The reason for
this is that SLA guarantee terms might not be explicitly or directly related to
actual performance metrics or configuration parameters. This makes it difficult
for service providers to derive proper configuration parameters from customer-
level SLAs and to assess (lower-level) monitoring metrics against customer-level
SLAs. Overall, the missing relation between customer-level SLAs and (lower-
level) metrics and parameters is a major hurdle for managing IT stacks in terms
of IT planning, prediction or adjustment processes and in accordance with pos-
sible, planned or actual SLAs.

As part of the European Research project SLA@SOI [1], we developed the vi-
sion to use the paradigm of SLAs for managing a complete IT stack in correlation
with customer-level SLAs which are agreed at the business level. This complies
with the current technical trend to apply the paradigm of service-orientation
across the complete IT stack, i.e. infrastructure/platform/software as a service,
but also with the organisational trend in IT companies to organise different
departments as service departments, providing infrastructure resources, middle-
ware, applications or composition tools as a service. SLAs will be associated
with multiple elements of the stack at multiple layers, e.g. SLAs for elements
of the physical/virtual infrastructure, middleware, application and process-level.
Such internal SLAs describe the contract between the lower-level entites and a
higher-level entities consuming the lower ones. More precisely, the SLAs specify
the required or agreed performance metrics but also the related configuration
parameters.

This paper presents the detailed conception and implementation of a multi-
level SLA management framework and it is built on a previous discussion of a
purely conceptual architecture [3]. The remainder of this paper is organised as
follows. Section 2 introduces the developed framework while Section 3 provides
evaluation results in the context of a case study. Section 4 concludes with a
brief summary and outlook. A full version of this paper including a discussion
of related work can be found at [4].

2 SLA Management Framework

The design and implementation of our SLA management framework is based on
the conceptualisation presented in [3]. There, we introduced the following core
concepts:

– The four roles of service customer, software provider, service provider and
infrastructure provider;

– The three layers of business, software, and infrastructure management;

A Framework for Multi-level SLA Management 189

– A service lifecycle model including design, negotiation, provisioning, opera-
tion, i.e. monitoring and adjustment, and decommissioning;

– Conception of relevant basic data store entities covering design-time and
run-time data for the various layers and roles; and

– Conception of functional flows for the lifecycle phases of negotiation, provi-
sioning, and operation.

In the following we now show a concrete technical architecture which implements
the previous conceptualisation.

2.1 Technical Architecture

The technical architecture is presented in two steps. First we show how the
architecture is split into different modules, each of them having a clear respon-
sibility and interface. Second, we show how the envisioned SLA management
procedures are realised in terms of scenario flows. The main challenges for such
an architecture are (1) a clear separation of concerns between concepts that are
highly interrelated and (2) a reasonable abstraction and flexibility that can easily
support different target scenarios.

The technical architecture of the SLA management framework consists of six
modules. Out of them, four modules are primarily responsible to orchestrate the
core activities of the SLA negotiation, SLA provisioning, and SLA operation
phase:

– The negotiation module is responsible for conducting multi-level SLA nego-
tiation. It contains the design time repository (which allows for model-based
performance predictions), the SLA template registry (that stores all the pos-
sible/offered templates), and it is also aware of the rules that support SLA
translation between layers.

– The provisioning module co-ordinates the provisioning of SLA-specified ser-
vices. It contains the SLA registry (storing the established SLAs), the soft-
ware landscape (storing all software related artefacts for provisioning), and
a scheduling component that makes sure temporal and other kinds of depen-
dencies between services are honoured.

– The monitoring module is responsible for the decomposition of a SLA into
monitorable rules and the analysis of a flow of incoming monitoring events
against these rules. Eventual violations can be reported again on the level
of SLAs.

– The adjustment module is responsible to collect all detected SLA violations
or warnings and to trigger adjustment actions. It makes use of a set of
adjustment patterns and a manageability model to achieve this.

The architecture is complemented by two modules which address the pure busi-
ness / infrastructure view.

– The eContracting module is responsible for managing the business relation-
ship with service customers. It contains the notion of business offers (prod-
ucts) and policies (how individual customers are processed in terms of pricing
etc).

190 M. Comuzzi et al.

– The infrastructure module is responsible for managing all the infrastructure
resources in a cloud-like manner. It contains the landscape of existing phys-
ical resources and possible virtualised counterparts.

Last, a technically motivated module realises an event bus to support asyn-
chronous communication between the other modules.

Figure 1 provides an overview of the technical architecture, its modules, in-
terfaces, and main relationships.

- businessRules : Vector
- products : Vector

E-Contracting

- translationRules : Vector
- SLAT registry : Vector
- DTR : Vector

Negotiation

- SoftwareLandscape : Vector
- SLA registry : Vector

Provisioning

CreateAgreement

QueryCatalog

ProposeSLA

- provisionTasks : Vector
- InfrastructureLandscape : Vector

Infrastructure

Customer

- activeSLAs : Vector

Monitoring

- adjustmentPatterns : Vector

Adjustment

Service Application

StoreSLA

StartMonitoring

Reserve

Reprovision

Reconfiguration

NotifyDeliveryStatus

GetTemplates

CreateSchedule

ProvisionEvent

BusinessViolation

EventBus

MRE

IE

MRE

IE

MRE

service application

service customers

SLA framework

Subsystems

IE = Interaction Event
MRE = Monitoring Result
 Event

Fig. 1. Module Architecture

The dynamics of the SLA management framework are described along two sce-
narios. The first scenario concerns the negotiation and provisioning of the SLA,
whereas the second scenario refers to runtime support, and, in particular, the
monitoring, which detects SLA violations, and the adjustment, which reshapes
services deployment configuration in relation to detected SLA violations.

The first scenario (see Figure 2) starts with the customer proposing an SLA
offer to the SLA Framework, by invoking the eContracting module interface. The
scenario implies an initial phase where the customer queries the eContracting
module for retrieving the available product templates, which is not represented
in Figure 2. The SLA offer proposed by the customer is accepted if it can be pro-
visioned by the SLA framework according to the current status of software and
infrastructure resources. The SLA offer is, therefore, forwarded to the Negotia-
tion module, which creates the SLA hierarchy and issues requests for provisioning
the software services and reserving the virtual machines required for execution of
the services. If both requests are successful, the SLA is stored and then sent back
to the customer. Before being sent back to the customer, the SLA is completed
with pricing information. Note that we are using WS-Agreement for expressing
SLAs and the usage of WS-Agreement has a counter intuitive side-effect: Since

A Framework for Multi-level SLA Management 191

InfrastructureProvisioningNegotiationeContractingCustomer

1: proposeSLA(SLAoffer)

1.1: doPricing()

2.3: reserve()

2: createAgreement(SLAoffer) : SLA

2.4: storeSLA(SLAs)

2.2: createSchedule() : SLAs

2.1: translateSLAHierarchy()

SLA (priced)

SLA (top-
level)

adds information
on schedules and
needed
appliances

includes association of
appliances

SLAs (provisioned)

Fig. 2. The negotiation and provisioning scenario

EventBusProvisioning AdjustmentMonitoringInfrastructureService
application

3.1: consumeEvent(MRE)

4.1: consumeEvent(MRE)

3: pushEvent(MRE)

4: pushEvent(MRE)

1.1: consumeEvent(IE)1: pushEvent(IE)

2: detectViolation()

5: reprovision()

6: reconfigureBPELEngine()

Send violations (MRE)
of top-level SLAs to
eContracting and the
Customer

IE: Interaction Event
MRE: Monitoring Result
Event

Fig. 3. The monitoring and adjustment scenario

there are no counter-offers foreseen in the specification, it is not possible for
the initiator (here: the customer) to reject the proposed price. The upcoming
WS-Agreement-Negotiation specification will resolve this issue.

The second scenario (see Figure 3) starts when an SLA becomes active and it is
therefore submitted to the Monitoring module. Monitoring at the software layer
is performed by checking the rules derived from the SLA against the Interaction
Events (IE) produced by the services’ execution environment, e.g. timestamped
service operation calls and responses. When an SLA violation is detected, e.g. the
average completion time of an operation exceeds the threshold reported in the

192 M. Comuzzi et al.

SLA, a Monitoring Result Event (MRE) is pushed on the Event Bus. Note that
violations of terms at the infrastructure layer, e.g. abnormal CPU or memory
usage, are directly detected by the Infrastructure module and pushed as MREs
on the Event Bus. Violations (MREs) are read by the eContracting module, in
order to be shown to the Customer, and by the Adjustment module. Adjust-
ment, in particular, may decide to apply some corrective actions to overcome
SLA violations (e.g. by reconfiguring software components or resizing hardware
capacity).

2.2 Integration Foundations

A solid foundation for building a common approach for all modules is represented
by the adoption of WS-Agreement as SLA modelling solution. WS-Agreement
defines a signalling protocol for establishing SLAs. As such, it is domain-agnostic
and provides generic data types to describe agreement templates and offers. WS-
Agreement defines Agreement Templates to be roughly containers of terms, and
constraints on those terms. A template consists of 4 top-level elements: name,
context, terms and creation constraints, where terms are subdivided into service
description terms and guarantee terms. Agreement documents themselves have
the same structure, without containing any constraints section though.

For the terms, which form the content of the agreement depending on the
domain at hand, the project developed a comprehensive core meta-model to
be used as a basis by all modules. This core meta-model defines a number of
essential constructs (e.g. temporal units, quantitative resource descriptions, etc)
and binary operators for them. Using those constructs, it is possible to define
the agreements’ higher level terms, that can be understood in the same way by
all components of our system.

The second foundation for a common approach of the modules is the adoption
of a framework that eases the assembly of the architecture modules into the final
platform. From a technological point of view, this is achieved using Spring [5], an
open source application framework that provides core features services as well
as advanced solutions for building complex applications.

3 Prototype Implementation and Case Study

The implemented framework has been evaluated against a reference application,
the so-called Open Reference Case (ORC). This section briefly sketches the struc-
ture of this application, explains the related SLA hierarchy that we established,
and provides results from a qualitative evaluation.

3.1 Open Reference Case

The ORC is a service-oriented software system supporting a retail chain scenario.
The ORC extends the Common Component Modelling Example (CoCoME) [6],
which represents a component-based trading system dealing with the various

A Framework for Multi-level SLA Management 193

aspects of handling sales at a supermarket. This includes the interaction at the
cash desk with the customer, including product scanning and payment, as well
as accounting the sale at the inventory.

The ORC is about a Software as a Service (SaaS) scenario where a service
providers offers a solution to a number of different customers. Thus the service
provider negotiates an SLA with each customer. The service provider in turn
relies on a Software Provider (delivering the ORC application), a cloud-like In-
frastructure Provider and External Service Providers which offer complenting
functionality.

The ORC itself consists of a bundle of atomic and composite software ser-
vices (for inventory, ordering and payment) which in turn may depend on other
external software services (such as credit card validation). Technically, the ORC
is offered with 2 deployment options (addressing small and large customers):
all in one, with the service containers, BPEL engine, and database running on
the same virtual machine; separated database, with the database running on a
different virtual machine; and separated database and BPEL engine.

3.2 SLA Hierarchy

Generally, a hierarchy of SLAs is a set of SLAs that are associated in a way that
captures some kind of dependency of one on another. This kind of association /
dependency is not always straightforward. It may be the case that the reduced
capacity of a provider forces it to rent capacity from another provider, to serve
its clients as per the standing agreements. In a different scenario, the dependency
might be due to a request for fail-over redundancy, in which case the failure of an
agreement of the provider may not affect at all the agreements of its customer.
Dependencies may just as well be related to functionality that a provider cannot
offer by default, and that therefore must be outsourced.

SLA dependencies may also be internal to a single provider. This is the case
where a department of a provider relies on another department of the same
provider, in order to accomplish its tasks. Very often this has to do with a busi-
ness department relying on the IT department, for back-office or other functions.

Our evaluation follows the scenario of a single provider with 3 internal de-
partments (business department, software IT department and infrastructure de-
partment) relying on each other via internal SLAs.

Figure 4 illustrates the realized SLA hierarchy. It shows the 3 departmental
layers where the top-level business SLA describes the complete offered Retail-
as-a-Service solution, including software but also relevant business aspects (legal
conditions, support agreements, etc.). The software service bundle relies on a
hierarchy of lower-level software services. The hierarchy here allows the service
provider to precisely understand and monitor his software landscape in relation
to top-level business SLAs. Last, the collection of software services relies on
the infrastructure where the SLA specifies the nature and conditions of the
infrastructure resources (here virtual machines) needed to host the software.

194 M. Comuzzi et al.

Fig. 4. Implemented SLA hierarchy

3.3 Evaluation

Our experiments with the SLA Framework cover the two main scenarios already
described in Section 2.1.

For the negotiation and provisioning scenario, we experimented with different
SLA templates, deployment options and infrastructure options. We decided to
differentiate services starting from the highest service layer, the business services
layer, and we adopted the widely used metaphor of gold, silver and bronze class
services. Hence, we run our experiments with three distinguished business level
SLA templates. Although the three SLA templates provide default values, the
customer in our scenarios should be able to request individual non-functional
properties, i.e. completion times and arrival rates (as qualifying condition) for
each service operation accessible by the customer. Note, that the qualifying con-
dition is understood as “customer obligation” within an SLA, meaning that if
the arrival rate of service requests is higher than agreed, the service provider is
no more bound to sustain the agreed completion time. In this case it is simply
the customer who violated the SLA. At the software level we used individual
templates for each service in order to support flexible service composition and
provisioning, and to gain fine grained SLA hierarchies as depicted in Figure 4.
The infrastructure template allows resource configuration (comprising multiple
virtual machines) and enables the service provider to request guarantees from
the infrastructure provider on various virtual resources, such as CPU or memory.

The core of the actual negotiation procedure is now the translation of terms
along the SLA hierarchy, the evaluation of different composition/deployment/ in-
frastructure options and the selection of the best suited ones. The basic element
to this procedure is a prediction service which, based on a PCM model [7] of the

A Framework for Multi-level SLA Management 195

ORC, can simulate the non-functional behaviour of all these options. Taking the
results of this prediction, the SLA hierarchies of possible solutions are associated
with terms on their non-functional behaviour and costs. Last, the negotiation
component selects the cheapest option that still satisfies the requested top-level
SLA. Experiments show the feasability of this approach and the selection of
well-suited system setups which realize the requested customer SLAs in a cost
efficient manner.

For what concerns the monitoring and adjustment scenario, a software layer
MRE, e.g. a too high average response time of an operation call, is identified
by the name of the guarantee term and the unique id of the SLA to which the
guarantee term belongs. The violation, for instance, may refer to the guarantee
term on the average completion time of the operation bookSale of the service
InventoryService in the ORC. This information is sufficient for the Adjustment
module to retrieve the violated SLA and the related SLA hierarchy and to decide
eventual control actions. Infrastructure violations report the id of the resource
on which the violation has occurred and information on the parameter, e.g. CPU
or memory utilisation, which has been violated.

Adjustment actions have been realised at various layers relying on the analy-
sis done within the adjustment module. SLA violations may result from faulty
customer behaviour, e.g. where a customer exceeds the SLA-agreed maximum
workload. In this case a message is sent via the eContracting module to the
customer, to inform him/her about this.

Concerning the infrastructure, Adjustment may trigger the re-provisioning of
the virtual machines on which services are executed. In particular, if the Ad-
justment receives a violation of the software-level guarantee term on a service
operation completion time and, at the same time, a violation of the CPU utilisa-
tion on the virtual machine on which the service is executed, then it commands
the Infrastructure to re-provision the virtual machine on which the service is
executing with a higher CPU share.

Concerning the software layer, the corrective action implemented at the cur-
rent stage is the reconfiguration of the BPEL engine in which composite services
are executed. The reconfiguration is triggered when a software-level guarantee
term on completion time of an operation of a composite service is violated, and
when it is not possible to find a corresponding infrastructure violation of the
virtual machine where the service is executed. The Adjustment detects, in this
case, that the problem belongs to the BPEL engine in which the service is exe-
cuting; the reconfiguration of the engine involves the increase of thread pool of
the composite service for which the violation has been detected.

Last and if no other adjustment action can be detected, violations (MRE) are
reported as fault of the service provider and the customer is informed accordingly,
including the acceptance of possibly agreed penalties.

4 Conclusions

This paper presents a technical architecture and implementation for a multi-
level SLA management framework. We discussed the fundamental components

196 M. Comuzzi et al.

and interfaces in the architecture. The framework dynamics were described via
two fundamental scenarios, which cover the core SLA management lifecycle in-
cluding negotiation, provisioning, monitoring and adjustment. Furthermore, the
main technical and integration aspects of the developed framework have been
described. The framework has been successfully applied within the context of a
reference application. The qualitative evaluation includes a description of the ac-
tually realised SLA hierarchy and the details about the concrete scenario steps.
A full version of this paper including a discussion of related work can be found
at [4].

Although the experiments have been successful as a feasibility study, they
also revealed some areas that require further improvement. The most impor-
tant among these are a clearer separation of concerns between the horizontal
aspect of system layers and the vertical aspect of SLA management. Second, the
framework must support more flexible integration techniques for different target
scenarios. Besides improving the architecture along the aforementioned lines, we
will also start a thorough evaluation based on five industrial use cases, which
represent a broad set of relevant but also distinct scenarios.

Acknowledgements

The research leading to these results is partially supported by the European
Community’s Seventh Framework Programme (FP7/2001-2013) under grant
agreement no.216556.

References

1. SLA@SOI project: IST- 216556; Empowering the Service Economy with SLA-aware
Infrastructures, http://www.sla-at-soi.eu/

2. Papazoglou, M., van den Heuvel, W.J.: Service oriented architectures: approaches,
technologies and research issues. The VLDB Journal 16(3), 389–415 (2007)

3. Theilmann, W., Yahyapour, R., Butler, J.: Multi-level sla management for service-
oriented infrastructures. Towards a Service-Based Internet, 324–335 (2008)

4. Comuzzi, M., Kotsokalis, C., Rathfelder, C., Theilmann, W., Winkler, U., Zacco, G.:
A framework for multi-level sla management. Technical Report 2010-1, SLA@SOI
project (April 2010)

5. Spring framework: Eliminating Enterprise Java Complexity,
http://www.springsource.com/

6. Rausch, A., Reussner, R., Mirandola, R. (eds.): The Common Component Modeling
Example. LNCS, vol. 5153. Springer, Heidelberg (2008)

7. Becker, S., Koziolek, H., Reussner, R.: The Palladio component model for model-
driven performance prediction. Journal of Systems and Software 82(1), 3–22 (2009)

http://www.sla-at-soi.eu/
http://www.springsource.com/

	A Framework for Multi-level SLA Management
	Introduction
	SLA Management Framework
	Technical Architecture
	Integration Foundations

	Prototype Implementation and Case Study
	Open Reference Case
	SLA Hierarchy
	Evaluation

	Conclusions
	References

