
A framework for multidimensional design of data warehouses
from ontologies

Oscar Romero a,⁎, Alberto Abelló b

a Universitat Politècnica de Catalunya - BarcelonaTech, Dept. Llenguatges i Sistemes Informàtics, Barcelona, Spain
b Universitat Politècnica de Catalunya - BarcelonaTech, Dept. d'Enginyeria de Serveis i Sistemes d'Informació, Barcelona, Spain

a r t i c l e i n f o a b s t r a c t

Available online 15 July 2010 The data warehouse design task needs to consider both the end-user requirements and the

organization data sources. For this reason, the data warehouse design has been traditionally

considered a reengineering process, guided by requirements, from the data sources.

Most current design methods available demand highly-expressive end-user requirements as

input, in order to carry out the exploration and analysis of the data sources. However, the task

to elicit the end-user information requirements might result in a thorough task. Importantly, in

the data warehousing context, the analysis capabilities of the target data warehouse depend on

what kind of data is available in the data sources. Thus, in those scenarios where the analysis

capabilities of the data sources are not (fully) known, it is possible to help the data warehouse

designer to identify and elicit unknown analysis capabilities.

In this paper we introduce a user-centered approach to support the end-user requirements

elicitation and the data warehouse multidimensional design tasks. Our proposal is based on a

reengineering process that derives the multidimensional schema from a conceptual

formalization of the domain. It starts by fully analyzing the data sources to identify, without

considering requirements yet, themultidimensional knowledge they capture (i.e., data likely to

be analyzed from a multidimensional point of view). Next, we propose to exploit this

knowledge in order to support the requirements elicitation task. In this way, we are already

conciliating requirements with the data sources, and we are able to fully exploit the analysis

capabilities of the sources. Once requirements are clear, we automatically create the data

warehouse conceptual schema according to the multidimensional knowledge extracted from

the sources.

© 2010 Elsevier B.V. All rights reserved.

Keywords:

OLAP

Multidimensional design

Ontologies

1. Introduction

Data warehousing systems were conceived to support decision making within organizations. According to [17], a data

warehousing system is a collection of methods, techniques, and tools used to support knowledge workers — e.g., senior managers,

directors, etc. — to conduct data analysis that helps with performing decision making processes and improving information resources.

Typically, relevant data for decision making is extracted from the organization data sources, transformed (i.e., cleaned and

homogenized) and finally integrated within a huge repository of data (the data warehouse), in what is known as the ETL

(extraction/transform/loading) process. The data warehouse provides a single and detailed view of the organization, and it is

intended to be exploited by means of the exploitation tools, which provide different mechanisms to navigate and perform analysis

tasks over the data warehouse. Among the different kinds of exploitation tools, OLAP (On-line Analytical Processing) tools have

gained relevance in the last years so much so that the data warehousing and OLAP concepts are now tightly related. OLAP tools are

Data & Knowledge Engineering 69 (2010) 1138–1157

⁎ Corresponding author.

E-mail addresses: oromero@lsi.upc.edu (O. Romero), aabello@essi.upc.edu (A. Abelló).

0169-023X/$ – see front matter © 2010 Elsevier B.V. All rights reserved.

doi:10.1016/j.datak.2010.07.007

Contents lists available at ScienceDirect

Data & Knowledge Engineering

j ourna l homepage: www.e lsev ie r.com/ locate /datak

http://dx.doi.org/10.1016/j.datak.2010.07.007
mailto:oromero@lsi.upc.edu
mailto:aabello@essi.upc.edu
http://dx.doi.org/10.1016/j.datak.2010.07.007
http://www.sciencedirect.com/science/journal/0169023X


intended to facilitate information analysis and navigation through the business data based on themultidimensional paradigm. The

multidimensional view of data is distinguished by the fact/dimension dichotomy, and it is characterized by representing data (i.e.,

the fact of interest) as if placed in an n-dimensional space (with as many axes as dimensions of analysis of interest). This paradigm

allows to easily understand and analyze data showing the different points of view from where a subject can be analyzed. In

consequence, the multidimensional model fits for non-expert users like knowledge workers (from here on, the data warehouse

end-users). For example, a typical fact of interest would be the business sales, whereas its typical dimensions of analysis would be

the item sold, where it was sold (i.e., the place) and when (i.e., the time). One fact and several dimensions of analysis formwhat is

known as multidimensional schema or star-schema. Nowadays, it is widely accepted that the conceptual schema of a data

warehouse must be structured according to the multidimensional model, so that it can be exploited by OLAP tools.

Like in most information systems, the data warehouse design has been typically carried out manually, and the experts'

knowledge and experience are crucial to identify relevant multidimensional knowledge contained in the sources. Data

warehousing systems need to consider both the end-user requirements and the organization data sources. In this context, the

end-user requirements often come as business queries or service level agreements (SLAs), and represent the end-user analytical

necessities, whereas the data sources are needed to know from where to extract the required data (and how to eventually

populate the target data warehouse) in order to give answers to the information requirements. For this reason, the data

warehouse design task has been considered a reengineering process, ideally guided by requirements, from the data sources: i.e.,

creating a data warehouse does not require the addition of new information but rearrange the existing information (indeed, the

datawarehouse is nothing else than a strategic view on the organization data). In this sense, some research efforts have proposed

the automation of the data warehouse design in order to free this task of being (completely) performed by an expert, and

facilitate the whole process. However, the more the process gets automated, the more the integration of requirements is

overlooked on the way.

In our previous work [39] we addressed how to automatically validate requirements and conciliate themwith the data sources,

to support the data warehouse design task. This work fits in traditional scenarios in which the end-user requirements are known

before hand (i.e., by the point we start the design task). However, this scenario does not always hold in data warehousing, and the

task to elicit the end-user information requirements might result in a thorough task. Importantly, note that the analysis

capabilities of the target data warehouse depend on what kind of data is available in the data sources. Thus, in those scenarios

where the analysis capabilities of the data sources are not (fully) known, it is possible to help the data warehouse designer to

identify and elicit unknown analysis capabilities. Eventually, these unknown capabilities may provide strategic advantages for the

organization.

In this paper we introduce a user-centered approach to support the end-user requirements elicitation and the data warehouse

multidimensional design tasks. It consists of three steps:

• First, our approach starts by fully analyzing the data sources to identify, without considering requirements yet, the

multidimensional knowledge they capture (i.e., data likely to be analyzed from a multidimensional point of view).

• Next, we propose to exploit this knowledge in order to support the requirements elicitation task. In this way, we are already

conciliating requirements with the data sources, and we are able to fully exploit the analysis capabilities of the sources.

• Finally, once requirements are clear, we automatically create the data warehouse conceptual schema according to them, and the

multidimensional knowledge extracted from the sources.

Thus, we say it is a user-centered approach since the feedback of the user1 is needed to filter and shape results obtained from

analyzing the sources, and eventually produce the desired conceptual schema. In this scenario, our main contribution is the AMDO

(Automating Multidimensional Design from Ontologies) method, our proposal for discovering the multidimensional knowledge

contained in the data sources (i.e., corresponding to the first stage discussed above). Importantly, note that AMDO focuses on

identifying the multidimensional knowledge contained in the sources regardless of the requirements (as discussed in Section 2,

this kind of approaches are known as supply-driven approaches). Relevantly, current supply-driven approaches suffer from two

major drawbacks, which we claim to overcome with AMDO.

The first one is that supply-driven approaches tend to generate too many results. Consequently, they unnecessarily overwhelm

users with blindly generated combinations whose meaning has not been analyzed in advance. Eventually, they put the burden of

(manually) analyzing and filtering results provided onto the designer's shoulder, but the time-consuming nature of this task can

render it unfeasible when large data sources are considered.

Filtering the results provided by these approaches is a must, and AMDO aims at filtering the results obtained by means of

objective evidences. Specifically, we introduce the concepts of filtering function and searching patterns (see Section 4 for further

information), which filter and rank results obtained and eventually facilitate the analysis of AMDO's output.

The second drawback is that current supply-driven approachesmostly carry out the design task from relational OLTP (On-Line

Transaction Processing) systems, assuming that a RDBMS is the most common kind of data sources we may find, and taking as

starting point a relational schema (i.e., a logical schema). As a result, these approaches require a certain degree of normalization

in the input logical schema to guarantee that it captures as much as possible the to-one relationships existing in the domain. As

detailed in Section 2, discovering this kind of relationships is crucial in the design of the data warehouse, and the most common

1 Note that we distinguish between the end-user (i.e., the users that will exploit the data warehouse once devised), and the users benefiting from our approach

(i.e., the data warehouse designers).

1139O. Romero, A. Abelló / Data & Knowledge Engineering 69 (2010) 1138–1157



way to represent them at the logical level is bymeans of “foreign” (FK) and “candidate key” (CK) constraints. This scenario can be

clearly seen in the example shown in Fig. 1.

There, a single relation (named rental agreement) models data related to a car rental agreement in a RDBMS. Each row

represents an attribute of the relation (in italics its data type). The “primary key” of the relation is identified by the PK label and the

capital letters in brackets besides each attribute represent the multidimensional role that attribute should play according to its

semantics (M stands for measure; i.e., interesting business measures of our fact of study, and DC for dimensional concept; i.e.,

interesting perspectives of view of our fact — a detailed definition of the multidimensional concepts may be found in Section 3).

Only those concepts that would play a multidimensional role are shown in the figure, but additional attributes could be found in

the relation (depicted by the ellipsis at the end).

In this case, current methods would either i) overlook all the dimensional concepts (since they are not involved in any CK or

FK), or ii) identify all the non-numerical attributes as dimensional concepts (i.e., even those not making multidimensional sense

and not shown in the figure). Furthermore, even if they were able to identify any dimensional concept, they would not be able to

identify potential aggregation paths (or roll-up relationships) that would give rise to dimension hierarchies.

Dimension hierarchies are crucial in the multidimensional model which is based on twomain features: 1) placement of data in

the multidimensional space and 2) summarizability of data. A bad design of the dimension hierarchies would directly impact on

the aggregation paths we may have. Modify data granularity (by means of the aggregation paths) when showing data to the end-

user is a key feature of OLAP tools (performed through the “roll-up” and “drill-down” operators), and overlooking aggregation

paths in the system design task would impact on the success of the whole system [27]. Indeed, any intermediate situation between

a denormalized schema and a logical schema in 3NF would affect the output quality of current multidimensional design methods.

This scenario can be avoided modeling the data warehouse from a conceptual formalization of the domain. The role of a

conceptual layer on top of information systems has been discussed in depth in the literature (see, for example, [30,35]). In case of

reengineering processes like the data warehouse conceptual design, the benefits are clear: the conceptual layer providesmore and

better knowledge about the domain to carry out this task. For example, consider now the ontology depicted in Fig. 2. This ontology

plays a conceptual role regarding the logical implementation depicted in Fig. 1. The piece of ontology depicted in the figure (that

will be used as running example all over the paper) refers to a car rental agreement between a branch and a costumer. For a

given rental agreement a car is assigned. In turn, rental agreements are classified into ongoing agreements — i.e., an

opened rental — and bookings — i.e., reservations. An opened rental is considered closedwhen the agreement expires and

the car is returned, whereas a reservation might have booked a guaranteed canceled. Information about the branch is also

captured, such as pendant car models to be assigned to rental agreements, the demand got by a given kind of car group or

the service depot associated to a branch. Moreover, a car belongs to a branch and it is assigned to a service depot when

maintenance is needed.

In this picture, each relevant concept of the domain is clearly stated as well as its relationships with the other concepts, and for

instancewewill be able to propose a car to be summarizable into two different aggregation paths (into car model and car group

but also through the branch to the country, branch type and service depot they belong to), that would form, as a whole, the

car dimension.

Summing up, AMDOmain goal is to facilitate the requirements elicitation and the datawarehouse design tasks. AMDO achieves

so because i) it improves the quality of the output obtained in the analysis of the data sources by working over a conceptual

formalization of the domain (instead of a logical one), and ii) it automates the process as much as possible. This second feature is

the main reason for choosing ontologies instead of other conceptual formalizations, since ontology languages provide reasoning

services that will facilitate the automation of our task. Specifically, we choose OWL DL [46], a W3C recommendation based on

Description Logic (DL) [4], as our input ontology language. Later, we will show that our algorithm can be adapted to other ontology

languages (even less expressive, as discussed in Section 6).

Nowadays ontology languages are widely used in different areas like data integration [25] and the Semantic Web [6], but in

other areas, like software engineering, UML [18] and ER [10] are the most common choices. In these cases, our approach requires a

pre-process to generate an OWL DL ontology from the UML or ER diagram. As discussed in the literature (see for example,

[3,5,9,14,30]), this process can be automated.

Fig. 1. A logical implementation in a RDBMS of a car rental agreement.

1140 O. Romero, A. Abelló / Data & Knowledge Engineering 69 (2010) 1138–1157



Nevertheless, if there is not any conceptual formalization of the domain available we can use integration and reverse

engineering techniques to obtain it. For example, Ref. [43] shows that a variety of structured and unstructured data stores can be

elegantly represented as graphs, and it describes how an appropriate ontology for such data stores can be constructed by

integrating a domain vocabulary with the data sources' vocabulary.

The structure of this paper is organized as follows. Section 2 discusses the related work underlining automatable approaches.

Section 3 sets the foundations of our method that is presented in Section 4. Section 6 sets a discussion about different issues

regarding our approach, and Section 7 concludes the paper.

2. Related work and main contributions

Nowadays, we can find several methods aimed at supporting the data warehouse design process. According to Ref. [47],

multidimensional modeling methods may be classified within a demand-driven or a supply-driven framework. They properly

define each framework as follows:

• Demand-driven approaches: also known as requirement-driven or goal-driven, focus on determining the end-user

multidimensional requirements (as typically performed in other information systems) to produce a multidimensional schema.

Only in the later stages, they map the output schema onto the data sources. For example, [23,34,47].

• Supply-driven approaches: also known as data-driven, start from a detailed analysis of the data sources to determine the

multidimensional concepts in a reengineering process. End-user requirements are eventually considered in the later stages to

filter results obtained. For example, [16,22,31,44].

• Hybrid approaches: some works propose to combine both frameworks. Mostly, these approaches start with a demand-driven

stage to identify facts of interest and then, they identify its dimensional concepts bymeans of a supply-driven stage. For example,

[8,15,21,29].

Demand-driven approaches2 follow a classical software engineering approach, whereas supply-driven approaches exploit

the inherent features of data warehouses and propose a reengineering approach from the data sources. Carrying out an

exhaustive search of dimensional concepts among all the concepts of the domain (like supply-driven approaches do) has a main

benefit with regard to those approaches that derive the schema from requirements and later conciliate them with the data

sources (i.e., demand-driven approaches): in many real scenarios, the user may not be aware of all the potential analysis

Fig. 2. Diagrammatic representation (based on UML notation) of a piece of a car renting ontology. The whole EU-Car Rental ontology [13] in OWL DL notation can

be found at http://www.lsi.upc.edu/~ oromero/EUCarRental.owl.

2 In this section, we also mean demand-driven stages within hybrid approaches when talking about demand-driven approaches. And analogously for supply-

driven approaches/stages.

1141O. Romero, A. Abelló / Data & Knowledge Engineering 69 (2010) 1138–1157

image of Fig.�2
http://www.lsi.upc.edu/~%20oromero/EUCarRental.owl


capabilities contained in the data sources and, therefore, he/she may overlook relevant knowledge. Oppositely, demand-driven

approaches do not consider this and assume that requirements are exhaustive. Thus, knowledge derived from the sources not

depicted in the requirements is not considered and discarded. As a counterpart, supply-driven approaches risk wasting

resources by handling much unnecessary information [47], and tend to generate too many results (since they overlook the

multidimensional requirements, they must apply their design patterns across all data sources). Furthermore, demand-driven

approaches have not been traditionally automated, whereas supply-driven ones tend to facilitate their automation. The main

reason is that demand-driven stages would require to formalize the end-user requirements (i.e., translate them to a language

understandable by computers). In general, current methods handle requirements mostly stated in languages (such as natural

language) lacking the required degree of formalization. Thus, matching requirements over the data sources must be performed

manually.

As discussed in previous section, AMDO follows a supply-driven approachwith the aim of supporting the elicitation of end-user

requirements and the data warehouse design tasks. Thus, in this section, we focus on supply-driven approaches. The interested

reader may find our demand-driven proposal and a thorough discussion about this kind of approaches in [39], and a detailed state

of the art on multidimensional modeling in [12,38].

Most supply-driven approaches focus on the automation of the data warehouse design process from relational schemas

[16,22,31,44]. These methods rely on a thorough analysis of the relational sources. On the one hand, facts are discovered based on

simple heuristics (such as table cardinalities or numerical attributes, which may identify fake facts or overlook real ones). On the

other hand, dimensional data is discovered by design patterns based on “foreign” (FK) and “candidate key” (CK) constraints. In

multidimensional design, it is well-known that facts and dimensions must be related by many-to-one relationships, to form a

meaningful multidimensional space (see Section 3 for further information). In a relational schema this kind of relationships (i.e.,

mandatory functional dependencies) are modeled by means of CK and FK constraints. For this reason the accuracy of results

obtained by these methods depends on i) the decision to define CK and FK constraints (since some DBA may get rid of them to

improve the insertion/deletion performance) and ii) the degree of normalization of the logical schema (since some FKs and CKs are

lost if we do not consider a schema up to 3NF):

• Golfarelli et al. [16] introduced a semi-automatable method to derive the multidimensional schema from relational schemas

(indeed, they also propose to do it from ER diagrams, but they overlook the automation of the task and mostly rely on

requirements, as discussed here). Gathering requirements and mapping them onto the relational schema is an important step

in this approach. Therefore, the degree of automation is rather low and for example, it demands tomanually identify facts. Next

steps can be performed semi-automatically: firstly, for each concept identified as a fact they build its attribute tree.

Nevertheless, the automation of this step completely relies on FK and CK constraints. Secondly, they identify measures,

dimensions and their hierarchies by pruning and grafting this tree (in a semi-automatic way) and eventually, giving rise to the

multidimensional schema. In an example like the one presented in Fig. 1 they would not be able to identify any dimensional

concept automatically.

• Phipps and Davis [31] present a method largely automatable. In this approach they use a heuristic based on the number of

numerical attributes a relation has, to identify it as a potential fact (which they call fact relation). Any relation in a to-many

relationship (identified by means of FK–CK constraints) is likely to play a dimensional role. To avoid their dependence on FK–

CK constraints, any non-numerical concept within a fact relation is considered a dimensional concept (conforming a dimension

by itself). Dimension hierarchies are deployed following FK–CK relationships.

This approach uses heuristics and design patterns rather generic and it produces results containing too much noise.

Consequently, a post-process based on the user requirements (i.e., a demand-driven stage) is carried out to filter results. This

stage must be carried out manually and therefore, it would be hard, even for an expert, to filter and clean all results obtained.

Regarding our example in Fig. 1, the rental agreement relation would be identified as a fact since it contains 6 numerical

attributes. Later, all the non-numerical attributes (even those not making multidimensional sense) would be labeled as

dimensional concepts and each one would be considered a dimension by itself (overlooking dimension hierarchies).

• Finally, Jensen et al. [22] presented a method in which data mining techniques are used to analyze the relational sources.

Assuming that the database does not contain composite keys, this method derives valuable metadata such as functional and

inclusion dependencies and key or cardinality information, which identifies potential snowflake schemas [23]. To infer the

metadata, the authors access the instances and apply data mining techniques, which could be unsuitable for large data

sources. Moreover, since they are looking for snowflake schemas, they rely on FK-CK relationships to identify functional and

inclusion dependencies (i.e., two attributes of two different tables are checked to know if a to-one relationship holds

between them despite a FK-CK relationship is not explicitly stated in the schema), as in the methods discussed previously.

Thus, the impact of denormalization is as big as in the rest of approaches. Finally, the complexity of this approach may

become problematic due to the high number of combinations computed when searching for inclusion dependencies (as all

combinations of potential candidate keys and foreign keys are constructed with the consequent computational cost). In our

example, this method would not be able to identify any of the multidimensional concepts in the rental agreement

relation.

1142 O. Romero, A. Abelló / Data & Knowledge Engineering 69 (2010) 1138–1157



To our knowledge, there is only one approach working at the conceptual level and following a similar framework to AMDO:

• Song et al. [44] present a method to semi-automate the data warehouse design process from ER diagrams. After a pre-process to

transform the input diagram into a binary ER diagram (i.e., without ternary nor many-to-many relationships) they compute the

number of to-one relationships that each concept has. According to this topological value, they identify facts and their potential

dimensional concepts. This approach achieves a fair degree of automation and unlike previous approaches, proposes to identify

facts in an automatic way, but the issue of how to automatically give rise to dimension hierarchies from the dimensional

concepts identified is not addressed. The authors suggest a lexical method based onWordnet and annotated dimensions. Finally,

measures are overlooked as well, and no clues about how to identify them are given.

Finally, we would like to discuss those methods presenting a supply-driven stage within a hybrid approach. These methods

have not been discussed above because they mainly rely on their demand-driven stages to discover the multidimensional

concepts rather than on an accurate analysis of the data sources. Indeed, only a few of them automate this process somehow

[8,15,21,29], but the degree of automation achieved is rather low. Specifically, these approaches consist of a detailed

requirements elicitation stage (to be performed manually) and an automated analysis of the data sources. Later, both stages are

put in common, conciliating in this way the data sources and requirements. In these methods the requirements elicitation stage

leads the process and the main design decisions are made in this step, whereas the analysis of the data sources is rather

superficial. As a consequence, they introduce simple automatic design patterns. In fact, the analysis of the data sources can be

thought as a complementary task to the requirements elicitation process. For example, facts are identified manually from

requirements and the automation of the process is mainly reduced to discover to-one relationships from each fact identified

(i.e., its dimensional concepts).

As an example, Ref. [29] introduces a commonly cited method for supporting the multidimensional schema. It requires each

domain entity to be classified as a transactional (the basis for fact tables), component (details or components of business events

that will produce dimensions) or classification (that will be used to shape the dimension hierarchies) entity. The authors give

advice on how these entities can be identified. Thus, “transactional entities must describe events that happens at a point in time

and contain measures or quantities that can be summarized”. Formal rules are given for each type of entity to give shape to the

multidimensional schema. For example, a typical rule (also discussed in [21]) is discovering functional dependencies (FDs) to

identify dimensional data. However, manual discovery of FDs is an unfeasible task for most systems [11,45], and the automatic

methods for identifying FDs (as suggested in these works) need to address this task by using the instance semantics. These

methods have various drawbacks: they propose solutions that are computationally expensive, and register drops in

performance when a large number of attributes or instances are processed [19,26,42,45]. However, this is the most common

scenario in data warehousing systems [17].

Summing up, supply-driven approaches either do not achieve a fair automation degree or, if they automate the process to a fair

degree, they use simple design patterns/heuristics to identify the multidimensional concepts.

2.1. Main contributions

Our proposal is a reengineering process that derives the multidimensional schema from a conceptual formalization of the

domain. Our main contribution is the AMDO method: a fully automatic supply-driven approach working at the conceptual level.

Working from conceptual formalizations improves the quality of the output, as discussed earlier in this section. Although other

works already proposed to work at a conceptual level, AMDO is the first method presented in the literature automating the whole

process: i.e., identifying facts, measures and dimension hierarchies. Previous approaches mainly rely on their requirements

elicitation stages to discover themultidimensional concepts rather on an accurate analysis of the data sources. In this sense, AMDO

follows a completely different framework based on a thorough and fully automatic analysis of the sources and then, carrying out a

guided requirements elicitation stage a posteriori, as discussed in Section 4. Therefore, unlike previous approaches, the automatic

analysis of the sources leads the process.

Specifically, AMDO considers all the multidimensional concepts in depth by analyzing their semantics and how they

should be identified from the sources. As result we propose new and original design patterns. For example, we are able to

identify aggregate measures (see Section 4.2 for further details) that have been completely overlooked in the literature;

handle measures and dimensional concepts uniformly in an automatic way (see Section 4.1.2); introduce formal rules to

distinguish between descriptors and levels in a dimension hierarchy as well as identify semantic relationships between

dimensions (see Section 4.4) and between levels and measures (see Section 4.1.1). Relevantly, a more accurate approach to

discover facts than the ones used in previous approaches is provided (see Section 4). With regard to this last contribution,

AMDO introduces the search pattern and filtering function concepts, which are used to guide the exploration and analysis of

knowledge retrieved by AMDO. Our main contribution in this issue lays on the flexibility that these concepts provide. Indeed,

we claim that we are able to capture any of the heuristics previously introduced in the literature to identify facts and, at the

same time, we provide mechanisms to capture more expressive ones. To our knowledge, this is the first approach providing

such mechanisms.

A possible reason why previous approaches working at the conceptual level have overlooked the automation of the process

could be that ER (or UML) are conceptual formalizations thought to graphically represent the domain, but unlike ontologies,

not thought for querying and reasoning. To our knowledge, our approach is the first one considering the data warehouse

design from ontologies. Hence, we do believe that this work opens new interesting perspectives. For example, we can extend

1143O. Romero, A. Abelló / Data & Knowledge Engineering 69 (2010) 1138–1157



the data warehouse and OLAP concepts to other areas like the Semantic Web, where ontologies play a key role providing a

common vocabulary. One consequence would be that, although the data warehouse design has been typically guided by data

available within the organization, we would be able to integrate external data from the web into our data warehouse to

provide additional up-to-date information about our business domain (this concept of data warehousing is known in the

literature as Web-Warehousing [36]).

Based on this main contribution (i.e., AMDO), we present an approach for supporting both i) the end-user requirements

elicitation and the ii) data warehouse design task.

Finally, the work presented in this paper is an evolution of the one introduced in [37]. We have improved our previous

algorithms in two ways: now, they are semantically richer (for example, we are able to distinguish between levels and

descriptors and identify aggregate measures) and we have improved their computational complexity. Indeed, our current

algorithms can be mostly computed with generic reasoning algorithms [40], which allow us to take advantage of the

advances in a continuing evolving area such as the DL community. Moreover, the AMDO tool has now been devised and

thanks to it, we have been able to extend our previous work by considering practical considerations (which came up when

testing our tool; see Section 5) and by providing a detailed example of a case study that shows the feasibility of our method.

3. Method foundations

Since our goal is to identify multidimensional concepts in an automated way, this section aims to concisely define those

criteria our proposal will be based on; i.e., those criteria allowing us to identify ontology concepts making multidimensional

sense. Our method applies patterns over the input domain ontology to detect concepts that are able to be analyzed from a

multidimensional perspective and therefore, able to form a multidimensional schema. Concisely, multidimensionality pays

attention to two main aspects; placement of data in a multidimensional space and correct summarizability of data:

• [C1] The Multidimensional Model: multidimensionality is based on the fact/dimension dichotomy. Dimensional concepts give

rise to the multidimensional space where the fact is placed. By dimensional concepts we refer to any concept likely to be used as

a new perspective of analysis. Traditionally, they have been classified as dimensions, levels and descriptors. Thus, we consider a

dimension to contain a hierarchy of levels representing different granularities (or levels of detail) to study data, and a level to

contain descriptors (i.e., level attributes). On the other hand, a fact contains measures of analysis. One fact and several

dimensions to analyze it give rise to a multidimensional schema.

• [C2] The multidimensional space arrangement constraint: dimensions arrange the multidimensional space where the fact of

study is depicted. Each instance of data is identified (i.e., placed in the multidimensional space) by a point in each of its analysis

dimensions. Conceptually, it embraces that a fact must be related to each analysis dimension (and by extension, to any

dimensional concept) by a many-to-one relationship. That is, every instance of the fact is related to, at least and at most, one

instance of an analysis dimension, and every dimension instance may be related to many instances of the fact.

• [C3] The summarization integrity constraint: data summarization performed must be correct, and we warrant this by means

of the three necessary conditions (intuitively also sufficient) [24]: (1) disjointness (the sets of objects to be aggregated must

be disjoint), (2) completeness (the union of subsets must constitute the entire set), and (3) compatibility of the dimension,

kind of measure being aggregated and the aggregation function. Compatibility must be satisfied since certain functions are

incompatible with some dimensions and kind of measures. For example, we cannot aggregate Stock over Time dimension by

means of sum, as some repeated values would be counted. However, compatibility will not be automatically checked in our

method unless additional metadata was provided (for example, a list of compatibilities could be asked to the user for each

measure identified).

Fig. 3. Method overview.

1144 O. Romero, A. Abelló / Data & Knowledge Engineering 69 (2010) 1138–1157

image of Fig.�3


4. Our approach

This section presents a detailed view of AMDO and how it can be used for supporting requirements elicitation and the data

warehouse design tasks. Fig. 3 depicts a schematic overview of AMDO and how it applies the criteria introduced in Section 3.

Our approach's input is the ontology domain containing both, the data sources and the domain vocabularies. Note that

no requirements are demanded as input (i.e., at the beginning), since our approach aims to support their elicitation. About

AMDO, it is a two-task method to be used within a user-centered approach. AMDO aims at discovering the ontology concepts

likely to play multidimensional roles [C1] and therefore, likely to give rise to multidimensional schemas.

The first task looks for potential subjects of analysis (i.e., facts). In the literature we can find different approaches to

discover facts but most of them are hardly automatable. Identifying facts automatically is a hard task [31], and most methods

rely on simple heuristics such as table cardinalities or numerical attributes. The rest of approaches demand to identify facts

manually. According to the multidimensional paradigm, the analysis of data must facilitate the decision making within

organizations and in this sense, the better knowledge you have, the better decisions you make. We say, thus, that an ontology

concept is likely to play a fact role if it has as many measures as possible and it can be analyzed from as many different

perspectives as possible. Eventually, this fact may not be of interest for the user (this will be considered later in our approach),

but objectively, it will provide many different measures to analyze from many different perspectives.

This task, therefore, is divided in two main subtasks; (1) discover potential dimensional concepts and (2) point out potential

measures. The readermust note that we do not talk about dimensions but about dimensional concepts. This stepwill find potential

points of view to analyze the subject of analysis but, at this point, we are not able to distinguish their dimensional role (i.e., a

dimension, a level or even a descriptor). This job is carried out in the second task of AMDO, where dimension hierarchies will

be shaped.

Up to this point, AMDO's main goal is to identify, for each ontology concept, its potential measures and dimensional

concepts. Note that this is a fully supply-driven task and requirements have not been considered and, according to our

discussion in Section 2, it might have generated loads of results. For this reason, next step in this task aims at filtering results

obtained before presenting them to the user. We do so by introducing the concepts of search pattern and filtering function.

A search pattern is a topological pattern that does not consider semantics (i.e., it does not represent business requirements) but

provides information about how the target schema must look like. For example, consider the number of numerical attributes of a

given concept. This search pattern is the most widely used heuristic to identify facts in the literature (see Section 2). In AMDO,

search patterns are implemented by their corresponding filtering functions. Thus, a filtering function is used to assess and rank

(regarding the other ontology concepts) every ontology concept, according to the search pattern it represents. Following the same

example, we implement it with Attrs(C) :=num _attrs (where C is a given ontology concept and num _attrs the number of

numerical attributes it has). Relevantly, AMDO can capture any previous automatable heuristic introduced in the literature and, in

addition, it provides a framework to capture more expressive ones, as discussed later in this section. Finally, according to the

filtering function, AMDO would provide a ranked list of ontology concepts. The higher a concept is ranked, the better is estimated

as a fact (according to the search pattern captured by this filtering function).

Note the following and interesting properties of our approach:

• It is completely flexible regarding search patterns and filtering functions. Indeed, the designer can formulate as many filtering

functions as needed and for each function provided, the ontology concepts would be ranked in a different way.

• Relevantly, all the previous heuristics used in the literature can be captured by AMDO (for example, the “Connection Topology

Value” [44]). In addition, AMDO also provides two new variables that have not been considered in previous works: we compute

the number of measures and dimensional concepts. To compute these variables, we introduce novel design patterns3 to compute

potential measures and dimensional concepts for a given ontology concept (see Sections 4.1 and 4.2 for further details).

• Note that the designer can formulate and compute as many filtering functions as desired, and each function will assess the

ontology concepts as potential facts in a different way. For example, consider the design of a datawarehouse in the bionformatics

field. By analyzing already existingmultidimensional schemas in this field, wemay realize that a schema tends to be relevant if it

provides plenty of measures and different analysis perspectives of interest for a given fact. Nevertheless, specific facts that do not

fit such generic patterns can also be identified by providing the proper searching pattern. For example, if we aim at identifying

factless facts [23], measures should not be considered, and we would like to weight each concept by its dimensional concepts

(and even give more weight to those closer to the given ontology concept).

This approach provides a powerful framework somuch so that we can even capture generic requirements in the search pattern

(i.e., involving semantics). For example, data warehousing aims at providing historical data and thus, we could be interested in

weighting the number of numerical attributes a concept has with regard to the topological distance to the date datatype. This

search pattern can be captured in the following filtering function: AttrsByDistance(C) : =
num�attrs

distðdateÞ
(where dist(date) computes

the distance— i.e., the minimumnumber of properties between C and date). In this way, the closer to date, the better it is ranked.

3 The reader will note that we distinguish between design patterns and search patterns. The first ones are those aimed at identifying the multidimensional

concepts (i.e., they are in compliance with the multidimensional model), whereas search patterns are used to filter the results obtained by computing the design

patterns over the sources. Thus, search patterns might depend on the domain and kind of data warehouse devised.

1145O. Romero, A. Abelló / Data & Knowledge Engineering 69 (2010) 1138–1157



For each filtering function, AMDO presents a ranked fact list to the user (indeed, it would be possible to present partial orders

regarding a given set of filtering functions). At this point, this valuable information about the sources is supposed to be exploited in

order to support the requirements elicitation task. We can use any of the approaches discussed in the literature with this aim; for

example [15,28,33,41,47]. However, we do believe that it is easier to carry out the requirements elicitation process from

knowledge proposed by AMDO (indeed, if the user would like to, AMDO can show the list of potential measures and dimensional

concepts computed for each fact) than carrying it out from scratch. On the one hand, we are already conciliating requirements with

data available. On the other hand, we fully exploit the analysis capabilities of the sources. In the end, the user must select those

relevant facts for his/her decision making. For each fact identified, we perform the second task of AMDO.

The second task in AMDO gives rise to dimension hierarchies. For each fact chosen in the previous task, we rearrange its

dimensional concepts to form its dimensions of analysis. In other words, we aim at identifying relevant aggregation paths looking

for typical part–whole relationships. In this step, AMDO builds up graphs giving shape to each dimension hierarchy that the user

may tune up to his/her needs (i.e., delete a whole dimension, a level, a descriptor or split a proposed dimension into two different

ones semantically related).

Once the user has chosen which facts are of interest, the reader will note that it is immediate to produce the multidimensional

schema. In the first task, AMDO already computed the measures and dimensional concepts for each fact, whereas the second task

arranges the dimensional concepts into dimension hierarchies. Thus, the output of AMDO will be a multidimensional schema for

each fact identified that will produce, as a whole, a constellation schema [23]. Relevantly, the schema produced is known to be in

agreement with the end-user requirements and the data sources (since it has been derived from a detailed analysis of the sources

and according to the end-user requirements).

4.1. Discovering dimensional concepts

According to [C2], a dimensional concept is related to a fact by a one-to-many relationship; that is, every instance of factual data

is related to one, and just one, of its instances. Hence, we can express our pattern to look for dimensional concepts as

follows:

F⊑ = 1r:D; where r≡ðr1∘…∘rnÞ

Note that it is expressed in Description Logic (DL) notation [4] (which OWL DL is based on), where r and D are variables, and F

the ontology concept we are trying to identify as a potential fact. About the terminology used, we consider a class to be a unary

predicate (i.e., D and F), and a property (i.e., r) as a binary predicate expressing a relationship between two classes. Briefly, the ⊑

symbol stands for subsumption, the basic inference on classes in DL. Subsumption (i.e., A⊑B) is the problem of checking if the

subsumer (B) is considered more general than the subsumee (A). That is, if the subsumee can always be considered a subset of the

subsumer. ≡ stands for a logic equivalence and can be defined as a specific kind of subsumption, that is: A⊑B and B⊑A . ο stands for

property composition (i.e., {a,c}∈r ∘s iff ∃b such that {a,b}∈r and {b,c}∈s). Finally, =1 stands for functionality that is a specific

number restriction where, in our case, the number of individuals belonging to class D related to a given individual of the class

F, through the property r, must be exactly one. Thus, we are looking for classes (D) such that every instance of a given fact (F) is

related, directly or by property composition (r), to, at least and at most, one of its instances. For each ontology class F we look for

those classes fitting as its potential dimensional concepts of analysis evaluating the pattern presented above; where the

dimensional concept is defined by the class D (from here on, the ending concept) and the set of properties r (from here on, the path

of properties).

Definition 1. Adimensional concept is defined by anending concept and a path of properties. Fromamultidimensional point of view,

thepathmust be consideredbecause it adds relevant semantics. Two classes relatedbymeansofndifferent to-onepathsmust give rise

to n different perspectives of analysis, since all these paths will potentially identify different sets of instances in the ending concept.

For example, consider the conceptual schema in Fig. 2. There, rental agreement has two to-one relationships to branch (i.e.,

pickUpBranch and dropOffBranch). Thus, {branch, pickUpBranch} and {branch, dropOffBranch} must be considered as

two different points of view from where analyze a rental agreement, and the semantics of each dimensional concept identified

is provided by the combined semantics of the path and the ending concept.

Unfortunately, we may not take advantage of generic DL reasoning algorithms for computing this pattern as most common

reasoning services are not decidable when considering composite properties [4]. Moreover, it is not even expressible in OWL DL.

Nevertheless, it is feasible to decompose this pattern as follows:

• First, for a given class F, we look for its direct dimensional concepts (see Section 4.1.1).

• Next, we propagate this knowledge to compute the transitive closure of dimensional concepts according to the transitive rule

(see Section 4.1.2):

Definition 2. If {A, r} (being A a class and r a property) is a dimensional concept of B, and {C, r1} is a dimensional concept of A, then

{C,r∘r1} is a dimensional concept of B as well.

The first step can be completely computed using generic algorithms provided by DL reasoners and the second step requires an

ad hoc algorithm that will also partially benefit from these algorithms.

1146 O. Romero, A. Abelló / Data & Knowledge Engineering 69 (2010) 1138–1157



4.1.1. Computing direct dimensional concepts

Computing direct dimensional concepts is equivalent to consider r as a single property instead of a composite property in the

pattern introduced in the previous section:

F ⊑ =1r:D;where r is a single property

In our approach, we also consider OWL datatypes (which traditionally have only been considered asmeasures by supply-driven

approaches) to play the role of D. Hence, a datatype may play a measure role (as it would seemmore natural to think, and we will

discuss later in Section 4.2), but also the role of a dimensional concept. Handling measures and dimensions uniformly is not new.

In fact, it was introduced by Agrawal et al. [2] and since then, it has also been proposed in other design methods. Thus, in our

example, Money (basicPrice and bestPrice) and Date (lastModification) would be considered potential dimensional

concepts of rental agreement. Importantly, dimensional concepts andmeasures derived from the same ontology datatypemust

be semantically related in the multidimensional schema (for example, by the “equivalence” construct in OWL or by an

“association” relationship in UML). This conceptual relationship will eventually be exploited by multidimensional operators such

as “drill-across” and “pivoting”.

This pattern can be computed by basic reasoning (see Section 6 for further details about basic reasoning in DL), and for each

class F we keep track of its dimensional concepts as pairs {D, {r1, ..., rn}}
4 (where each ri is a property between F and D).

Finally, note that using reasoning to compute this pattern means that any assertion stated in the ontology (by using OWL DL

constructs) is automatically considered. For example, subsumption of classes, subsumption of properties, cardinality restrictions,

functional (or inverse functional) properties, etc. Section 6 shows some statistics about the benefits of using reasoning regarding

any ad hoc algorithm.

4.1.2. Propagating dimensional concepts by transitivity

This section presents an ad hoc algorithm to compute the transitive closure of dimensional concepts. Although this algorithm

cannot be fully computed by using reasoning services, we can take advantage of subsumption to propagate this knowledge

through class taxonomies, as we will show later.

Our algorithm aims to build amatrixM of N×N elements (whereN is the number of classes in the ontology) such that each row

depicts a class and its potential dimensional concepts:

∀fD; fr1; :::; rngg ∈ MbF N→

F ⊑ =1r1:D;

⋯
F ⊑ =1rn:D

8

<

:

WhereM is the N×Nmatrix, F and D are classes, r1, ..., rn are composite properties, andMbFN an operator overM that retrieves

the dimensional concepts of F: i.e., a list of classes related to F by to-one paths. Each class in this list is represented as {D, {r,...,rn}},

where D is the class (or datatype) itself and each ri is a to-one path represented as a composite property. Therefore, wemay derive

as many dimensional concepts as different paths we have from F to D.

For example, let us consider rental agreement as F. Thus, Mbrental agreementNwill contain the following dimensional

concepts: {Branch, {pickUpBranch, dropOffBranch}} and {Country, {pickUpBranch ∘locatedAt, dropOffBranch ∘

locatedAt}}, among others. Branch and country play the role of D in each pair, respectively, whereas {pickUpBranch,

4 The reader is addressed to Definition 1 to recall that each combination of ending concept — path (i.e., each {D, ri}) will give rise to a different multidimensional

concept.

Fig. 4. Example of propagation of to-one paths by transitivity.

1147O. Romero, A. Abelló / Data & Knowledge Engineering 69 (2010) 1138–1157

image of Fig.�4


dropOffBranch} and {pickUpBranch ∘locatedAt, dropOffBranch ∘ locatedAt}, are the list of to-one paths from rental

agreement to branch and to country respectively.

In this section we present how to compute this matrix, and we achieve so by means of the next algorithm:

Since M is a sparse matrix, the function create matrix implements it as a vector of lists (Step 1). That is, every position in the

vector represents a class and its list of potential dimensional concepts (see the to−one _ rels typedef declaration). Lists are created

and initialized to the empty list in Step 2. Step 3 finds and breaks trivial deadlocks. The need of this stepwill be justified later in this

section.

Step 4 computes the pattern presented in Section 4.1.1. Each potential dimensional concept identified is added to the proper

list in the vector. Fig. 4.1 (depicted like a matrix) shows results got after Step 4 for some of the concepts introduced in Fig. 2. For

example, the class maintenance scheduled has a to-one relationship to date (through the dateScheduled, acquisition-

Date and lastMaintenanceDate properties), service depot (through the In property), branch (through the isAvailable

and isResponsibleFor properties), car model (through the isOf property), boolean (through the available property) and

double (through the currentMilleage and milleageFromLastService properties). The reader will note that, according to

Definition 1, those classes (or datatypes) related to maintenance schedule by several to-one paths (i.e., date, branch and

double), produce several dimensional concepts.

Step 5 propagates the dimensional concepts identified in the previous step according to the transitive rule (see Definition 2).

The propagate–path function describes in detail this step (see Fig. 6). This function implements a smart algorithm to compute the

transitive closure. Essentially, the list of dimensional concepts of each class is propagated only once, when we know that it cannot

vary. To do so, dimensional concepts are propagated from the end of the to-one paths (from here on, leaf classes) to the beginning,

according to the definition of closed class:

Definition 3. We say a class C is closed or that a given class C closes in the ith iteration of our algorithm, if all its dimensional

concepts have been computed in any iteration previous to i. In other words, if a class C closes in a certain iteration i, no other

dimensional concept will be identified for C in a iteration j such that ib= j. In our notation, we say that a concept C closes in an

iteration i iff:

General case: ∀{D, {r1,...,rn}} ∈ MbCN,D closed in a given iteration j such that jb= i,

Basic case: leaf classes and datatypes are, by definition, closed classes.

The main idea behind this algorithm is the following. Our algorithm only propagates knowledge from closed classes (see

Steps 11(b)i and 11(c)iiB). If a given class C closes in the ith iteration of the algorithm, we propagate its dimensional concepts in

the i+1th iteration. Once propagated, it is never considered again thanks to the treated method5; see Steps (11b and 11(b)iA).

Knowledge from closed concepts is propagated in two different ways:

• Let C and D be two classes such that D is in the dimensional concepts list of C (see Step 11b). Then, the dimensional concepts list

of D is propagated to C by transitivity according to Definition 2 (see Step 11(b)iA):

∀D ∈ McbC N ;∀Di ∈ McbD N→fDi; fMpbC;D N ∘ MpbD;Di Ngg∈ MpbC;Di N ;

5 The reader will note that the treated method does not hold at the class level but at dimensional concept level (i.e., regarding MbC,DN and not MbDN), since D

can be in the list of several concepts.

Fig. 5. An algorithm to compute matrix M.

1148 O. Romero, A. Abelló / Data & Knowledge Engineering 69 (2010) 1138–1157

image of Fig.�5


Where McbCN and MpbC,DN are two operators over matrix M. The first one retrieves the list of classes in the dimensional concept

list of a given class C (i.e., it is equivalent to the operatorMbCN but overlooking the path lists), and the second one retrieves the list

of paths between two classes C and D such that D is in the dimensional concept list of C (i.e., it retrieves the path information

between C and D in MbCN). For example, regarding Fig. 4.1, McbbranchN would retrieve {country,branchType,serviceDe-

pot}, whereas Mpbbranch,countryN would retrieve {locatedAt}.

Hence, Di are the set of classes in the dimensional concepts list of D (i.e., ∀Di, Di ∈ McbDN) and {MbC,DN ∘MbD,DiN}

represents the concatenation of each path inMbC,DNwith each path inMbD,DiN (for the sake of readability, this is captured with

a slight abuse of notation in Step 11(b)iA of the algorithm). Intuitively, we are concatenating each to-one path from C to D with

each to-one path from D to Di.

• Let P be a class such that P is a parent (i.e., a direct superclass) of C. Then, all the dimensional concepts of Pmust be inherited by C

(i.e., MbCN :=MbCN ∪ MbPN; see Step 11(c)iiA). In our algorithm, this kind of propagation is done when all the parents of C

have closed (see Step 11(c)ii). Note that we can take advantage of DL reasoning (see Section 6 for further details) to compute the

list of direct superclasses of a given concept. Eventually, we only propagate each superclass to each of its subclasses once.

How our algorithm works, can be summarized, in an intuitive way, as follows:

• First iteration: leaf classes and datatypes6 close in this iteration (see Step 8). By definition, none of them have to-one

relationships.

• Second iteration: classes closed in the previous iteration are now propagated. In this case, propagating them is trivial, since their

lists of dimensional concepts are empty. Now, according to our definition of closed class, any class whose reachable concepts

have closed (and therefore, already propagated), closes in this step.

• Nth Iteration: a given class Cwill close in this iteration if the last class to close in its list of dimensional concepts already closed in

the n−1ð Þth iteration (see Step 11c). Now, we can guarantee that all the dimensional concepts of C have been computed and we

can now propagate C in the next iteration (see Step 11(c)iiB).

Following our example, Fig. 4.1 shows direct dimensional concepts identified for some ontology classes, and Fig. 4.2 depicts

how we propagate them by transitivity. For example, rental agreement is related by two to-one relationships to branch

(bolded in the figure), and branch is related by to-one relationships to country, string, branch type and service depot.

6 As discussed in Section 4.1.1, our algorithm considers datatypes as potential dimensional concepts. For the purpose of our algorithm, they can be considered

leaf classes.

Fig. 6. An algorithm to propagate dimensional concepts by transitivity.

1149O. Romero, A. Abelló / Data & Knowledge Engineering 69 (2010) 1138–1157

image of Fig.�6


Hence, these concepts are also considered dimensional concepts of rental agreement according to the transitivity rule (see the

arrow in Fig. 4.2). Moreover, according to Definition 1, the path list of these newly identified dimensional concepts have been

properly updated when adding them to the list of rental agreement. For example, from rental agreement we can reach to

branch by two different paths (i.e., pickUpBranch and dropOffBranch) and from branch to country by the locatedAt

property. Therefore, from rental agreement we can get to country through the composition of pickUpBranch and

locatedAt, and dropOffBranch and locatedAt. Analogously for the rest of dimensional concepts.

Our algorithm relies on following the to-one paths from their end (i.e., leaf classes) to the beginning, so the knowledge of each

concept is propagated just once. Therefore, it is essential to detect potential deadlocks. A deadlock is a cycle (in the sense of graph

theory) of to-one properties. When a cycle is detected (in our algorithm, when no class closes in the current iteration; see Steps 10

and 12), it is broken: i.e., by propagating once, among all the concepts involved, their dependencies (roughly speaking, sharing their

dimensional concepts lists). This situationmust be notified to the user to let him/her know that each recurrent propagation within

the cycle may add new interesting semantics (i.e., new analysis dimensional concepts) that could be considered. For example, the

typical example would be the person class with the reflexive to-one relationship father_of. By iterating over the cycle, we may

infer new semantics. For example, father _ of ∘father _ of would give rise to the grandfather concept, and so on. However,

our algorithm just iterates one over each cycle (i.e., breaks the cycle), and we inform the user just in case he/she would like to

further exploit the cycle semantics.

The most common and also easiest deadlocks to detect and break are the one-to-one and reflexive relationships. For this

reason, AMDO treats these two basic cases before computing the propagate–path function (see Step 3 in Fig. 5). Detecting trivial

deadlocks can be computed by reasoning (see Section 6 for further details), and we may use any of the current algorithms

presented in the graph theory to detect general cycles (i.e., those detected and broken in Step 12). For example, a depth-first-search

(DFS) remembering previous visited nodes would fit properly.

In our example, we only dispose of trivial deadlocks, such as the one formed by the one-to-one has property between

customer and driving license. In this case, before the propagate–path function is triggered, it is annotated that these two

concepts form a deadlock. Thus, when all the concepts in their respective lists close (but themselves, which are waiting for each

other) we break the deadlock. In our example, it happens in the first iteration. Thus, we propagate once between them and notify

to the user that, in case he/she would be interested, it is possible to derive new dimensional concepts for both concepts by

following the cycle semantics.

4.1.3. Complexity of the algorithm

The computational cost of this algorithm has Θ(N×cl) as upper bound; where N is the number of classes in the ontology; c the

maximum to-one connectivity (i.e., direct to-one relationships from a class) and l the maximum chain of to-one properties.

However, this upper bound is theoretical and hardly achievable in practice, since real ontologies neither have all classes with

maximum to-one connectivity nor all to-one paths are of maximum length. Moreover, in our algorithm, classes computed in

previous iterations are not considered in the forthcoming ones.

In practice, the computational complexity raised by AMDO is polynomial for most ontologies. For example, consider the EU-Car

Rental ontology (see Fig. 2). The whole EU-Car Rental ontology has 65 classes and 170 properties (or relationships) of which 94

properties are between classes (30 of them are subsumption assertions) and 76 are properties among classes and datatypes. The

maximum to-one connectivity (i.e., c) is 21 (raised by LateReturn). In the worst case (i.e., assuming the practical consideration

introduced in Section 5), the longest to-one path has length 5. Consequently, the theoretical upper bound for this simulation

would be Θ(65×215).

However, using the AMDO tool, the execution of the algorithm was immediate (less than one second in a regular desktop

computer). The algorithm converges in just 5 iterations: closing 2 classes before starting (i.e., besides datatypes, there are two

classes with empty list of dimensional concepts), 12 classes in the first iteration, 13 in the second one, 19 in the third one, 15 in the

fourth one and 4 in the last one. In each iteration, only some classes are propagated and those previously propagated are never

propagated again. Thus, a better estimation of the answer time would be:

∑
l

i=1
Ni × ci

Where Ni is the number of classes not yet closed (i.e., that still have to be considered) in that iteration, ci the maximum

functional connectivity in that iteration and l the number of iterations (i.e., the size of the bigger to-one path in the ontology). In

our example, it would yield:

∑
5

i=1
Ni × ci = ð63 × 21Þ + ð51 × 24Þ + ð38 × 54Þ + ð19 × 87Þ + ð4 × 109Þ

The result obtained, drastically smaller than the theoretical upper bound, is still an upper bound of the answer time of AMDO.

Note that we are considering the maximum connectivity for each class in each iteration, which in real ontologies will hardly hold.

Nevertheless, we want to underline some important features of our algorithm that come up in this formula: on the one hand, note

that the value ofNi is strictly decreasing. On the other hand, the value of ci is never exponential. In fact, in the last iteration, its value

1150 O. Romero, A. Abelló / Data & Knowledge Engineering 69 (2010) 1138–1157



is 109, far away from 215. All in all, despite the EU-Car Rental ontology size, AMDO behaves well and the answer time is good

enough to develop an interactive tool.

4.1.4. Soundness and completeness of the algorithm

Our algorithm is clearly sound, since it computes direct to-one relationships and propagates them according to the transitivity

rule presented in Section 4.1.2.

Our algorithm is complete if we can assure that it converges: i.e., if it would fully explore each to-one path (starting from the

end, by identifying leaf classes, and going through the paths up to the beginning). We can say so if we can assure that if in a given

iteration the vector M is not updated then, in any of the following iterations it will not be updated either. It can be guaranteed

because:

• We detect and break deadlocks and,

• in the worst case, if P is the maximum number of to-one properties chained in the ontology, in each iteration the propagate–path

function (see Step 5 of Fig. 5) will propagate, at least, one property. Indeed, the invariant of the main loop of the algorithm (see

Step 9 of Fig. 6) guarantees that the length of each to-one path explored up to current iteration is strictly increasing and at most,

in P iterations we would have explored (and propagated) all chained to-one properties in the ontology. Thus, Step 5 will not be

able to propagate any other property in next iterations.

4.2. Identifying measures

In this step we look for measures (i.e., factual data). Typically, measures are numeric attributes allowing data aggregation.

Accordingly, AMDO considers any summarizable datatype (i.e., those allowing data aggregation by its own nature) to be a measure

of a given fact F if, according to [C3], it preserves a correct data aggregation from F; that is, if they are conceptually related by a one-

to-one relationship. (1) The to-one multiplicity in the measure side enforces that each fact instance is related to just one measure

value, and forbidding zeros we preserve completeness, (2) whereas the to-one multiplicity in the fact side preserves disjointness

(i.e., a measure is related to one and just one fact). Similar to Definition 1, we must take into account the semantics of the paths

between the fact and the datatype when producing measures. Thus:

Definition 4. A measure is defined by a datatype and a path of properties (i.e., a composite property). From a multidimensional

point of view, the path must be considered because it adds relevant semantics. A fact related to a datatype by means of n different

to-one paths must give rise to n different measures, as all these paths will potentially relate each fact instance with different

datatype values.

It is important to remark that our definition of measure is wider than the definition used by previous approaches. Previous

approaches identify them among class/entity numeric attributes (in case of working over ER or UML diagrams) or among numeric

attributes of relations (in case of working over relational schemas). In our framework (i.e., from an ontology) the definition of

measure according to previous approaches would be equivalent to only consider datatypes directly related to classes. Oppositely,

our definition is not restricted to direct datatypes but to any (i.e., to any reachable by means of property composition) preserving

the one-to-one relationship demanded. This kind of measures (from here on, aggregate measures) have been overlooked in the

literature but identifying them is important to discover meaningful and additional factual data.

Fig. 7 shows the two kinds of relationships we look for. 1) The first pattern depicts a measure directly related to the fact. This

pattern is the equivalent one in OWL to those used by previous approaches in the relational model or UML/ER diagrams.7 For

example, in our example the bestPrice and basicPrice datatypes related to rental agreement would follow this pattern.

Nevertheless, note that 1.a) this pattern can be relaxed by accepting mandatory multivalued datatypes (i.e., each class may be

related to at least one value and at most, many of them). In this case, we can produce the required to-one relationship by

aggregating themany values related to each fact instance.When doing so, it is compulsory to use a compatible aggregation function

(see [C3]). Relevantly, note that this information should be considered in the ETL process. Otherwise, if this aggregation is not

performed, data loaded in the data warehouse will not preserve [C3].

The second pattern in Fig. 7 is used to discover aggregatemeasures. 2) This pattern depicts a class (from here on, a bridge-class)

that is both directly related to a datatype and, by means of a one-to-one path (i.e., it may contain property composition), to a fact.

Clearly, this datatype is also a potential measure for that fact since disjointness and completeness are guaranteed. In this case, similar

to the scenario discussed in the previous pattern, 2.a) in the path between the fact and the bridge-class, it is enough to ask for a

Fig. 7. Multiplicities looked for.

7 A datatype does not have an object identifier (i.e., oid) and we allow any multiplicity in the fact side without violating disjointness.

1151O. Romero, A. Abelló / Data & Knowledge Engineering 69 (2010) 1138–1157

image of Fig.�7


mandatory relationship. Again, all the (many) measure values related to each fact instance must be aggregated by a compatible

aggregation function, prior to be inserted in the data warehouse. Therefore, [C2] is also guaranteed in this pattern. For example, in

our example the bestPrice and basicPrice per customer and branchwould follow this pattern. In this case the fact would be

branch, the bridge-class would be rental agreement and bestPrice or basicPrice the datatype related to the bridge-class.

Depending on the aggregation function used, we can derive different aggregatemeasures. If we use the min operator wewould get

the best bestPrice (or basicPrice) offered to a customer per branch; using the avg operator we would get the average

bestPrice (or basicPrice) offered to a customer per branch, and so on.

These patterns discussed above are captured and computed in the following algorithm:

• (Pattern 1) For each class C, look for summarizable datatypes directly related to it. In OWL it is equivalent to look for those

mandatory to-one properties such that their domain is C and their range are datatypes. We can take advantage of basic

reasoning to compute this pattern (see Section 6 for further details):

C ⊑ = 1r:dt;

Where r is a property and dt any OWL datatype allowing aggregation of data (for example, int).

– (Pattern 1a) For considering mandatory multivalued datatypes we must consider any mandatory property such that its

domain is C and its range is a datatype:

C ⊑ ∃r:dt;

• (Pattern 2) This pattern can be directly computed bymatrixM (see Section 4.1.2). A datatype D, directly related to a class B, is a

potential measure for a class F if B is a bridge-class for F. According to Definition 4, each property (i.e., path) between F and dt

will produce a measure:

MeasureðF; fdt; r1; :::; rngÞ := ∃B;∃r1; :::; rn j ∀ri;1≤i≤n;B ⊑ ∃ri:dt∧ðF ∈ McbB N ∧ B ∈ McbF NÞ

If so, it means that, by transitivity, we have been able to identify B as a dimensional concept of F and vice versa (i.e., each ri is a

one-to-one path between them).

– (Pattern 2a) To compute this pattern we need to consider matrixM1 (of N×N elements, where N is the number of classes in

the ontology). This matrix represents, for each class F, the list of classes wemay get to bymeans ofmandatory paths. In other

words, if every instance of F is related to, at least, one instance of the ending concept. Thus, analogously to the definition of

matrix M, each row of M1 can be defined as follows:

∀fD; fr; :::; rngg ∈ M1bF N→

F ⊑ ∃r:D;

⋯
F ⊑ ∃rn:D

8

<

:

Where M1 is the N×N matrix, F and D are classes, r and rn are composite properties and M1bFN an operator over M1 that

retrieves a list of classes related to F by, at least, a mandatory (i.e., ..N) path. Like in the definition of matrixM, each class in this

list is represented as {D, {r,...,rn}} where D is the class (or datatype) itself and each ri is a mandatory path depicted as a

composite property. Now, we can formally describe this pattern as:

MeasureðF; fdt; r1; :::; rngÞ := ∃B;∃r1; :::; rn j ∀ri;1≤i≤n;B ⊑ ∃ri:dt∧ðF ∈ McbB N ∧ B ∈ M1cbF NÞ

WhereM1cbBN is the equivalent operator ofMcbBN forM1. MatrixM1 can be computed with an algorithm analogous to the

one presented in Section 4.1.2 (see Fig. 5) to compute M, but instead of looking for direct to-one relationships in Step 4 (see

Fig. 5), we will look for direct mandatory relationships:

F ⊑ ∃r:D;where r is a single property

The rest of the algorithm (i.e., propagating this knowledge) remains the same. The addition of matrix M1 do not modify the

overall computation complexity. Indeed, the computational cost ofM1 is analogous to that ofM and it hasΘ(N×cl) as upper bound;

where N is the number of classes in the ontology; c the maximummandatory connectivity (i.e., mandatory relationships of a class)

and l the maximum chain of mandatory properties in the ontology. Similarly, the same practical considerations discussed in

Section 4.1.2, as well as considerations about the soundness and completeness of the algorithm can be considered here.

1152 O. Romero, A. Abelló / Data & Knowledge Engineering 69 (2010) 1138–1157



4.3. User interaction

Once potential dimensional concepts and measures of analysis have been computed for each class, AMDO presents the final

result to the user. Results obtained are filtered and ranked according to as many search patterns as desired (see Section 4). For

example, consider the following search pattern for our running example: “The more measures and dimensional concepts, the

better. However, measures are considered to be more relevant, and we are not interested in factless facts”. One possibility to

capture this pattern would be the following filtering function:

FactEstimation Cð Þ : =
MT2 + DC; if M N 0;

0; otherwise:

�

whereM is the number of potential measures, and DC the number of potential dimensional concepts of a given ontology class. As

discussed in Section 4, AMDO is completely flexible and tunable regarding the filtering function, and users are able to provide any

function which better meets his/her necessities. Regarding the example introduced above, note that the FactEstimation function

implements a more expressive pattern than the Attrs function (see Section 4), since it considers relationships to other concepts

(i.e., potential measures and dimensional concepts). Interestingly, it could also be extended in many ways. For example,

computing the topological distance,8 as discussed in the AttrsByDistance function (see Section 4), if desired. According to this

function, the most promising concepts are ranked as follows:

Concept #Dimensional

concepts

#Potential

measures

FactEstimation

LateReturn 78 5 88

DamageCost 81 3 87

Prepared 81 3 87

AssignedCar 80 3 86

PaidWithPointsRental 74 4 82

ClosedRental 74 4 82

EarlyReturn 74 4 82

Having a look at the results, in general, classes in the rental agreement taxonomy are the best candidates to play a fact role,

and subclasses are better rated than superclasses. This result is sound, since we should expect rental agreement to be the

keystone concept of a rental service. Furthermore, subclasses will be rated, in the worst case, as high as superclasses, since they

inherit all their measures and dimensional concepts. Classes in the list that do not belong to the rental agreement taxonomy are

just three: damage cost (2nd place), prepared (3rd place) and assigned car (4th place). However, they represent events,

which traditionally have been good candidates as facts (see, for example, [7,29]).

Eventually, after exploring AMDO's output as much as needed, the user should select those facts of interest to him / her

(normally, more than one).

4.4. Shaping the dimension hierarchies

In the previous task, for each fact chosen, we identified its dimensional concepts. However, we still need to shape its dimension

hierarchies in order to allow summarizability of data; one of the multidimensional paradigm principles. Dimension hierarchies

must guarantee a correct summarizability of data (see [C3]). Thus, in this task, we look for to-one relationships (also known as

“roll-up” relationships) that will produce hierarchies preserving a correct data aggregation: the to-one multiplicity guarantees

disjointness of aggregated data, and forbidding zeros we also guarantee its completeness.

From the set of dimensional concepts identified for a given fact, a directed graph following all the to-one relationship paths is

depicted. At this point, two important remarks must be done. On the one hand, note that some graphs will overlap. Consider two

concepts A, B such that B is a dimensional concept of A. Clearly, the graph created from B will be subsumed by the graph created

from A. In these cases were a graph is subsumed by another one (i.e., it is completely overlapped), the subsumee graph is

disregarded and not considered during the process. Intuitively, we only work withmaximal graphs, as the rest can be derived from

them straight-forward. On the other hand, note that, at this moment, we cannot differentiate the role played by each graph node

(either as a level or as a descriptor) within the dimension hierarchy. Two specific patterns are introduced to distinguish levels from

descriptors:

• (Levels): if a class (C3) is either placed in more than onemaximal graph or it can be reached from two different paths in the same

maximal graph, we consider it to be a level (since it seems interesting to show data at this granularity level). Following with DL

notation we could formalize this pattern as:

∃C1;C2;∃r1; r2 j ð∃r1⊑C1Þ∧ ð∃r
−
1 ⊑C3Þ∧ ð∃r2⊑C2Þ∧ ð∃r

−
2 ⊑C3Þ∧ C1≠C2 ∧ r1≠r2

8 Note that the topological distance can be computed from matrix M, which was introduced in Section 4.1.2.

1153O. Romero, A. Abelló / Data & Knowledge Engineering 69 (2010) 1138–1157



Where C1 and C2 are classes and r1 and r2 are properties.
9 Thus, we are asking if we can reach C3 from, at least, two disjoint paths

formed by graph edges.10 If this holds, C3 is considered to be a level in both graphs. Importantly, if r1 and r2 belong to different

maximal graphs, it is mandatory to semantically relate both levels (i.e., C3 in each of the maximal graphs) by means of a semantic

relationship in the output multidimensional schema (eventually, the multidimensional operators, such as changeBase [1], will be

able to exploit this relationship).

• (Descriptors): If two classes C1 and C2 are related by means of a one-to-one relationship in the same maximal graph:

∃r1 j ðC1 ⊑ =1r1:C2Þ⊓ ðC2 ⊑ =1r
−
1 :C1Þ

This relationship can represent a (i) semantic relationship between two different dimensions if the ending class (note that the

graph is directed)was identified as a level by the previous pattern, or (ii) as an attribute level (i.e., a descriptor) otherwise. In the first

case, it means that the ending class provides a relevant data granularity (i.e., it was identified as a level) and thus, we also consider its

counterpart to be of a level of interest. Thus, they are considered to represent the same granularity level in two different dimensions

and, consequently, this semantic relationshipmust be explicitly asserted in the output schema. In the second case,we consider it to be

a descriptor of the initial concept, since they have not been identified as interesting analysis levels.

For example, consider that the user selected rental agreement in Section 4.3. For this fact, AMDO would create 9 directed

graphs (starting from customer, lastModification, assignment, (dropOff)Branch, (pickUp)Branch, rentalDuration,

car, bestPrice and basicPrice). Consider branch to play the role of C3 in the first pattern. If we are able to find two concepts

(C1, C2), such thatwe can reach to branch by, at least, two different paths in any of the eightmaximal graphs, AMDOwill propose

branch to play a level role. Indeed, it holds if we consider customer (through the belongsTo property) and assignment

(through the hasAssigned ∘ dropOffBranch path) to play the role of C1 and C2. Consequently, all the graph nodes representing

branch in any of the eight maximal graphs is considered a granularity level of interest. Furthermore, according to the first

pattern, all these nodes are semantically related in the output schema by means of one-to-one associations (for example, with

the OWL equivalence constructor). Similarly, regarding the second pattern, birthDate fulfills the conditions to be considered a

descriptor, since it only appears in a one-to-one relationship in the customer maximal graph.

Graphs computed are presented to the user as dimension hierarchies, altogether with those semantic relationships between

dimensions pointed out. With these premises, in some cases we have not been able to identify each graph node either as a level or

a descriptor. However, this is sound, since it is up to the end-user requirements to identify each node as an attribute of an existing

level or as a new level; giving rise to implicit or explicit dimension hierarchies in the resulting schema. Consequently, this

differentiation should be made by the user, if he/she is interested in aggregating data at this level.

For example, following the rental agreement example, AMDO would generate the dimension hierarchies shown in Fig. 8.

There, each arrow starting from rental agreement depicts a dimension hierarchy. Concepts identified as descriptors by AMDO

are depicted in italics. Finally, note that some tuning has been performed on this graphs. For example, we have considered

as interesting aggregation levels some graph nodes identified by AMDO as descriptors (e.g., minimumDuration and

maximumDuration) or by dropping dimensions of no interest (in our case we have not draw in the figure bestPrice and

9 Note that r1
− and r2

− are the inverse properties of r1 and r2 respectively.
10 For the sake of understandability, we recall that ∃ r1⊑C1 is equivalent to say that C1 is in the domain of r1, and ∃ r1

−⊑C3 is equivalent to say that C3 is in the

range of r1.

Fig. 8. Diagrammatic representation of the resulting multidimensional schema for the rental agreement fact.

1154 O. Romero, A. Abelló / Data & Knowledge Engineering 69 (2010) 1138–1157

image of Fig.�8


basicPrice). It is important to remark that some levels are present in different hierarchies. This is sound since, according to

Definition 1, the path provides different semantics when identifying dimensional concepts. Thus, reaching country from

customer has different semantics from reaching it from rental agreement. Nevertheless, all those levels derived from the

same class but present in different graphs are related by semantic relationships. For example, country or branch type.

Finally, the user is also asked to reshape analysis dimensions derived from datatypes. AMDO does not propose any hierarchy for

these dimensions automatically, but we allow the user to use predefined functions (for example, get _day, get _month or get _year in

case of dates, such asassignedTimeorlastModification) or aggregate data to produce value ranges of interest in case of numerical

datatypes (for example, from 0 to 20, 21 to 50, 51 to 99 in case of ages), in order to create ad hoc dimension hierarchies.

The computational cost of this step is negligible since matrix M is already calculated and we only need to navigate and

explore it.

5. Additional practical considerations

In this section we would like to discuss why we force the fact instances to be related to at least and at most to one instance of a

dimensional concept (see Section 4.1). In practice, it would be possible to relax this relationship allowing zeros (i.e., fact instances

not related to any instance of a dimensional concept) and automatically create a dummydimension concept instance (for example,

named others) related to those fact instances not related to any instance of the dimensional concept. Then, our pattern to look for

dimensional concepts would look like as follows:

F ⊑ ≤1r:D; where r ≡ ðr1∘…∘rnÞ

Note, however, that this relaxed pattern can only be considered in ontologies assuming that every property is strictly typed.

Importantly, in an arbitrary ontology, properties are not necessarily typed: i.e., they do not necessarily have a specified class as

domain and a specified class as range. Therefore, we cannot establish, in the general case, that a property relates one class to

another class. As a consequence, considering the pattern introduced above, every functional untyped property would potentially

allow to infer that two arbitrary classes are functionally dependent on each other, provided that the property relates one

instance to, at most, a single other instance (i.e., that it is functional). The interested reader is addressed to [40] for further

details in this issue.

In the AMDO tool we introduced an option to allow the user choose if he/she wants to enforce this restriction or relax it due to

practical considerations in the domain ontology. The algorithm and its computational cost would not change, and we would only

need to consider to-one relationships allowing zeros in matrix M. In practice, it entails to consider some more direct dimensional

concepts in Section 4.1.1 and therefore, some more propagations when computing the transitive closure of dimensional concepts.

Analogously,we can extend this practical consideration for the pattern looking formeasures aswell.We could relax this pattern to

allow zeros in the bridge-class directly related to the datatype (i.e., not forcing each fact to have a numerical value for thatmeasure). In

this case, if theuser selects thismeasurewewouldneed to introducea specialization of thatmeasure in thedatawarehouse conceptual

schema to preserve completeness. About the algorithm used, in practice, these considerations would entail that we do not need

anymore matrix M1. Using matrixM we will be able to compute if a class F can use a given class B as bridge-class (i.e., F ∈ McbBN),

because anymultiplicitywould be allowed in the bridge-class side of the relationship (see Fig. 7). Once computed,wewill also be able

to know if we need to aggregate data through a compatible aggregation function (i.e., when B∉McbFN).

Finally,we strongly recommend to enforce the theoretical patternspresented in this paper asmuchaspossible. Relaxing themmay

entail the identification of meaningless dimensions or give rise to sparser multidimensional spaces, which may mislead the user.

6. Discussion

AMDO's design patterns are computed in a fully automatic way, and we benefit from DL reasoning techniques provided by DL

reasoners.

Although we need to compute the transitive to-one closure by an ad hoc algorithm, most of our patterns can still be reduced to

basic reasoning tasks that any commercial reasoner available in the market could answer by its querying services. In our

implementation we have used FaCT++ [20]. This reasoner supports OWL DL except for nomimals, but nominals fall out of our

needs and do not affect our reasoning tasks. FaCT++ provides basic tasks such as discover class taxonomies (i.e., given a class find

all its subclasses, superclasses, ancestors or successors), property taxonomies (analogous to class taxonomies reasoning but over

properties) and subsumption11 (given two OWL DL assertions say if one is subsumed by the other).

Any of the reasoning tasks mentioned in this paper can be reduced to these three query services. Using DL reasoning have

considerably reduced the complexity of our task and have facilitated the whole automation of AMDO. Indeed, most of the work

done in AMDO have been reduced to reasoning over FaCT++. For example, consider the EU-Car Rental ontology used as example

in this chapter (see Fig. 2). With AMDOwe have been able to identify 2069 dimensional concepts (note that it does not mean that

the output multidimensional schema contains 2069 dimensional concepts but that the number of dimensional concepts identified

regarding all the ontology classes is 2069—most of them disregarded when choosing facts of interest; see Section 4.3). 1375 out of

11 Note, however, that class taxonomies and properties taxonomies are computed by a specific case of subsumption (the third reasoning task enumerated), but

they are typically differentiated in commercial products.

1155O. Romero, A. Abelló / Data & Knowledge Engineering 69 (2010) 1138–1157



this 2069 dimensional concepts were identified using reasoning (i.e., querying the EU-Car Rental TBox using FaCT++) while 694

out of 2069 were identified by our ad hoc algorithm.

Interestingly, it is possible to fully compute the design patterns presented in our method by means of DL generic reasoning.

However, we would need to use a less expressive ontology language as AMDO input. The most promising ones form the DL-Lite

family [32], which are well-behaved DLs with polynomial reasoning over the TBox. DL-Lite does not capture the whole semantics

of ER or UML class diagrams, but it does capture the most important features of them. For example, regarding the EU-Car Rental

example (see Fig. 2), it can be fully specified in DL-Lite through DL−LiteF. In particular, DLs of the DL-Lite family do not allow for

the specification of generalizations that are complete, cardinality constraints different from 1..*, 1..1, 0..*, 0..1, and the arbitrary use

of functionality on roles and generalizations between roles; constructs that are absent in the EU-Car Rental example. The reader is

addressed to [40] for a detailed description on how to compute AMDO's patterns in DL-Lite.

7. Conclusions

In this paper we have presented a novel approach to support the design of the data warehouse based on AMDO: an automatic

method to identify concepts likely to play multidimensional roles, from an ontology representing our business domain. AMDO

performs a thorough analysis of the data sources. Since supply-driven approaches are known to generate toomany results,wepropose

to exploit AMDO's output bymeans of searching patterns. These patterns will guide the exploration of results obtained, and facilitate

their comprehension. As discussed, AMDO is completely flexible when dealing with searching patterns, and we propose to use this

guided exploration of themultidimensional knowledge contained in the sources to support the end-user requirements elicitation. In

thisway,we are already conciliating requirementswithdata available, andwe also fully exploit the analysis capabilities of the sources.

This scenario is relevant since, in some cases, the users are not aware of the hidden analysis capabilities of their own data

sources. In this sense, AMDO provides a framework to support the end-user requirements elicitation and once identified,

automatically generate themultidimensional schema. Importantly, we have shown that, in such context, disposing of high-quality

formalizations of the data sources we can overcome the fact of lacking of very expressive end-user requirements beforehand.

However, although we do not decline that, eventually, the user will need to tune up the schemas produced, we claim that AMDO

facilitates and gives support to the always hard and time-consuming design task of data warehouses.

Regarding AMDO, we have presented a set of novel patterns to identify the multidimensional concepts that, in most cases, can be

computed by generic DL reasoning algorithms.Moreover,we have also discussed the theoretical computational complexity of AMDOand

thanks to the AMDO tool, we have also been able to discuss its behavior with a realistic case, in which turns to have a good answer time.

We believe this work to be the first to address the issue of supporting the multidimensional design from ontologies. Up to now,

traditional approaches were typically carried out manually or were designed to work in a largely automatic way over relational

sources. In our approach, AMDO carries out the data warehouse design process from a domain ontology (i.e., at the conceptual

level), which improves the quality of the multidimensional schemas generated. Furthermore, working over ontologies opens new

interesting perspectives. For example, we can extend the data warehouse and OLAP concepts to other areas like the SemanticWeb

and one consequence would be that, although the data warehouse design has been typically guided by data available within the

organization, we would be able to integrate external data from the web into our data warehouse to provide additional up-to-date

information about our business domain.

Acknowledgments

This work has been partly supported by the Ministerio de Ciencia e Innovación, under project TIN2008-03863, and the

Departament d'Universitats, Recerca i Societat de la Informació de la Generalitat de Catalunya.

References

[1] A. Abelló, J. Samos, F. Saltor, YAM2 (Yet Another Multidimensional Model): an extension of UML, Inf. Syst. 31 (6) (2006) 541–567.
[2] R. Agrawal, A. Gupta, S. Sarawagi, Modeling multidimensional databases, Proc. of the 13th Int. Conf. on Data Engineering, IEEE, 1997, pp. 232–243.
[3] A. Artale, D. Calvanese, R. Kontchakov, V. Ryzhikov, M. Zakharyaschev, Reasoning over extended ER models, Proc. of 26th Int. Conf. on Conceptual Modeling,

volume 4801 of Lecture Notes in Computer Science, Springer, 2007, pp. 277–292.
[4] F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi, P.F. Patel-Schneider (Eds.), The Description Logic Handbook: Theory, Implementation, and Applications,

Cambridge University Press, 2003.
[5] G. Berardi, D. Calvanese, D. Giacomo, Reasoning on UML class diagrams, Artif. Intell. 168 (1–2) (2005) 70–118.
[6] T. Berners-Lee, J. Hendler, O. Lassila, The semantic web, Sci. Am. 284 (5) (2001).
[7] M. Böhnlein, A.U. vom Ende, Deriving initial data warehouse structures from the conceptual data models of the underlying operational information systems,

Proc. of 2nd Int. Workshop on Data Warehousing and OLAP, ACM, 1999, pp. 15–21.
[8] A. Bonifati, F. Cattaneo, S. Ceri, A. Fuggetta, S. Paraboschi, Designing data marts for data warehouses, ACM Trans. Softw. Eng. Method. 10 (4) (2001) 452–483.
[9] A. Calì, D. Calvanese, G.D. Giacomo, M. Lenzerini, A formal framework for reasoning on UML class diagrams, Proc. of 11th Int. Symposium on Foundations of

Intelligent Systems, volume 2366 of LNCS, Springer, 2002, pp. 503–513.
[10] P.P.-S.S. Chen, The entity-relationship model: toward a unified view of data, ACM Trans. Database Syst. 1 (1) (1976) 9–36.
[11] J. Demetrovics, G. Katona, D. Miklós, Functional dependencies distorted by errors, Discrete Appl. Math. 156 (6) (2008) 862–869.
[12] D. Dori, R. Feldman, A. Sturm, Transforming an operational system model to a data warehouse model: a survey of techniques, IEEE Int. Conf. on Software-

Science, Technology and Engineering (SwSTE 2005), IEEE Computer Society, 2005, pp. 47–56.
[13] L. Frías, A. Queralt, A. Olivé, EU-Rent Car Rentals Specification. Technical report, Departament de Llenguatges i Sistemes Inform'atics, 2003.
[14] D. Gaševic, D. Djuric, V. Devedžic, MDA-based automatic OWL ontology development, Int. J. Software Tools Technol. Transfer 9 (2) (2007) 103–117.
[15] P. Giorgini, S. Rizzi, M. Garzetti, Goal-oriented requirement analysis for data warehouse design, Proc. of 8th Int.Workshop on DataWarehousing and OLAP, ACM Press,

2005, pp. 47–56.

1156 O. Romero, A. Abelló / Data & Knowledge Engineering 69 (2010) 1138–1157



[16] M. Golfarelli, D. Maio, S. Rizzi, The dimensional fact model: a conceptual model for data warehouses, Int. J. Coop. Inf. Syst. 7 (2–3) (1998) 215–247.
[17] M. Golfarelli, S. Rizzi, Data Warehouse Design. Modern Principles and Methodologies, McGraw-Hill, 2009.
[18] O.Group. Unified Modeling Language (UML), Version 2.1.2. http://www.omg.org/technology/documents/formal/uml.htm.
[19] J. Hainaut, M. Chandelon, C. Tonneau, M. Joris, Contribution to a theory of database reverse engineering, Proc. of the 1st Working Conf. on Reverse

Engineering, IEEE, 1993, pp. 161–170.
[20] I. Horrocks, Using an expressive description logic: fact or fiction? Proc. of 6th Conf. on Principles of Knowledge Representation and Reasoning, Morgan

Kaufmann, 1998, pp. 636–649.
[21] B. Hüsemann, J. Lechtenbörger, G. Vossen, Conceptual data warehousemodeling, Proc. of 2nd Int.Workshop on Design andManagement of DataWarehouses,

CEUR-WS.org, 2000, p. 6.
[22] M.R. Jensen, T. Holmgren, T.B. Pedersen, Discovering multidimensional structure in relational data, 6th Int. Conf. on Data Warehousing and Knowledge

Discovery, volume 3181 of LNCS, Springer, 2004, pp. 138–148.
[23] R. Kimball, L. Reeves, W. Thornthwaite, M. Ross, The Data Warehouse Lifecycle Toolkit: Expert Methods for Designing, Developing and Deploying Data

Warehouses, John Wiley & Sons, Inc., 1998
[24] H. Lenz,A. Shoshani, Summarizability inOLAPand statisticaldata bases, Proc. of 9th Int. Conf. onScientific andStatisticalDatabaseManagement, IEEE, 1997, pp. 132–143.
[25] M. Lenzerini, Data integration: a theoretical perspective, Proc. of 21th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, ACM, 2002,

pp. 233–246.
[26] H. Mannila, K. Räihä, On the complexity of inferring functional dependencies, Discrete Appl. Math. 40 (2) (1992) 237–243.
[27] J.-N. Mazón, J. Lechtenbörger, J. Trujillo, A survey on summarizability issues in multidimensional modeling, Data Knowl. Eng. 68 (12) (2009) 1452–1469.
[28] J.-N. Mazón, J. Trujillo, J. Lechtenbörger, Reconciling requirement-driven data warehouses with data sources via multidimensional normal forms, Data Knowl.

Eng. 23 (3) (2007) 725–751.
[29] D. Moody, M. Kortink, From enterprise models to dimensional models: a methodology for data warehouse and data mart design, Proc. of 2nd Int. Workshop

on Design and Management of Data Warehouses, CEUR-WS.org, 2000.
[30] A. Olivé, On the role of conceptual schemas in information systems development, Proc. of 9th Int. Conf. on Reliable Software Technologies (Ada-Europe 2004),

volume 3063 of Lecture Notes in Computer Science, Springer, 2004, pp. 16–34.
[31] C. Phipps, K.C. Davis, Automating data warehouse conceptual schema design and evaluation, Proc. of 4th Int. Workshop on Design and Management of Data

Warehouses, volume 58, CEUR-WS.org, 2002, pp. 23–32.
[32] A. Poggi, D. Lembo, D. Calvanese, G.D. Giacomo, M. Lenzerini, R. Rosati, Linking data to ontologies, J. Data Semant. 10 (2008) 133–173.
[33] N. Prakash, Y. Singh, A. Gosain, Informational scenarios for data warehouse requirements elicitation, 23rd International Conference on Conceptual Modeling,

ER 2004, volume 3288 of Lecture Notes in Computer Science, Springer, 2004, pp. 205–216.
[34] N. Prat, J. Akoka, I. Comyn-Wattiau, A UML-based data warehouse design method, Decis. Support Syst. 42 (3) (2006) 1449–1473.
[35] I. Reinhartz-Berger, Towards automatization of domain modeling, Data Knowl. Eng. 69 (5) (2010) 491–515.
[36] S. Rizzi, A. Abelló, J. Lechtenbörger, J. Trujillo, Research in data warehouse modeling and design: dead or alive? Proc. of ACM 9th International Workshop on

Data Warehousing and OLAP, ACM, 2006, pp. 3–10.
[37] O. Romero, A. Abelló, Automatingmultidimensional design fromontologies, Proc. of ACM10th Int.Workshop onDataWarehousing andOLAP, ACM, 2007, pp. 1–8.
[38] O. Romero, A. Abelló, A survey of multidimensional modeling methodologies, Int. J. Data Warehouse Min. (IJDWM) 5 (2) (2009) 1–23.
[39] O. Romero, A. Abelló, Automatic Validation of Requirements to Support Multidimensional Design, Data & Knowledge Engineering 69 (2010) 917–942.
[40] O. Romero, D. Calvanese, A. Abelló, M. Rodriguez-Muro, Discovering functional dependencies for multidimensional design, Proc. of ACM 12th Int. Conf. on

Data Warehousing and OLAP, ACM, 2009, pp. 1–8.
[41] J. Schiefer, B. List, R.M. Bruckner, A holistic approach for managing requirements of data warehouse systems, 8th Americas Conference on Information

Systems (AMCIS 2002), 2002, pp. 77–87.
[42] Y. Sismanis, P. Brown, P.J. Haas, B. Reinwald, Gordian: efficient and scalable discovery of composite keys, Proc. of the 32nd Int. Conf. on Very Large Data Bases

(VLDB 2006), ACM, 2006, pp. 691–702.
[43] D. Skoutas, A. Simitsis, Ontology-based conceptual design of ETL processes for both structured and semi-structured data, IJSWIS, 2007, pp. 1–24.
[44] I.-Y. Song, R. Khare, B. Dai, SAMSTAR: a semi-automated lexical method for generating STAR schemas from an ER diagram, Proc. of the 10th Int Workshop on

Data Warehousing and OLAP, ACM, 2007, pp. 9–16.
[45] H.B.K.T., Y. Zhao, Automated elicitation of functional dependencies from source codes of database transactions, Inf. Softw. Technol. 46 (2) (2004) 109–117.
[46] W3C. OWL Web Ontology Language Overview. http://www.w3.org/TR/owl-features/.
[47] R. Winter, B. Strauch, A method for demand-driven information requirements analysis in DW projects, Proc. of 36th Annual Hawaii Int. Conf. on System

Sciences, IEEE, 2003, pp. 231–239.

Alberto Abelló has an MSc and a PhD in computer science from the Universitat Politècnica de Catalunya (Polytechnical University of

Catalonia). He is an associate professor at the Facultat d'Informàtica de Barcelona (Computer Science School of Barcelona). He is also a

member of the GESSI research group (Grup de recerca en Enginyeria del Software per als Sistemes d'Informació) at the same

university, specializing in software engineering, databases and information systems. His research interests are database design, data

warehousing, OLAP tools, ontologies and reasoning. He is the author of articles and papers presented and published in national and

international conferences and journals on these subjects.

Oscar Romero has an MSc and a PhD in computer science from the Universitat Politècnica de Catalunya (Polytechnical University of

Catalonia). Currently, he is an assistant professor at the Escola Tècnica Superior d'Enginyeria Industrial i Aeronàutica de Terrassa

(Industrial and Aeronautical Engineering School of Terrassa). He is also a member of the GESSI research group (Grup de recerca en

Enginyeria del Software per als Sistemes d'Informació) at the same university, specializing in software engineering, databases and

information systems. His research interests are database design, data warehousing, OLAP tools, ontologies and reasoning. He is the

author of articles and papers presented and published in national and international journals on these subjects.

1157O. Romero, A. Abelló / Data & Knowledge Engineering 69 (2010) 1138–1157

http://www.omg.org/technology/documents/formal/uml.htm
http://www.w3.org/TR/owl-features/
Unlabelled image

	A framework for multidimensional design of data warehouses from ontologies
	Introduction
	Related work and main contributions
	Main contributions

	Method foundations
	Our approach
	Discovering dimensional concepts
	Computing direct dimensional concepts
	Propagating dimensional concepts by transitivity
	Complexity of the algorithm
	Soundness and completeness of the algorithm

	Identifying measures
	User interaction
	Shaping the dimension hierarchies

	Additional practical considerations
	Discussion
	Conclusions
	Acknowledgments
	References


