
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3082207, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

A Framework for Objective Evaluation of

Single Image De-hazing Techniques

ALESSANDRO ARTUSI1, KONSTANTINOS A. RAFTOPOULOS1, 2, 3

1DeepCamera MRG Lab, CYENS (e-mail: artusialessandro4@gmail.com)
2Hellenic Military Academy, Vari, Attika, Greece(e-mail: raftop@cs.ucla.edu)
3University of West Attica

Corresponding author: Alessandro Artusi (e-mail: artusialessandro4@gmail.com).

This paragraph of the first footnote will contain support information, including sponsor and financial support acknowledgment. For
example, “This work was supported in part by the U.S. Department of Commerce under Grant BS123456.”

ABSTRACT

Real-world environment, where images are acquired with digital camera, may be subject to sever climatic
conditions such as haze that may drastically reduce the quality performance of sophisticated computer
vision algorithms used for various tasks, e.g., tracking, detection, classification etc. Even though several
single image de-hazing techniques have been recently proposed with many deep-learning approaches
among them, a general statistical framework that would permit an objective performance evaluation has
not been independently introduced yet. In this manuscript, certain performance metrics that emphasize
different aspects of image quality, output ranges and polarity, are identified and combined into a single
performance indicator derived in an unbiased manner. A general methodology is thus introduced, as a
framework for objective performance evaluation of current and future dehazing tasks, through an extensive
comparison of 15 single image de-hazing techniques over a vast range of image data sets. The proposed
unified framework shows several advantages in evaluating diverse and perceptually meaningful image
features but also in elucidating future directions for improvement in image dehazing tasks.

INDEX TERMS haze, single image de-hazing, deep-learning, generative adversarial network (GAN),
convolutional neural network, bench-marking, survey, computational-performance, computer vision, image
processing.

I. INTRODUCTION

Image capturing is the first step in an imaging pipeline and
plays an important role in providing input with an acceptable
level of quality that will not compromise the performance
of existing computer vision and image processing tasks,
i.e., classification, object detection, details extraction etc.
The quality of the captured image may be degraded not
only by noise generated by the device sensor but also by
environmental conditions such as fog, rain drops, haze,
illuminations conditions etc. affecting visibility of objects,
details etc. and drastically compromising the recognition
capability of computer vision and image processing tasks.

Atmospheric haze in particular, is generated by particles
that attenuate light passing through them. These particles
cause light absorption and scattering, so as only a certain
percentage of the reflected light reaches the camera sensor.
This results in an acquired image of reduced visibility and
color shift when compared to an image acquired under

standard sunlight environmental conditions and it drastically
reduces the performance of state-of-the-art object detection
algorithms as shown in Figure 1. De-hazing techniques for
single images exist. They provide an attempt to enhance
the hazy image by solving the so called light scattering
model, as described in Section II. They can be divided
in two main categories. Methods that use image prior
features to constraint the solution of the scattering model
and methods that use a black-box approach where deep-
learning is used to limit the constraints required by the prior
features approaches (see Section II).

While methods in the first category are more or less
understood in a probabilistic context, the methods in the
second category exhibit a well known dependency to the
data sets used for their training. Even though the perfor-
mance of the second group is typically measured on unseen
images with cross validation techniques, a hidden bias to
certain choices, data sets or parameters is generally difficult
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(a) free-haze image (b) haze image

FIGURE 1. Images acquired under different environmental conditions - (a) without

haze, while (b) with haze. The image in (b) clearly shows reduced visibility where

objects and details are less visible, and color shift where colors in various areas are

desaturated, when compared to the ground truth (a). Applying state-of-the-art object

detection algorithm only few persons in the haze image are detected (b). Images from

the RESIDE 2018 data set [3].

to quantify. The contribution in this paper is in introducing
a framework for objective evaluation using diverse perfor-
mance metrics unified under a statistical context. Existing
benchmark data sets with different characteristics are inte-
grated and by means of the proposed statistical framework,
a comprehensive performance evaluation is performed, be-
tween the most popular de-hazing methods at a scale not
seen before for this particular problem. For methods based
on deep learning in particular, fusing testing data sets affects
the hidden bias in training / cross validation choices. Indeed,
different data sets with types of images ranging from indoor
to outdoor settings, low to high resolutions, synthetic to
real haze, as well as different haze levels are used to check
the level of dependency of deep learning methods to their
original training sets.

Five objective metrics are used, providing a mixture of
orthogonal criteria in performance evaluation, namely, de-
tection of structural changes, color distortion and identifying
visibility changes. Two reference-less metrics predict losses
in naturalness [1] thus estimating the quality of an image in
a way that is consistent with human perception [2].

The proposed framework addresses the unification prob-
lem of these metrics by introducing a general statistical
framework, one that provides a unique performance indi-
cator, derived in an unbiased manner. The generality of the
proposed framework makes it possible to incorporate current
and future single image de-hazing techniques into a uniform
objective evaluation.

The rest of the paper is structured as follows: the single
image de-hazing problem formulation and related-work are
described in Section II. A total of 78K images with different
characteristics, i.e., indoor, outdoor, synthetic and real haze,
as well as dense haze, different haze levels, synthetic and
real images, are used and described in Section III. Section
IV provides the methodology used for the analysis of the
results, including quality evaluation as well as analysis of
the computational performance. Final remarks are discussed
in Section VI.

II. SINGLE IMAGE DE-HAZING, PROBLEM FORMULATION

AND CURRENT METHODS

A simple way to model the scattering of light into a medium
is the so called classical atmospheric scattering model:

I(x) = J(x)t(x)+A(1− t(x)), (1)

where I is the hazy image, J is the recovered haze free
radiance scene, while A and t are the global atmospheric
light and the medium transmission coefficients respectively.
The medium transmission coefficient describes the portion
of the light that is not scattered and reaches the camera.
The first term in eq. 1, describes the scene radiance decay
in the medium and is called the direct attenuation term. The
remaining term is the airlight and it is responsible for the
color shift in the image due to the scattered light in the
medium [4]. In the case of homogeneous atmosphere, the
transmission t is expressed as an exponential function of
the scattering coefficient of the atmosphere β and the scene
depth d:

t(x) = expβ(x)d(x)
. (2)

The above scattering model is typically used to synthesize
haze images starting from a free-haze image, and it is used
as the base model for the majority of single image de-hazing
techniques. Based on the physical model described in eq. 1,
the haze free image J is recovered by estimating, first the
transmission term (t), then the coefficient A. This is achieved
either by making use of an image prior and imposing
specific constraints or by using data-driven approaches, e.g.,
deep-learning. Eq. 1 describes an ill-posed problem due to
the fact that the number of unknown variables is larger then
the number of equations. Moreover, the so called airlight-
albedo ambiguity where the albedo term is not constant
over all pixels of the haze image, gives rise to a large
number of undetermined degrees of freedom as noted by
Fattal [5]. A solution to this problem would be to impose
constraints either on image properties or on the computation
of the coefficient terms t and A in eq. 1. For example,
Fattal [5], [6] imposed constraints on the estimation of the
albedo term making it easy to estimate the depth term (d).
Other constrains can be imposed in the formulations of the
light and object chromaticity as well as on the atmospheric
light (A) [7]. Dark channel prior (DCP) [4] can be used
to constraint the computation of the transmission term (t).
White balancing the input image may assume that the haze
can be represented with perfect withe and constraint the so
called atmospheric veil, as defined in [8].

Tang et al. [9] extended the DCP concept considering
other haze image features as constraints, e.g., local max-
imum contrast, saturation and hue disparity. Chen et al.
[10] use DCP to recover the transmission term t and Total
Generalized Variation (TGV) for refining, when DCP is not
precisely estimating it. Scene transmission term t, can also
be estimated imposing boundary constraints on the radiance
cube combined with a weighted L1 norm based contextual
regularization, as proposed in [11]. A global image prior,
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sensitive to dependencies created from the use of a wrong
||A||, is proposed by Sulami et al. [12] introduced a simple
procedure for recovering ||A|| by minimizing these depen-
dencies. Zu et al. [13] observed that the difference between
brightness and saturation can approximately represent the
concentration of haze. Using this color attenuation prior,
they derive the depth map (d) by proposing a linear model
and learning the parameters of the model with a supervised
learning method. Bermann et al. [14] proposed a new non-
local prior to recover the depth map (d). The key concept
is to assume that colors of a haze-free image are well
approximated by a few hundred distinct colors and each
one can be represented as a line in the RGB space (haze-
line). Alternatively, to solve the albedo and depth ambiguity,
the haze input image can be modeled by two statistically
independent terms, scene albedo and depth. The dependency
between these two terms and the input haze image can
be modeled using a probabilistic model based on factorial
Markov random field [15], [16]. Fattal [6] used a Markov
random field for producing a complete and regularized
transmission term (t), given noisy and scattered estimates.

Imposing specific constraints to haze removal, as shown
in the above prior-based techniques, has the advantage of
effectively formulating an ill-posed problem while simulta-
neously reducing computational complexity. However, these
constraints may be easily violated when treating real-world
images. Moreover, input parameters that could work for a
large variety of images may be difficult to estimate. This
makes the proposed solution often unpractical, especially
when a realistic reconstruction of the image is required. In
these cases, artifacts are often visible as shown in Figure2.

Fusion based techniques can be used to overcome the
need of estimating the depth term (d), thus avoiding its
costly refinement processes, and so estimate directly the
free-hazy image. To achieve this, one can start from the haze
image, derive a number of enhanced images, i.e., through
gamma correction [17]–[19], contrast enhancement [20] or
by extracting statistical features [21] and then fuse or merge
them into a haze-free image.

Multi-scale blending may also be used to improve the
overall quality of the final haze-free image [17], [20], [21].

Avoiding the estimation of the depth term, makes fusion-
based techniques a good alternative to the prior-based meth-
ods. However, these approaches share similar drawbacks
with prior-based methods. Indeed, the enhancement of the
derived-from-the-hazed input images, can be seen as im-
posing constraints that are difficult to estimate in a large
variety of images. Moreover, multi-scale blending increases
the computational complexity.

Imposing constraints (image priors) in the estimation of
model coefficients described in eq. 1, provide solutions that
fail when these priors are violated. Unfortunately this is
usually the case in real-world images. To overcome this
problem, deep-learning approaches have been considered
to either learn the mapping between the transmission term
(t) and its haze input image [22]–[25], or directly generate

(a) KRATZ (b) FAT

(c) DCP (d) DCP_FAST

FIGURE 2. (top) - Example result from Kratz et al. [15] and Fattal [5], clear color shift

artifacts are visible. (bottom) - Quality comparison among the DCP [4] technique and its

fast version DCP_F . Visible halos artifacts, around objects, are produced with the fast

version.

the haze-free image [26]–[40]. However, as will be shown
hereinafter, deep-learning approaches suffer from increased
dependency to their training sets and thus their generaliza-
tion capability may be questioned across diverse datasets.

Previous bench-marking on single image de-hazing algo-
rithms exist. Ancuti et al. [41] analyzed the performance of
6 existing single image de-hazing techniques using a small
number of objective metrics, e.g., SSIM [42] and the CIE
color difference formula ∆E2000 [43]. The data set used is
the D-haze [44], which provides a small number of images
that are both indoor and outdoor where haze is produced
synthetically. Li et al. [45] bench-marking, compares 11 de-
hazing techniques of which 2 are deep-learning approaches.
Recently, Bo et al. [3] provided a bench-marking on a
large data set, RESIDE 2018 [3], comparing 9 de-hazing
techniques, of which 3 are deep-learning approaches. They
used 4 objective metrics of which 2 are no-reference metrics.
They were also concerned whether de-hazing can help task-
oriented computer vision approaches, i.e., object detection,
in the sense of improving the performance of object detec-
tion in the presence of haze. Such a metric was incorporated
in their bench-marking. We share the same concern in
this work. A similar metric has been incorporated in the
proposed framework.

III. IMAGES DATA SETS

To demonstrate the proposed statistical framework, a sub-set
of 34 state-of-the-art de-hazing techniques, shown in Table
1, was selected. The selection was based on the availability
of their original code and in the case of deep-learning based
approaches, the availability of their trained model. For some
of these methods the code/trained network model is either
not provided or not accessible [6], [7], [20], [24], [25], [28],
[30]–[35], [37], [38], [40], [47], thus these methods were
excluded, to avoid own implementations not intended by the
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(a) D-hazy [41] (b) NTIRE 2018-2019 [44], [46] (c) RESIDE 2018 [3]

FIGURE 3. Examples of images belonging to the data sets used in this bench-marking: frame color indicate free-haze (red) and haze (blue) image.

authors. This leaves a subset of 17 techniques of which 6
are based on deep-learning techniques. Preliminary testing,
among these 17 techniques, has shown that Fattal [5] and
Kratz et al. [15] methods have difficulties to find suitable
input parameters for all type of images used. Figure 2 shows
several artifacts in the de-hazed images, i.e., color shift, over
saturation etc. as also confirmed in [45]. As overcoming this
problem was not trivial to us, nor a method was suggested
in the paper, these two techniques were also excluded.

Concerning DCP, a fast solution is also available in its
paper. Both solutions were preliminary tested. Results in
Figure 2, show visible halos artifacts around objects when
the fast solution is used. Based on this result, only the
results of the original solution [4] is provided here. For the
computational evaluation, however, see Section V-C, the fast
solution is also included. This is reducing to 15 the number
of de-hazing techniques tested here. For all techniques the
original code was used, with default input parameters.

To present the proposed framework for objective evalua-
tion, the 15 aforementioned de-hazing techniques have been
used, together with a vast range of images from several
existing benchmark data sets. To the best of our knowledge,
this makes the largest data set used in the literature so far
in de-hazing activities, constituted of approximately 78K
images.

The data sets incorporated in the proposed framework
were carefully chosen to represent a wide range of real life
conditions, capturing scenarios, diverse image features and
in the case of RTTS, high quality annotations necessary for
testing object recognition performance after haze removal.
In Tables 2 and 3 the main characteristics of these data
sets are shown and some of these images can be inspected
in Figure 3. They comprise indoor and outdoor images at
different resolutions, images with different degrees of haze,
including dense haze but also annotated images needed for
the task-driven evaluation as will be discussed in Section
V-D.

TABLE 1. Original pool of de-hazing techniques where 15 techniques have been

selected. Red text indicates methods that in preliminary tests have provided poor

results due to the difficulties of finding common parameters setting for all input images.

Method Acronymum Code Availability
Fattal [5] FAT YES

Kratz et al. [15] KRATZ YES
He et al. [4] DCP/DCP_F YES

Tarrel et al. [8] TFV YES
Meng et al. [11] BCCR YES

Sulami et al. [12] ATML YES
Choi [21] DEF YES

Zu et al. [13] CAP YES
Bermann et al. [14] NLD YES

Chen et al. [10] GRM YES
Galdran [17] AMEF YES

Fattal [6] - NO
Tan [7] - NO

Ancuti et al. [20] - NO
Wu et al. [47] - NO

Zheng et al. [18] - NO
Zhu et al. [19] - NO

Ren et al. [22] M_NN YES
Cai et al. [23] DE_Z YES
Li et al. [26] AOD YES

Engin et al. [29] CY_D YES
Qin et al. [36] FFA_Net YES

Sourya et al. [39] DMPH YES
Shao et al. [48] - NO
Ren et al. [31] - NO

Dong et al. [37] - NO
Zhang et al. [24] - NO
Dong et al. [38] - NO
Yang et al. [30] - NO

Swami et al. [28] - NO
Dudhane et al. [32] - NO

Ren et al. [33] - NO
Li et al. [34] - NO
Li et al. [35] - NO

Pang et al. [25] - NO
Shen et al. [40] - NO
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TABLE 2. Characteristics of data sets used in the proposed framework.

Data sets
Type RESIDE β [3] D-Hazy [41] NTIRE [44], [46]

Indoor YES YES YES
Outdoor YES NO YES

Haze-level YES NO NO
Task-driven YES NO NO

De-Haze NO NO YES [46]

TABLE 3. Data sets used in our bench-marking.

Type # Images W x H
Midlleburry 23 2,880 x 1,988

NYU 1,448 640 x 480

I-haze 30 4,657 x 2,833
O-haze 40 2,966 x 3,202

De-haze [46] 55 1,600 x 1,200

OTS (x 35 haze levels) 2,061 550x413
RTTS 4,322 -

A. D-HAZY DATA SET

The D-haze data set [41] provides two sets of images. Two
existing data sets, Middleburry [49] and NYU-Depth V2
(NYU) [50], provide the depth map. Real-world ground truth
images with synthesize haze, employing Koschmieder’s
physical model [51] of light transmission in hazy scenes
have been augmented under the assumption that atmospheric
intensity and haze density are uniform. Table 3 shows the
number of images belonging to the two subsets and their
resolution.

B. NTIRE DATA SET

The NTIRE data set series includes three collections of data,
developed between 2018 and 2020 [44]. At the time of
this writing the 2020 version was not available for testing.
NTIRE data sets are the only ones that provide hazy images
of very high resolution and this is the reason they were
selected here. Hazy images are generated using real haze
produced by a professional haze machine (see Table 3).
All NTIRE data sets consist of indoor (I-haze) and outdoor
(O-haze) images [44] as well as dense uniform haze (De-
haze) [46] images. Each scene includes a MacBeth color
checker, allowing more precise image color calibration and
better assessment of performance. Moreover, since images
are captured in a controlled environment, both haze-free
and hazy images are captured under the same illumination
conditions.

C. RESIDE β DATA SET

D-hazy and NTIRE data sets provide mainly indoor images.
In order to enrich with further content including indoor,
outdoor and annotated images the RESIDE data set was
also selected together with the Outdoor Training Set (OTS)
and the Task-driven Testing Set (RTTS) (see Table 3 ). OTS
extends the number of outdoor images with different haze
levels, e.g., 35 haze levels for a total of 72K images. RTTS
provides a large annotated data set, necessary to address

FIGURE 4. Performance graph of 9 prior-based dehazing techniques based on their

mean score from 5 objective metrics. The data for each method are the columns in

Table 5

whether de-hazing is capable of increasing the performance
of existing computer vision algorithms. In RESIDE dataset
the haze has been synthetically added using the atmospheric
model described in eq. 1 with atmospheric light (A) and
atmospheric scattering coefficient (β) varying in the range
of [0.8,1.0] and [0.04,0.2] with a step of 0.5 and a variable
step of 0.02 and 0.04 respectively.

IV. EXPERIMENTS AND ANALYSIS

The proposed framework is evaluated in the next section
through experimental results that compare the performance
of single image de-hazing techniques. The aim is to in-
troduce a unifying benchmark that will incorporate many
diverse data sets with different aspects of image quality. The
merit of such a framework is demonstrated in the conceptual
results regarding dependency to training sets, computational
constraints but also in understanding whether haze removal
is sufficient for improving the performance of computer
vision task-driven applications.

In Section V, a qualitative comparison using a total of 5
objective metrics is described. In Section V-C, various tests
on the computational performance are presented. Finally, in
Section V-D a bench-marking on a task-driven computer
vision application, related to an object detection task is
reported.

V. PERFORMANCE EVALUATION

In the proposed framework, five objective metrics have been
used. Among them, Peak to Signal Noise Ration (PSNR),
measures the noise ratio in the image signal and Structural
Similarity Index (SSIM) [42] measures structural changes
within the image.

Despite the fact that these objective metrics provide a
useful indication of image quality, they have limited use
in predicting the probability that a specific change in an
image is visible or not to an average observer. Thus, the so
called HDR-VDP metric [52] is also used, which through
implementation of important aspects of the human visual
system is capable to predict the visibility changes as well as
the quality degradation with respect to the reference image.
Moreover, two non-reference objective metrics, BRISQUE
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TABLE 4. Standardized values (z-scores) of prior based methods comparative

performance with overall performance indicators. Each entry is the number of standard

deviations by which the method’s score was above or below the mean score of all

methods for that metric. BRISQUE values have been negated to be consistent with

other metrics where positive entries show better performance than negative entries.

Rows labeled MEAN hold the means of the respective columns. These numbers serve

as performance indicators for the various methods. Outdoor and indoor environments

are treated separately. An overall score, as the mean of all indoor and outdoor scores

from all data sets, is calculated in Table 5. Green to red color scale means best to worst

in the row.

TABLE 5. Ranking of 9 prior-based dehazing techniques based on their combined

outdoors-indoors overall perforce across all tested data. Each column hold the means

of Table 4. AMEF exhibits the best mean performance across all data sets. Standard

deviations measure the method’s sensitivity to the data sets. The MEAN STD is

calculated to measure the overall degree of dependency of prior methods’ performance

to different data sets and will be compared to the MEAN STD of deep learning based

methods.

[1] and IQVG [2] are also used, where the quality of an
image is estimated automatically, in a way that is consistent
with human perception and without any prior knowledge
of the reference image. These will help to understand
whether the evaluation is consistent across different types
of objective metrics.

The higher the value of the PSNR, SSIM, HDR-VDP
and IQVG metrics, the higher the image quality, whereas
the inverse holds for the values of the BRISQUE objective
metric.

This certain combination of metrics introduced by the
proposed framework were chosen to emphasize different
aspects of image quality and allow for an objective eval-
uation. Their combined effect is assessed in the context of
a statistical treatment that objectifies the results, leading to a
single performance indicator, derived in an unbiased manner
from all five metrics. By converting raw metric scores into
z-scores and rank methods according to their mean z-score
from all metrics, one achieves a standardization of values

that aids the comparison between metrics of different scales
or widely different ranges measured on the same scale. The
standardization process used hereinafter is now described
in distinct steps:

Let i indexing methods, j indexing metrics:

1) Calculate the mean value for each metric and denote
µ j

2) Calculate the standard deviation for each metric and
denote it σ j

3) Calculate the distance of every raw score from the
respective mean, measured in standard deviations e.g.
for the raw score of method i with metric j, denoted
by ri j, the respective standardized score is denoted by
si j and equals

ri j−µ j

σ j

4) For each method i, calculate the average of its standard-
ized scores si j, j ∈ metrics and use this single number

6 VOLUME 4, 2016
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(a) free-haze (b) AMEF [17]

(c) ATML [12] (d) DCP [4]

(e) BCCR [11] (f) CAP [13]

(g) DEF [21] (h) GRM [10]

(i) NLD [14] (j) TFV [8]

FIGURE 5. Results comparison - Image selected from the RESIDE data set processed

with 9 image prior based de-hazing techniques and compared to the free-haze (a).

as a performance indicator for method i

For the BRISQUE metric, the calculation in 3 is negated:
si j =

µ j−ri j

σ j
to be consistent with the other metrics, in that

positive numbers indicate better performance. Standardiza-
tion results for prior based and deep learning based methods
are shown in Tables 4-5 and 6-7 respectively.

A. INDOOR VS. OUTDOOR ENVIRONMENT

The environment where the image is taken may influence an
algorithm’s performance. To verify this, images described
in Section III, have been further divided into two groups
representing two distinct types of environments, indoors

and outdoors. Based on the normalization strategy of the
proposed framework, standardized scores with combined
metric performance indicators are shown, for prior based
and deep learning de-hazing techniques respectively. An
outdoor-indoor overall combined ranking is provided in
Tables 5 and 7 for prior-based and deep learning techniques
respectively.

Among prior-based methods, AMEF (Artificial Multiple-
Exposure Image Fusion) [17] provides an overall better
quality performance, considering both types of environ-
ments. AMEF performs haze removal by fusing artificially
under-exposed images. Initially, the original hazy image
is artificially under-exposed via a sequence of gamma-
correction operations. The resulting set of multiply-exposed
images is merged into a haze-free image through a multi-
scale Laplacian blending scheme. Even though AMEF is
the winner among prior based methods, its performance
degrades when only the outdoor dataset is considered. There,
DCP is the combined (from all metrics) winner among
the prior-based methods, but it is never the winner for a
single metric. This reveals the usefulness of the proposed
framework, as conclusions can be drawn from a global
perspective that unifies different aspects of performance.
As one also observes, DCP gives consistently good results
(above average) for outdoors environment, in relation to all
other metrics.

Also in relation to the different metrics, ATML is per-
forming very well when HDR-VDP is used but its perfor-
mance degrades in all other metrics, in both indoor and out-
door environments. This clearly indicates that relying on the
results of a single metric may lead to wrong interpretations.
One may also notice differences in performance when a data
set belonging to the same type of environment, either indoor
or outdoor is used. For example, BCCR performs consider-
ably well, similar to AMEF, for the indoor environment of
NTIRE2019 data set. However, its performance degrades, in
the same environment (indoors), when the NTIRE2018 data
set is used. This may be due to the different type of haze
provided by these two data sets, e.g., dense vs. no-dense
haze. This can also be easily deduced from figure 4.

In the case of deep-learning, one may notice higher
variability in performance among different data sets and
objective metrics when compared to prior based methods,
as shown in Table 6. The overall winner method for
deep learning based methods is AOD (All-in-One Dehazing
Network). It is a convolutional neural network designed
on a re-formulated atmospheric scattering model. Instead
of estimating the transmission matrix and the atmospheric
light separately, AOD directly generates the clean image
through a light-weight CNN that optimizes a combined,
(transmission matrix/atmospheric light) parameter named K.
AOD is composed of two parts: a K-estimation module
that uses five convolutional layers to estimate the combined
parameter K, followed by a clean image generation module
that consists of an element-wise multiplication layer and
several element-wise addition layers to generate the recovery
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TABLE 6. Standardized values (z-scores) of deep learning based methods

comparative performance with overall performance indicators. Each entry is the

number of standard deviations by which the method’s score was above or below the

mean score of all methods for that metric. BRISQUE values have been negated to be

consistent with other metrics where positive entries show better performance than

negative entries. Rows labeled MEAN hold the means of the respective columns.

These numbers serve as performance indicators for the various methods. Outdoor and

indoor environments are treated separately. An overall score among the deep learning

methods, as the mean of all indoor and outdoor scores from all data sets, is calculated

in Table 7. Green to red color scale means best to worst in the row.

FIGURE 6. Objective evaluation varying - left: β levels keeping A fixed to the value of

0.8; - right: varying A levels keeping β fixed to the value of 0.04, for both metrics

HDR-VDP and IQVG.

image via the modified atmospheric scattering model involv-
ing the optimized parameter K. The K-estimation module
is the critical component of AOD, being responsible for
estimating the depth and relative haze level. AOD even
though the winner among deep learning methods, shows
significant variability among different metrics, data sets and
environments. It is worth noticing that the performance of
certain deep-learning methods is severely affected by the
data set used e.g. CYD and FFA in Figure 8.

Examples of dehazing are shown in Figures 5 and 7 for
image prior and deep-learning based techniques respectively.
One observes how haze may not be completely removed
(TFV, AOD), introducing clear artifacts (CY_D, BCCR),
contrast distortion (ATML, GRM, DCP) and washing out
details as in NLD.

B. VARYING β AND A

Atmospheric light A and the scattering coefficient of the
atmosphere β are playing a role in generating a color shift
and adding haze into the free-haze image. RESIDE 2018
data set provides a set of images where 35 levels of haze
distortion are added to the free-haze image, e.g., 5 levels of
A and 7 levels of β. Firstly, how the quality of the de-hazed
image may be influenced by β was investigated, using the
levels of [0.04,0.06,0.12,0.2] where A has been fixed to
0.8. Then, we investigated how the quality of the de-hazed
image may be influenced by the parameter A in the range of
[0.8,1.0] with a step of 0.5, where β is fixed to the value of
0.04. This means testing all de-hazing methods used here,
on 9 different data sets constituted of 2,061 images each, in
a total of 18,549 images under all 6 objective metrics. Due
to the high computational time required to perform this test,
analysis was restricted to the 2 best performing techniques
(AMEF [17] and AOD [26]), belonging to the prior based
and deep learning based de-hazing techniques respectively,
using 2 objective metrics; HDR-VDP for full reference and
IQVG for no-reference. The plots for HDR-VDP and IQVG
objective metrics are shown in Figure 6 (left) when varying
β.

One may notice here an interesting result. De-hazing
techniques reproduce a suitable output image independently
from the β value, the haze level applied to the free-haze
image. Differences of just two points in the quality score,
predicted by the two metrics, is not perceivable by the
human visual system. The plots for varying A are shown in
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(a) M_NN [22] (b) AOD [26]

(c) DE_Z [23] (d) CY_D [29]

(e) FFA_Net [36] (f) DMPH [39]

FIGURE 7. Results comparisons - Image from the RESIDE data set and processed

with the 6 deep-learning based de-hazing techniques. The original free-haze image is

shown in Figure 5.

TABLE 7. Ranking of 6 deep learning dehazing techniques based on their combined

outdoors-indoors overall perforce across all tested data. Each column hold the means

of Table 4. AOD exhibits the best mean performance across all data sets. Standard

deviations measure each method’s sensitivity to different data sets. The MEAN STD is

calculated to measure the overall degree of dependency of deep learning methods’

performance to different data sets and will be compared to the MEAN STD of prior

based methods.

Figure 6 (right) as above. It may also be noticed that tested
de-hazing techniques are capable of maintaining a suitable
de-hazed image quality, independently from the level of
color shift introduced by parameter A.

FIGURE 8. Performance graph of 6 deep learning dehazing techniques based on their

mean score from 5 objective metrics. The data for each method are the columns in

Table 7
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FIGURE 9. CPU time, in seconds, of each de-hazing technique for predicting the free

haze image, varying the image resolution from 256x256 to 1536x1536 pixels.

C. TIME ANALYSIS

To assess the efficiency of the proposed framework, com-
putational times of the tested methods have been registered.
Due to memory management issues, the size of the input
haze image varied from 256x256 to 1536x1536 pixels.
CY _D was excluded from this test, due to its hard require-
ment for an input image of 256x256 pixels. All experiments
were performed on a Linux machine equipped with an Intel
CPU 4 Core i.5−7500 (2.40 GHz) with 16 Gb of memory
and Intel GPU HD Graphics 630(Kaby Lake GT2).

Based on their computational performance, de-hazing
techniques were separated in two broad classes, one with
the techniques having very high computational cost shown
in Figure 9 (left) and the other class with the techniques
that were faster, shown in Figure 9 (right). Some of the
slow techniques have issues related to memory manage-
ment when image resolution goes above 1024x1024 for
ATML and 1280x1280 for DEFADE. Large improvement
in computational cost is achieved by the techniques shown
in Figure 9 (right), where DCP_F, AMEF, CAP and AOD
are the ones with the fastest performance. However, there
were cases where DCP_F produced halos artifacts around
objects, as shown in Figure 2.

Time analysis must be assessed in relation to the com-
putational complexity of the techniques used. For simplicity
and without loss of generality, an input matrix of dimensions
n×n is considered. Prior-based and fusion-based approaches
may vary in their computational complexity, from O(n),
when a simple subtraction or addition on the input image
is required, to that of O(n3logn) when filtering and/or pre-
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TABLE 8. Task-driven results for 5 object detection techniques on the original hazed

images of the RTTS data set and on the de-hazed images obtained with the AMEF,

DCP, M_NN and AOD de-hazing techniques. The results are the Mean Average

Precision (mAP) among all objects.

Method Haze AMEF [17] DCP [4] M_NN [22] AOD [26]

SSDmob_v1 14.61 15.46 15.24 14.15 14.44
SSDmob_v2 15.23 16.15 15.90 14.79 15.28
SSDinc_v2 17.02 18.12 17.64 16.55 16.79

FRCNNinc_v2 27.50 27.76 27.09 27.32 26.75
FRCNNres_101 31.58 30.80 31.37 31.08 30.43

processing of the input image are necessary, i.e., gamma-
correction, Gaussian pyramid or other type of filtering. For
deep-learning approaches, the computational complexity is
considered for the inference process (forward propagation).
Let n be the dimension of the input vector. Without loss
of generality, one can consider each convolutional layer to
correspond to a matrix multiplication, with matrix dimen-
sions n×n and an activation function that follows. These are
the two main operations performed at each layer. A matrix
multiplication has a complexity of O(n3), while for the
activation function the complexity is of O(n). Considering n

numbers of layers, having the same number of weights and
parameters, the total computational complexity for a deep-
learning approach under the above assumptions is O(n4).

D. TASK-DRIVEN EVALUATION

The proposed framework incorporates a task driven evalua-
tion using the annotated data set available in RESIDE 2018
as was also discussed in Section III. This annotated part is
called RTTS and includes 4,322 images, of which 35 images
have been removed for memory management issues related
to some of the tested de-hazing techniques, (e.g., DCP),
reducing the total number of images to 4287. To reduce the
required computational cost only the two best techniques for
each category were tested, e.g., AMEF and DCP, for prior
based techniques, M_NN and AOD for deep-learning based
techniques. Traditional object detection was performed both
on the original hazed RTTS image, as well as the resulting
from each of the four best methods de-hazed image and the
results were compared to discover whether any method of
dehazing helped recognition. Tensorflow Object Detection
API [53], was used. For object detection, the methods used
were: SSD [54], FRCCN [55] as feature extractors and
mobilnet v1 and v2 [56], inception v2 [57] and resenet_101
[58] deep-learning networks. All object detection methods
have been trained on the COCO2012 data set [59]. The
dataset used for object detection consists of 5 different
annotated objects, person, bicycle, car, bus and motorbike;
and the metric used for evaluation was the one used in the
PASCAL Visual Object Classes Challenge 2012 (VOC2012)
[60]. The results are reported in Table 8 as Mean Average
Precision (mAP) among all objects. Column labeled Haze

holds the results of detection on the corresponding haze
images before dehazing.

(a) DCP [4] (b) AMEF [17]

(c) AOD [26] (d) M_NN [22]

FIGURE 10. Task-driven comparison: either haze is not removed completely or

blocking artifacts are injected in the de-hazed image.

AMEF provides an overall improvement in all cases
except FRCCN resenet_101, while DCP provides either
limited or equivalent improvement when compared to the
performance on the original RTTS haze data set (ground
truth). M_NN and AOD are not improving the performance.
This may due to the fact that state-of-the-art de-hazing
techniques are not always capable to completely remove
haze from the input image, as shown in Figure 10. Often
these techniques may introduce other types of artifacts that
may mislead certain computer vision applications. Future
de-hazing techniques therefor need to be designed with a
specific application in mind. A general-purpose de-hazing
technique is very difficult to design due to two major factors.
First, imposed design constraints may not be generalized
on various applications as a general-purpose technique will
require. Second, design imposed constraints on specific
computer vision tasks may not be able to take advantage
of the improved quality of the de-hazed image.

E. DEPENDENCY TO TRAINING SETS

The choice of training/testing data sets affect the perfor-
mance of all methods as is demonstrated in the experiments.
However, this dependency is stronger in the deep learning
based approaches as was initially suspected. To measure this
dependency, the mean standard deviation of the standardized
scores of Tables 4 and 6 has been calculated for prior based
and deep learning methods respectively. As is shown in the
respective Tables 5 and 7, the mean standard deviation of
deep learning methods is greater than that of the prior based
methods. This proves that the performance of deep learning
methods is more dependent to the data sets used for training.
This result is not surprising since this dependency is well
known for all Neural Network architectures and it emerges
as an advantage of the prior based methods in dehazing
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tasks. As an example of such a behavior, one observes
in Table 7 and the resulting Figure 8, FFA and CY_D
exhibiting high variability in performance, depending on the
data set used for testing. On the other hand, according to
the results reported in Table 5 and the resulting Figure 4,
prior based methods seem more consistent in performance
across different data sets.

VI. CONCLUSIONS

A general framework for an objective evaluation of dehazing
techniques has been introduced in this paper. It consists
of a selection/fusion of several data-sets and performance
metrics in a unifying context of statistical origin.

The framework was validated by means of a collection
of state of the art dehazing techniques. Several advantages
of the proposed framework were revealed in identifying
diverse performance characteristics and objectifying global
evaluation results.

The framework can be used to evaluate current and future
dehazing techniques in an unbiased manner, on different
aspects of performance and image capturing conditions.
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