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Abstract

In this paper, single stage stochastic programs with ambiguous distributions for the

involved random variables are considered. Though the true distribution is unknown, exis-

tence of a reference measure P̂ enables the construction of non-parametric ambiguity sets

as Kantorovich balls around P̂ . The resulting robustified problems are infinite optimization

problems and can therefore not be solved computationally. To solve these problems numer-

ically, equivalent formulations as finite dimensional non-convex, semi definite saddle point

problems are proposed. Finally an application from portfolio selection is studied for which

methods to solve the robust counterpart problems explicitly are proposed and numerical

results for sample problems are computed.

Keywords: robust optimization; portfolio management; difference of convex algorithm;

semi definite programming; expected shortfall; non-convex optimization; extreme points
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1 Introduction

In this paper, a general framework, that can be used to deal with model uncertainty in stochastic
optimization models, is developed. More specifically the aim is to robustify single stage stochastic
optimization models with respect to uncertainty about the distributions of the random variables
involved in the formulation of the stochastic program.

The paper extends work that was done in [28] to a more general setting.
We consider the following stochastic programming problem

supx∈Rm F (x, P )
s.t. G(x, P ) ≤ 0

H(x) ≤ 0,
(1)

where P is an element of P(Rd) the set of probability measures on R
d, F : Rm × P(Rd) → R

is concave in the first variable and linear in the probability measure P , the function G : Rm ×
P(Rd)→ R is convex in the first variable and H : Rm → R is a convex function.
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If the measure P is known and the involved functions are nice the above problem can be solved
either explicitly or at least numerically, thus yielding a solution x which takes the statistical
uncertainty about the random variables in the problem formulation into account. However,
in many practical situations the measure P is not known exactly. It is known that many
stochastic programming problems are very sensitive to changes in the underlying distributions
of the random variables (see [25] or [11]). Therefore it is reasonable to consider robust versions
of problem (1), i.e. to introduce a so called ambiguity set B ⊆ P(Rd) which represents the
ambiguity about the real measure P . More precisely it is assumed that (with high probability)
the real measure P is an element of B.

Given B, the robust counterpart of (1) that is considered looks like

supx∈Rm infQ∈B F (x,Q)
s.t. G(x,Q) ≤ 0, ∀Q ∈ B

H(x) ≤ 0.
(2)

Note that the robustness is achieved by a worst case approach in the objective function as well
as in the constraints. However, we work with an ambiguity set B which usually is relatively
small in comparison to P(Rd), and the worst case is relative to this set.

Like in [28] we construct the ambiguity sets as Kantorovich neighborhoods of the empirical
measure P̂n (constructed from a sample of size n), where

P̂n =
1

n

n∑

i=1

δξi
. (3)

In specific, we set

B = Bǫ(P̂ ) = {Q ∈ P(Rd) : dr
K(P̂ , Q) ≤ ǫ} (4)

where dr
K is the so called Kantorovich (or Wasserstein) metric for probability measures defined

as

dr
K(P1, P2) = inf

γ(A×Ω)=P1(A), γ(Ω×A)=P2(A)

(∫

||x− y||r1dγ(x, y)

) 1
r

, (5)

where ‖u − v‖1 =
∑

i |ui − vi| (see [21] for a short introduction to the subject of probability
metrics and [29] for an extensive review). Here, we will work with r = 1. The space (P(C), d1

K)
is a compact, separable, complete metric space for a compact set C ⊆ R

d. The topology on
(P(C), d1

K) is the weak (star) topology induced by the continuous functions on C.

In the terminology of [6] the problem with P = P̂ serves as the nominal or baseline instance
of the problem, while the ambiguous counterpart is the robustified version, where ǫ quantifies
the degree of ambiguity in the model.

The purpose of this paper is to solve problem (2) with B = Bǫ(P̂ ) without further assump-
tions. The formulation (2) suffers from the drawback, that it is numerically intractable for the
following three reasons:

i. The problem (2) has infinitely many constraints.

ii. The solutions of the problems (2) are elements of an infinite dimensional space (together
with (i) this makes the problem infinite).
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iii. The problem (2) is not a standard optimization but a maximin problem. Finding a solution
involves finding a saddle point of the objective function, which usually is harder than
finding a maximum or a minimum.

Methods to treat problems (i.) and (iii.) were already developed and tested in [28]. The focus
of the current paper is therefore problem (ii.) and the integration of the results in the already
existing framework.

The paper is organized as follows: in Section 2 we give an overview of papers that deal
with problems in similar settings, Section 3 is concerned with the reformulation of problem
(2) in such a way that it becomes numerically tractable, in Section 4 the framework is applied
to a concrete robust portfolio composition problem and in Section 5 numerical results for this
particular problem are discussed. Section 6 concludes the paper.

2 Overview over existing literature

There exists a large and fast growing literature which deals with similar problems as discussed
in this paper. The first papers dealing with subject are works by Dupačová (see [15, 16, 17, 39])
and more recent works include [9, 10, 19, 18, 22, 26, 28, 33, 34, 37]. A comprehensive summary
is beyond the scope of this paper, we therefore briefly discuss a few of the mentioned papers,
which are in some sense similar to the approach taken here.

The approaches proposed up till now use strong conditions on B to keep problem (2) compu-
tationally tractable. In [22, 37] for example a classical mean-risk portfolio composition problem
is studied and it is assumed that the set B consists of normal distribution that are in some
sense close to the normal distribution with empirically measured mean and variance. However,
the assumption of normality of asset returns – though wide spread in the literature – received
criticism based on empirical evidence (see for example [1, 20, 31]).

In [33] the authors assume the ambiguity set to be of the form

B = {P ∈ P : P1 ≤ P ≤ P2}

where P1 and P2 are given measures and P ≤ Q iff P (A) ≤ Q(A) for all Borel sets A and show
that under these conditions a problem similar to (2) can be solved efficiently.

In [6, 7] different types of finite dimensional robust problems with more general structures of
the ambiguity set (referred to as ellipsoidal uncertainty) are solved. However, since the problem
of an infinite dimensional decision space does not arise in these works and the core technique is to
get rid of infinitely many constraints by dualization techniques and subsequent reformulation to
a definite problem, it is questionable whether this approach would still yield meaningful results
in general metric spaces and for general convex functions.

In [9] the ambiguity sets B are constructed as measures with Kullback-Leibler distance less
than ǫ to the empirical measure P̂n. The Kullback-Leibler distance between two discrete mea-
sures P and Q is defined as

dKL(P,Q) =

n∑

i=1

pilog

(
pi

qi

)

,

where pi and qi are the probabilities of the points under the measures P and Q respectively.
The definition immediately implies that only those measures can be compared that have the
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same atoms (to be more precise the measures Q and P have to have common atoms xi). This in
turn implies that all the measures that can be included in B are measures with atoms identical
to the empirical distribution. We will discuss the shortcomings of this approach below.

Also note that dKL does not reflect the impact a change in the distribution has on classical
probability functionals. To see this consider two points x1, x2 and two discrete distributions P ,
Q on these points with P (x1) = ǫ, P (x2) = 1− ǫ and Q(x1) = 1− ǫ, Q(x2) = ǫ, then

dKL(P,Q) = 2ǫ log
ǫ

1− ǫ
+ log

1− ǫ

ǫ

ǫ→0
−→∞. (6)

Note that the distance between P and Q is not dependent on the location of x1 and x2. If x1

and x2 are close, then |F (P ) − F (Q)| is also small for most probability functionals F (like for
example the expectation) which in turn implies that the notion of distance modeled by dKL is
not appropriate for stochastic programming.

In [28] the ideas on the construction of B are similar to the approach presented in this paper.
However, when solving problem (2) only a small fraction of the measures in Bǫ(P̂n) are actually
taken into consideration. In fact all the measures considered are discrete measures with atoms
identical to those of P̂n. This restriction can be justified by arguing that the atoms of P̂n are
sufficiently dense in the set of all possible realizations of the random variables involved in the
problem formulation. However, if the number of points is too small or the number of random
elements is too big this assumptions becomes unrealistic. It can also be argued that the future
distribution of the random variables of interest may change and therefore scenarios that were
not sampled in the empirical measure actually become possible outcomes of future realizations.
In the context of portfolio optimization this aspect becomes especially important if one thinks
of the structural breaks in the distributions of asset returns observed frequently on the markets.

The advantage of exclusively varying the probabilities of the scenarios of the empirical mea-
sure is that the solution of problem (2) becomes much simpler, since B can be described by
a subset of a finite dimensional space. However, we will show in section 5, considering all
distributions in Bǫ(P̂n) substantially changes the results for realistic data sets.

Thus we conclude that in order to make a decision which is robust with respect to model
misspecification, we should take into account all the measures in Bǫ(P̂n) and not only those
which put mass on pre-specified points. Since we want to solve the problem numerically we
have to reduce the complexity of the set Bǫ(P̂n) and this reduction should be achieved without
sacrificing on our goal to solve problem (2) for the whole of P ∈ Bǫ(P̂n).

Summarizing, our approach is different from the aforementioned in the sense, that we do
not restrict the set B by structural assumptions other than that all the measures considered in
the robustification have to be close to the empirical measure P̂n in the Kantorovich sense. This
enables us to construct the sets B as confidence balls around the empirical measure P̂n.

3 Reducing the problem

As a first step necessary to achieve numerical tractability of problem (2) we reduce the set
of possible distributions from the full Kantorovich ball to a subset B′, whose elements can be
described by finite dimensional vectors. In particular B′ should fulfill

inf
Q∈B

F (x,Q) = inf
Q∈B′

F (x,Q). (7)
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This would allow us to numerically solve the problem on the right hand and substitute the
solution for the problem on the left hand side. Similarly the condition

sup
Q∈B

G(x,Q) = sup
Q∈B′

G(x,Q) (8)

would enable us to treat the constraints in a finite dimensional setting.
A natural approach to restrict the set of distributions would be to consider the discrete distri-

butions on finitely many atoms. To this end we note that every distribution can be approximated
in the Kantorovich distance by a discrete distribution to arbitrary precision (in other words the
discrete distributions are a dense subset of (P, d1

K)), i.e.

∀P ∈ P(Rd), ∀ǫ > 0, ∃Q ∈ PD : dK(P,Q) < ǫ

where PD ⊆ P is the set of discrete distributions.
However this does not help in our setting, since we would need to approximate every P ∈

Bǫ(P̂n) and therefore would need a bound N ∈ N on the number of atoms in Q that works
uniformly for all P ∈ P(Rd) and a given ǫ > 0, i.e.

∀P ∈ P(Rd), ∀ǫ > 0 ∃N(d, ǫ) ∈ N, ∃Q ∈ PD : |Q| ≤ N, dK(P,Q) < ǫ,

where |Q| denotes the number of atoms of the discrete distribution Q.
Such results can only be obtained by covering arguments of the domain space of the measure.

This requires a restriction to a bounded support set B ⊆ R
d and leads to an exponential increase

in N with the dimension of the space.
We therefore restrict our attention to measures, that are actually possible candidates for

optimizers of the problem (7). Hence, instead of trying to approximate every element of Bǫ(P̂n),
we only consider the extremal elements of Bǫ(P̂n).

Definition 3.1 (Extreme Point). Let C ⊆ E be a convex set in a vector space E. A point x ∈ C
is called an extreme point of C, if C\ {x} is still a convex set. We denote the set of all extreme
points of C by ext(C).

This approach is motivated by the following result:

Theorem 3.1 (Bauer Minimum Principle). Let E be a Hausdorff locally convex vector space
(LCS), C ⊂ E be a non-empty compact convex set and f a concave lower semi-continuous
function. Then f attains its minimum over C at an extreme point of C.

Proof. See [12], Theorem 25.9.

Remark : The extremals of the set P(Rd) are the Dirac measures δx with x ∈ R
d. To see

this fix a measure P ∈ P(Rd) which is not a Dirac measure. Then there exist disjoint sets A1,
A2 with R

d = A1 ∪A2 such that P (Ai) > 0 for i = 1, 2. Define

Pi(B) =
1

P (Ai)
P (Ai ∩B), for i = 1, 2

Then it follows that P = P (A1)P1 + (1 − P (A1))P2 and thus P is not an extremal element of
P(Rd).
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Therefore it seems plausible, that the extremals of Bǫ(P̂n) ⊆ P are also Dirac measures. How-
ever, as evident from the following example, the situation is more complicated for Kantorovich
balls.

Example: Let ǫ > 0, x0, x1, x2 ∈ R
d with ||x0 − x1||1 < ǫ < ||x0 − x2||1. Further, let

f : Rd → R be continuous and such that

{x1} = arg max {f(x) : ||x0 − x||1 ≤ ǫ}

and f(x2) > f(x1). Define the linear functional F : P → R by F (P ) =
∫
fdP . If ||x− x0||1 ≤ ǫ

and x 6= x1, it holds that

F (δx) ≤ F (δx1
) < F (δx1

p+ δx2
(1− p)), ∀0 < p < 1 (9)

Since the set argmaxP∈Bǫ(δx0 )F (P ) has to contain an extremal point, (9) shows that there are
extremal points of Bǫ(δx0

), which are not Dirac measures.
We therefore have to consider also discrete measures that assign mass to more than one

point. Since it proves hard to characterize the points of Kantorovich balls directly, first the so
called exposed points are studied. These admit a more convenient characterization in our case.
In a second step the results for the exposed points are carried over to the extremals.

Definition 3.2 (Exposed Point). Let C ⊆ E be a convex set in a LCS. c ∈ C is an exposed
point of C is, if it is possible to separate the set C\ {c} from c via a continuous affine functional.
In other words there exists a continuous affine functional l, such that l(c) > l(y), ∀y ∈ C or
equivalently argmaxy∈C l(y) = {c}. We denote the set of exposed points of C by exp(C).

Remark: Every exposed point c of C is also an extreme point, since if there would be points
a, b ∈ C which are both not equal c and c = a

2 + b
2 then

l(c) =
1

2
l(a) +

1

2
l(b) < l(c).

Remark: For an exposed point P of a convex set C in the space (P(Rd), d1
K) it is therefore

possible to find a continuous bounded function g : Rd → R such that

{P} = argmaxQ∈C

∫

gdQ. (10)

The next example demonstrates that Theorem 3.1 does not hold for exposed points instead
of extreme points and that not every extreme point is also exposed.

Example: Define

f(x) =

{

(|x| − 1)2, x /∈ [−1, 1]

0, x ∈ [−1, 1]

and let
A = epi(f) = {(x, y) : f(x) ≤ y}

Define B =
{
(x, y) ∈ R

2 : y ≤ 1
}

and C = A ∩ B. The points (−1, 0) and (1, 0) are extremal
points of C, but not exposed points. The continuous, convex function g(x, y) = −y takes its
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maximum value over the compact convex set C on the line segment {(x, 0) : x ∈ [−1, 1]} . All
boundary points of C are extreme points and

exp(C) =
{
(x, (|x| − 1)2) : −2 ≤ x < −1

}
∪
{
(x, (|x| − 1)2) : 1 < x ≤ 2

}
.

Notice that the points (1, 0) and (−1, 0) are extreme points of C at which the maximum of g
is attained . Although in every neighborhood of (1, 0) and (−1, 0) there are exposed points the
points themselves are not exposed.

We need the following Theorem from [32] to characterize the distributions that are exposed
points of B.

Theorem 3.2. Let f1, . . . , fv be given real-valued Borel measurable functions on a measurable
space Ω. Let µ be a probability measure on Ω such that each fi is integrable with respect to µ.
Then there exists a probability measure µ′ with finite support on Ω satisfying |µ′| ≤ v + 1 and

µ′(fi) = µ(fi), ∀i = 1, . . . , v.

Theorem 3.3. Consider a discrete measure P̂n on the n points x1, . . . , xn in R
d (with respective

probabilities p1, . . . , pn) and the Kantorovich ball Bǫ(P̂n) with radius ǫ > 0 around P̂n. Then
all the exposed points of Bǫ(P̂n) are in P(n+3) – the discrete distributions with at most (n + 3)
atoms.

Proof. In view of the above remarks, to show that all the exposed points of Bǫ(P̂n) are discrete,
it is enough to show that for any measure P ∈ ∂Bǫ(P̂n) and every continuous bounded function
g, there is a discrete measure P̃ (on (n+3) points) such that

∫
gdP =

∫
gdP̃ and dK(P̂n, P̃ ) ≤ ǫ.

This would establish that there is no argmax-set like (10) that consists only of a single non-
discrete measure, i.e. all the exposed points have to be discrete measures.

If dK(P̂n, P ) = ǫ and
∫
gdP = c, then there exists a measure γ on R

d ×R
d such that

∫

||x− y||1dγ(x, y) = ǫ (11)

∫

g(y)dγ(x, y) = c (12)

γ(Rd ×A) = P (A), ∀A ⊆ R
d measurable

γ(A×R
d) = P̂n(A), ∀A ⊆ R

d measurable.

Now invoke Theorem 3.2 for γ with conditions (11) and (12). The functions fi are: f1(x, y) =
||x− y||1, f2(x, y) = g(y) and additionally

fi+2(x, y) = pi 1{xi}×Rd(x, y), for i = 1, . . . , n. (13)

This results in (n + 2) moment conditions and therefore the theorem yields a measure γ̃ on
R

d × R
d sitting on (n + 3) points in R

d × R
d. For γ̃ the functions fi i = 3, . . . , (n + 3) have

the same expectations as for γ, i.e. the first marginal of γ̃ is P̂n (from condition (13)). Call the
second marginal P̃ . This together with the moment conditions (11) yields that the Kantorovich
distance between P̃ and P̂n is at most ǫ. The expectation of g with respect to the second
marginal P̃ is c as required, and the support of P̃ consists of at most (n+ 3) points.
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Remark: It is obvious that the same results holds for the r-th Kantorovich metric with r > 1.
In this case the function in (11) has to be replaced by

∫

||x− y||r1dγ(x, y).

The rest of the proof remains unchanged.
Having identified the exposed points as discrete distributions with at most n + 3 points we

use the following result (see for example [13], Section 17) to extend our result to the extreme
points.

Theorem 3.4 (Straszewicz’s Theorem). If X be a compact, metrizable subset of a Hausdorff
LCS, then the exposed points of X are dense in ext(X).

Corollary 3.1. The extremal points of B are discrete measures with at most (n+ 3) points.

Proof. Since the exp(B) ⊆ Pn+3 and exp(B) = ext(B), we know that for every P ∈ ext(B)
∃(Pr)r∈N ∈ exp(B), such that Pr → P weakly. Suppose the measure P has a support of more
than n+ 3 points. In this case there exist disjoint open balls Bi 1 ≤ i ≤ n+ 4 with P (∂Bi) = 0
and P (Bi) > 0. Since Pk → P weakly

Pr(Bi)→ P (Bi), ∀1 ≤ i ≤ n+ 4.

This implies that there exists a R ∈ N such that Pr(Bi) > 0, ∀1 ≤ i ≤ n+ 4, ∀r ≥ R, which is
a contradiction to Pr ∈ P(n+3).

Having characterized the extreme points of Bǫ(P̂ ) as discrete distribution with a fixed number
of atoms, the robustified problem (2) can be reformulated as a semi definite problem using (7)
and (8). To establish the existence of a saddle-points in (2) we use the following classical minimax
theorem (see for example [35] or [38]).

Theorem 3.5 (Sion). Let C and D be two closed convex sets in two topological vector spaces X
and Y respectively. Let further F (x, y) : C×D → R be a function which is quasiconcave in x and
quasiconvex in y. If F is upper (or lower) semi continuous in x in every line segment and lower
semi continuous in y, while D is compact then the function F (x, y) possesses a saddle-value on
C ×D and

sup
x∈C

inf
y∈D

F (x, y) = inf
y∈D

sup
x∈C

F (x, y).

We are now in a position to state the following Theorem.

Theorem 3.6. Let

1. F : Rm × P(Rd)→ R be concave in the first and linear and lower semi continuous in the
second component.

2. G : Rm × P(Rd)→ R be convex in the first and the second component.

3. H : Rm → R be convex
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then a solution to problem (2) exists and coincides with the solution of the following reduced
problem

supx∈Rm infP∈B∩P(n+3)
F (x, P )

s.t. G(x, P ) ≤ 0, ∀P ∈ Bǫ(P̂n) ∩ P(n+3)

H(x) ≤ 0

(14)

with P(n+3) the discrete measures with at most (n+ 3) points.

Proof. It only remains to show that a saddle point of the problem (2) exists – from which
the existence of a saddle point for (14) follows. Define D = Bǫ(P̂n) and note that since the
Kantorovich ball Bǫ(P̂n) is a closed subset of the probability measures, it is a compact set in
(P, d1

K). Further define

C =




⋂

P∈Bǫ(P̂n)

{x ∈ R
m : G(x, P ) ≤ 0}



 ∩ {x ∈ R
m : H(x) ≤ 0} .

C is closed since G(·, P ) and H(·) are convex and therefore continuous. Therefore the conditions
of Theorem 3.5 are fulfilled and a saddle point for the original problem exists. The saddle value
of the reduced problem coincides with that of the original problem by Corollary 3.1 and Theorem
3.1.

Notice that the numbers of points needed does not depend on the dimension of the space
R

d or on the structure of the support of the considered measures, but only on the number of
observations the discrete measure comprises of. This is a considerable reduction of complexity,
since the feasible set can now be modeled as a subset in R

(d+1)(n+3).
Possible solutions to the reduced problems are elements of a finite dimensional vector space,

while the number of constraints is still infinite. Thus exploiting the special structure of Kan-
torovich balls, we reduced the problem from an infinite problem to a semi definite problem which
is generally easier to solve.

To actually solve the optimization problem (2) one has to describe the set of distributions
in Bǫ(P̂n) ∩ P(n+3). The measures Q ∈ Bǫ(P̂n) ∩ P(n+3) that assign probabilities qj to points

yj ∈ R
d where 1 ≤ j ≤ (n + 3) can be described in a simple way as all the measures fulfilling

the following mass transportation constraints

∑n+3
j=1 qj = 1

∑n+3
j=1 ti,j = pi, ∀i = 1, . . . , n

∑n
i=1 ti,j = qj , ∀j = 1, . . . , (n+ 3)

∑n
i=1

∑n+3
j=1 ||xi − yj ||1ti,j ≤ ǫ

ti,j ≥ 0, qj ≥ 0

(15)

where (ti,j)i,j models the mass transportation plan between P̂n and Q, i.e. ti,j is the amount

of probability mass that is transported from atom xi of P̂n to atom yj of Q. The second last
equation restricts the effort of the mass transport (given by distance times transported mass)
by ǫ.
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The connection of the above constraints to the Kantorovich distance is due to the fact
that finding a minimizing distribution in (5) is – in the discrete setting – equivalent to solving
the optimal mass transportation problem (see [30]). This fact makes it easy to handle the
Kantorovich distance for discrete distributions.

However, the conditions in (15) if incorporated into an optimization problem will render
the problem non-convex. The reason for this is the (non-convex) quadratic structure of the
last constraint of (15). In the following numerical solution techniques for specific instances of
problem (2) will be discussed.

4 A concrete problem

In this section a robust Markowitz style portfolio optimization problem with Expected Shortfall
under a Threshold a (denoted as ESa) as a risk functional is treated by an application of the
results from the last section. Techniques to solve stochastic programs with constraint set (15)
numerically are discussed.

The case we want to treat here is a variation of the mean-risk problem described in [28].
The problem can be described as follows: an investor faces the problem of partitioning a budget
between d investment possibilities with dependent random returns. The decision is taken by
maximizing the expected return of the portfolio while controlling for the risk modeled by the
expected shortfall.

ESa – the expected shortfall under a threshold a – of random variable X : Ω→ R is defined
as

ESa(X) =

∫

max(a− x, 0)dP (x)

where P is the distribution of X. In the case that X follows a discrete distribution ESa can be
described via finitely many linear functions and therefore efficiently incorporated into optimiza-
tion problems.

The original (non-robust) problem therefore looks like

maxw∈Rd E(w⊤X P̂n)

s.t. ESa(w⊤X P̂n) ≤ R
∑
wi = 1

w ≥ 0

(16)

whereXQ = (ξQ
1 , . . . , ξ

Q
d ) is the random vector with joint distributionQ describing the uncertain,

future returns ξi : Ω → R of the considered assets, w ∈ R
d is the vector of portfolio weights

and w⊤XQ =
∑d

i=1 wiξ
Q
i is the random return of the portfolio. Note that the ESa : (w,Q) 7→

ESa(w⊤XQ) is concave in the first and linear in the second component (see [27]).
The robust counterpart looks like

maxw∈Rd minQ∈Bǫ(P̂n) E(w⊤XQ)

s.t. ESa(w⊤XQ) ≤ R, ∀Q ∈ Bǫ(P̂n)
∑
wi = 1, w ≥ 0

10



If we replace the operators E and ESa by their explicit versions for discrete distributions
and apply Theorem 3.3 (note that the required continuity properties are fulfilled for E and ESa)
the above problem is equivalent to

maxw∈Rd min
∑n+3

j=1 (w⊤yj)qj
s.t.

∑n+3
j=1 qj = 1

∑n+3
j=1 ti,j = pi, ∀i = 1, . . . , n

∑n
i=1 ti,j = qj , ∀j = 1, . . . , (n+ 3)

∑n
i=1

∑n+3
j=1 ||xi − yj ||1ti,j ≤ ǫ

∑n+3
j=1 max(a− w

⊤yj , 0)qj ≤ R,

(17)

where the points yj ∈ R
d, 1 ≤ j ≤ n + 3 are the atoms of the measures Q with respective

probabilities qj . The probabilities pi, the points xi, ǫ > 0 and the risk parameter R are the data
of the problem.

The above optimization problem exhibits non-convexities. These occur in the definition of the
Kantorovich distance as well as in the expression for the expected shortfall and the expectation.
All these non-convexities are bi-linear in the decision variables. We thus arrived at a non-convex
semi-definite problem.

We solve (17) by the following iterative algorithm originally presented in [28].

1. Set i = 0 and Q0 = {P̂n}.

2. Solve the outer problem

max(w,t) t
s.t. E(w⊤XQ) ≤ t, ∀Q ∈ Qi

ESa(w⊤XQ) ≤ R, ∀Q ∈ Qi
∑d

i=1 wi = 1, w ≥ 0

(18)

and call the solution (wi, ti).

3. Solve the problem
min

Q∈Bǫ(P̂n)∩Pn+3

E(w⊤
i X

Q) (19)

and call the solution Q
(1)
i .

4. Solve the problem
max

Q∈Bǫ(P̂n)∩Pn+3

ESa(w⊤
i X

Q) (20)

and call the solution Q
(2)
i .

5. Qi+1 ← Qi ∪ {Q
(1)
i } ∪ {Q

(2)
i }.

6. If

(a) Qi+1 = Qi or

11



(b) the optimal value of (19) equals ti and the solution of (20) is equal to minP∈Qi
ESa(w⊤

i X
P )

then a saddle point is found and the algorithm stops. Otherwise i← i+ 1 and goto 2.

The idea of the algorithm is to achieve robustness gradually by including finitely many measures
in the problem (18). The measures Qn are chosen to be the worst case with respect to the
current portfolio decision wi and therefore represent the extremal elements of Bǫ(P̂n) which
are required to approximate the relevant parts of Bǫ(P̂n). This approximation gets better with
every iteration and – as numerical experiments show – the respective portfolios wi and objective
values ti stabilize. Under certain continuity conditions fulfilled for the problem at hand the
algorithm either finds a saddle point (w∗, t∗) in finitely many iterations or the intermediary
solutions (wi, ti) converge to a saddle point (see Proposition 1 in [28]).

The non-convexity of problem (17) is reflected in the non-convexity of problems (19) and
(20). In the remainder of this section we will discuss solution techniques for these problems.

4.1 Minimizing Expectation

Problem (19) can be solved directly in an iterative manner by gradually altering the empirical
distribution P̂n to lower the expectation. The changes we make in the process should be optimal
in the sense that the cost measured in Kantorovich distance is small compared to the impact in
expectation.

To make this precise, suppose that asset k∗ when altered leads to the maximum change in
expectation, that is k∗ = arg maxk wk and therefore

∂E(w⊤X)

∂wk∗

= max
1≤k≤d

∂E(w⊤X)

∂wk

. (21)

The aim is – starting from the empirical distribution – to obtain a distribution which mini-
mizes the expectation over the set of discrete distributions Bǫ(P̂n)∩Pn+3. Clearly, from (21) the
optimal way to achieve this goal is to start altering scenarios in the k∗-th component. Therefore
the following algorithm to find the optimum in (19) is proposed. A constant c is used as a lower
bound on the return of asset k∗. If no specific assumption of this type seems acceptable (i.e.
also very small asset returns are plausible to the modeler) c can be set to zero.

While {(xi, pi) : 1 ≤ i ≤ n} denotes the atom probability pairs of the empirical measure P̂n,

the
{

(y
(j)
i , q

(j)
i ) : 1 ≤ i ≤ n+ 1

}

denotes those of the altered measures P (j) after the j − th

iteration.

1. Set P (0) = P̂n.

2. Find k∗ = arg max1≤k≤d wk.

3. Set j = 1.

4. Pick any atom y
(j−1)
i with 1 ≤ i ≤ n and change it’s k∗-th component to c and call the

resulting measure Q.

5. Solve the linear programming problem

max λ

s.t. λQ+ (1− λ)P (j−1) ∈ Bǫ(P̂n) ∩ Pn+3
(22)

12



and set P (j) = λ∗Q+ (1− λ∗)P (j−1), where λ∗ is the optimal value of the above problem.
If λ∗ = 1 set j ← j + 1 and goto step 4 otherwise set P ′ ← P (j) and stop the algorithm.

Although the above algorithm has the flavor of a local search, the procedure leads to a global
optimum (see Theorem 4.1). It is obvious that there are many different distributions that achieve
the optimum. Which of these possible solutions is eventually chosen depends on the choices for
i made in step 4 of the algorithm. Notice that the optimal distribution P ′ does not have the full
(n+ 3) points but generally only (n+ 1) points.

Theorem 4.1. The algorithm presented above leads to an optimal solution of problem (19).

Proof. Let P be in Bǫ(P̂n)∩Pn+3 and let (ti,j) be the optimal transportation plan that transports

mass from P̂n to P (i.e. ti,j fulfill the set of constraints (15)). The difference of the expectation

under P̂n and P can be bounded as follows

|E(w⊤X P̂n)− E(w⊤XP )| ≤
∑

i,j

ti,j

d∑

k=1

|xi,k − yj,k|wk

≤
∑

i,j

ti,j ||xi − yj ||1wi∗ = wi∗ǫ

The difference for the measure P ′, that is chosen by the above algorithm is given by

E(w⊤X P̂n)− E(w⊤XP ′

) =
∑

i,j

ti,j(xi,i∗ − yj,i∗)wi∗ = wi∗ǫ.

Therefore the measure P ′ is optimal.

Remark: If the algorithm does not terminate, i.e. if ǫ > 0 is too big and the returns of asset
i∗ can be shifted to c for all the scenarios, then the algorithm can be extended in the following
way: find i∗2 = arg maxj 6=i∗ wj and continue with the algorithm using i∗2 instead of i∗. The
optimality of the procedure still holds by essentially the same proof.

4.2 Maximizing Expected Shortfall

Define the index sets I = {1, . . . , n}, J = {1, . . . , n+3} and M = {1, . . . , d}. The inner problem
(20) can be written as

max
∑

j∈J max(a− w
⊤yj , 0)qj

s.t.
∑

i∈I ti,j = qj , ∀j ∈ J
∑

j∈J ti,j = pi, ∀i ∈ I

xi,k − yj,k ≤ dk
i,j , ∀(i, j, k) ∈ I × J ×M

yj,k − xi,k ≤ dk
i,j , ∀(i, j) ∈ I × J

∑

k∈M dk
i,j = di,j , ∀(i, j) ∈ I × J

∑

(i,j)∈I×J di,jti,j ≤ ǫ

ti,j , qj ≥ 0.

(23)

with data w, p, a and ǫ. The above problem is non-convex due to the bilinear terms defining
the Kantorovich distance and the Expected Shortfall.
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Since the above problem deals with the maximization of a convex function to solve (23), we
rewrite it as a D.C. program (see for example [23] or [24]). Towards this we model the objective
in (23) as follows: introduce the splitting variables

a− w⊤yj = z+
j + z−j , z+

j z
−
j ≥ 0, z+

j ≥ 0. (24)

When modeled like this z+
j = max(a− w⊤yj , 0) and z−j = min(a− w⊤yj , 0) in optimal points.

To simplify notation and to tackle the bilinear terms in (23) in (24) we introduce the variables

αj = 1
2 (z+

j + qj), βj = 1
2 (z+

j − qj), ∀j ∈ J

γi,j = 1
2 (di,j + ti,j), δi,j = 1

2 (di,j − ti,j), ∀(i, j) ∈ I × J
φj = 1

2 (z+
j + z−j ), χj = 1

2 (z+
j − z

−
j ), ∀j ∈ J.

Note that these variables help with the reformulation of the problem but need not be used in
the numerical implementation.

We are now in the position to reformulate problem (23) as the following non-convex quadratic
problem.

min t
s.t.

∑

j∈J(β2
j − α

2
j ) ≤ t

∑

i∈I ti,j = qj , ∀j ∈ J
∑

j∈J ti,j = pi, ∀i ∈ I

xi,k − y
k
j ≤ dk

i,j , ∀(i, j, k) ∈ I × J ×M
yk

j − xi,k ≤ dk
i,j , ∀(i, j) ∈ I × J

∑

k∈M dk
i,j = di,j , ∀(i, j) ∈ I × J

∑

(i,j)∈I×J(γ2
i,j − δ

2
i,j) ≤ ǫ

∑

j∈J(φ2
j − χ

2
j ) ≥ 0

a− w⊤yj = z+
j + z−j

ti,j , z
+
j , qj ≥ 0.

(25)

Notice that all the non-convex constraints are defined by a difference of convex (D.C.) functions,
hence the program is a D.C. program. In the remainder of this section we will use this structural
property to obtain solutions of (25).

To simplify notation define the vector valued affine function l(x̄) in such a way that the
linear constraints in the above problem are fulfilled iff l(x̄) ≤ 0 where x̄ is a vector containing
all decision variables, i.e.

x̄ = (t, (qj)j∈J , (yj)j∈J , (z
+
j )j∈J , (z

−
j )j∈J , (ti,j)(i,j)∈I×J , (di,j)(i,j)∈I×J , (d

k
i,j)(i,j,k)∈I×J×M )

Problem (25) then becomes

miny,q,d,t,z+,z− t
s.t.

∑

j∈J(β2
j − α

2
j )− t ≤ 0

∑

(i,j)∈I×J(γ2
i,j − δ

2
i,j) ≤ ǫ

∑

j(φ
2
j − χ

2
j ) ≥ 0,

l(x̄) ≤ 0.

(26)

The above problem is a D.C. problem with

N = 1 + 3(n+ 3) + (n+ 3)d+ 2(n+ 3)n+ (n+ 3)nd

14



variables. For realistic values n ≈ 100 and d ≈ 10 this amounts to more than 120.000 variables.
These are far too many variable for the existing methods for finding global solutions of general
D.C. problems. We therefore employ the so called DCA (difference of convex algorithm) which is
an approximate solution technique for D.C. programs. The DCA has proven to be very effective
in various situations (see for example [36, 2, 3, 5, 14]) and its low computational complexity
makes it possible to work with large scale problems.

To apply the DCA we need to write (26) as an unconstrained D.C. problem of the form

inf{f(x̄) = g(x̄)− h(x̄) : x̄ ∈ R
N} (27)

where N is the dimension of x̄ as defined above.
The DCA algorithm works for problems of the form (27) by repeatedly solving the two convex

optimization problems
inf

x̄∈RN
{g(x̄)− (h(x̄k) + 〈x̄− x̄k, ȳk〉)} (28)

and
inf

ȳ∈RN
{h∗(ȳ)− (g∗(ȳk−1) + 〈x̄k, ȳ − ȳk−1〉)} (29)

and iteratively produces candidates x̄k+1, ȳk for solutions of increased quality of the primal and
dual D.C. problems respectively. The first problem can be viewed as a convex approximation of
the original problem, while the second problem can be thought of as a convex approximation of
the dual D.C. program infy∈RN h∗(y)− g∗(y).

The DCA guarantees that (g(x̄k) − h(x̄k))k∈N and (h∗(ȳk) − g∗(x̄k))k∈N are decreasing se-
quences and the limit points of (x̄k)k∈N and (ȳk)k∈N are critical points of the primal problem
(28) and the dual problem (29) respectively. For a more detailed discussion of DCA algorithm
and its properties see [4].

We use Corollary 2.4.1. from [8] to reformulate (26) by an exact penalty.

Theorem 4.2. Suppose that X and Y are finite dimensional Banach spaces, the sets S ⊆ X
and C ⊆ Y are nonempty, closed and convex and the point x∗ solves the following optimization
problem

inf f0(x)
s.t. G(x) ∈ C

x ∈ S,
(30)

where the function G : X → Y is strictly differentiable at x∗ ∈ S, f0 : X → R is Lipschitz near
x∗ and

0 ∈ int {G(x∗) +G′(x∗)(S − x∗)− C} .

Then there exists an τ̄ > 0, such that the optima of (30) and

inf
x∈X

f0(x) + ψ(x|S) + τdist(G(x)|C) (31)

coincide for all τ > τ̄ , where ψ(·|S) is the convex indicator function of the set S and

dist(G(x)|C) = inf{||G(x)− y|| : y ∈ C}.

15



Lemma 4.1. Set X = R
N , Y = (R3, || · ||∞), S = {x̄ ∈ R

N : l(x̄) ≤ 0}, G = (G1, G2, G3),
where the Gi : RN → R are functions described by the left hand sides of the first three constraints
of (26), i.e.

G(x̄∗) =











∑

((
z+

j
−qj

2

)2

−

(
z+

j
+qj

2

)2
)

− t

∑
(

di,j+ti,j

2

)2

−
(

di,j−ti,j

2

)2

∑
(

z+
j

+z−

j

2

)2

−

(
z+

j
−z−

j

2

)2











and C = (−∞, 0]× (−∞, ǫ]× [0,∞). Then the constraint qualification

0 ∈ int {G(x̄∗) +G′(x̄∗)(S − x̄∗)− C} (32)

is fulfilled at optimal points x̄∗ of the system (26).

Proof. Let x̄∗ = (t̄∗, (q̄∗j )j , (ȳ
∗
j )j , (z̄

+∗
j )j , (z̄

−∗
j )j , (t̄

∗
i,j)i,j , (d̄

∗
i,j)i,j , (d̄

k∗
i,j)i,j,k). Since all the con-

straints Gi have to be binding at optimal points, we have G(x̄) = (0, ǫ, 0). The three constraints
are analyzed separately to find a common point s ∈ S which fulfils (32). First note that

∂G2(x)

∂di,j

= ti,j ,
∂G2(x)

∂ti,j
= di,j

and therefore

∇G2(x̄
∗)(s− x̄∗) =

∑

di,j t̄
∗
i,j +

∑

ti,j d̄
∗
i,j − 2

∑

d̄∗i,j t̄
∗
i,j

︸ ︷︷ ︸

ǫ

where d̄∗i,j and t̄∗i,j are the corresponding components of x̄∗ and ti,j and di,j the corresponding
components of s. We therefore need an s which fulfils

∑

di,j t̄
∗
i,j +

∑

d̄∗i,jti,j < 2ǫ.

To achieve this fix ti,j = t̄∗i,j for all (i, j) ∈ I×J , which results in
∑
d̄∗i,jti,j = ǫ and therefore

in the modified condition ∑

di,j t̄
∗
i,j < ǫ. (33)

Next define N(j) =
{
i ∈ I : t̄∗i,j > 0

}
. Now if there is a j ∈ J with {i} = N(j) and xi 6= ȳ∗j then

replace the point ȳ∗j by xi, therefore reducing di,j to zero. This yields (33). If there is no such
point, then choose a j′ ∈ J with |N(j′)| > 1 and define the point yj′ as the solution of following
optimization problem

min
y∈Rd

∑

i∈N(j)

||xi − y||1t̄
∗
i,j . (34)

Note that ȳ∗j can not be a solution to (34), since by optimality ȳk∗
j ≤ mini∈N(j) x

k
i for all

1 ≤ k ≤ d. This is the case, since if ȳk∗
j > xk

i for some i ∈ N(j) and some 1 ≤ k ≤ d then we
could move t̄∗i,j from xi to a new point ŷ with

ŷl =

{

ȳl∗
j , l 6= k

xk
i , l = k
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instead of ȳk∗
j . This would yield a lower expected shortfall and a lower transportation cost at

the same time, contradicting the optimality of the transportation plan.
Now if we choose all other points yj for j ∈ J\ {j′} to be equal to ȳ∗j , then we have

ǫ =
∑

d̄∗i,j t̄
∗
i,j >

∑

j 6=j′

∑

i∈I

d̄∗i,j t̄
∗
i,j +

∑

i∈N(j′)

di,j t̄
∗
i,j =

∑

di,j t̄
∗
i,j

as required.
Next G3 is analyzed. Arguing similarly as above it holds that

∇G3(x̄
∗)(s− x̄∗) =

∑

z̄−∗
j z+

j +
∑

z̄+∗
j z−j − 2

∑

z̄+∗
j z̄−∗

j
︸ ︷︷ ︸

0

.

We therefore need z+
j and z−j such that

∑

z̄−∗
j z+

j +
∑

z̄+∗
j z−j < 0. (35)

To achieve this we choose z+
j = max(a+w⊤yj , 0)+ν and z−j = min(a+w⊤yj , 0)−ν with ν > 0.

Since x̄∗ is optimal either z̄+∗
j = 0 or z̄−∗

j = 0 holds. In the former case we get

z̄−∗
j z+

j + z̄+∗
j z−j = z̄−∗

j z+
j ≤ 0

and in the latter
z̄−∗
j z+

j + z̄+∗
j z−j = z̄+∗

j z−j ≤ 0

and therefore (35) is fulfilled unless for all the ȳ∗j it holds that a+ w⊤ȳ∗j = 0 in which case the

last two inequalities would hold with equality since then z̄+∗
j = z̄−∗

j = 0. This situation can
only occur if all the points ȳ∗j yield the (same) return a, which again can be easily seen to be
impossible for an optimal point x̄∗.

The last remaining component of G is G1 which is unproblematic since t is unrestricted and
can be chosen such that the corresponding condition is fulfilled.

Theorem 4.3. For some τ > 0 the problem (26) can be equivalently reformulated to the following
problem

minx̄∈RN t+ τ max







∑

j∈J

β2
j +

∑

(i,j)∈I×J

δ2i,j +
∑

j∈J

φ2
j − t,

∑

(i,j)∈I×J

γ2
i,j − ǫ+

∑

j∈J

α2
j +

∑

j∈J

φ2
j ,

∑

j∈J

χ2
j +

∑

(i,j)∈I×J

δ2i,j +
∑

j∈J

α2
j ,

∑

(i,j)∈I×J

δ2i,j +
∑

j∈J

α2
j +

∑

j∈J

φ2
j






(36)

− τ




∑

i,j

δ2i,j +
∑

j

α2
j +

∑

j

φ2
j



+ ψ(x|S).
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where ψ(·|S) is the convex indicator function of the set S. In other words (26) can be reformulated
to a D.C. problem of the form (27) with

g(x̄) = τ max







∑

j∈J

β2
j +

∑

(i,j)∈I×J

δ2i,j +
∑

j∈J

φ2
j − t,

∑

(i,j)∈I×J

γ2
i,j − ǫ+

∑

j∈J

α2
j +

∑

j∈J

φ2
j ,

∑

j∈J

χ2
j +

∑

(i,j)∈I×J

δ2i,j +
∑

j∈J

α2
j ,

∑

(i,j)∈I×J

δ2i,j +
∑

j∈J

α2
j +

∑

j∈J

φ2
j






+ ψ(x|S)

h(x̄) = −t+ τ




∑

(i,j)∈I×J

δ2i,j +
∑

j∈J

α2
j +

∑

j∈J

φ2
j



 .

Proof. From Lemma 4.1 we get that Theorem 4.2 is applicable and therefore problem (26) can
be reformulated to a unconstrained problem of the form (31) with S, C and G as defined in
Lemma 4.1. To reduce the problem to an unconstrained D.C. problem as in (27), the functions
g and h have to be identified. To this end we first calculate the maximum of the Gi, 1 ≤ i ≤ 3
and 0. Note that the maximum of finitely many D.C. functions fi = gi − hi is again a D.C.
function with the following decomposition

max fi = max
i
{gi +

∑

j 6=i

hj} −
∑

i

hi.

Therefore the above maximum is of the form

max







∑

j

β2
j +

∑

i,j

δ2i,j +
∑

j

φ2
j − t,

∑

i,j

γ2
i,j +

∑

j

α2
j +

∑

j

φ2
j − ǫ,

∑

j

χ2
j +

∑

i,j

δ2i,j

+
∑

j

α2
j ,
∑

i,j

δ2i,j +
∑

j

α2
j +

∑

j

φ2
j






−




∑

i,j

δ2i,j +
∑

j

α2
j +

∑

j

φ2
j



 ,

which finally yields (36).

Solving problem (28) From Theorem 4.3 it follows that for (26) the corresponding DCA
sub-problem (28) can be written as the quadratically constrained problem

min τL− 〈x̄, ȳk〉
s.t.

∑

j β
2
j − t+

∑

i,j δ
2
i,j +

∑

j φ
2
j ≤ L

∑

i,j γ
2
i,j − ǫ+

∑

j α
2
j +

∑

j φ
2
j ≤ L

∑

j χ
2
j +

∑

j α
2
j +

∑

i,j δ
2
i,j ≤ L

∑

i,j δ
2
i,j +

∑

j α
2
j +

∑

j φ
2
j ≤ L

l(x̄) ≤ 0.

(37)

Note that h(x̄k) and −〈x̄k, ȳk〉 are omitted from the objective, since they are constant with
respect to x̄.
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Solving problem (29) To solve the DCA sub-problem (29), we first have to compute the
conjugate h∗ for

h(x̄) = −t+ τ
∑

j

α2
j + τ

∑

i,j

δ2i,j + τ
∑

j

φ2
j .

It is easy to see that

h∗(ȳ) =

{
∑

i,j

q2
i,j

τ
+
∑

i,j

d2
i,j

τ
+
∑

j

(z−

j
)2

τ
, t = −1. di,j = −ti,j , z

+
j = z−j + qj , yj = 0, dk

i,j = 0

∞, otherwise,

where ȳ = (t, (qj), (yj), (z
+
j ), (z−j ), (ti,j), (di,j), (d

k
i,j)). (29) therefore becomes

min
∑

i,j

q2
i,j

τ
+
∑

i,j

d2
i,j

τ
+
∑

j

(z−

j
)2

τ
− 〈x̄k, ȳ〉

s.t. t = −1
di,j = −ti,j , ∀(i, j) ∈ I × J
z+
j = z−j + qj , ∀j ∈ J

yj = 0, ∀j ∈ J
dk

i,j = 0, ∀(i, j, k) ∈ I × J ×M.

(38)

The solution to problem (38) can be found analytically and is given by t = −1,

z−j = τφj , qj = ταj , z+
j = z−j + qj , ∀j ∈ J

di,j = τδi,j , ti,j = −di,j , ∀(i, j) ∈ I × J

and all the other variables equal to zero.

4.3 Other measures of risk

The methods outlined here are not specific to the expected shortfall but can be applied to any
risk measure that fulfils the requirements of Theorem 3.6. Such risk measures have to be convex
in the portfolio weights w as well as linear in the probability measure P . One can consider for
example risk functionals corresponding to some expected utility functionals (see [27]).

5 Numerical Results

In this section numerical results for problem (17) obtained by the methods discussed in the
previous sections are presented. As mentioned earlier we use the empirical measure P̂n as our
reference measure and the Kantorovich ball with a certain radius as our ambiguity set. The
data which constitutes the empirical measure are the historical weekly returns for 14 selected
Euro STOXX Supersector indices (see Table 1).

All numerical experiments are carried out for the robustifications described in this paper
as well as for the techniques in [28], where only the probability mass is shifted between the
points of the empirical distribution. We henceforth call the problem described in Section 4 the
fully robustified problem, while we refer to the problem where only the atoms of the empirical
measure are considered the partially robustified problem.
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Table 1: Expectation, Expected Shortfall below 1 and standard deviation s of the weekly returns
of the 14 Euro STOXX Supersector indices used in the numerical examples, time-frame: 2006

Index E ES1 s

Automobiles & Parts (SXAP) 1.0063 0.0072 0.0275
Banks (SX7P) 1.0058 0.0064 0.0246
Basic Resources (SXPP) 1.0076 0.0050 0.0236
Chemicals (SX4P) 1.0052 0.0054 0.0218
Construction & Materials (SXOP) 1.0081 0.0068 0.0289
Financial Services (SXFP) 1.0096 0.0059 0.0260
Food & Beverage (SX3P) 1.0058 0.0037 0.0164
Health Care (SXDP) 1.0030 0.0069 0.0221
Industrial Goods & Services (SXNP) 1.0054 0.0069 0.0263
Insurance (SXIP) 1.0048 0.0071 0.0252
Oil & Gas (SXEP) 1.0032 0.0080 0.0263
Technology (SX8P) 1.0024 0.0092 0.0298
Telecommunications (SXKP) 1.0041 0.0063 0.0214
Utilities (SX6P) 1.0075 0.0050 0.0218

For the computations in this paper we chose a = 1 – we therefore control the returns smaller
than 1, i.e. the losses of the portfolio. Since we are interested in the impact of robustification, we
vary the radius of the Kantorovich neighborhood around the empirical measure from ǫ = 0.005
to ǫ = 0.03 in steps of 0.005. Furthermore we choose the risk parameter R = 0.007.

The DCA was implemented in MATLAB R2007a and the optimization problems where solved
with MOSEK Version 5.0.0.87. All of the following computations can be performed on a standard
PC.

Figure 1 shows a first comparison between the partial and the full robustification. Part (a)
of the plot shows that the full robustification gives significantly lower robustified expectations
than the partial robustification. As expected, mean return decreases with increasing robustness
parameter for both methods.

Next we investigate the decrease in expected return under the nominal measure P̂ , when
solving the fully and the partially robust version of the problem. Part (b) of the Figure shows
the optimal returns of the nominal instance, the returns for the partial robustification as well as
the returns of the robust portfolios under the empirical measure P̂n. Part (c) of the plot is an
analogue of (b) with full robustification.

Obviously the drop in expected returns from the optimal return of the nominal instance is less
for the empirical measure than for the respective worst case measures. It can be observed that
the portfolios found by full robustification consistently yield lower returns under the empirical
measure than the portfolios found by partial robustification. However, the differences between
the expectations under the worst case and empirical measure seem to be comparable (except
for lower values of the robustness parameters where the differences are smaller for the partial
robustification).

Next it is investigated how the partially robustified portfolios perform under the real worst
measures in Bǫ(P̂n), i.e. the measures obtained from the inner problems of the full robustification
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Figure 1: Figure (a) shows the expectations of robust portfolio from the two robustification
techniques as the robustness parameter increases. Figure (b) and (c) show the comparisons of
the respective robust portfolios with the expectation of the nominal program instance and the
expectation of the robust portfolios under the empirical measure.
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Figure 2: Figure (a) shows the worst case returns for the partially robust portfolios. Figure (b)
shows the worst case expected shortfalls for the partially robust portfolios.
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routine (as described in Section 4.1 and 4.2). More specifically we solve the problems in Section
4.1 and 4.2 for the partially robustified portfolios wǫ with robustness parameter ǫ varying in 6
equally big steps from 0 to 0.03. We therefore obtain measures PE

ǫ and PESa
ǫ , which give the

smallest expected return and the highest Expected Shortfall for the portfolios wǫ. In Figure 2
(a) the expected returns of w⊤

ǫ ξ under PE
ǫ are compared with the respective solutions of the

nominal instance given in (2). It is evident that the fully robustified portfolios perform much
better, especially for higher values of the robustness parameter where the worst case return of
the partially robustified portfolio drops significantly.

Figure 2 (b) depicts a similar analysis carried out for the Expected Shortfalls. It can be
observed that the worst case Expected Shortfall of the partially robust portfolio rises above the
allowed 0.007 already at a robustness level of 0.01 and reaches up to 0.0095 for higher robustness
levels.

Summarizing, the Figures 1 and 2 show that the freedom to deviate from the atoms of the
empirical measure actually results in portfolios, which yield lower returns in the worst case as
well as under the empirical measure. However, these portfolios are clearly more robust than the
measures obtained by shifting only the probabilities as Figure 2 demonstrates.

In Figure 3 the differences in portfolios are shown. For both methods the number of assets
increase as the robustness parameter ǫ grows. The portfolios are more diversified and therefore
more stable. The effect of diversification however is much more pronounced with the full ro-
bustification than with the partial robustification: the partially robust portfolios encompass a
maximum of seven assets, while the fully robust portfolios have up to 12 assets for ǫ = 0.03. This
is another indicator for the fact that full robustification yields more stable portfolios. Another
interesting observation is that for the full robustification the portfolio weights of the assets that
comprise the portfolio are nearly always (except for ǫ = 0.03) uniformly weighted.

To conclude the comparison between the two methods it is investigated what effect the
number of data points has on relation between partial and full robustification. It seems plausible
that with a bigger number of data points the additional robustness gained by shifting the points
is smaller than with a smaller data set. The intuition behind this guess is that if there are more
points in the empirical measure, then only shifting probability mass is less of an restriction than
if there are only very few data points with little possibility for shifting mass between them. To
test this, the analysis presented in Figure 1 is repeated for a sub data set (in fact the first 26
data points of the above data set) and the differences between full and partial robustification
are investigated. In Figure 4 the differences are plotted for the two data sets. As expected the
bigger data set yields a smaller difference between the expected returns than the robustification
of the smaller data set.

6 Conclusion

In this paper a framework for the robustification of single stage stochastic optimization prob-
lems with ambiguity about the distributions of the random variables that enter the problem
formulation is presented. The robustification is achieved by considering the worst case amongst
all distributions that are close to the empirical distribution, whereby the distance is measured
by the Kantorovich metric. This metric is a very general distance concept that allows for
non-parametric ambiguity sets and which has close ties to theoretical results from probability
theory and statistics. The resulting robustified problems are computationally intractable and
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Figure 3: Part (a) depicts the portfolio compositions for the partial robustifications for different
values of the robustness parameter, while part (b) shows the fully robustified portfolios. .
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Figure 4: Differences in expected return between partial and full robustification for the whole
data set from 1 and a subset of 26 points.
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are reformulated to semi-definite non-convex optimization problems.
In Section 4 an application from the field of portfolio selection is studied in detail and

techniques to cope with the inherent difficulties posed by the non-convexities in the problems
are presented. The so called DCA algorithm is applied to solve the portfolio selection problem
numerically.

In the last section we compare the results of the computations with earlier results obtained in
[28] by partial robustification of the corresponding problem. The differences in the two methods
are discussed and it is concluded that the full robustification that leads to non convex inner
problems is superior in the sense that the resulting portfolio are significantly more robust with
respect to variations in the chosen ambiguity sets. However, it can be expected that for an
increasing number of scenarios this effect diminishes and partial robustification can be applied
without too much loss in robustness.

Acknowledgements

The author wants to express his thanks to Prof. Georg Ch. Pflug for his valuable input through-
out the work on this paper.

This research was partly funded by the Vienna Science and Technology Fund (Grant: MA06)
and the Austrian National Bank (Grant: 12306).

References

[1] J. Affleck-Graves and B. McDonald. Nonnormalities and tests of asset pricing theories. The
Journal of Finance, 44(4):889–908, 1989.

[2] Le Thi Hoai An and Pham Dinh Tao. A continuous approach for globally solving linearly
constrained quadratic zero-one programming problems. Optimization, 50(1-2):93–120, 2001.

[3] Le Thi Hoai An and Pham Dinh Tao. A new algorithm for solving large scale molecular
distance geometry problems. In High performance algorithms and software for nonlinear
optimization (Erice, 2001), volume 82 of Appl. Optim., pages 285–302. Kluwer Acad. Publ.,
Norwell, MA, 2003.

[4] Le Thi Hoai An and Pham Dinh Tao. The DC (difference of convex functions) programming
and DCA revisited with DC models of real world nonconvex optimization problems. Ann.
Oper. Res., 133:23–46, 2005.

[5] Le Thi Hoai An, Pham Dinh Tao, and Le Dung Muu. A combined D. C. optimization
– ellipsoidal branch-and-bound algorithm for solving nonconvex quadratic programming
problems. J. Comb. Optim., 2(1):9–28, 1998.

[6] A. Ben-Tal and A. Nemirovski. Robust convex optimization. Math. Oper. Res., 23(4):769–
805, 1998.

[7] A. Ben-Tal and A. Nemirovski. Robust solutions of uncertain linear programs. Oper. Res.
Lett., 25(1):1–13, 1999.

26



[8] J.V. Burke. An exact penalization viewpoint of constrained optimization. SIAM J. Control
Optim., 29(4):968–998, 1991.

[9] G.C. Calafiore. Ambiguous risk measures and optimal robust portfolios. SIAM J. Optim.,
18(3):853–877, 2007.

[10] Z. Chen and L. Epstein. Ambiguity, risk, and asset returns in continuous time. Economet-
rica, 70(4):1403–1443, 2002.

[11] V. K. Chopra and W. T. Ziemba. The effect of errors in means, variances and covariances
on optimal portfolio choice. J. Portfolio Management, 19:6–11, 1993.

[12] G. Choquet. Lectures on analysis. Vol. II: Representation Theory. Edited by J. Marsden,
T. Lance and S. Gelbart. W. A. Benjamin, Inc., New York-Amsterdam, 1969.

[13] G. Choquet. Lectures on analysis. Vol. III: Infinite dimensional measures and problem
solutions. Edited by J. Marsden, T. Lance and S. Gelbart. W. A. Benjamin, Inc., New
York-Amsterdam, 1969.

[14] A.R. Conn, N.I.M. Gould, and P. L. Toint. Trust-region methods. MPS/SIAM Series on
Optimization. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,
2000.
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[37] R. H. Tütüncü and M. Koenig. Robust asset allocation. Ann. Oper. Res., 132:157–187,
2004.

[38] Hoang Tuy. Minimax theorems revisited. Acta Math. Vietnam., 29(3):217–229, 2004.

[39] J. Zackova. On minimax solutions of stochastic linear programming problems. Casopis pro
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