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Abstract

At the heart of many scientific conferences is the
problem of matching submitted papers to suit-
able reviewers. Arriving at a good assignment is
a major and important challenge for any confer-
ence organizer. In this work we propose a frame-
work to optimize paper-to-reviewer assignments.
Our framework uses suitability scores to measure
pairwise affinity between papers and reviewers.
We show how learning can be used to infer suit-
ability scores from a small set of provided scores,
thereby reducing the burden on reviewers and or-
ganizers. We frame the assignment problem as an
integer program and propose several variations
for the paper-to-reviewer matching domain. We
also explore how learning and matching interact.
Experiments on two conference data sets exam-
ine the performance of several learning methods
as well as the effectiveness of the matching for-
mulations.

1 Introduction

The assignment of papers to reviewers is one of the most
important tasks facing the organizers of scientific confer-
ences. Assigning submitted papers to their most suitable
reviewers is essential to the success of any conference, in-
deed to the functioning of many scientific fields, since it
is reviewer assessments that determine the conference pro-
gram and, to some extent, the shape of a discipline. How-
ever, this is not a simple task: large conferences often re-
ceive well over 1000 submissions that must be assigned to
many hundreds of reviewers in short amount of time. Apart
from ensuring the suitability of assigned reviewers, con-
straints imposed by reviewer load limits, conflicts of inter-
est, and other factors push this assignment problem beyond
the reach of a single program chair, and generally prevent
the process from being distributed in a fully satisfactory
way.

Many large conferences in computer science (CS), and es-
pecially artificial intelligence (AI), allow reviewers to bid
on papers, basically providing their “preferences”—which
we interpret as reflecting a reviewer’ssuitability to re-
view particular submitted papers—after which a central-
ized matching process takes place to find the most suitable
assignment. Preferences collected this way are, unfortu-
nately, inherently noisy for two key reasons: (a) it is diffi-
cult for reviewers to offer reasonable assessments of all but
a small fraction of the papers, given the numbers involved;
and (b) reviewers have access to limited information about
each paper (e.g., only title and abstract). The latter fac-
tor fundamentally limits how well a reviewer can judge her
own suitability, while the former means reviewers are, in
some sense, semi-randomly choosing papers on which they
express interest.

One response to this problem is to associate simple features
(keywords being most common) with both papers and re-
viewers, and use some measure of overlap as a reflection
of suitability. Unfortunately, this simple method is crudeat
best, and rely on a common understanding of this (usually
limited) vocabulary byall reviewers and authors. A more
sophisticated response involves the use of machine learning
techniques to help predict reviewer expertise [1, 16, 6]. By
using specific features of both reviewers (e.g., previously
written articles, co-authorship relations) and submittedpa-
pers (e.g., words or keywords), we can relieve reviewers
of the burden of bidding. Ideally, a combination using this
information as well as self-declared reviewer expertise (or
bids) can be leveraged to predict reviewer suitability using
collaborative filtering methods [10]. Ultimately, however,
the primary goal is not to accurately predict expertise, but
to find a good matching.

In this work, we propose and test various instantiations of
a flexible framework for optimizing paper matching. We
investigate approaches that use incomplete information in
the form of a limited number of suitability scores: our ba-
sic framework predicts missing scores using learning tech-
niques and then finds optimal matchings using both ob-
served and predicted scores. Within this framework, we



explore several learning models which leverage (one or
both of) two sources of information—reviewer/paper fea-
tures and self-reported suitability—to predict the unknown
scores: these include regression, collaborative filteringand
language modeling methods. We then describe several de-
sirable properties for paper-to-reviewer assignments. We
frame the assignment problem as an integer program [24],
and explore several variations that reflect different desider-
ata, and how these interact with various learning methods.
We test our framework on two data sets collected from a
recent, large AI conference, measuring predictive accuracy
with respect to both reviewer suitability and matching per-
formance, exploring several different matching objectives
and how they can be traded off against one another.

Although we focus on reviewer matching, our methods are
applicable to any constrained matching domain where: (a)
user preferences for a set of items can be predicted using
user and/or item features; (b) preferences can be used to
improve matching quality; (c) it is infeasible or undesir-
able for users to express preferences over all items; and
(d) capacity or other constraints limit the min/max num-
ber of users-per-item (or vice versa). Examples include fa-
cility location, school/college admissions, certain forms of
scheduling and time-tabling, and many others.

2 Related Work

Deep bodies of related work exist for each of the two com-
ponents that comprise our framework for reviewer match-
ing: prediction of suitabilities or preferences for unob-
served reviewer-paper (or user-item) pairs; and computing
matchings given (known or predicted) suitabilities. Past
work has either explored the score prediction problem or
different approaches to matching but, to the best of our
knowledge, ours is the first that examines suitability predic-
tion relative to different matching objectives, and examines
the interactions between learning and matching.

There has been significant research on the use of informa-
tion retrieval and learning techniques to determine suitabil-
ity of reviewers for papers. These include the use of latent
semantic indexing [7] or term frequency, inverse document
frequency (TF-IDF) methods [12, 2] that exploit the con-
tent of abstracts of papers authored by reviewers and those
of submitted papers. Other have utilized co-authorship
graphs, using the references of a submitted paper as a start-
ing point to generate potential referees [18]. Balog et al.
[1] used language models to determine the suitability of ex-
perts for various topics/tasks, and more recently topic mod-
els have been applied to the problem of modeling expertise
based on authored documents [25], with Mimno and Mc-
Callum [16] applying their model to the Mimno and Mc-
Callum [16] applying their model to the assessment of re-
viewer suitability (we discuss this further below).

While the models above predict suitability using content-
based features of papers and/or reviewers, other methods

exploit elicited suitability scores from reviewers for a sub-
set of papers to make predictions for other papers. This
can be treated as acollaborative filtering (CF)problem.
CF methods leverage known preference information for a
subset of user-item to generate predictions for unobserved
pairs. Recent CF techniques have performed extremely
well in a variety of domains, especially where available
content features are not especially predictive of preference
(or suitability) [21, 22, 15]. Conry et al. [6] applied an
ensemble CF approach, combining side information about
the papers and reviewers with several CF predictors to esti-
mate reviewer suitabilities, and then used a simple match-
ing program to determine assignments based on these suit-
abilities. This work is closest to ours; however, it does
not explore variants of the matching objective, nor interac-
tions between learning and matching. While CF is typically
framed in terms of preference prediction, recent extensions
instead use CF for optimization w.r.t. a specific target task.
Weimer et al. [26] use CF data for optimization in a rank-
ing task, while Petterson et al. [17] frame ranking as finding
the weights that lead to an optimal matching in a bipartite
graph. Our work has a similar motivation, trying to opti-
mize suitability predictions w.r.t. a matching objective.

A second body of work focuses on the matching problem
itself. Benferhat and Lang [3], Goldsmith and Sloan [11],
and Garg et al. [9] discuss various optimization criteria, and
some of the practices used by program chairs and exist-
ing conference management software. Taylor [24] shows
how these criteria can be formulated as an integer program
(IP). Tang et al. [23] propose several extensions to the IP.
This work assumes reviewer suitability for each paper is
known, and deals exclusively with specific matching cri-
teria. There is a rich literature on more general matching
problems in economics and theoretical CS. Examples in-
clude the well-knownstable marriage problem[8]; resi-
dent matching (of residency candidates to hospitals) [19];
and (one-sided) matching in housing markets [13]. In eco-
nomic models, a key focus is on stability of the matches
and minimizing incentives for participants in the matching
market to misreport their preferences. We do not consider
such strategic issues here.

3 Matching Framework and Instantiations

We begin by outlining our basic problem definition, then
elaborate on several specific instantiations of the frame-
work we develop. These include the use of various learn-
ing methods for predicting unknown suitabilities, a range
of objectives and constraints on the matching process re-
flecting different desiderata for the reviewing process, and
interactions between the two.

3.1 Problem Definition

Our approach to the matching problem relies onsuitabil-
ity scores, which describe the relevance of a reviewer to a



given paper. The matching procedure uses these scores to
form a set of assignments of items to users. For reasons
discussed above, the suitabilities will not be fully speci-
fied. Since we do not wish to limit the matching process
to reviewer-paper pairs that are known (i.e., have been di-
rectly elicited), these need to be predicted in some fashion.

We formalize the matching problem as follows. Letr ∈
R refer to users orreviewers, p ∈ P to items orpapers,
and let |R| = N and |P| = M . Every user-item pair
has asuitability scoresrp. The set of all scores can be
viewed as a suitability matrixS ∈ R

N×M . Only a subset of
the suitabilities are observed, namely, those collected from
reviewers during an elicitation process. Denote this bySo,
and denote the observed scores for a particular reviewerr
and paperp by So

r andSo
p , respectively.Su, Su

r , S
u
p are the

analogous collections of unobserved scores.

We may have access to additional side information about
individual reviewers and papers which may come in differ-
ent forms. In our setting, side information about submit-
ted papers could include author-specified keywords, cita-
tions, and word usage in the paper. For reviewers, we may
have stated preferences for keywords, citations, or other de-
scriptions of reviewer expertise. Our data sets also include
an archive, containing a set of papers written by each re-
viewer, providing information about their expertise. This
is represented as a word count vectorwr summarizingr’s
own papers. Similarly, we summarize each submitted paper
p as a word count vectorwp.

Given this information, our goal is to find a “good” match-
ing of papers to reviewers in the presence of incomplete in-
formation about reviewer suitabilities, possibly exploiting
the side information available. The problem can be bro-
ken into two main components: predicting unknown suit-
abilities using some combination of known scores and side
information; and matching papers to reviewers based on
known and predicted suitabilities. Notice that predicting
suitability scores is, however, not a goal in and of itself: it
is subservient to the primary goal of good matching perfor-
mance. Many different factors may be used to define the
quality of a matching, as we discuss below.

3.2 Learning Methods

We have explored a range of learning methods for predict-
ing suitabilities of reviewers for papers. Here we focus
on three methods, each exploiting the different information
available for prediction: alanguage model (LM); linear re-
gression (LR); andBayesian probabilistic matrix factoriza-
tion (BPMF). LM uses the content of submitted papers and
archived papers for prediction, but does not use reviewer
bids; BPMF uses reported suitabilities/bids, but no docu-
ment/archive side information; and LR uses bids and the
content submissions, but not the archive.

Language Model: Several previous approaches to re-
viewer matching have used simple language models to rep-

resent distributions over words of papers and reviewers
[25, 16]. Our language model (LM) is based on these, and
predicts suitabilities without using stated reviewer prefer-
ences; rather it builds a model in word (feature) space,
assuming that distance in this space correlates with dis-
tance in suitability space. LM constructs a distribution over
words for each reviewer, based on the archive of papers
written by the reviewerwr (the reviewer side information).
The starting point for LM is a multinomialPr(w|d) over
wordsw in a documentd. The maximum likelihood es-
timate of Pr(w|d) is the number of occurrences of this
word divided by the total number of words in the docu-
ment (Prml(w|d) = |wd|/Td). Using Dirichlet smoothing
to account for the fact that most words do not appear in a
given document, this estimate can be written as:

Pr(w|d) =
Td

Td + µ
Prml(w|d) + µ

Td+µ
Pr(w) (1)

wherePr(w) is the probability of the word across all doc-
uments andµ is the smoothing parameter. This distribution
can be formed in various ways from the user side infor-
mation (i.e., the collected papers of a reviewer). We adopt
a variant of an approach [16] in which the word vectors
of reviewer-authored papers are averaged to form a single
documentdr per reviewer. LM encodes each submitted pa-
per as a word count vectorwp, and predicts suitabilities
srp to be log Pr(wp|dr) =

∑
w∈wp

Pr(w|dr). This lan-
guage model has outperformed sophisticated topic models
in some settings [16].

Regression: Linear regression (LR) predicts suitabilities
directly using the side information associated with the
items. Each reviewer has a set of parametersθr, which
is applied to item informationwp to form an estimate of
srp: ŝrp = θr ·wp. Stated reviewer preferences are used as
training observations, and LR minimizes the mean-squared
error (MSE) w.r.t. observed suitabilities:

CLR(S
o) =

1

|So|

∑

srp∈So

(ŝrp − srp)
2 (2)

Collaborative Filtering: Given observed suitabilities,
prediction of unobserved suitabilities can be tackled us-
ing collaborative filtering.Probabilistic matrix factoriza-
tion (PMF) [21] is a popular CF method, and finds a low-
rank factorization of the suitability matrixS ≈ UTV ,
whereS ∈ R

N×M , U ∈ R
K×N andV ∈ R

K×M and
K << min(M,N). The columnsUr of U andVp of V
represent latent reviewer and paper factors. The fullS ma-
trix, including unobserved suitabilities, can be estimated by
taking the product ofU andV . Under this model, the con-
ditional distribution over suitabilities is:

Pr(S|U, V, σ2) =

M
∏

r

N
∏

p

N (srp|U
T
r Vp, σ

2)Irp

whereI is an indicator matrix and entryIr,p is 1 if it was
observed and 0 otherwise. Assuming zero-mean Gaussian



priors over the parametersU andV :

Pr(U |σ2
U ) =

N
∏

r=1

N (Ur|0, σ
2
U ); Pr(V |σ2

V ) =

M
∏

p=1

N (Vp|0, σ
2
V ),

finding the MAP solution involves minimizing MSE be-
tweenUTV and the known suitabilities.

In a Bayesian version of PMF (BPMF), the parametersU
andV have non-zero mean and full-covariance priors [22].
The predictive distribution cannot be calculated analyti-
cally because the posteriors overU andV are intractable,
but a Markov Chain Monte Carlo sampler can be used to
approximate sufficient statistics. Integrating over the pa-
rameters has been shown to produce performance advan-
tages w.r.t. root mean squared error (RMSE) on the Netflix
task [22].

Other Methods: In addition to the three methods above,
we investigated several other algorithms, including super-
vised and unsupervised topic models [4, 5], conditional re-
stricted Boltzmann machines (RBMs) [14, 20], and infer-
ence using co-reference graphs. Preliminary experiments
showed that these methods did not match the performance
of those above. We also tried leveraging the different
sources of information by using combinations of the var-
ious learning models without success. Incorporating each
reviewer’s archive as extra training papers for LR did not
offer any improvement. Finally, we explored a formulation
of the problem in which the training objective explicitly op-
timizes matchingsJ(x) rather than optimizing RMSE w.r.t.
predicted suitabilities. However, experiments with this ap-
proach failed to demonstrate improved matching perfor-
mance.

3.3 Matching Objectives

We articulate several different criteria that may influence
the definition of a “good” matching and explore different
formulations of the optimization problem that can be used
to accommodate these criteria. We also discuss how these
criteria may interact with our learning methods.

Naturally, one would like to assign submitted papers to
their most suitable reviewers; of course, this is almost never
possible since some reviewers will be most suited to far
more papers than others. In general,load balancingis en-
forced by placing an upper limit ormaximumon the num-
ber of papers per reviewer. Similarly, we may impose a
minimumto ensure reasonableload equityor load fairness
across reviewers. However, limiting the paper load in-
creases the probability that certain papers will be assigned
to very unsuitable reviewers. This suggests only making as-
signments involving pairs with scoresrp above somemin-
imum score threshold. This ensures that every paper is re-
viewed by a minimally suitable reviewer, but may sacrifice
load equity (indeed, it may sacrifice feasibility). One may
also desiresuitability fairnessacross reviewers; that is, re-
viewers should have similar score distributions over their

assigned papers (so on average no reviewer is assigned pa-
pers to which she is significantly more ill-suited than any
other). Finally, when multiple reviewers are assigned to pa-
pers, it may be desirable to assigncomplementary review-
ersto a paper so as to cover the range of topics spanned by
a submission. Related is the desire to ensure each paper is
reviewed byat least one “senior” reviewerwith significant
expertise.

The intricacies of different conferences prevent us from es-
tablishing an exhaustive list of matching desiderata (see
[3, 11, 9] for further discussion). We now explore matching
mechanisms that will account for several of these criteria:
we frame the matching procedure as an optimization prob-
lem and show how several properties can be formulated as
constraints or modifications of the objective function.
We formulate the basic matching problem as an IP, where
each paper is assigned to its best-suited reviewers [24]:

maximize J
basic(x) =

∑

r

∑

p

srpxrp (3)

subject to xrp ∈ {0, 1}, ∀r, p (4)
∑

r

xrp = Rtarget , ∀p

The binary variablexrp encodes the matching of itemp
to userr; a match is an instantiation of these variables.
Rtarget is the desired number of reviewers per paper. Mini-
mum and maximum reviewer load,Pmin andPmax respec-
tively, can be incorporated as constraints [24]:

∑

p

xrp ≥ Pmin,
∑

p

xrp ≤ Pmax, ∀r. (5)

This IP, including constraints (5), is our basic formulation
(Basic IP). Its solution, theoptimal match, maximizes to-
tal reviewer suitability given the constraints. Although IPs
can be computationally difficult, our constraint matrix is
totally unimodular, so the linear program (LP) relaxation
(allowingxrp ∈ [0, 1]) does not affect the integrality of the
optimal solution; hence the problem can be solved as an
LP.

Although not mentioned above it is essential for the match-
ing to prevent assignments of reviewers to submitted papers
for which they have conflicts of interest (COI). The above
formulation can easily enforce known COI by directly con-
straining the conflicting assignmentsxrp’s to be 0, alterna-
tively, we can set the relevant scoressrp’s to−∞.
To capture additional matching desirata, we can modify
the objective or the constraints of this IP. Load balancing
can be controlled by manipulatingPmin andPmax: a small
range ensures each reviewer is assigned the same number
of papers at the expense of match quality, while a larger
range does the converse. We can instead enforce load eq-
uity by making the tradeoff explicit in the objective with
“soft constraints” on load:

J
balance(x) =

∑

r

∑

p

srpxrp +
∑

r

λf
(

(

∑

p

xrp

)

− x̄
)

(6)



where x̄ is the average number of papers per reviewer
(M/N ) andf is a penalty function (e.g.,f(x) = |x| or
f(x) = x2). The parameterλ controls the tradeoff be-
tween load equity and match quality. TheJbalance objec-
tive (Eq. 6) along with the constraints expressed in Eq. 4
comprise ourBalance IP.

The Jbasic objective (Eq. 3) maximizes the overall suit-
ability of the assignments, equating “utility” with suitabil-
ity. However, the utility of a specific matchxrp may not
be linear in suitabilitysrp. For example, utility may be
more “binary”: as long as a paper is assigned to a reviewer
whose suitability is above a certain threshold, then the as-
signment is good, otherwise it is not. This can be realized
by applying some non-linear transformationg to the scores
in the matching objective (e.g., a matched pair with score
srp ∈ {2, 3} may be greatly preferred tosrp ∈ {0, 1}):

J
tfm(x) =

∑

r

∑

p

g(srp)xrp. (7)

In this transformedobjectiveJ tfm , if g is a logistic func-
tion then score are softly “binarized.”
Finally, we note that some of these matching objectives can
also be incorporated into the suitability prediction model.
For example, the nonlinear transformationg can be directly
used in the LR training objective (cf. Eq. 2):

CLR-TFM(S
o) =

1

|So|

∑

srp∈So

(ŝrp − g(srp))
2
. (8)

4 Experimental Results

We start by describing the data sets used in our experi-
ments. The rest of the section is divided into three parts.
The first considers score predictions with the different
learning models. The second turns to matching quality
and explores the soft constraints on the number of papers
matched per reviewer. Finally, the third part evaluates a
transformation of the matching objective and shows how
using a transformed learning objective can be enhance per-
formance on the transformed matching problem.

4.1 Data

Experiments are run using two data sets,N10 and N09,
from the 2010 and 2009 editions, respectively, of the NIPS
conference, one of the leading conferences in machine
learning.1 For both data sets, side information for each re-
viewer comprised a self-selected set of papers taken repre-
sentative of her areas of expertise; these were summarized
as word count vectorswr. Side information about submit-
ted papers consisted of document word countswp for each
p. The total vocabulary used by submissions (across both
sets) contained over 21,000 words; We used only the top
1000 words for our experiments as ranked using TF-IDF

1Seehttp://nips.cc. We are currently investigating
mechanisms by which we can make both data sets available to
the community.
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Figure 1:Observed scores forN10(a) andN09(b).

(|wp| = |wr| = 1000). Reviewer suitability scores ranged
from 0 to 3, with 0 meaning “paper lies outside my exper-
tise;” 1 means “can review if necessary;” 2 means “qual-
ified to review;” and 3 means “very qualified to review.”
As discussed above, these scores are intended to reflect re-
viewer expertise, not desire. We focus on the area chair
(or meta-reviewer) assignment problem, where the match-
ing task is to assign a single area chair to each paper. We
use the term reviewer below to refer to such area chairs.

N10comprises 1250 submitted papers to be assigned to 48
reviewers. Suitabilities on a subset of papers were elicited
from reviewers using a rather involved two-stage process.
This process utilized the language model (LM) to estimate
the suitability of each reviewer for each paper, and then
queried each reviewer on the papers on which his estimated
suitability was maximal. The output of the first round
was fine-tuned using a combination of a hybrid discrimi-
native/generative RBM [14] with replicated softmax input
units [20] trained on the initial scores, and LM, which then
determined the second round of queries. In total, each re-
viewer provided score on an average of 143 queried papers
(excluding one extreme outlier), and each paper received
an average of 3.3 suitability assessments (with a std. dev. of
1.3). The mean suitability score was 1.1376 (std. dev. 1.1);
a histogram of the scores is shown in Figure 1(a). Note
that since the querying process was biased towards asking
about pairs with high predicted suitability, theunobserved
scores are not missing at random, but rather tended toward
pairs with low suitability. We do not distinguish the data
acquired in the two phases of elicitation; both took place
within a short time frame, so we assume suitabilities for
any one reviewer are stable.

N09 comprises 1079 submitted papers and 30 area chairs.
Reviewer scores were not elicited, but instead provided
by the conference program chairs for every reviewer-
submission pair. A histogram of the scores is shown in
Figure 1(b). The mean suitability score was 0.19 (std. dev.
0.57).

4.2 Score Predictions

We first analyze performance using the root mean squared
error (RMSE) metric, as is common in collaborative fil-
tering research. We are especially interested in how the
different approaches behave as the size of the training set
increases. An understanding of this dynamic is vital if one



is to strike a balance between the demands of eliciting suit-
ability scores from the user and increased accuracy of pre-
dictions.

For learning, we are given a set of training instances,
Str ≡ So. We split this set into a training and validation
set. The trained model predicts all unobserved scoresSu.
Since we do not have true suitability values for all unob-
served scores, we distinguishSu as being the union of test
instancesSte (for which we have scores in the data set),
and missing instancesSm. We denote a model’s estimates
of the test instances aŝSte, and evaluate RMSE over these
test instances(

∑
rp∈Ste(sterp − ŝterp)/|S

te|)1/2.

We report results averaged over 5 different splits of the
data in all experiments. In each split, the data is divided
into training, validation and test sets in 60/20/20 propor-
tions. There is no overlap in the test sets across the 5 splits.
When reporting results across splits, we report the mean
and standard error. Training LR is slightly faster than train-
ing BPMF, for which we used 330 MCMC samples includ-
ing 30 burn-in samples, but both methods are trained within
minutes on both of our data sets.

Fig. 2 shows results for training sets of different sizes,
simulating the effect of additional elicitation. To facili-
tate comparison, the test set size is fixed across different
training set sizes. We compare LR and BPMF to a base-
line which predicts the mean training score. Recall that
BPMF learns to predictSu by usingSo only while LR
also utilizes paper featureswp. The strong performance
of LR suggests that the information contained in the paper
features is extremely useful in predicting user preferences.
Interestingly, BPMF, a state-of-the-art method in CF, per-
forms worse than LR in all but the extremely small training-
set sizes. Recall that BPMF attempts to exploit similari-
ties across reviewers and across papers. In this case, the
(meta-)reviewers were specifically chosen by the confer-
ence organizers to span the field, providing expertise across
the multitude of topics typically represented at this confer-
ence. We conjecture that, compared to other popular do-
mains for CF (e.g., movie recommendation), there are far
fewer commonalities across users (w.r.t. paper topics); thus
it is difficult for BPMF to attain very good performance.
Furthermore, although there are probably significant com-
monalities between papers, each paper receives an average
of fewer than four ratings, which makes it difficult to dis-
cover those commonalities from the preference data alone.

Note that the language model is not included here. LM’s
outputs values represent log-probabilities and thus do not
fall into the [0, 3] score range. A linear mapping of the
predicted suitabilities into the score range did not produce
sensible results.

The behavior of the different learning methods onN09are
similar to that observed forN10. Since they provide no
additional insight, we do not report results here.
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Figure 2: Performance on RMSE onN10as the number of ob-
served suitability scores per user varies.

train/valid. test missing

Matching Str Ŝte Sm = τ
Evaluation Str Ste Sm = τ

Table 1: Overview of the matching/evaluation process.

4.3 Match Quality

We now turn our attention to the matching framework. We
first elaborate on how we perform the matching. We then
evaluate the performance of the different learning methods
on the matching objective. Finally we introduce soft con-
straints into the matching objective and analyze the trade-
offs they introduce.

Matching Experimental Procedures: The matching IPs
discussed above assume access to fully known (or pre-
dicted) suitability scores. Since we learn estimates of the
unknown scores, we denote a model’s estimates of the test
instances aŝSte, and impute a value for all suitability val-
ues that are missing, using a constant imputation ofτ ∈ R.
Since missing scores are likely to reflect, on average, lower
suitability than their observed counterparts, we useτ = 1
in all experiments (recall thatN10’s mean was 1.1376 and
N09has no missing scores).

Given the estimatêSte computed by one of our learning
methods, we perform a matching withS = Str ∪ Ŝte ∪
(Sm = τ). Note that this permits missing values to be
matched, which is important in the regime of sparse known-
suitability scores. Table 1 summarizes this procedure. For
data setN10 we setPmin andPmax to 20 and 30, respec-
tively, while the range is 30–40 for data setN09.

Baseline:We adopt a baseline method that provides an ab-
solute comparison across methods. The baseline has ac-
cess toStr and imputesτ for any element ofSte. To allow
meaningful comparison to other methods, it employs the
same imputation for missing scores,Sm = τ .

A note on LM:Although the output of LM can be directly
used for matching, it does not exploit observed suitabilities
in its usual formulation. However LM can make use of
some of the training dataStr by incorporating submitted
papers assessed as “suitable” by some reviewerr into her
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Figure 3:Performance on the matching task on theN10data set.

word vectorwr. Specifically, we include all papers inwr

for whichr offered a score of 3 (only if this score is inStr).

For all methods, once an optimal matchx∗ is found, we
evaluate it using all observed and unobserved scores, with
the same constant imputation for the missing scores, where
match qualityis measured usingJbasic (see Equation 3):

∑

r

∑

p

x∗

rp(S
tr ∪ Ste ∪ Sm = 1) (9)

Matching Performance usingBasic IP: We now report
on the quality of the matchings that result from using the
predictions of the different methods. Again we consider
dynamic matching performance as the amount of training
data per user increases. Note that the optimal match value
is 3053 forN10 and 2172 forN09, which occurs when
Ŝte = Ste.

Figure 3 shows how matching quality varies as the amount
of training data per user increases. Since training scores are
also observed at matching time (Eq. 9), all methods bene-
fit from having a larger training set. Figure 3 leads to the
following three observations. Firstly, when no observed
data is available, i.e., using only the archive, LM does very
well, with a matching score of2247 ± 32, nearly identical
to the quality of LR and BPMF with 10 bids per user, and
much better than the match quality of1262 obtained using
constant scores((Ste ∪ Sm) = τ). Secondly, when very
few scores are available, LR and LM perform best (and do
equally well). As mentioned above, LM is able to exploit
observed suitabilities by adding relevant papers to the user
corpus, but this attenuates the impact of elicited scores: we
see LM is outperformed by all other methods when suffi-
cient data is available. Thirdly, LR outperforms all other
methods as data is added. We also see that as the num-
ber of observed scores increases, unsurprisingly, the gain
in matching performance (value of information) from addi-
tional scores decreases.

It is also interesting to note that a total matching score of
over 2500 implies that, on average, each reviewer is as-
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Figure 4: Assignments forN10 by score value when using 40
training examples per user.

signed papers on which her average preference is greater
than 2 (out of 3). LR reaches this level of performance with
less than 30 observed scores per user, while other methods
need 30% more data per user to reach the same level of
performance.

Further insight into matching quality onN10 induced by
the different learning methods can be gained by examining
the distribution of scores associated with matched papers
(Figure 4) or under different sizes of the training set (Fig-
ure 5). Figure 4 displays the number of scores of each value
(0–3) that get assigned with a training set size of 40. Not
surprisingly, LR and BPMF assign significantly more 2s
and 3s combined than all other methods. LM is very good
at picking the top scores which may be a consequence of
our data collection method. In addition, Baseline assigns
few zeros, since all missing and test scores are imputed to
beτ = 1.

Figure 5 provides another perspective on assignment qual-
ity. Here we plot results for the best performing method,
LR, on bothN10andN09, for 3 different training set sizes.
We first note that the extreme imbalance inN09 leads LR
to assign many zeros even with 80 training scores per user.
Overall, both datasets show that as the number of training
scores increases, more 2s and 3s, and fewer 0s and 1s, are
assigned.

Our remaining results deal exclusively withN10since ex-
perimental results withN09were similar.

Load Balancing Balance IP: The experiments above all
constrain the number of papers per reviewer to be within a
specific range (Pmin–Pmax). There is no good indication
as to how to set these two extrema. Instead we now use the
Balance IP, both for matching and evaluation (see Eq. 9),
settingf to be the absolute value function.

Figure 6 shows the histogram of assigned papers per re-
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Figure 5:Assignments by score value. From Left to Right: 10,
40, 80 (86 examples forN10) training examples per user. Top:
N10. Bottom:N09.

viewer given by the optimal solution to the IP for differ-
entλ ∈ {0, 0.1, 1}. Whenλ = 0 load equity is ignored,
and almost all reviewers either get assigned the minimum
(Rmin) or the maximum (Rmax) number of papers; within-
reviewer variance (

∑
p(xrp − x̄)2/M ) is extremely high.

When a “soft constraint” on load equity is introduced, as-
signments become more balanced as theλ increases (i.e.,
the balance constraint becomes “harder”). The following
table reports the matching objective versus the variance, av-
eraged across users, for different values ofλ with a training
set size of 40 (other training sizes yielded similar results):

λ 0 0.1 0.25 0.5 0.75 1
Jbasic 2625 2615 2600 2573 2569 2569

Variance 4.62 3.28 2.61 0.89 0.37 0.33

Not surprisingly, larger penaltiesλ for deviating from the
mean reviewer load give rise to greater load balance (lower
load variance) and worse matching performance. Gener-
ally, an appropriateλ will be chosen by the conference
organizers, that nicely trades off performance versus load
balance across reviewers (here, perhaps aroundλ = 0.5).

4.4 Transformed Matching and Learning

We now consider a non-linear transformation of the scores,
reflecting the view that it ismuchbetter to assign reviewer-
paper pairs with suitabilities of 2 and 3, than pairs with 0
and 1; as discussed above this can be accomplished by al-
lowing “utility” xrp to be non-linear in suitability scoresrp.
We adopt the following sigmoid function to effect this non-
linear transformation:σ(s) = 1/(1 + exp(−(s− 1.5)β));
here1.5 is the middle of the scores’ range. We setβ = 4.5,
which gives:σ(0) = 0.001; σ(1) = 0.095; σ(2) = 0.90;
σ(3) = 1.0. We first show how this transformation impacts
matching performance without learning; then we discuss
how one can incorporate the transformation into the learn-
ing objective itself.

We first test how matching using the transformed objec-
tives affects results without using learning to infer missing
scores (consequently,Su = τ ), by examining difference
in matching performance when varying the percentage of
observed scores. Figure 7(a) shows the difference when

matching with the transformed objective (J tfm ) versus the
basic objective (Jbasic). In both cases the resulting matches
are evaluated usingJ tfm . Although a minor gain is ob-
served when most of the known data is observed, there is,
overall, very little difference in performance when match-
ing with either objective. Recall that the mean number of
scores per paper is less than 4. Hence, when matching us-
ing a small fraction of the data, the matching procedure
has very little flexibility to assign high scoring pairs unless
learning is used to predict unobserved scores.

We can modify the learning objective to take into account
the nonlinearity introduced in the matching objective. We
do this by transforming all labels using the same sigmoidal
transformation as in the matching objective (Eq.8). This
allows learning to better predict the transformed scores by
explicitly training on them Figure 7(b) shows the trans-
formed matching performance of both LR on the with non-
transformed data, and LR-TFM, a linear regression model
trained using the transformed learning objective. Not sur-
prisingly, LR-TFM outperforms LR across all training set
sizes, since it is trained for the modified objectiveJ tfm .
The difference is especially pronounced with smaller train-
ing sets—when enough data is available, both methods will
naturally assign many 2s and 3s. (We also verified that LR-
TFM outperforms BPMF trained on the transformed objec-
tive).

5 Conclusion

We developed a framework for paper to reviewer assign-
ment in the context of scientific conferences. We showed
how by eliciting only a small subset of scores from review-
ers and inferring unobserved scores using one of several
learning methods we were able to determine high quality
matchings. Interestingly in the field of collaborative filter-
ing, side-information is often perceived to be useful only in
the cold-start condition, where little or no scores are avail-
able. The performance of both LM and LR, which leverage
word-level features from reviewer and submitted papers,
show that this is not the case in our domain of interest. We
also explored the trade-off between matching quality and
paper load balancing, which may avoid the need to man-
ually set limits on the reviewers’ load. Finally we showed
that in a realistic situation where utility is non-linear insuit-
ability scores, we discover better matches by learning with
this same non-linearity.

Given how the matching benefited from an interaction with
the learning, we are developing ways to strengthen this in-
teraction by making the learning methods aware of the final
matching objective. We have obtained good results using
this approach in an active learning setting where the system
chooses which reviewer scores to query. We are now in-
terested in exploring how asking meta-queries, about gen-
eral aspects of papers rather than a single paper, may be
exploited to reduce the number of reviewer queries while
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maintaining strong matching performance.
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[3] Salem Benferhat and Jérôme Lang. Conference paper as-
signment. International Journal of Intelligent Systems, 16
(10):1183–1192, 2001.

[4] David Blei and Jon McAuliffe. Supervised topic models.
In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, edi-

tors,Advances in Neural Information Processing Systems 20
(NIPS), pages 121–128. MIT Press, Cambridge, MA, 2008.

[5] David M. Blei, Andrew Y. Ng, Michael I. Jordan, and John
Lafferty. Latent Dirichlet allocation.Journal of Machine
Learning Research, 3:993–1022, 2003.

[6] Don Conry, Yehuda Koren, and Naren Ramakrishnan. Rec-
ommender systems for the conference paper assignment
problem. InProceedings of the Third ACM Conference on
Recommender systems (RecSys-09), pages 357–360, New
York, New York, USA, 2009.

[7] Susan T. Dumais and Jakob Nielsen. Automating the assign-
ment of submitted manuscripts to reviewers. InProceedings
of the Fifteenth Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval
(SIGIR-92), pages 233–244, Copenhagen, Denmark, 1992.

[8] David Gale and Lloyd S. Shapley. College admissions and
the stability of marriage.American Mathematical Monthly,
69(1):9–15, 1962.

[9] Naveen Garg, Telikepalli Kavitha, Amit Kumar, Kurt
Mehlhorn, and Julian Mestre. Assigning papers to referees.
Algorithmica, 58(1):119–136, 2010.

[10] David Goldberg, David Nichols, Brian M. Oki, and Douglas
Terry. Using collaborative filtering to weave an information
tapestry.Communications of the ACM, 35:61–70, December
1992. ISSN 0001-0782.



[11] Judy Goldsmith and Robert H. Sloan. The AI conference
paper assignment problem. In22nd National Conference
on Artificial Intelligence (AAAI-07) Workshop on Preference
Handling in AI, pages 53–57, Vancouver, Canada, 2007.

[12] Seth Hettich and Michael J. Pazzani. Mining for proposal
reviewers: lessons learned at the National Science Foun-
dation. InProceedings of the 12th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data
Mining (KDD-06), pages 862–871, Philadelphia, PA, USA,
2006.

[13] Aanund Hylland and Richard J. Zeckhauser. The efficient
allocation of individuals to positions.Journal of Political
Economy, 87(2):293–314, 1979. ISSN 0022-3808.

[14] Hugo Larochelle and Yoshua Bengio. Classification using
discriminative restricted Boltzmann machines. InProceed-
ings of the 25th International Conference on Machine learn-
ing (ICML-08), pages 536–543, Helsinki, Finland, 2008.

[15] Neil D. Lawrence and Raquel Urtasun. Non-linear matrix
factorization with Gaussian processes. InProceedings of the
26th Annual International Conference on Machine Learning
(ICML-2009), pages 601–608, Montreal, Quebec, Canada,
2009.

[16] David M. Mimno and Andrew McCallum. Expertise mod-
eling for matching papers with reviewers. In Pavel Berkhin,
Rich Caruana, and Xindong Wu, editors,Proceedings of the
13th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD), pages 500–509,
San Jose, California, 2007.

[17] James Petterson, Tiberio Caetano, Julian McAuley, and Jin
Yu. Exponential family graph matching and ranking. In
Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams,
and A. Culotta, editors,Advances in Neural Information
Processing Systems 22 (NIPS), pages 1455–1463. 2009.

[18] Marko A. Rodriguez and Johan Bollen. An algorithm to
determine peer-reviewers. InProceeding of the 17th ACM
Conference on Information and Knowledge Management
(CIKM-08), pages 319–328, Napa Valley, California, USA,
2008.

[19] Alvin E. Roth. The evolution of the labor market for medical
interns and residents: A case study in game theory.Journal
of Political Economy, 92(6):991–1016, 1984.

[20] Ruslan Salakhutdinov and Geoffrey Hinton. Replicated soft-
max: an undirected topic model. In Y. Bengio, D. Schu-
urmans, J. Lafferty, C. K. I. Williams, and A. Culotta, ed-
itors, Advances in Neural Information Processing Systems
22 (NIPS), pages 1607–1614. 2009.

[21] Ruslan Salakhutdinov and Andriy Mnih. Probabilistic ma-
trix factorization. In J.C. Platt, D. Koller, Y. Singer, and
S. Roweis, editors,Advances in Neural Information Pro-
cessing Systems 20 (NIPS), pages 1257–1264. MIT Press,
Cambridge, MA, 2008.

[22] Ruslan Salakhutdinov and Andriy Mnih. Bayesian prob-
abilistic matrix factorization using Markov chain Monte
Carlo. InProceedings of the 25th International Conference
on Machine Learning (ICML), volume 25, pages 880–887,
Helsinki, Finland, 2008.

[23] Wenbin Tang, Jie Tang, and Chenhao Tan. Expertise match-
ing via constraint-based optimization.Web Intelligence and
Intelligent Agent Technology, IEEE/WIC/ACM International
Conference on, 1:34–41, 2010.

[24] Camillo J. Taylor. On the optimal assignment of confer-
ence papers to reviewers. Technical Report MS-CIS-08-30,
UPenn, 2008.

[25] Xing Wei and W. Bruce Croft. LDA-based document mod-
els for ad-hoc retrieval. InProceedings of the 29th Annual
International ACM SIGIR Conference on Research and de-
velopment in information retrieval (SIGIR-06), pages 178–
185, Setalle, Washington, USA, 2006.

[26] Markus Weimer, Alexandros Karatzoglou, Quoc Le, and
Alex Smola. Cofi rank - maximum margin matrix factor-
ization for collaborative ranking. In J.C. Platt, D. Koller,
Y. Singer, and S. Roweis, editors,Advances in Neural In-
formation Processing Systems 20 (NIPS), pages 1593–1600.
MIT Press, Vancouver, Canada, 2008.


