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Abstract

At the heart of many scientific conferences is the
problem of matching submitted papers to suit-
able reviewers. Arriving at a good assignment is
a major and important challenge for any confer-
ence organizer. In this work we propose a frame-
work to optimize paper-to-reviewer assignments.
Our framework uses suitability scores to measure
pairwise affinity between papers and reviewers.
We show how learning can be used to infer suit-
ability scores from a small set of provided scores,
thereby reducing the burden on reviewers and or-
ganizers. We frame the assignment problem as an
integer program and propose several variations
for the paper-to-reviewer matching domain. We
also explore how learning and matching interact.
Experiments on two conference data sets exam-
ine the performance of several learning methods
as well as the effectiveness of the matching for-
mulations.
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Many large conferences in computer science (CS), and es-
pecially artificial intelligence (Al), allow reviewers tad

on papers, basically providing their “preferences”—which
we interpret as reflecting a reviewer&iitability to re-
view particular submitted papers—after which a central-
ized matching process takes place to find the most suitable
assignment. Preferences collected this way are, unfortu-
nately, inherently noisy for two key reasons: (a) it is diffi-
cult for reviewers to offer reasonable assessments of &ll bu
a small fraction of the papers, given the numbers involved,;
and (b) reviewers have access to limited information about
each paper (e.g., only title and abstract). The latter fac-
tor fundamentally limits how well a reviewer can judge her
own suitability, while the former means reviewers are, in
some sense, semi-randomly choosing papers on which they
express interest.

One response to this problem is to associate simple features
(keywords being most common) with both papers and re-
viewers, and use some measure of overlap as a reflection
of suitability. Unfortunately, this simple method is cruate
best, and rely on a common understanding of this (usually
limited) vocabulary byall reviewers and authorsA more
sophisticated response involves the use of machine learnin
techniques to help predict reviewer expertise [1, 16, 6]. By
using specific features of both reviewers (e.g., previously

The assignment of papers to reviewers is one of the modyritten articles, co-authorship relations) and.submin'ad
important tasks facing the organizers of scientific conferP€rs (€.g., words or keywords), we can relieve reviewers
ences. Assigning submitted papers to their most suitabl@f the burden of bidding. Ideally, a combination using this
reviewers is essential to the success of any conference, iffformation as well as self-declared reviewer expertise (0
deed to the functioning of many scientific fields, since itPidS) can be leveraged to predict reviewer suitability gsin
is reviewer assessments that determine the conference preR!laborative filtering methods [10]. Ultimately, howeyer
gram and, to some extent, the shape of a discipline. HOWt_he_pnmary goal is n_ot to accurately predict expertise, but
ever, this is not a simple task: large conferences often rel© find a good matching.

ceive well over 1000 submissions that must be assigned tim this work, we propose and test various instantiations of
many hundreds of reviewers in short amount of time. Aparta flexible framework for optimizing paper matching. We
from ensuring the suitability of assigned reviewers, con-investigate approaches that use incomplete information in
straints imposed by reviewer load limits, conflicts of inter the form of a limited number of suitability scores: our ba-
est, and other factors push this assignment problem beyorgic framework predicts missing scores using learning tech-
the reach of a single program chair, and generally preveniques and then finds optimal matchings using both ob-
the process from being distributed in a fully satisfactoryserved and predicted scores. Within this framework, we
way.



explore several learning models which leverage (one oexploit elicited suitability scores from reviewers for ebsu
both of) two sources of information—reviewer/paper fea-set of papers to make predictions for other papers. This
tures and self-reported suitability—to predict the unknowncan be treated as @ollaborative filtering (CF)problem.
scores: these include regression, collaborative filtesimdy CF methods leverage known preference information for a
language modeling methods. We then describe several dsubset of user-item to generate predictions for unobserved
sirable properties for paper-to-reviewer assignments. Weairs. Recent CF techniques have performed extremely
frame the assignment problem as an integer program [24jvell in a variety of domains, especially where available
and explore several variations that reflect different desid content features are not especially predictive of prefezen
ata, and how these interact with various learning methodgqor suitability) [21,/22, 15]. Conry et all[[6] applied an
We test our framework on two data sets collected from aensemble CF approach, combining side information about
recent, large Al conference, measuring predictive acguracthe papers and reviewers with several CF predictors to esti-
with respect to both reviewer suitability and matching per-mate reviewer suitabilities, and then used a simple match-
formance, exploring several different matching objecive ing program to determine assignments based on these suit-
and how they can be traded off against one another. abilities. This work is closest to ours; however, it does

Although we focus on reviewer matching, our methods ard0t explore variants of the matching objective, nor interac
applicable to any constrained matching domain where: (a{ions between learning and matching. While CF is typically
user preferences for a set of items can be predicted using@med in terms of preference prediction, recent exterssion
user and/or item features; (b) preferences can be used {gstead use CF for optimization w.r.t. a specific target.task
improve matching quality; () it is infeasible or undesir- eimer et al.[[26] use CF data for optimization in a rank-
able for users to express preferences over all items; aniffd task, while Petterson et al. [17] frame ranking as finding
(d) capacity or other constraints limit the min/max num- the weights that lead to an optimal matching in a bipartite
ber of users-per-item (or vice versa). Examples include fadraph. Our work has a similar motivation, trying to opti-

cility location, school/college admissions, certain feraf ~ MiZe suitability predictions w.r.t. a matching objective.

scheduling and time-tabling, and many others. A second body of work focuses on the matching problem
itself. Benferhat and Lang|[3], Goldsmith and Sloan [11],
2 Related Work and Garg et all_[9] discuss various optimization critena a

some of the practices used by program chairs and exist-
Deep bodies of related work exist for each of the two com-ing conference management software. Taylor [24] shows
ponents that comprise our framework for reviewer match-how these criteria can be formulated as an integer program
ing: prediction of suitabilities or preferences for unob- (IP). Tang et al.[[23] propose several extensions to the IP.
served reviewer-paper (or user-item) pairs; and computing his work assumes reviewer suitability for each paper is
matchings given (known or predicted) suitabilities. Pastknown, and deals exclusively with specific matching cri-
work has either explored the score prediction problem oteria. There is a rich literature on more general matching
different approaches to matching but, to the best of ouproblems in economics and theoretical CS. Examples in-
knowledge, ours is the first that examines suitability predi clude the well-knowrstable marriage problenf8]; resi-
tion relative to different matching objectives, and exa@sin dent matching (of residency candidates to hospitals) [19];
the interactions between learning and matching. and (one-sided) matching in housing markeats [13]. In eco-

There has been significant research on the use of informd°mic models, a key focus is on stability of the matches
tion retrieval and learning techniques to determine silitab @nd minimizing incentives for participants in the matching
ity of reviewers for papers. These include the use of latenfn@rket to misreport their preferences. We do not consider
semantic indexing [7] or term frequency, inverse documenBUch strategic issues here.

frequency (TF-IDF) methods [12} 2] that exploit the con-

tent of abstracts of papers authored by reviewers and thos¢ Matching Framework and Instantiations

of submitted papers. Other have utilized co-authorship ) o ) o

graphs, using the references of a submitted paper as a stai/e begin by outlining our basic problem definition, then
ing point to generate potential refereés| [18]. Balog et al€laborate on several specific instantiations of the frame-
[1] used language models to determine the suitability of exWork we develop. These include the use of various learn-
perts for various topics/tasks, and more recently topic-modind methods for predicting unknown suitabilities, a range
els have been applied to the problem of modeling expertis€f objectives and constraints on the matching process re-
based on authored documents [25], with Mimno and Mc_flectlng .dlfferent desiderata for the reviewing process| an
Callum [16] applying their model to the Mimno and Mc- interactions between the two.

Callum [16] applying their model to the assessment of re- o

viewer suitability (we discuss this further below). 3.1 Problem Definition

While the models above predict suitability using content-Our approach to the matching problem reliessoiitabil-
based features of papers and/or reviewers, other methodty scores which describe the relevance of a reviewer to a



given paper. The matching procedure uses these scorestesent distributions over words of papers and reviewers
form a set of assignments of items to users. For reason25,16]. Our language model (LM) is based on these, and
discussed above, the suitabilities will not be fully speci-predicts suitabilities without using stated reviewer pref
fied. Since we do not wish to limit the matching processences; rather it builds a model in word (feature) space,
to reviewer-paper pairs that are known (i.e., have been diassuming that distance in this space correlates with dis-
rectly elicited), these need to be predicted in some fashiortance in suitability space. LM constructs a distributioeiov

We formalize the matching problem as follows. Let words for each reviewer, based on the archive of papers
R refer to users oreviewers p € P to items orpapers written by the reviewery,. (the reviewer side information).

and let|R| = N and|P| = M. Every user-item pair The starting point for LM is a multinomiaPr(w|d) over
has asuitability scores,,,. The set of all scores can be wordsw in a document. The maximum likelihood es-

) A . timate of Pr(w|d) is the number of occurrences of this
viewed as a suitability matrig € RY*". Only asubsetof g divideé b|y)the total number of words in the docu-
the suitabilities are observed, namely, those collectahfr ment Pr,,,; (w|d) = |wg|/T4). Using Dirichlet smoothing

reviewers during an elicitation process. Denote thisBy to account for the fact that most words do not appear in a
and denote the observed scores for a particular reviewer given document, this estimate can be written as:

and papep by Sy andS;, respectively.S*, S, S are the

analogous collections of unobserved scores. Pr(w|d) =
We may have access to additional side information about

individual reviewers and papers which may come in differ- wherePr(w) is the probability of the word across all doc-
ent forms. In our setting, side information about submit-uments angl is the smoothing parameter. This distribution
ted papers could include author-specified keywords, citacan be formed in various ways from the user side infor-
tions, and word usage in the paper. For reviewers, we maynhation (i.e., the collected papers of a reviewer). We adopt
have stated preferences for keywords, citations, or ottter d a variant of an approach_[16] in which the word vectors
scriptions of reviewer expertise. Our data sets also ireclud of reviewer-authored papers are averaged to form a single
an archive containing a set of papers written by each re-documentl,. per reviewer. LM encodes each submitted pa-
viewer, providing information about their expertise. This per as a word count vectar,, and predicts suitabilities

is represented as a word count veatgrsummarizing’s s, to belog Pr(wy|d.) = >, Pr(w|d;). This lan-

own papers. Similarly, we summarize each submitted papegyuage model has outperformed sophisticated topic models
p as a word count vecta,,. in some settings [16].

Given this information, our goal is to find a “good” match- Regression: Linear regression (LR) predicts suitabilities
ing of papers to reviewers in the presence of incomplete inelirectly using the side information associated with the
formation about reviewer suitabilities, possibly exglut  items. Each reviewer has a set of parameterswhich

the side information available. The problem can be bro4s applied to item informationu, to form an estimate of
ken into two main components: predicting unknown suit-s,.,: 3., = 6,. - w,. Stated reviewer preferences are used as
abilities using some combination of known scores and sidgraining observations, and LR minimizes the mean-squared
information; and matching papers to reviewers based orrror (MSE) w.r.t. observed suitabilities:

known and predicted suitabilities. Notice that predicting

suitability scores is, however, not a goal in and of itsdlf; i oy _
. ) . . CLr(S°)
is subservient to the primary goal of good matching perfor- |S°]
mance. Many different factors may be used to define the

quality of a matching, as we discuss below.

Ta
Ta+p

Prpi(w|d) + 2= Pr(w) )

Ta+np

Z (8rp — Srp)2 (2)

Collaborative Filtering: Given observed suitabilities,
) prediction of unobserved suitabilities can be tackled us-
3.2 Learning Methods ing collaborative filtering.Probabilistic matrix factoriza-

) . tion (PMF) [21] is a popular CF method, and finds a low-
We have explored a range of learning methods for predictyk factorization of the suitability matris ~ UTV,

ing suitabilities of reviewers for papers. Here we focusyheres ¢ RVN*M, 7 ¢ REXN andV e RE*M and
on three methods, each exploiting the different informatio X << min(M, N). The columnd/, of U andV, of V
available for prediction: &anguage model (LM)inear re-  represent latent reviewer and paper factors. TheSutla-
gression (LR)andBayesian probabilistic matrix factoriza- X, including unobserved suitabilities, can be estirdaty
tion (BPMF). LM uses the content of submitted papers a”dﬁ?ﬁénnga}r&eis?ﬁ%ﬂﬁgaog,grngu‘i/t'aﬁﬁgeesr }2:'5 model, the con-
archived papers for prediction, but does not use reviewer

bids; BPMF uses reported suitabilities/bids, but no docu- , M N - .
ment/archive side information; and LR uses bids and the Pr(S|U, V,0%) = [T [TV (sr0lUS V3, 0*)
content submissions, but not the archive. roe

Language Model: Several previous approaches to re- wherel is an indicator matrix and entr¥. , is 1 if it was
viewer matching have used simple language models to rembserved and 0 otherwise. Assuming zero-mean Gaussian



priors over the parametetsandV: assigned papers (so on average no reviewer is assigned pa-
N o pers to which she is significantly more ill-suited than any
Pr(Ulo?) = H/\/(Ur\(L o%); Pr(Vled) = HN(VPIO,U\Q/), other). Finally, when multiple reviewers are assigned to pa
r=1 =1 pers, it may be desirable to assigpmplementary review-
ersto a paper so as to cover the range of topics spanned by
a submission. Related is the desire to ensure each paper is

_ _ reviewed byat least one “senior” reviewewith significant
In a Bayesian version of PMF (BPMF), the parametérs expertise.

andV have non-zero mean and full-covariance priors [22].
The predictive distribution cannot be calculated analyti-
cally because the posteriors odérand V" are intractable,

finding the MAP solution involves minimizing MSE be-
tweenU”'V and the known suitabilities.

The intricacies of different conferences prevent us from es
tablishing an exhaustive list of matching desiderata (see
43, 11,9] for further discussion). We now explore matching

but a Markov Chain Monte Carlo sampler can be used t  echanisms that will nt for several of th riteria:
approximate sufficient statistics. Integrating over the pa echanisms that wiff account for several of these critera.
e frame the matching procedure as an optimization prob-

rameters has been shown to produce performance advaﬁ-m and show how several properties can be formulated as
tages w.r.t. root mean squared error (RMSE) on the Netfli . _Several prop . .
task [22]. constraints or modifications of the objective function.

i ] . We formulate the basic matching problem as an IP, where
Other Methods: In addition to the three methods abOVe, each paper is assigned to its best-suited reviewers [24]

we investigated several other algorithms, including super

vised and unsupervised topic models [4, 5], conditional re- maximize J***(z) = ZZ SrpTrp ©)
stricted Boltzmann machines (RBMs) [14, 20], and infer- -

ence using co-reference graphs. Preliminary experiments subjectto z,, € {0,1}, Vr,p )
showed that these methods did not match the performance

of those above. We also tried leveraging the different ;x”’ = Riarget, VP

sources of information by using combinations of the var-
ious learning models without success. Incorporating eachThe binary variabler,, encodes the matching of item
reviewer’s archive as extra training papers for LR did notto userr; a matchis an instantiation of these variables.

offer any improvement. Finally, we explored a formulation ﬁf}ﬁ%e; L?jtrr]r]eaiﬁﬁil;?ndrggﬁ\?v?r cl)g;%;/iew:rqg IF;e’ p?é)sgégﬂini—
. . . . . . P min max -
of the problem in which the training objective explicitly-op tively, can be incorporated as constraints [24]:

timizes matchingd (x) rather than optimizing RMSE w.r.t.
predicted suitabilities. However, experiments with this a
proach failed to demonstrate improved matching perfor-
mance.

Zxrp > Phin, Zxrp < Prax, Vr. (5)
p p

This IP, including constraint§}(5), is our basic formulatio
3.3 Matching Objectives (Basic IP. Its solution, theoptimal match maximizes to-

We articulate several different criteria that may inﬂuencetal reviewer swtatyhty glve'n_the constraints. Althougllsl .
o i N . . can be computationally difficult, our constraint matrix is
the definition of a “good” matching and explore different

formulations of the optimization problem that can be usedtOtaIIy unimodular, so the linear program (LP) relaxation

to accommodate these criteria. We also discuss how theégllpwmg Irp € [9’ 1]} does not affect the integrality of the
o . ) : optimal solution; hence the problem can be solved as an
criteria may interact with our learning methods.

LP.

Naturally, one would like to assign submitted papers toAlthough not mentioned above it is essential for the match-

their most suitable reviewers; of course, this is almosénev . : . .
. . ) ) . ing to prevent assignments of reviewers to submitted papers
possible since some reviewers will be most suited to far,

o for which they have conflicts of interest (COI). The above
more papers than others. In genetaqd balancingis en- : : .
. T . formulation can easily enforce known COI by directly con-
forced by placing an upper limit agnaximumon the num- L L : ,
) . : straining the conflicting assignments,’s to be 0, alterna-
ber of papers per reviewer. Similarly, we may impose

minimumto ensure reasonablead equityor load fairness ahvely, wecan se_t_the reIevant_ SCOE&%_S 10 —cc. )
across reviewers. However, limiting the paper load in-0 capture additional matching desirata, we can modify

o . : . the objective or the constraints of this IP. Load balancing
creases the probability that certain papers will be assignecsn pe controlled by manipulating,,;, and Py...: a small

to very unsuitable reviewers. This suggests only making asrange ensures each reviewer is assigned the same number
signments involving pairs with scoeg, above somenin-  of papers at the expense of match quality, while a larger

imum score thresholdThis ensures that every paper is re- range does the converse. We can instead enforce load eg-
viewed by a minimally suitable reviewer, but may sacrifice }fs',toyftb%rrg?g?nﬁsfhgnt{gggpﬁ explicit in the objective with
load equity (indeed, it may sacrifice feasibility). One may '

also desiresuitability fairnessacross reviewers; that is, re- balance -
. L AR ! J ) = SrpTrp + A Trp) —Z) (6
viewers should have similar score distributions over their @) zr:zp: pe XT: f((zp: v) ) ©)



where z is the average number of papers per reviewer oo x10°
(M/N) and f is a penalty function (e.g.f(x) = |z| or 2500
f(z) = z%). The parametei controls the tradeoff be-
tween load equity and match quality. THé&*e"c¢ objec-
tive (Eq.[6) along with the constraints expressed in[Eq. 4 £,
comprise ouBalance IR e

0

The Jbasie objective (EqL[B) maximizes the overall suit- o . o . n - o -
ability of the assignments, equating “utility” with suii&b Figure 1:0bserved scores fdt10(a) andNO9 (b).
ity. However, the utility of a specific matchrf may not
be linear in suitabilitys,,. For example, utility may be _ _ . o
more “binary”: as long as a paper is assigned to a revieweflW»| = [wr] - 1000). R(E_V|e\{)/er su|t§b|llty scores ranged
whose suitability is above a certain threshold, then the ast'om O to 3, with 0 meaning “paper lies outside my exper-
signment is good, otherwise it is not. This can be realizedise;” 1 means “can review if necessary;” 2 means “qual-
by applying some non-linear transformatigto the scores ified to review;” and 3 means “very qualified to review.”

in thee {nz’la;(}fhrjr]ng %lfgei'g\geﬂ (e'?éi‘eir?c?mheg ?g"ﬁ")’!th SCOréAs discussed above, these scores are intended to reflect re-
Srp ’ ybeg yp 9y e viewer expertise, not desire. We focus on the area chair

- or meta-reviewer) assignment problem, where the match-
T @) = 35 glsvp)ann. m ! ) assignment p
™ P

2000

2|

-
a
=3
S

1.5

er of Scores

1

0.5

ing task is to assign a single area chair to each paper. We
use the term reviewer below to refer to such area chairs.

In this transformedobjective.J*™, if g is a logistic func-  N10comprises 1250 submitted papers to be assigned to 48
tion then score are softly “binarized.” reviewers. Suitabilities on a subset of papers were elicite
Finally, we note that some of these matching objectives cafrom reviewers using a rather involved two-stage process.
also be incorporated into the suitability prediction model Thjs process utilized the language model (LM) to estimate
For example, the nonlinear transformatipoan be directly  he gyjitability of each reviewer for each paper, and then
used in the LR training objective (cf. Hd. 2): . : . \ .

gueried each reviewer on the papers on which his estimated
) 9 suitability was maximal. The output of the first round

9 ZG:SO(S’"P —9lsrp))” @) was fine-tuned using a combination of a hybrid discrimi-
o native/generative RBM_[14] with replicated softmax input
units [20] trained on the initial scores, and LM, which then
determined the second round of queries. In total, each re-
We start by describing the data sets used in our experi\—/iewer provided score on an average of 143 queried papers

ments. The rest of the section is divided into three partsgexcluding one extreme outlier), and each paper received

The first considers score predictions with the different®n average of 3.3 suitability assessments (with a std. flev. o

learning models. The second turns to matching quality1.3). The mean suitability score was 1.1376 (std. dev. 1.1);

and explores the soft constraints on the number of papea histogram of the scores is shown in Figlife 1(a). Note

T . . . .
matched per reviewer. Finally, the third part evaluates ﬁ]at since the_que_rymg process was b_|_ased towards asking
. . s about pairs with high predicted suitability, theobserved
transformation of the matching objective and shows how e
: . o scores are not missing at random, but rather tended toward
using a transformed learning objective can be enhance per-

formance on the transformed matching problem pairs withlow suitability. We do not distinguish the data
gp ' acquired in the two phases of elicitation; both took place

within a short time frame, so we assume suitabilities for
any one reviewer are stable.

Experiments are run using two data seét,0 andNO9,  No9 comprises 1079 submitted papers and 30 area chairs.
from the 2010 and 2009 editions, respectively, of the NIPSReviewer scores were not elicited, but instead provided
conference, one of the leading conferences in machingy the conference program chairs for every reviewer-
Iearnin(ﬂ For both data sets, side information for each re-g;pmission pair. A histogram of the scores is shown in

viewer comprised a self-selected set of papers taken represigure[7(b). The mean suitability score was 0.19 (std. dev.
sentative of her areas of expertise; these were summarizggls7),

as word count vectors,.. Side information about submit-

ted papers consisted of document word courjdor each

p. The total vocabulary used by submissions (across bot

sets) contained over 21,000 words; We used only the toRye first analyze performance using the root mean squared

1000 words for our experiments as ranked using TF-IDFgror (RMSE) metric, as is common in collaborative fil-
1Seeht tp: //ni ps. cc. We are currently investigating tering research. We are especially interested in how the

mechanisms by which we can make both data sets available tdifferent approaches behave as the size of the training set
the community. increases. An understanding of this dynamic is vital if one

Clr1em(S°) = 5]

4 Experimental Results

4.1 Data

ﬁ.Z Score Predictions



is to strike a balance between the demands of eliciting suit- 1127
ability scores from the user and increased accuracy of pre- 11
dictions. 108/

e s o O O S

For learning, we are given a set of training instances, 1061
Str = §°. We split this set into a training and validation
set. The trained model predicts all unobserved scStes

Since we do not have true suitability values for all unob-
served scores, we distinguistt as being the union of test ]
instancesS*¢ (for which we have scores in the data set), e
and missing instances™. We denote a model’s estimates = |- - Baseling
of the test instances a@&¢, and evaluate RMSE over these 0945 20 40 60 80 100

test Instance . Ste‘ _ §te Ste 1/2. Training set size per user
&2 rpeses (51 = 5rp) /| D , Figure 2: Performance on RMSE oN10as the number of ob-
We report results averaged over 5 different splits of theserved suitability scores per user varies.

data in all experiments. In each split, the data is divided ‘ train/valid. ‘ test ‘ missing

Test RMSE

into training, validation and test sets in 60/20/20 propor- Matchi gtr Gte | gm _
tions. There is no overlap in the test sets across the 5.splits £ a lc ”;'.g gtr gte | gm _ i
When reporting results across splits, we report the mean valuation =7

and standard error. Training LR is slightly faster thanrtrai ~ Table 1: Overview of the matching/evaluation process.
ing BPMF, for which we used 330 MCMC samples includ-

ing 30 burn-in samples, but both methods are trained withiry 3 p1atch Quality

minutes on both of our data sets.

Fig. [2 shows results for training sets of different sizes,We now turn our attention to the matching framework. We

simulating the effect of additional elicitation. To faeili first elaborate on how we perform the matching. We then
tate comparison, the test set size is fixed across differerfivaluate the performance of the different learning methods
training set sizes. We compare LR and BPMF to a baseOn the matching objective. Finally we introduce soft con-
line which predicts the mean training score. Recall thastraints into the matching objective and analyze the trade-
BPMF learns to predic5* by using S° only while LR ©ffs they introduce.

also utilizes paper features,. The strong performance Matching Experimental Procedures: The matching IPs

of LR suggests that the information contained in the papetliscussed above assume access to fully known (or pre-
features is extremely useful in predicting user preference dicted) suitability scores. Since we learn estimates of the
Interestingly, BPMF, a state-of-the-art method in CF, per-unknown scores, we denote a model's estimates of the test
forms worse than LR in all but the extremely small training- instances a$*°, and impute a value for all suitability val-
set sizes. Recall that BPMF attempts to exploit similari-ues that are missing, using a constant imputation efR.

ties across reviewers and across papers. In this case, ti¥ince missing scores are likely to reflect, on average, lower
(meta-)reviewers were specifically chosen by the confersuitability than their observed counterparts, we tse 1
ence organizers to span the field, providing expertise acrosn all experiments (recall thai10s mean was 1.1376 and
the multitude of topics typically represented at this confe N09has no missing scores).

ence. We conjecture thgt, compared to.other popular doGiven the estimates*® computed by one of our learning
mains for CF (e.'g'., movie recommendation), therg are faFnethods, we perform a matching with = S U §t¢ U
fewer commonalities across users (w.r.t. paper topica} th S™ = 7). Note that this permits missing values to be

it is difficult for BPMF to attain very good performance. matched, which is important in the regime of sparse known-

Furth?rmoré)a, although there arehprobably significant CoMg jisapjlity scores. Tablel 1 summarizes this procedure. For
rr}c:cna |t|esh et}Neen Papers, ﬁ‘,"‘ch paﬁer f,ec‘?;f\’esl an aver a seN10we setP,,;, and P, to 20 and 30, respec-
of fewer than four ratings, which makes it difficult to dis- o1 “\hile the range is 3040 for data $609

cover those commonalities from the preference data alone. ) ) )
Baseline:We adopt a baseline method that provides an ab-

Note that the language model is not included here. LM'Sgy) 1o comparison across methods. The baseline has ac-
outputs values represent log-probabilities and thus do NAtass taSt™ and imputes- for any element of¢. To allow

fall into the [_0>3]_|.S_C°r? ranr?e. A linear mapping of the o4 ningful comparison to other methods, it employs the
predicted suitabilities into the score range did not preduc same imputation for missing score&” — .

sensible results. _

A note on LM:Although the output of LM can be directly
used for matching, it does not exploit observed suitabditi
in its usual formulation. However LM can make use of
some of the training dat&'" by incorporating submitted
papers assessed as “suitable” by some revieweto her

The behavior of the different learning methodsN@Q are
similar to that observed foN10. Since they provide no
additional insight, we do not report results here.
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Figure 3:Performance on the matching task on M) data set.

Q
word vectorw,.. Specifically, we include all papers in, Figure 4: Assignments foN10 by score value when using 40
for whichr offered a score of 3 (only if this score is§fi”).  training examples per user.

For all methods, once an optimal mateh is found, we

evaluate it using all observed and unobserved scores, with

the same constant imputation for the missing scores, wherd9ned papers on which her average preference is greater
match qualityis measured using?** (see EquatioRl3): than 2 (out of 3). LR reaches this level of performance with
less than 30 observed scores per user, while other methods

Z Zx;ﬁp(gtr usttuS™ =1) 9) need 30% more data per user to reach the same level of
" 7 performance.

Further insight into matching quality oN10 induced by
the different learning methods can be gained by examining
the distribution of scores associated with matched papers

Matching Performance usingBasic IP: We now report
on the quality of the matchings that result from using the,

predict?ons of the different methods. Again we Cons_id_er(Figure@) or under different sizes of the training set (Fig-
dynamic matching performance as the amount of trainin relB). Figuré displays the number of scores of each value

data per user increases. Note that the optimal match valu(% 3) . . o .
) . —3) that get assigned with a training set size of 40. Not
is 3053 forN10 and 2172 forNO9, which occurs when surprisingly, LR and BPMF assign significantly more 2s

Ote __ Qte

5% = 5%, and 3s combined than all other methods. LM is very good
Figurel3 shows how matching quality varies as the amounét picking the top scores which may be a consequence of
of training data per user increases. Since training scoees aour data collection method. In addition, Baseline assigns
also observed at matching time (£4. 9), all methods benefew zeros, since all missing and test scores are imputed to
fit from having a larger training set. Figuré 3 leads to theper = 1.

following three observations. Firstly, when no ObserVedFigure[B provides another perspective on assignment qual-
data |s_avallable, -€., using only the archive, LM do‘?s Veryity. Here we plot results for the best performing method,
well, with a matching score af247 + 32, nearly identical | o, hothn10andNO9, for 3 different training set sizes.

to the quality of LR and BPMF W.'th 10 bids per user, and We first note that the extreme imbalanceNfi9leads LR
much better than the match quality b2 obtained using  , 4ssiqn many zeros even with 80 training scores per user.

t 7 —
constant scoref(5"* U ™) = 7). Secondly, when very Overall, both datasets show that as the number of training

few scores are available, LR and LM perform best (and dqscores increases, more 2s and 3s, and fewer 0Os and 1s, are
equally well). As mentioned above, LM is able to exploit assigned

observed suitabilities by adding relevant papers to the use o ] ]

corpus, but this attenuates the impact of elicited scores: wOUr remaining results deal exclusively witL0since ex-

see LM is outperformed by all other methods when suffi-Perimental results witNO9were similar.

cient data is available. Thirdly, LR outperforms all other Load Balancing Balance IP: The experiments above all
methods as data is added. We also see that as the numsnstrain the number of papers per reviewer to be within a
ber of observed scores increases, unsurprisingly, the gaspecific range Bnin—Pumax). There is no good indication

in matching performance (value of information) from addi- as to how to set these two extrema. Instead we now use the
tional scores decreases. Balance IP both for matching and evaluation (see Ef. 9),

It is also interesting to note that a total matching score of€tting/ to be the absolute value function.
over 2500 implies that, on average, each reviewer is asFigure[6 shows the histogram of assigned papers per re-



matching with the transformed objectivé®{") versus the
basic objective.{****°). In both cases the resulting matches
are evaluated using*™. Although a minor gain is ob-
served when most of the known data is observed, there is,
overall, very little difference in performance when match-

s ing with either objective. Recall that the mean number of
scores per paper is less than 4. Hence, when matching us-
ing a small fraction of the data, the matching procedure
has very little flexibility to assign high scoring pairs usge
learning is used to predict unobserved scores.

0 1 2 3
&
8
5
< .
0 1 2 3

g
= I.I

o |

Figure 5: Assignments by score value. From Left to Right: 10, We can modify the learning objective to take into account
40, 80 (86 examples fdN10) training examples per user. Top: the nonlinearity introduced in the matching objective. We

N10 Bottom:NO9. do this by transforming all labels using the same sigmoidal
transformation as in the matching objective [Eq.8). This
allows learning to better predict the transformed scores by
explicitly training on them Figur&]7(b) shows the trans-

pformed matching performance of both LR on the with non-

transformed data, and LR-TFM, a linear regression model
trained using the transformed learning objective. Not sur-
prisingly, LR-TFM outperforms LR across all training set
sizes, since it is trained for the modified objectiv&™.

viewer given by the optimal solution to the IP for differ-
entA € {0,0.1,1}. When)\ = 0 load equity is ignored,
and almost all reviewers either get assigned the minimu
(Rmin) Or the maximum R,,.x) humber of papers; within-
reviewer variance )C , (z,, — 7)?/M) is extremely high.
When a “soft constraint” on load equity is introduced, as-
signments become more balanced asXhecreases (i.e., . X ) ) .
the balance constraint becomes “harder”). The foIIowingThe difference is especially pronounced with smaller train

table reports the matching objective versus the varianee, a "9 Sets—when enough data is available, both methods will
eraged across users, for different valuea wfith a training ~ naturally assign many 2s and 3s. (We also verified that LR-
set size of 40 (other training sizes yielded similar reults TFM outperforms BPMF trained on the transformed objec-

ve).
A 0 01 |025]05 |075]1
Jbasie 12625 | 2615 | 2600 | 2573 | 2569 | 2569 )
Variance | 4.62 | 3.28 | 2.61 | 0.89 | 0.37 | 0.33 5 Conclusion

Not surprisingly, larger penalties for deviating from the i _
mean reviewer load give rise to greater load balance (lowefVe déveloped a framework for paper to reviewer assign-

load variance) and worse matching performance. GenefMent in the context of scientific conferences. We showed
ally, an appropriate\ will be chosen by the conference how by eliciting only a small subset of scores from review-

organizers, that nicely trades off performance versus loa§"S @nd inferring unobserved scores using one of several
balance across reviewers (here, perhaps arauad).5). learning methods we were able to determine high quality
matchings. Interestingly in the field of collaborative filte

ing, side-information is often perceived to be useful only i
the cold-start condition, where little or no scores arelavai
We now consider a non-linear transformation of the scoresable. The performance of both LM and LR, which leverage
reflecting the view that it ismuchbetter to assign reviewer- word-level features from reviewer and submitted papers,
paper pairs with suitabilities of 2 and 3, than pairs with 0show that this is not the case in our domain of interest. We
and 1; as discussed above this can be accomplished by also explored the trade-off between matching quality and
lowing “utility” z,, to be non-linear in suitability scorg,,. paper load balancing, which may avoid the need to man-
We adopt the following sigmoid function to effect this non- ually set limits on the reviewers’ load. Finally we showed
linear transformations(s) = 1/(1 + exp(—(s — 1.5)8));  thatin arealistic situation where utility is non-linearsinit-
herel.5 is the middle of the scores’ range. We et 4.5, ability scores, we discover better matches by learning with
which gives:¢(0) = 0.001; o(1) = 0.095; o(2) = 0.90;  this same non-linearity.

o(3) = 1.0. We first show how this transformation impacts Gjyen how the matching benefited from an interaction with
matching performance without learning; then we discusspe |earning, we are developing ways to strengthen this in-
how one can incorporate the transformation into the leamggraction by making the learning methods aware of the final
ing objective itself. matching objective. We have obtained good results using
We first test how matching using the transformed objec+his approach in an active learning setting where the system
tives affects results without using learning to infer mgsi  chooses which reviewer scores to query. We are now in-
scores (consequenthg™ = 1), by examining difference terested in exploring how asking meta-queries, about gen-
in matching performance when varying the percentage oéral aspects of papers rather than a single paper, may be
observed scores. Figuié 7(a) shows the difference wheexploited to reduce the number of reviewer queries while

4.4 Transformed Matching and Learning
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maintaining strong matching performance.
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