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Abstract— Recent work has shown that multi-cell co-operations
in cellular networks, enabling distributed antenna systems and
joint transmission or joint detection across cell boundaries, can
significantly increase system capacity and user fairness. Most
publications in this field assume that an infinite amount of infor-
mation can be exchanged between the co-operating base stations,
neglecting the main downside of such systems, namely the need
for an additional network backhaul. In a recent publication [1],
we have proposed an optimization framework and algorithm
that applies joint detection to a subset of users for scenarios
of constrained backhaul. In this paper, we will now observe joint
transmission in the downlink, which can be described in a similar
way, but allows for an additional degree of freedom in the way the
backhaul infrastructure is used. Different schemes are compared,
yielding that linear multi-user beamforming to selected users
can significantly improve the downlink performance of cellular
systems under a strongly limited backhaul.

I. I NTRODUCTION

It is well known that inter-cell interference poses the main
capacity limitation in future cellular systems. To overcome
this problem, multi-user detection or transmission acrosscell
borders, often observed in the context of so-calleddistributed
antenna systems(DAS) has been proposed by various authors.
Optimistic capacity bounds for large clusters of co-operating
cells have been determined for the uplink [2] and downlink [3],
[4], and corresponding detection and transmission schemes
investigated in e.g. [3], [5], [6].

The main downside of inter-cell co-operation is the vast
amount of backhaul required for information exchange be-
tween involved base stations. Recently, we have thus intro-
duced a framework [1] to improve both the sum capacity
and, more significantly, the fairness of a cellular system by
applying joint detection only to selected users, while limited
by a pre-defined backhaul infrastructure. We will now show
that the developed framework can be applied analoguously to
the downlink. Here, we have the additional degree of freedom
to either exchange pre-processed and quantized signal values
over the backhaul, or the uncoded, binary data of jointly
pre-processed users, which we will observe in detail. For
simplicity, we generally assume that perfect transmitter-side
channel knowledge is available at the base stations, though
the framework could easily be extended to model performance
degradation due to incomplete channel information.

In section II, we will summarize basic aspects about linear
joint transmission. In sections III and IV, we will adapt
our framework from [1] to the downlink and show that the
proposed optimization algorithm can also be similarly applied
here. We will then discuss simulation results in section V and
conclude the paper in section VI.

II. BASICS

A. Notation

The notation we use throughout the paper is as follows. In
general, ifX is a matrix, then we refer to thejth column
vectorasxj , and refer to the matrix elements asxi,j , except
for channel matricesH, wherehk refers to therow vector
corresponding to userk. The operator⊙ denotes element-
wise multiplication,� denotes element-wise inequality, and
operator∆ yields a square matrix with non-zero elements only
on the diagonal, either extracted from a given square matrixor
generated from a vector. The operatorY = ⌊X⌋ yieldsyi,j =
1 if xi,j > 0, otherwise zero. The expressions0[i×j] and1[i×j]

denote matrices withi rows andj columns, filled with zeros
and ones, respectively.I[i] denotes a sizei identity matrix,
operators(·)T and(·)H denote matrix transpose and Hermitian
transpose, respectively, andE{·} denotes expectation value.

B. Joint transmission in Distributed Antenna Systems

We observe linear joint transmission schemes, enabling an
easy derivation of lower achievable rate bounds which can
then be exceeded by non-linear schemes, e.g. Costa precoding,
proven to approach channel capacity in [7]. A joint transmis-
sion fromM base stations with a total ofNT transmit antennas
to K users with one receive antenna each can be stated as

y = HW∆(p)
1

2 s + n, where∆(WHW) = I[K] (1)

whereH ∈ C[K×NT ] is the matrix of a frequency-flat channel,
and W ∈ C[NT ×K] is the beamforming matrix. Vectors
p ∈ R+[K×1], s ∈ C[K×1], andn ∈ C[K×1] are the transmit
powers, transmitted signals and zero-mean white Gaussian
noise at the receivers of the mobile terminals, respectively.
The resulting achievable rate of a userk is known to be
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whereσ2
k = E{nH

k nk}. We will from now on use the term
capacityfor the achievable rate of a user under a given beam-
forming matrixW and power allocationp. Major research has
been done on the joint choice of these two parameters, e.g.
for maximizing sum capacity [3] or balancing user SINRs [6].
In large systems with many users per cell and selective joint
transmission, however, power allocation is yet uninvestigated.
We thus want to decouple the problems and determine the
achievable capacity if for a given power allocationp, an
optimal beamforming matrixW is chosen. We derive from [6]
and [8] that such vectors are obtained for all usersk as

wk =
A−1

k hH
k

hkA
−2
k hH

k

, Ak =

K∑

i=1,i 6=k

pih
H
i hi + σ̄2I[NT ] (3)

whereσ̄2 is the average noise over all users. This corresponds
to the transmit Wiener filter solution [9], succeeded by a unit
column power constraint onW. Within a cellular network,
however, we have to constrain the transmit power contributed
by each base station. Assuming that sets of users chosen for
joint transmission will usually be close to cell borders, s.t.
the average path gain from all transmit antennas to a user is
similar, we suggest to let the involved base stations equally
share the sum transmit power, hence the additional constraint

MB∆
(
W∆(p)WH

)
1[NT ×1] =

1

K
pT 1[K×1]1[M×1] (4)

whereMB ∈ {0, 1}[M×NT ] maps transmit antennas to base
stations. Though downlink beamforming with per-antenna
power constraints [10] could possibly be extended toper-
base-stationconstraints, we propose to simply compute the
beamforming matrix for all involved users jointly as

W = ∆

(
β1

.

.

.
βNT

)

(
HH∆(p)H + σ̄2I

)−1
HH∆

(
α1

.

.

.
αK

)

(5)
where factorsαk are initially chosen to ensure the constraint
in (1), andβt are subsequently chosen to fulfill (4). Though
the resultingW does not fulfill (1), and thus the beamforming
vectors are not optimal w.r.t. (3), our simulations have shown
only a marginal degradation in performance.

III. O PTIMIZATION FRAMEWORK

We will now adapt the framework from [1] to the downlink,
allowing us to describe user capacity as a function of a set
of input parameters. Note that all variables (M , K, NT ,
p etc.) are now used to describe a large cellular system,
where S refers to the number ofsites, typically grouping
three base stations into one location. We assume uncorrelated
signal propagation paths due to cross-polarization antennas at
base stations and large distances between antennas otherwise,
perfect transmitter-side channel information at one central
point, and errorless backhaul links (e.g. fixed wire) with
limited capacity between certain sites, as specified later.

In [1], we stated the concept ofgroups, i.e. a set of users
in different cells sharing the same resources (e.g. sub-carriers,

codes etc.). These users will observe mutual interference,but
can be selected for joint transmission to combat exactly this
interference. User grouping is described through matrix

G ∈ {0, 1}[K×K] e.g.G =
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(6)
in this example grouping the first three and last two users onto
the same resources, respectively. Grouping follows the lawof
transcivity and reflexivity, henceGT = G and∀i, j : gT

i gj ∈
{0,gT

i gi}. For a given user grouping, we can state channel
matricesHl ∈ C[K×NT ], where index1 ≤ l ≤ L allows to
observeL channel coefficients on each spatial link, if desired,
e.g. representing different sub-carriers. We further define the
so-calledjoint transmission configurationmatrix as

V ∈ N
+[NT ×K]
0 e.g.V =
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where each entryvt,u > 0 determines that transmit antenna
t is involved in the transmission to useru, the actual value
stating the quantization bits used if the transmit signals are pre-
processed in a central location and then relayed via the back-
haul. For all users involved in a common joint transmission
operation, the set of transmit antennas and the quantization
level per antenna must be equal, fulfilling∀i, j : gT

i gj > 0 →
vT

i vj ∈ {0,vT
i vi}. From (2), we can now derive the per-

user capacity as stated in equation (10), where (11) fulfillsthe
constraints discussed in (5), anduk refers to matrix

U ∈ {0, 1}[K×K] = ⌊G ⊙
(
VT V

)
⌋ (8)

stating which users are involved in the same joint transmission
operation.ξk is the relative quantization noise power (w.r.t. the
average transmit power at each antenna), given by

ξk ∈ R+[NT ×1] =

[
1

2v1,k−2
,

1

2v2,k−2
, ...,

1

2vNT ,k−2

]T

(9)

In (10), the expectation value over multiple channel matrices
Hl, 1 ≤ l ≤ L is observed, where indexl is omitted for
notational brevity. Perspectively, we could extend the quanti-
zation noise term in (10) to incorporate the effect of chosing
beamforming vectors under incomplete channel knowledge.

A. Calculating Backhaul

We now derive the backhaul required for the selective joint
transmission specified throughV, expressed as a matrixB ∈

N
+[S×S]
0 , wherebi,j states the required backhaul from sitei

to site j. We will now discuss the two mentioned scenarios
how to use the backhaul infrastructure in the downlink
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whereV̌ = ⌊V⌋ andW(k) = ∆(β1...βNt
)
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Fig. 1. Site setup for simulations, containing a co-operating cluster of 7 sites
surrounded by a tier of 12 sites additionally introducing interference

1) Relaying pre-processed, quantized signals:For each
joint transmission operation, one central site having complete
channel information could pre-process all transmit signals,
quantize and distribute them to all other involved sites. Then,

B = ρ ·
K∑

k=1

[
0[S×sk−1] MSvk 0[S×S−sk]

]T

1[1×K]uk

(12)

whereρ is the per-user bandwidth, i.e. the number of quan-
tized signal values per user, antenna and second.MS ∈
{0, 1}[S×NT ] maps transmit antennas to sites.s = [s1...sK ]
states each user’smaster site, i.e. the site performing the pre-
processing, constrained by the backhaul infrastructure to

sk ∈
{
1 ≤ s ≤ S : ⌊MSvk⌋

T ⌊DT + I⌋s = 1[1×S]⌊MSvk⌋
}

(13)
whereD ∈ N

+[S×S]
0 is the available backhaul between sites.

2) Relaying uncoded, binary user data:Alternatively, un-
coded user data could be distributed from a master site to
all involved base stations, where coding and computation of
beamforming matrices is performed redundantly, assuming
distributed channel knowledge. Then, quantization noise is
avoided, and the required backhaul depends on the actual user
throughput, leading to an upper bound for the backhaul as

B � ρ ·
K∑

k=1

ck

[
0[S×sk−1] ⌊MSvk⌋ 0[S×S−sk]

]T
(14)

with sk as in (13). Regardless of the backhaul scenario, any
choice of(V, s) finally has to fulfill the backhaul constraint

B � D (15)

B. Overall Optimization Problem

We now have the same optimization problem as in the
uplink [1], i.e. we can compute user capacities and backhaulas
a function of user groupingG, joint transmission configuration
(V, s) and power allocationp, and have to solve

[Ĝ, V̂, ŝ, p̂] = argmax
G,V,s,p

W [c(G,V, s,p)]

∣
∣
∣
∣
∣
D

(16)

for a given backhaul infrastructureD and power constraint

MU∆(U1[K×1])
−1Up � Pmax · 1[M×1] (17)

where MU ∈ {0, 1}[M×K] maps users onto base stations,
Pmax is the total transmit power per base station, andW a
function that takes the user capacities and yields an overall
performance metric. In our case,W is designed to maximize
the average capacity of the 5 percent of weakest users.

IV. A N OPTIMIZATION ALGORITHM

As the dimensionality of the optimization problem and the
discreteness of input parametersG,V, s prohibits any brute
force search or convex optimization approach, we stated an
algorithm in [1] that serializes the problem in order to yield
a good result at low complexity. We will now see that this
algorithm can also be applied to the downlink. As a first
simplification, we setp to an equal power per user.

A. Isolation-based User Grouping

In [1], we have shown that a non-random user grouping
onto resources (i.e. design ofG), can improve both average
capacity and system fairness. Intuitively, it should also be
beneficial for the downlink if we rank the users in each cell
according to theirisolation, i.e. a value close to one for cell-
center users, and lower for cell-edge users, defined as

γk =
∑

φ∈Φk

E{|hk,φ|
2}

/
∑

1≤φ≤NT

E{|hk,φ|
2} (18)

whereΦk are the antennas of the home base station of userk.
We then group the users according to their isolation, i.e. such
that users with a similar isolation share the same resources.
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Fig. 2. Illustration of the optimization algorithm throughout iterations, using
backhaul scenario 2 and isolation-based user grouping

B. Joint Transmission Optimization

Now thatp andG are fixed, we propose to determine(V, s)
through the same algorithm as in [1]:

1) Choose a number of quantization bitsq for all relayed
signals in backhaul scenario 1 (see section V)

2) Initialize V, so that each terminal is linked to only the
Nt transmit antennas of its home base station

3) Calculate capacitiesc = [c1, c2, ..., ck]T , according to
equation (10), and the performance measurew = W (c)

4) Calculate total backhaulβ =
∑

i,j bi,j from (12) or (14)
5) Loop through users, starting with low-capacity users

a) For a userk, determine setΨ of tupels (φ, s) of
additional transmit antennas and feasible master
sites, based on the underlying infrastructure, i.e.

Ψ = {(φ, s)|1 ≤ φ ≤ NT , 1 ≤ s ≤ S, vφ,k = 0

∧ [⌊D + I⌋T ]Ts χ(k, φ) = 1[1×S]χ(k, φ)

where χ(k, φ) ∈ {0, 1}[S×1] states the sites in-
volved into the joint transmission operation deter-
mined byvk andφ, i.e.

χ(k, φ) = ⌊MSV(gk ⊙ (VT (vk[vφ,k = 1])))⌋

b) For all (φ, s) ∈ Ψ, determine the corre-
sponding system parametersV′(φ, s, q) and s′(s)
and calculate the resulting performance metrics
w̃(G,V′, s′,p), and total backhaul̃β(V′, s′)

c) Choose(̂φ, s) ∈ Ψ that fulfills the backhaul con-
straint (15), fulfills w̃(G,V′(φ, s, q), s′(s),p) ≥
w, and maximizes the improvement gradient

(̂φ, s) = argmax
(φ,s)∈Ψ

w̃(G,V′(φ, s, q), s′(s),p) − w

β̃(V′(φ, s, q), s′(s)) − β
,

d) Update(V, s) according to(̂φ, s) and the initial
choice of the number of quantization bitsq

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

Backhaul δ available between adjacent sites [Mbit/s]

Capacity vs. number of bits for signal quantization

U
se

r 
ca

pa
ci

ty
 [b

it/
s/

H
z]

 

 

4 bit (average)
4 bit (weak 5%)
6 bit (average)
6 bit (weak 5%)
8 bit (average)
8 bit (weak 5%)
10 bit (average)
10 bit (weak 5%)

Average user capacity

Average cap.
of 5% weakest
users

Fig. 3. Simulation results for different numbers of quantization bits q, if
backhaul scenario 1 is employed with random user grouping

6) Stop when no more improvements are possible within
the backhaul constraintD

As in the uplink, convergence is guaranteed as(V, s) are
only updated if metricw can be improved, until all base station
antennas transmit to all users or the backhaul limit is reached.

V. SIMULATION RESULTS

We observe a co-operating cluster of 7 sites with 3 base
stations each, surrounded by another tier of sites causing
interference, as shown in figure 1. We assume 2 transmit
antennas per base station, and that each site within the cluster
is connected to its partners via bi-directional, errorlesslinks
of a common capacityδ. We can then state

D =


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δ δ 0 0 0 δ 0
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
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0[7×12]
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









(19)

We constrainV to vφ,k ∈ {0, q, 16}, where the same
quantization levelq is used throughout the system for backhaul
scenario 1, and basically noise-less 16-bit quantization is
assumed within master sites for scenario 1, and in general for
scenario 2. We observe a fully loaded 5MHz OFDMA system
where 50 users per cell occupyL = 6 maximally spaced sub-
carriers each, leading to a per-user bandwidthρ = 84kHz,
and assume that the coherence bandwidth is so small that
each user’s sub-carriers are fairly uncorrelated. We observe the
ergodic behavior of Rayleigh fading channels with an average
gain obtained from an Okumura Hata pathloss model as in [2].
Only the performance of the central site is plotted.

Figure 2 shows the average and 5th percentile user capacity
improvements throughout the iterations of the algorithm for
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i.e. exchange of pre-processed signals or uncoded data bitsbetween sites

backhaul scenario 2 and isolation-based user grouping. The
5th percentile capacity achieved by the algorithm is larger
than that obtained by complete joint transmission to all users,
as joint transmission is not always beneficial to all users
involved, as opposed to joint detection in the uplink. Thus,
even for unlimited backhaul, the complete joint transmission
performance indicated through stars will not be reached by the
algorithm, if w is defined to optimize fairness. In figure 3, we
can see that for backhaul scenario 1,q = 8 is a suitable number
of quantization bits for a strongly constrained backhaul.

Figure 4 compares backhaul scenarios 1 and 2. The impact
of isolation-based user grouping as opposed to random user
grouping (only plotted for scenario 2) is similar, but stronger
than in the uplink, as the capacity of certain users can even be
degraded especially if joint transmission is applied to hetero-
geneous groups of cell-center and cell-edge users. Scenario
2 yields a superior average and 5th percentile performance
for δ ≤ 10Mbit/s. This is because the backhaul needed for
the distribution of uncoded data among sites is initially lower,
but increases quadratically in the number of users involved,
while for scenario 1, it increases linearly in the number of
transmit antennas involved. The slight superiority of scenario
2 for δ ≥ 160Mbit/s is due to the missing quantization noise. It
has to be noted that the backhaul for scenario 2 is a pessimistic
estimate due to the inequality in (14), and in practical systems
where joint transmission will most likely only be applied
to small sets of users, scenario 2 should generally show a
better ratio of capacity over backhaul, if the distributionof
transmitter-side channel knowledge can somehow be realized.

Figure 5 shows the user capacities within the central site. We
compare backhaul scenario 2 with isolation-based user group-
ing to a conventional system employing transmit diversity
(Alamouti) or beamforming from the two transmit antennas of
each base station. As in the uplink, we observe large capacity
and fairness improvements achievable through selective joint
transmission, even for a strongly constrained backhaul.
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Fig. 5. Cumulative distribution of user capacity for a conventional and the
novel scheme using backhaul scenario 2 and isolation-based user grouping

VI. CONCLUSIONS ANDFUTURE OUTLOOK

In this paper, we have adapted a framework for optimizing
the uplink of distributed antenna systems to the downlink.
After having derived user capacity expressions for linear joint
transmission with per-base-station power constraints, wehave
shown that the same algorithmical approach from [1] can be
used to achieve major capacity and fairness improvements un-
der a constrained backhaul in the downlink. We have compared
two scenarios of how the backhaul can be used, and seen that
the previously proposed isolation-based user grouping is also
beneficial in the downlink.
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