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Abstract

As modeling becomes a more widespread practice in the life- and biomedical sciences, we require 

reliable tools to calibrate models against ever more complex and detailed data. Here we present an 

approximate Bayesian computation framework and software environment, ABC-SysBio, which 

enables parameter estimation and model selection in the Bayesian formalism using Sequential 

Monte-Carlo approaches. We outline the underlying rationale, discuss the computational and 

practical issues, and provide detailed guidance as to how the important tasks of parameter 

inference and model selection can be carried out in practice. Unlike other available packages, 

ABC-SysBio is highly suited for investigating in particular the challenging problem of fitting 

stochastic models to data. Although computationally expensive, the additional insights gained in 

the Bayesian formalism more than make up for this cost, especially in complex problems.
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Introduction

Experimental data and mathematical models are beginning to take equal billing in systems 

biology. Experimental observations without a framework in which to link them offer us only 

limited insights into how biological systems work. Equally, mathematical analysis without 
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concrete grounding in, and immediate relevance to, experimental observations risks being 

biologically irrelevant. Here we adopt a very flexible notion of what constitutes a system, 

and merely assume that we have quantitative (e.g. proteomics, transcriptomics or 

metabolomics) data concerning the change over time in the abundances or concentrations of 

a number of different molecular species; signal transduction and stress response pathways, 

and gene expression regulatory circuits naturally fall under this loose definition, as do 

metabolic pathways, and combinations thereof.

Models summarize our understanding of biological mechanisms in an equally convenient as 

well as precise form; they enable us to make predictions that test our understanding; and 

model those aspects of a system that are not directly accessible to experimental observation. 

In the analysis of gene expression dynamics, for example, proteomic and transcriptomic data 

are rarely measured together and, if they are, not always at the same time-points. Models 

thus provide the context in which data are best interpreted and the function of biological 

systems is understood.

Linking models and data, however, remains a formidable challenge. Even when a plausible, 

perhaps even ‘almost correct’, model is available, we require numerical values for all the 

mathematical parameters that describe the behavior of the mathematical system. And 

suitably parameterized models are few and far between.

Two schools of thought can be distinguished. The first, traditional approach is to collect 

parameter values from the literature and plug these values into the mathematical equations 

making up the model. The second approach places the experimental data at the heart of the 

analysis and seeks to infer the parameters from the available observations1,2. A host of 

different approaches, or inferential procedures, have been proposed in the literature and used 

in practice3. Statistical inference typically tries to obtain the best estimates of the reaction 

rates as well as their respective uncertainties (Figure 1). Optimization-based frameworks 

contend with the ‘best’ value. A common method is to specify an objective function that 

quantifies the discrepancy between the experimental data and the model’s predictions, and 

then to search through parameter combinations in order to minimize this discrepancy4. A 

broad range of optimization algorithms exists, which provide a variety of different (often 

heuristic) methods for performing this search and thereby identifying the ‘best’ parameter 

set. If such an optimization approach is adopted, a key consideration is to avoid over-fitting 

the data (i.e. fitting the noise). Another concern is the problem of local optima, which means 

that there will often be many parameter combinations that provide locally optimal fits, but 

determining whether or not they are truly the ‘best’ parameters (or if, alternatively, we could 

have found better ones by performing a more thorough search) is typically very challenging. 

Finally, optimization approaches must always be concerned with the robustness of the 

parameter estimates, and the confidence that is placed in them. Bootstrapping5 and data 

subsampling approaches provide a class of (computationally intensive) methods for 

robustness quantification, by generating a collection of ‘new’ datasets from the initial set of 

observations, and then assessing the variability in the parameter estimates obtained across 

this collection.
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Although the best parameter value is of obvious interest, so too is an assessment of how 

much uncertainty there is in the estimate. As an alternative to heuristic optimization 

approaches, Bayesian inference has gained attention in recent years as a flexible and 

formally coherent way in which to approach the problem of model calibration1,6,7. 

Bayesian approaches provide an opportunity to specify any prior beliefs or information that 

we have about the unknown parameters (which may, for example, have been obtained 

through previous experimentation), while also: (i) automatically avoiding the problem of 

over-fitting; and (ii) providing assessments of confidence by assessing the uncertainty that 

remains in the unknown parameters. Although the problem of adequately exploring the 

space of parameter combinations remains, and it must be carefully considered, methods for 

Bayesian inference typically take great pains to address these concerns. The key object of 

interest when performing Bayesian parameter inference is the ‘posterior distribution’. This 

distribution describes the uncertainty that remains in the parameters after observing the data, 

and is obtained via Bayes rule in a manner that combines our prior beliefs (the beliefs we 

had regarding the parameters before performing the current experiments) with an assessment 

of the fit provided to the observed data. Formally, we usually write this relationship as8,

where θ denotes the vector of parameters, D is the observed data, and ℓ the likelihood 

function; or, in words, as,

Here, the prior is a distribution that formally expresses the information or beliefs that we 

have about the parameters before we performed the current experiment, while the likelihood 

is a function of the parameters that describes in a formal, probabilistic manner how well 

each parameter explains the observed data.

The prior distribution clearly has an important role in Bayesian inference, providing an 

opportunity to express the beliefs we have regarding the parameters before dataset D is 

obtained. Exactly how we should elicit and specify priors is a highly debated issue that is 

largely beyond the scope of the present article, and we refer the interested reader to the 

literature9–12. Since the use of ‘objective’ priors (i.e. ‘vague’ priors, such as maximum 

entropy and Jeffreys priors, specified according to mathematical principles, rather than 

according to the subjective prior belief of the investigator conducting the analysis) has 

received some criticism13, we would recommend biophysically motivated priors (i.e. priors 

which genuinely reflect the researcher’s knowledge of any biophysical constraints) wherever 

possible. In cases where this is not possible, it is advisable to explore the influence of prior 

choice explicitly, as done in, for instance, Toni et al.14.

The likelihood is typically defined by a parametric probability model, p(D|θ), for the data, 

such that ℓ(θ|D) is given by considering p(D|θ) as a function of the parameters θ (with D, the 

observed dataset, fixed). In contrast to maximum likelihood approaches, which treat the 

likelihood as an objective function and use optimization approaches to search for the single 
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‘best’ parameter vector that maximizes p(D|θ), Bayesian approaches are concerned with 

elucidating (or, at least, obtaining samples from) the posterior distribution of parameter 

vectors, p(θ|D). It is usually impossible to write down an expression for the posterior 

distribution analytically, in which case it is necessary to use computational approaches, such 

as Markov chain Monte Carlo (MCMC) techniques15.

It is worth reiterating that Bayesian inference attempts to assess the probability of a 

parameter to be the ‘correct’ parameter given the data8; this naturally includes an 

assessment of the uncertainty of the inference as all parameter values that have finite 

probability to have generated the data are the target of the inference procedure. This 

uncertainty, it has turned out, can play a pivotal role in the analysis of a system’s 

dynamics16–18. And appreciation of this uncertainty yields direct insights into the degree to 

which the behavior predicted by the model is robust to changes to the parameters, especially 

when the distribution over the different reaction rates is considered jointly (Figure 1). 

Although they come at computational expense, the insights gained from considering this 

joint distribution over parameters may outweigh these costs. When analyzing data in the 

context of a mathematical model, we always ought to calibrate the model against the 

available data, i.e. to estimate parameters from the data directly. Relying on parameter 

values obtained independently, such as from the literature, is fraught with potential problems 

as biochemical reaction rates can vary between different conditions (e.g. as a function of 

temperature, ambient pH, or changes due to factors not explicitly modeled).

A great deal of recent research has considered situations in which it is impossible to write 

down an expression for the likelihood, ℓ(θ|D), but it is nevertheless possible to simulate data 

from our model. Such ‘likelihood free’ approaches have become known as ‘approximate 

Bayesian computation’ (ABC)19.

The simplest ABC approach, ABC rejection20,21, proceeds by: (i) sampling a parameter 

vector, θ*, from the prior distribution; (ii) plugging θ*into our model and running a 

simulation in order to generate a synthetic dataset, D*; (iii) using a distance function, d, to 

quantify the discrepancy between D* and the observed data, D; and (iii) accepting θ* if the 

distance, d(D, D*), between D and D* is less than some threshold value, ε. This process 

may be repeated many times in order to obtain a collection of accepted parameter vectors. It 

is important to note that, if noise is present in the observed dataset D, then, to avoid 

introducing biases, it should also be present in the synthetic dataset D*, which for known 

noise characteristics can be straightforwardly incorporated. In some contexts (e.g. when 

modeling data using ordinary differential equations) simply specifying a model for the 

measurement noise will imply a likelihood22, but here we are concerned with complex 

stochastic models for which this is not the case. In the models that we consider, there are 

components of output uncertainty that are typically much larger than the measurement noise 

(e.g. in the context of biochemical reaction networks, the times at which reactions occur), 

and therefore it has become common practice to assume that measurement noise is 

negligible compared to these other sources of stochasticity23–25.

In the limit as the threshold value ε tends to zero, the accepted collection of parameter 

vectors will represent a sample from the posterior distribution, p(θ| D). In practice, if ε is set 
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to be too small, the acceptance rate (i.e. the proportion of times we have d(D, D*) < ε) will 

be unacceptably low. This consideration (and its computational implications) has motivated 

researchers to introduce a number of sequential approaches26–28, in which a decreasing 

schedule of ε values is used in such a way that these approaches gradually move from 

sampling from the prior (when ε is very large) toward sampling from the posterior (as ε 
tends toward zero). In this protocol we focus on an ABC algorithm based on sequential 

Monte-Carlo approaches (ABC-SMC) introduced by Toni et al. 27. An overview of the 

ABC-SMC algorithm is provided in Box 1. In cases where the dataset, D, is very high-

dimensional or has a particularly complicated structure (e.g. if D is from a network), a 

number of authors have considered comparing summaries of the data, i.e. calculating vectors 

of statistics, ρ(D) and ρ(D*), for the observed and simulated datasets, and only accepting θ* 

if d(ρ(D), ρ(D*)) < ε. However, this approach will usually result in some loss of information 

(which can have negative theoretical and practical consequences), and hence considerable 

care must be taken to choose appropriate, informative summaries of the data29–33. In ABC-

SysBio, we only consider direct comparisons between the observed and simulated datasets, 

rather than using summaries of the data.

In addition to parameter estimation, ABC approaches can also be used for model ranking 

and selection34. In this case, we associate a model indicator, m, with each model under 

consideration, and seek samples from the joint posterior distribution over models and 

parameters, p(m, θ|D). From these samples we may derive estimates of the marginal 

posterior probability of a model, p(m|D), which may be used to rank the models of interest. 

As we discuss in the Limitations section below, the issues mentioned above regarding the 

use of statistics to summarize the data (which we avoid in ABC-SysBio) are particularly 

problematic in the context of model selection.

The key strength of ABC approaches is that they can be applied to problems with intractable 

likelihoods35,36 (for example, complex stochastic models). However, ABC approaches are 

much more broadly applicable, since they can be used regardless of whether or not it is 

possible to write down a likelihood function37,38. The only requirement is that we must be 

able to simulate from the models under consideration. This property makes ABC an ideal 

methodology for software implementation, enabling it to be applied ‘out of the box’ to a 

broad range of problems. ABC-SysBio is an efficient and very generally applicable software 

implementation for performing parameter estimation and model selection within the ABC 

framework.

Applications and key papers: ABC-SMC and ABC-SysBio

Likelihood-free inference in the form of simple ABC rejection was first introduced in the 

area of population genetics21,39, and, due to the size of the models and parameter space, the 

algorithm was soon extended to adopt more powerful MCMC40 and SMC 26 samplers. 

Since then, there has been an explosion of papers advancing the ABC methodology and its 

applications (see 41 for a review). As described above, ABC methods can be used for a wide 

range of applications for fitting models to different types of data; here we restrict the 

discussion to biological applications with data ranging from gene expression and proteomic 

time series data, to imaging data, and protein-protein interaction data. ABC-SysBio was 
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conceived with the aim of solving precisely these types of problem. The parameter 

estimation algorithm was used to fit the deterministic and stochastic mechanistic models of 

the phage shock protein stress response in Escherichia coli, which then served to propose 

novel hypotheses about the stress response system dynamics42. An Akt signaling pathway 

model was among the largest models to which the parameter inference algorithm has been 

applied to date3. The obtained posterior distribution was used to study in detail the 

sensitivity and ‘sloppiness’ of the kinetic parameters affecting Akt signaling. The parameter 

estimation algorithm was also used to find the parameter region for a model of Hes1 

transcription dynamics, that captures the oscillatory behavior of Hes1 expression levels 

observed in mouse cell lines43. Oscillatory behavior poses considerable challenges to 

parameter estimation problems22, and in this study the parameter distribution obtained by 

ABC served as prior information for another powerful algorithm that can efficiently infer 

parameters giving rise to oscillatory behavior.

Toni et al. used the model selection algorithm to distinguish between several models of the 

phosphorylation dynamics of the ERK MAP kinase by fitting the models to time series 

proteomic data14. The model selection algorithm was also used to study leukocyte migration 

in zebrafish embryos in response to injuries44. In this application, model selection was used 

to distinguish between different models of the chemokine stimulus gradient, and, based on 

migration trajectories obtained from live imaging data, the model was chosen that best 

describes the in vivo leukocyte dynamics. This study is a prime example of an application 

for which ABC is particularly appropriate: here the definition of a likelihood has thus far 

proved elusive, whereas simulating from these models is possible. Other applications of 

ABC-SMC (based on ABC-SysBio) have emerged in synthetic biology 45, where we can 

use this framework to identify molecular reaction networks that have high (or appreciable) 

probability of fulfilling a given set of design-objectives, such as different switch-like or 

sensor behaviors. In regenerative medicine and stem-cell biology a related approach has 

been used to map out the behavior of hematopoietic stem cells and their progeny in the bone 

marrow stem cell niche46.

Comparison with other methods

ABC methods fill a gap in the apparatus of statistical inference. Their advantages are two-

fold. First, they enable researchers to apply the whole Bayesian formalism — in 

approximation — to problems that defy conventional statistical inference47. Second, in their 

wake we may be able to close such gaps in the applicability of conventional statistical 

inference either through computational advances or new developments of e.g. suitable 

approximations to the likelihood23,48–51.

The distinct applications and strengths of ABC methods complicate comparison with other 

methods. Pure ABC packages are typically targeted either at ABC cognoscenti and require 

the provision of e.g. simulation routines (typically provided as R or C functions), or at 

population geneticists such as DIYABC 52. In the latter realm, some packages have achieved 

a level of sophistication that enables non-expert users to study hard problems in population 

genetics, such as population sub-division and movement between different demes53,54. But 

for the practicing systems biologist, packages such as easyABC (http://easyabc.r-
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forge.r-project.org) lack, for example, the ability to parse mathematical models 

provided in the SBML exchange format or the ability to simulate efficiently (e.g. via GPU-

support55,56) different models.

In the context of likelihood-based Bayesian inference, several packages exist (typically 

employing MCMC algorithms) for systems modeled by ordinary differential equations 

(ODEs). These include primarily BioBayes57. Stochastic dynamics, whether modeled using 

stochastic differential equations (SDEs) or chemical master equation formalisms, incur huge 

computational costs and there is a distinct lack of ‘general’-purpose software aimed at the 

systems biology community. Here, however, we see the main use of ABC methods at 

present. For ODEs it is possible, and indeed desirable, to employ likelihood-based inference, 

but for many stochastic models, ABC-based approaches enable researchers to address 

inference problems that simply cannot be tackled by conventional Bayesian 

approaches50,58.

Likelihood-based MCMC or SMC approaches, and nested sampling are also emerging as 

inferential frameworks for stochastic dynamical systems. This development is particularly 

promising when dealing with cases where the likelihood of a set of stochastic (time-series) 

realizations of a system can be approximated in a computationally favorable way. One such 

way is to use, for instance, the linear noise approximation or generalizations thereof to 

model the time-evolution of stochastic dynamical systems48. Such simulation routines may, 

of course, also be gainfully employed in ABC frameworks.

Limitations

ABC methods are designed to work where other, likelihood-based approaches cannot 

(perhaps, yet) be applied. Nevertheless, when used to address any challenging problem, 

ABC methods will also be computationally expensive. And obviously, the curse of 

dimensionality still applies: thus the more parameters we seek to infer, the more challenging 

the inference will become and models with even only dozens of parameters will defy serious 

analysis by ABC, or, indeed, any other Bayesian approach.

There have been developments in computational aspects of ABC36,59,60, which promise to 

make inference more efficient and affordable, but these developments cannot overcome the 

more generic problems encountered by all inference algorithms.

One area where limitations of ABC procedures have received widespread attention is model 

selection31,33,61. The limitations that have been highlighted in the literature are pertinent 

for cases where inferences are based on summary statistics of the data instead of the data 

themselves, an approach conventionally adopted in population genetics applications. In these 

cases model selection is notoriously dependent on arbitrary choices made in the set-up of the 

ABC inference, and can swing in favor of any plausible model, irrespective of which is the 

correct one. This tendency causes problems in any real-world application, where the correct 

model is obviously not known.

The type of inference problem considered in this protocol does not require the use of 

summary statistics of the data. In the context of the dynamical systems models considered 

Liepe et al. Page 7

Nat Protoc. Author manuscript; available in PMC 2016 October 26.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts

http://easyabc.r-forge.r-project.org


here, ABC inference may be conducted using the whole time-course dataset, rather than 

summary statistics thereof. Thus ABC model selection is possible in the current setting, and 

is implemented in ABC-SysBio.

Protocol overview

The ABC-SysBio software is designed for parameter inference and model selection. 

However, it can also be used to parse and simulate sbml models (models written in the 

format of the Systems Biology Markup Language standard). It enables researchers to 

perform simulations using ODE and SDE solvers, and the Gillespie algorithm.

In the ABC-SysBio software parameter inference and model selection are performed in a 

sequential manner (as described in Box 1). At each iteration of the algorithm, a set of 

parameter vectors is constructed; these parameter vectors are called ‘particles’ and form a 

‘population’. Each particle is a vector of length equal to the number of parameters to be 

estimated. In this protocol, we refer to the number of particles in a population as the 

‘population size’. The populations are constructed so that the particles forming the 

population give rise to simulated data that differ from the observed data by at most a 

predetermined threshold. Therefore each population is associated with a threshold; these 

thresholds decrease in consecutive populations, starting from a typically quite high threshold 

at population 1 and tending toward zero. Selecting appropriate settings for the algorithm, 

such as the number of particles per population or the decreasing threshold schedule, involves 

some trial-and-error and experience. Some basic guidance is given in Box 3.

In this protocol, we demonstrate how to use ABC-SysBio to infer parameters of an example 

system given a data-set and how to rank two candidate models. Two mRNA self-regulatory 

models have been created to serve as tutorial. One of them was used to generate an in silico 

data set, which will be used in the parameter inference and model selection scheme.

In the first example system, mRNA (m) is translated into a protein (P1) that regulates the 

production of its own mRNA, m. Furthermore P1 can be modified (through an assumed 

post-translational modification) at some rate resulting in P2, which degrades m. All three 

molecular species are degraded at a constant rate. This system therefore contains seven 

reactions. A schematic of the system, together with the seven reactions are shown in Figure 

2 (a,b). The species, parameter and reactions are defined in an sbml model file, which is 

provided as Supplementary data 1. In the first part of the Procedure (steps 1-18) we illustrate 

how to infer parameters of this system (denoted by p0, p1, p2, p3 and p4 in Figure 2) using 

the in silico–generated data set. We explain how to use sbml models, guide through the 

algorithm settings and explain the output of ABC-SysBio.

In the second part of the Procedure (steps 19–29) we illustrate the use of the model selection 

tools to discriminate between two models: the model described above and a simplified 

model of the mRNA self-regulation represented in Figure 2 (d, e). We use a similar data set 

as in the first part of the procedure. However, in this second part of the protocol we assume 

that only the total protein measurements are available, although not for all time points.
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For other models that are not part of this protocol, sbml model files can either be generated 

manually, by several pieces of software (Copasi, Mendel, ShorthandSBML) or in the case of 

published models it can be found in the BioModels database (http://www.ebi.ac.uk/

biomodels-main/). An excellent tutorial on understanding and generating sbml files can be 

found in Wilkinson62.

Although this protocol contains a Timing section, the length of time required for the 

parameter inference and the model selection algorithm to run is highly dependent on the 

system hardware. The computational cost also depends on the size of the model, the 

complexity of the data, the dimension of the parameter space as well as on all the algorithm 

settings (such as the number of particles, the perturbation kernel, etc.). A full list of all 

algorithm settings is provided within the documentation of the ABC-SysBio package.

Materials

Equipment

ABC-SysBio is a Python package, which runs on Linux and Mac OS X systems (Windows 

is not currently supported but we have succesfully installed matplotlib, numpy, scipy, 

libsbml and abc-sysbio on Windows Vista using WinPython.). Python can be downloaded 

from http://www.python.org.

Necessary dependencies are: Numpy (http://sourceforge.net/projects/numpy/files/), Scipy 

(http://sourceforge.net/projects/scipy/files/), Matplotlib (http://sourceforge.net/projects/

matplotlib/files/). Optional dependencies are Swig (http://sourceforge.net/projects/swig/

files/), libSBML (http://sourceforge.net/projects/sbml/files/libsbml/) (both necessary to 

follow this protocol) and cuda-sim (http://sourceforge.net/projects/cuda-sim/files/).

Equipment Setup

Install Python and the relevant dependencies according to the procedure detailed in the 

Supplementary Methods.

Install ABC-SysBio according to the instructions in Box 2

Procedure

Preparing the folder structure TIMING 2 min

1. In a terminal, go to the working directory and create a project folder 

‘paramInference’:

mkdir paramInference

cd paramInference

Downloading the first sbml file TIMING 2 min

2. Download the Supplementary data 1. This is a zipped folder, which contains 

the files ‘mRNAselfReg1.sbml’ and ‘mRNAselfReg2.sbml’. Unzip this folder. 
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The sbml model file ‘mRNAselfReg1.sbml’ is all you need to analyze the 

model. Copy the file ‘mRNAselfReg1.sbml’ into the folder ‘paramInference’.

Parsing the sbml file TIMING 2 min

3. The ABC-SysBio package contains two main functions: abc-sysbio-sbml-sum 

and run-abc-sysbio. The first one reads an sbml file and provides a model 

summary. It also creates a template file, which will be used as an input file in 

all further steps. In the terminal type (as one line):

abc-sysbio-sbml-sum --files mRNAselfReg1.sbml --input_file_name 

input_file1.xml

which will print to the terminal:

input_files: [' mRNAselfReg1.sbml']

data: None

filename: input_file1.xml

sumname: model_summary.txt

(TROUBLESHOOTING)

4. Type

ls –l

and all files that are now in the project folder will be listed:

mRNAselfReg1.sbml

input_file1.xml

model_summary.txt

Please note that the file model_summary.txt contains information about the 

provided sbml model file. The summary of this example is shown in figure 3.

Modifying the input file TIMING 10 min

CRITICAL: The generated input file (/paramInference/input_file1.xml) is written in the 

xml standard, i.e. specific tags — which correspond to machine and (arguably) human 

readable definitions — are written as

<tag> … </tag>

It contains all information about the settings specifying the algorithm setup, the parameters, 

the data and the model. The automatically generated template file already has the right 

format, e.g. the number of parameters and species corresponds to the sbml model file. In 

case no sbml model file is used, the input file has to be generated separately. We recommend 

using one of the example input files as a template on which to base any customized files.
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CRITICAL: Implementation of the following sub-section of the Procedure (steps 5–14) 

contains instructions on how to set up the input file. This can be avoided by using an already 

prepared input file provided in Supplementary data 2. To follow this option download 

Supplementary Data 2 and unzip this file. In the folder are the two files ‘input_file1.xml’ 

and ‘input_file2.xml’. Copy the file ‘input_file1.xml’ into the folder ‘paramInference’ and 

proceed with step 15.

5. Define a tolerance schedule; this is one of the important parameters that 

controls the rate at which the ABC-SMC algorithm converges. The default 

option is an automatically generated schedule. In this example we will use a 

fixed user-defined schedule. Therefore replace

<autoepsilon>

<finalepsilon> 1.0 </finalepsilon>

<alpha> 0.9 </alpha>

</autoepsilon>

with

<epsilon>

<e1> 50 48 46 43 41 39 37 35 32 30 28 26 24 22 20 18 16 15 </e1>

</epsilon>

6. Set the number of accepted particles per ABC-SMC population by typing:

<particles> 100 </particles>

Please note that this command defines the population size, which is set to a low 

value here for demonstration purpose. To obtain a good approximation of the 

posterior parameter distribution, the population size should be much larger (for 

this example around 1,000 particles will suffice), depending on how many 

parameters are to be estimated. As a rule of thumb: the more parameters are to 

be estimated, the larger the population size needs to be.

7. Set the numerical step size — a parameter used by the numerical solvers — to

<dt> 0.01 </dt>

8. Set the type of the parameter perturbation kernel

<kernel> uniform </kernel>

Implementing this command means the sampled parameters are perturbed 

uniformly in linear space.

9. Provide the data by typing the following lines in the input file:

<times> 0 0.1 0.2 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 11 12 13 14 15 </

times>

<variables>
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<var1> 10.000 8.861 12.241 26.408 21.474 13.776 10.038 8.127 7.264 6.716 

6.725 7.244 7.830 8.772 9.076 8.941 8.539 8.246 8.543 8.780 8.666 8.736 

8.505 </var1>

</variables>

This instruction sets the times at which observations are taken, as well as the 

measured values for all observed species (here only var1 is observed). The data 

are shown in Figure 2c.

10. Provide all model information in the section <models>. To achieve this 

objective, type the lines

<name> mRNAselfReg1 </name>

<source> mRNAselfReg1.sbml </source>

which define the name of the model and the sbml model file containing the 

relevant model description.

11. The ABC-SysBio package can simulate SDE and ODE models, as well as 

Markov jump processes (MJP). The algorithms used are summarized in table 1. 

We will analyze the system as an SDE model. Type the lines:

<type> SDE </type>

12. Since the data only describe the temporal behavior of the mRNA species, 

which is species1, set

<fit> species1 </fit>

13. The initial conditions, i.e. the state of our model system at time 0 (here the 

amount of each species before any reaction takes place), are known, so they 

must be defined as ‘constant’ by typing:

<initial>

<ic1> constant 10.0 </ic1>

<ic2> constant 5.0 </ic2>

<ic3> constant 0.0 </ic3>

</initial>

14. Define the parameters’ prior distributions. The first parameter describes the 

sbml model specific parameter ‘compartment size’, which in the majority of 

models is set to 1. All known model parameters must be set ‘constant’. In this 

case parameter6 (mRNA and protein degradation rate) is assumed to be known 

and set to 1. For this protocol define the prior parameter distributions of the 

remaining parameters as follows:

<parameters>

<parameter1> constant 1.0 </parameter1>
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<parameter2> uniform 0 50 </parameter2>

<parameter3> uniform 0 10 </parameter3>

<parameter4> uniform 0 50 </parameter4>

<parameter5> uniform 0 10 </parameter5>

<parameter6> constant 1.0 </parameter6>

</parameters>

This defines for example the prior distribution of parameter 2 as a uniform 

distribution between 0 and 50. Other implemented prior distributions are 

‘normal’ and ‘lognormal’.

Running ABC-SysBio for parameter inference TIMING 20 min until population 12, 3 h until 
population 16

15. Start the ABC-SysBio program by typing in the terminal:

run-abc-sysbio -i input_file1.xml -of=results –f –sd=2

Here the tag ‘-i ‘ defines the input file, ‘-of= ‘ defines the name of the folder 

that will contain all results and ‘-f ‘ results in printing a full report to the 

terminal. The ABC-SysBio program will now import the sbml model file and 

translate it into Python syntax, specific to the supplied SDE solver. This file 

mRNAselfReg1.py now becomes the project solver. The tag ‘-sd=2’ sets the 

seed of the random number generator in numpy. This tag is useful for 

debugging or comparison of results. It is not generally needed to run the 

algorithm. Since we set the population to only 100, we recommend the user to 

use this tag in order to better compare the results with the results presented 

here.

(TROUBLESHOOTING)

16. Carefully check all algorithm parameters that the program will print to ensure 

that the information is correct. This information should correspond to the 

above-described instructions in the input file (for example make sure that the 

number of particles is set to 100). After around 1 minute (depending on the 

computer on which ABC-SysBio is run) the first ABC-SMC population will be 

finished and the summary of this population will be printed to the terminal:

### population 1

       sampling steps / acceptance rate : 1211 / 0.0825763831544

       model marginals : [1.0000000000000007]

This output appears after each finished ABC-SMC population. A new folder 

will be created, in this case ‘results’, which will contain all other outputs of the 

program.
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17. The results folder is updated every time an ABC-SMC population is finished. 

Every time this happens, check the files inside the results folder by typing:

cd results

ls –l

The output will comprise the following files

copy

_data.png

distance_Population1.txt

rates.txt

results_ mRNAselfReg1

traj_Population1.txt

The file ‘_data.png’ shows a plot of the data provided in the input file. The file 

‘rates.txt’ contains in its first column the population number, followed by the 

tolerance value epsilon, the number of sampled parameter combinations in 

order to obtain a full ABC-SMC population, and the achieved acceptance rate 

(i.e. the fraction of simulations that gave rise to simulated data that was within 

the specified distance from the observed data). The last column shows the time 

it took to obtain this population in seconds. This information is useful when 

redefining the tolerance schedule in order to increase the algorithm’s 

performance. The files ‘distance_Population1.txt’ and ‘traj_Population1.txt’ 

contain the accepted simulations and their corresponding distances from the 

provided data. The folder ‘results_ mRNAselfReg1’ contains a folder for each 

finished population.

18. To view the files generated after the first ABC-SMC population type:

cd results_ mRNAselfReg1/Population_1

ls –l

which will list the following files:

data_Population1.txt

data_Weights1.txt

ScatterPlots_Population1.png

Timeseries_Population1.png

weightedHistograms_Population1.png

The accepted parameter combinations will be saved in ‘data_Population1.txt’, 

where columns represent the parameter and initial conditions. In this example 

the initial conditions are known and set to be constant. However, it is possible 

to infer them by defining a prior distribution. The statistical weights 
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corresponding to the parameter combinations are stored in the file 

‘data_Weights1.txt’. The ‘.png’ files show simulations for 10 of the accepted 

particles, the marginal posterior distributions as histograms and pairwise 

scatterplots providing an overview of the posterior parameter distributions. The 

scatter plots show the most recent population plotted on top of all previous 

populations marked by different colors. An example of the output is shown in 

Supplementary Data 3. Furthermore example trajectories are plotted (Figure 4). 

These plots are useful for monitoring purposes and enable the user to follow 

the progress of the algorithm. Please note that sometimes it is advisable not to 

generate these diagnostic plots (hence the definition of this step as optional), 

for example when analyzing models with a high dimensional parameter space 

(models with a large number of parameters to estimate). Generating these 

diagnostic plots is time consuming, which slows down the algorithm, hence it 

is advisable in these cases to run the algorithm as in step 15 adding the 

command ‘—diagnostic’ at the end of the line..

Preparation of a new project folder TIMING 2 min

19. As in step 1, in a terminal, go to the working directory and create a new project 

folder ‘modelSelection’. Type:

mkdir modelSelection

cd modelSelection

Downloading the sbml files for model selection TIMING 2 min

20. In step 2, Supplementary Data 1 was downloaded and unzipped. Copy the two 

sbml model files (mRNAselfReg1.sbml and mRNAselfReg2.sbml) .into the 

folder ‘modelSelection’..

Parsing both sbml model files TIMING 2 min

21. In the terminal type (as one line):

abc-sysbio-sbml-sum --files mRNAselfReg1.sbml,mRNAselfReg2.sbml

--input_file_name input_file2.xml

(TROUBLESHOOTING)

22. Type the following to list all files:

ls –l

This command generates again the model_summary.txt, which contains now 

information about both models, and the input_file2.xml. The latter is 

automatically in the right format for the model selection algorithm.

CRITICAL: Implementation of the following sub-section of the Procedure 

(steps 23–28) can again be avoided by using an already prepared input file 

provided in Supplementary data 2. To follow this option download 

Supplementary Data 2 and unzip this file. In the folder are the two files 
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‘input_file1.xml’ and ‘input_file2.xml’. Copy the file ‘input_file2.xml’ into the 

folder ‘modelSelection’ and proceed with step 29.

Modifying the second input file TIMING 10 min

23. Apply the same tolerance schedule as in step 5: replace

<autoepsilon>

<finalepsilon> 1.0 </finalepsilon>

<alpha> 0.9 </alpha>

</autoepsilon>

by

<epsilon>

<e1> 380 370 360 340 300 250 150 100 90 </e1>

</epsilon>

24. Set the number of accepted particles to 100 (note that this is a very low number 

and is only used for the purpose of this tutorial example, but should typically 

be much higher in real inference applications):

<particles> 100 </particles>

25. Set the numeric step size, the parameter perturbation kernel and the data as in 

steps 7, 8 and 9 respectively. Note that the data are now described by two time 

series, where the first (<var1>) is set as before. Furthermore the second time 

series includes missing values (NA) for some time points.

<dt> 0.01 </dt>

<kernel> uniform </kernel>

<times> 0 0.1 0.2 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 11 12 13 14 15 </

times>

<variables>

<var1> 10.000 8.861 12.241 26.408 21.474 13.776 10.038 8.127 7.264 6.716 

6.725 7.244 7.830 8.772 9.076 8.941 8.539 8.246 8.543 8.780 8.666 8.736 

8.505 </var1>

<var2> NA NA NA NA 144.147 NA 140.720 NA 103.582 NA 82.268 NA 

77.614 82.699 88.346 90.024 89.033 87.776 87.291 87.431 87.706 87.839 

87.826 </var2>

</variables>

26. Provide the information about the two models considered. On the top of the file 

note the tag

<modelnumber> 2 </modelnumber>
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In the section <model> will be now the two tags <model1> and further down 

in the file <model2>.

27. Define all parameters for <model1> as done in steps 10-14:

<name> mRNAselfReg1</name>

<source> mRNAselfReg1.sbml </source>

<type> SDE </type>

<fit> species1 species2+species3 </fit>

<initial>

<ic1> constant 10.0 </ic1>

<ic2> constant 5.0 </ic2>

<ic3> constant 0.0 </ic3>

</initial>

<parameters>

<parameter1> constant 1.0 </parameter1>

<parameter2> uniform 0 50 </parameter2>

<parameter3> uniform 0 10 </parameter3>

<parameter4> uniform 0 50 </parameter4>

<parameter5> uniform 0 10 </parameter5>

<parameter6> constant 1.0 </parameter6>

</parameters>

The fitting instruction <fit> now includes two expressions, one for each 

provided time series in <data>. The second time series describes the total 

amount of measured protein, which is in this first model the sum of species2 

and species3.

28. For <model2>, set:

<name> mRNAselfReg2 </name>

<source> mRNAselfReg2.sbml </source>

<type> SDE </type>

<fit> species1 species2 </fit>

<initial>

<ic1> constant 10.0 </ic1>

<ic2> constant 5.0 </ic2>

</initial>
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<parameters>

<parameter1> constant 1.0 </parameter1>

<parameter2> uniform 0 10 </parameter2>

<parameter3> uniform 0 10 </parameter3>

<parameter4> uniform 0 30 </parameter4>

<parameter5> uniform 0 30 </parameter5>

</parameters>

Note that in this second model we have only one protein species. For this 

reason the fitting instruction for the second time series is only ‘species2’. The 

algorithm automatically chooses the model selection algorithm if more than 

one model is provided. Parameter inference is also carried out as part of the 

model selection procedure. The final edited input file is provided in 

Supplementary data 2 (input_file2.xml).

Running ABC-SysBio for model selection TIMING 10 min until population 6, 1 h until 
population 9

29. To start the model selection algorithm, type the same command in the terminal 

as in step 16:

run-abc-sysbio -i input_file2.xml -of=results –f –sd=2

No further commands are required for model selection, because all necessary 

information is contained in the input file. Once the first ABC-SMC population 

is finished (this should be in a few seconds) the algorithm prints to the 

terminal:

### population 1

      sampling steps / acceptance rate : 1478 / 0.0676589986468

      model marginals : [0.5900000000000003, 0.4100000000000002]

The model marginals represent the probability of the two models in light of the 

data, i.e. they describe which of the models describes the data best. Please note 

that it takes 3 to 4 hours for the whole algorithm to be run, but already after a 

few populations a clear tendency is visible.

(TROUBLESHOOTING)

30. Compared to the parameter inference algorithm, in the results folder we now 

have additional files. View them by typing:

cd results

ls –l

The output will be comprised of the following files:

copy
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_data.png

distance_Population1.txt

ModelDistribution_1.png

ModelDistribution.txt

rates.txt

results_ mRNAselfReg1

results_ mRNAselfReg2

traj_Population1.txt

The file ‘_ModelDistribution_1.png’ shows a bar plot representing the model 

probabilities. This figure is updated after each ABC-SMC population. The file 

‘ModelDistribution.txt’ lists the model probabilities for each finished ABC-

SMC population. A results folder for each model is created, in which the ABC-

SMC populations are listed (according to the parameter inference algorithm). 

Figure 5 shows the model probabilities from population 1 to 16.

Timing

➢ Preparing the folder structure: 2 min

➢ Downloading the first sbml file: 2 min

➢ Parsing the sbml file: 2 min

➢ Modifying the input file: 10 min

➢ Running ABC-SysBio for parameter inference:
     - until population 12:
     - until population 16:

20 min
3 h

➢ Preparation of a new project folder: 2 min

➢ Downloading the sbml files for model selection: 2 min

➢ Modifying the second input file: 10 min

➢ Running ABC-SysBio for model selection:
     - until population 6:
     - until population 9:

10 min
1 h

Troubleshooting

step problem possible reason possible solution

3,21 Error: “can not parse 
sbml model file”

The sbml model file 
does not exist or 
contains errors.

Make sure the model name provided in the input file 
(or command line) is exactly the same as the model 
file. If the sbml model file was manually generated, 
make sure all tags are correct and closed and only sbml 
standard acceptable expressions and syntax is used.

15,29 Error: “Please do not 
give empty strings for 
model names!”

The model names 
contain invalid strings.

Check the names of each provided model in the input 
file

15,29 Error: “The number of 
given prior 
distributions for 
model X is not 
correct”

The model contains a 
different number of 
parameters than was 
defined in the input file.

Provide one prior distribution per parameter defined in 
the model. If some parameters are known, they still 
need to be defined (as ‘constant’). Note: when using an 
sbml model file an additional parameter appears, which 
defines the compartment size. This parameter is always 
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step problem possible reason possible solution

defined as ‘parameter 1’. For the vast majority of 
systems this parameter is constant 1.0

15,29 Error: “Please provide 
an initial value for 
each species in model 
X.”

The number of species 
in the model and in the 
input file does not 
correspond to each other.

Check the input file and make sure that the initial 
conditions are correctly defined. For each species in the 
model one initial condition needs to be provided. This 
can either be ‘constant’ if the initial condition is 
known, or one of the following, if the initial condition 
needs to be inferred: ‘uniform’, ‘normal’, ‘lognormal’.

15,29 Error: “The prior 
distribution of 
parameter X is wrong 
defined.”

Invalid expression in the 
input file.

Check the type of distribution for parameter X in the 
input file. Possible types are: “uniform”, “normal”, 
“lognormal” and “constant”.

15,29 Error: “The 
integration type for 
model X does not 
exist.”

Invalid expression in the 
input file.

Check the integration type for model X. Allowed 
expressions are “ODE”, “SDE” and “Gillespie”.

15,29 Error: “The results 
folder already exists.”

There is already a file/
folder called ‘results’ in 
the working directory.

Either change the working directory, change the name 
of the existing folder or remove the folder.

15,29 Error: ”Please provide 
a fit instruction for 
each model”

Wrong or no fitting 
instruction is provided.

Always provide the same number of fitting instructions 
as provided time series (if the number of species differs 
from the number of data series). Fitting instructions 
can be simple expressions such as ‘species1’, but also 
more advanced instructions such as 
‘species1+10*species3’. This is particularly useful 
when data need to be scaled or only combinations of 
species are observed.

Anticipated Results

The typical output after performing Bayesian parameter inference in ABC-SysBio consists 

of a set of weighted particles that summarize the approximate posterior distribution. A 

particle is a parameter vector containing a value for each of the reaction rates to be 

estimated. The weight associated with a particle is proportional to the probability that this 

parameter vector can explain the observed data. In this section we describe how to analyze 

and interpret the posterior distribution obtained.

First, the marginal posterior distribution (i.e. the probability distribution of each reaction rate 

considered independently) can be obtained using a weighted histogram. ABC-SysBio 

provides these weighted histograms at each step of the sequential algorithm. If the marginal 

distribution is very peaked around a parameter value, we say that the reaction rate is well 

inferred (see for example Figure 6c leftmost plot). In most biological systems, however, only 

a few reaction rates can be inferred given an observed dataset and different parameter 

vectors can explain the observed data (almost) equally well16,18,67. Such issues are 

especially obvious and important to consider when looking at the joint probability 

distribution over all reaction rates.

In order to study the correlation between parameters, an investigator typically plots the joint 

posterior distribution of pairs of reaction rates. Different examples of joint pairwise posterior 

distributions are shown in Figure 6 (a, c). Here we observe that the correlation can be linear 

or highly non-linear and that the posterior distribution can have several peaks, i.e. that the 

distribution is multimodal. Secrier et al. described how to analyze a posterior distribution 
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and perform sensitivity analysis44,68. Such an analysis of inferred posterior distributions 

over parameters also enables researchers to consider factors such as parameter identifiability 

and sloppiness49,67.

Parameter inference is not just an aim in its own right, and the posterior distribution can also 

be exploited for a predictive purpose. For example, it is possible to study the evolution of 

some of the species that have not been measured, or to predict the behavior of the biological 

system under different experimental conditions (Figure 6b). This task is easily performed by 

sampling a set of particles from the obtained posterior distribution and simulating the model 

(or the variation of the model) for each of the particles69. Each simulated trajectory 

corresponds to a possible behavior. If all the simulated trajectories are very similar, then this 

behavior is of high probability given the assumed mechanistic model, the prior distribution 

over the parameters and the observed data. On the other hand, if the simulated trajectories 

significantly vary from one particle to another then the behavior of the corresponding 

species cannot be accurately predicted. This analysis serves as a basis for the design of 

experiments that could help improve such predictions69,70.

Analysis of marginal distributions provides an assessment of the probabilities of different 

candidate models — which represent different mechanistic hypotheses — in light of data. 

Making use of these probabilities we can, for example, rank these models. Or we can 

identify similarities among models that receive statistical support from the data38. If, for 

example, all models that have appreciable posterior probability share certain types of 

interactions, then we might hypothesize that these interactions are more likely to be real than 

interactions that receive little statistical support.

A frequent occurrence in inference is the long times it takes for computers to evaluate the 

approximate posteriors. ABC-SysBio provides access to advanced GPU hardware which, 

when available, will result in a considerable acceleration of the simulation process. 

Alternatively, Python can be dropped in favor of C-routines, which also increases speed of 

simulation. In its simplest form, relying on Python as the primary language, ABC-SysBio is 

readily usable and highly suited for preliminary analysis of models. As always in computing, 

there is a potential trade-off between the time it takes to implement computational analyses 

and the computer run-time the analysis takes. Here ABC-SysBio provides the user with the 

flexibility gradually to scale up in computational sophistication as and when needed.

It is important to remember that ABC methods only provide an approximation of the 

posterior distribution. The ABC-SMC algorithm has been tested for examples where the true 

posterior distribution is known and it has been shown that the obtained posterior distribution 

is similar to the true one27,43. For more realistic examples where the true posterior 

distribution is unknown, a sensible and precautionary approach to check the quality of the 

obtained posterior distribution is to study the predictive distribution by comparing the 

simulated data to the observed ones. Of course even if the simulated data are almost 

identical to the observed ones, there is no guarantee that the obtained posterior distribution is 

the whole ‘true’ (but unknown) one. In particular, some regions of the posterior distribution 

may not be covered due to too few particles. We recommend to run the software repeatedly 

and to compare the obtained posterior distributions.
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The accuracy of the obtained approximation of the posterior distribution is highly dependent 

on the last value of epsilon28 but also on the number of particles per population, the 

tolerance schedule, the distance function and the perturbation kernels. Some of the 

computational aspects of ABC are still active areas of research and ABC-SysBio will 

continue to incorporate these developments. These improvements will come from two 

directions: there are non-trivial speed gains to be achieved by employing modern computer 

architectures or streamlined programming in low-level languages — ABC-SysBio allows for 

this, and we would recommend users to make use of the GPU implementations, or providing 

C rather than Python routines — and recent developments in simulating stochastic 

dynamical systems more efficiently. The second type of improvement may result from 

research into the underlying ABC foundations. ABC is increasingly considered as a distinct 

inferential formalism and not merely as an approximation to conventional Bayesian 

inference.

In summary, however, ABC provides a pragmatic, rarely optimal but often applicable, 

framework in which cutting-edge scientific problems can be addressed from a Bayesian 

perspective. ABC-SysBio makes this framework, as well as state-of-the-art computational 

tools available to computational and systems biologist.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1

Overview of ABC-SMC Algorithm

ABC-SMC as employed by ABC-SysBio attempts to find an approximation to the true 

posterior in a sequential manner27. To this end, a set of intermediate distributions — also 

known as populations — is constructed, where for each population, t, all accepted 

particles give rise to simulated data, D*, that differ from the true experimental data, D, by 

at most a distance, Δ(D*,D)<εt. This approach requires a sequence of decreasing 

thresholds or tolerances as shown in the figure above, with the final tolerance, εT, setting 

the desired final agreement between real and simulated data.

Successive populations are generated from the previous population (or from the prior if 

t=1) using a sequential importance sampling scheme, by perturbing particles using an 

appropriate so-called perturbation kernel, to ensure that the parameter space is explored 

sufficiently well. Each accepted particle has an associated weight and in ABC-SysBio we 

require a fixed number of particles in each population. Choice of the kernel and the 

sequence for εt can affect the speed of the algorithm.
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Box 2

Installation of ABC-SysBio

1. Download the ABC-SysBio package from http://sourceforge.net/

projects/abc-sysbio/files/ and unzip it.

In the following steps (2-3) replace <dir> with the full path to a 

location. This will be the location containing the lib and bin 

directories (usually /usr/local by default, where Python is installed).

2. Open a terminal and type

cd abc-sysbio-2.06

python setup.py install --prefix=<dir>

Please note that the --prefix=<dir> option is recommended since it will 

guarantee that each package picks up the correct dependencies. This 

places the ABC-SysBio package into

<dir>/lib/python2.6/site-packages/

and generates the scripts

<dir>/bin/abc-sysbio-sbml-sum

<dir>/bin/run-abc-sysbio

3. Add the script directory to the path (this must be done in each session 

or added to the shell configuration files, e.g. .bashrc or .cshrc file)

export PATH=<dir>/bin:$PATH (bash shells)

setenv PATH <dir>/bin:$PATH (c shells)

4. Type the command

run-abc-sysbio –h ,

which should lead to the display of a list of options and put you in the 

position to run the examples.

CRITICAL STEP: Should any problem occur, refer to the ABC-SysBio 

manual, which is included in the package and can be downloaded from 

sourceforge. In general this manual includes many more examples and 

details than those covered in this protocol. Especially the advanced 

software settings and options will be presented in the manual in more 

detail.

TROUBLESHOOTING
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Box 3

Algorithms Set-Up and Advanced Options

Many of the settings of the algorithm affect convergence to the true posterior and may 

require careful consideration in new applications of ABC-SysBio. We provide some basic 

guidance on the most important parameters below.

particles: The number of particles has to be large enough in order to efficiently cover the 

entire parameter search space and should increase with the number of parameters, or for 

model selection applications

epsilon: As an alternative to user-specified tolerance schedules we can also choose 

automated tolerances, which are based on the distributions of the recorded distances 

between simulated data from the previous population and the observed data. The next 

threshold is the <alpha> quantile of this distribution, where <alpha> is a parameter of the 

algorithm that needs to be defined. For example:

<autoepsilon>

<finalepsilon> 0.0 </finalepsilon>

          <alpha> 0.1 </alpha>

</autoepsilon>

restart: For a user-defined tolerance schedule, it can happen that a tolerance value is too 

strict, in which case the acceptance rate drops drastically. The user can stop the algorithm 

and restart it from the last finished population with a new tolerance schedule by setting in 

the input file:

<restart> True </restart> The algorithm will then apply the new tolerance schedule.

prior distribution: Currently implemented prior distributions are: constant x (constant 

parameter with value x), normal a b (normal distribution with location a and variance b), 

uniform a b (uniform distribution on the interval [a, b]) and lognormal a b (lognormal 

distribution with location a and variance b). If plausible parameter ranges are known, 

prior distributions should be defined accordingly. In this case the user can either trust 

these values (‘constant‘ prior) or set a small prior range around this value (for example, a 

normal distribution centered on a literature value).

Initial conditions: can be inferred as parameters if priors are provided, e.g.

<initial>

<ic1> uniform 0.0 100.0 </ic1>

<ic2> uniform 1.0 10.0 </ic2>

<ic3> constant 0.0 </ic3>

</initial>

infers initial conditions for species 1 and 2 (with uniform priors), but starts from 0 for 

species 3.
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distance function: ABC-SysBio computes the sum of squares (Euclidean distance) 

between data and the simulated trajectories. The user has the option to use a custom 

distance function (see section 5.3 of the ABC-SysBio manual). Adaptations of the 

distance function can help to avoid convergence problems63.

kernel: The implemented perturbation kernels are: uniform (component-wise uniform 

kernels), normal (component-wise normal kernels), multiVariateNormal (multi-variate 

normal kernel whose covariance is based on the previous population), 

multiVariateNormalKNeigh (multi-variate normal kernel whose covariance is based on 

the K nearest neighbours of the particle), multiVariateNormalOCM (multi-variate normal 

kernel whose covariance is the OCM).

dt: For SDE-models the user has to set the numerical time step ‘dt’. This time step needs 

to be reasonably small (for most systems dt<0.01) in order to avoid numerical errors, but 

smaller time steps result in longer simulation times.
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Figure 1. Data and Posteriors.
The aim of Bayesian inference is to infer parameters that have high or appreciable 

probability of having generated some observed data (red dots in the left panel). If a model 

has two parameters, θ1 and θ2, then our aim is to obtain the joint distribution over both 

parameters, indicated by the contour diagram in the right panel. Please note that in this 

panel, the darker the color of the contour the higher the posterior probability density. The 

two simulated trajectories in the left panel correspond to two different parameter 

combinations. The parameter combination associated with the thicker trajectory (which 

provides the better explanation of the observed data) is in a region of high posterior density, 

whereas the parameter combination of the thinner trajectory is located in a region of lower 

posterior density. Often, as here, the joint distribution will differ from the product of the 

(marginal) distributions of the individual parameters (histograms at the top and right of the 

contour plot) – statistical dependence between the two parameters means that their joint 

posterior distribution is not simply the product of the individual/marginal parameter 

posteriors. Secrier et al.68 discuss a range of such examples.
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Figure 2. Models and data.
The full mRNA self-regulation model is shown in (a). mRNA (m) produces protein P1, 

which can be transformed into protein P2. P1 is required to produce mRNA, whereas P2 

degrades mRNA. P1 and P2 can also be degraded. The reactions that occur according to this 

model are shown in (b). Fitting of the model to the data (c), which comprise mRNA 

measurements over time. The second model (d) is based on the first model, but it does not 

contain protein P2. The relevant reactions are shown in (e).

Liepe et al. Page 31

Nat Protoc. Author manuscript; available in PMC 2016 October 26.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts



Figure 3. Automatically generated model summary file.
The function abc-sysbio-sum reads the sbml model file and extracts all model specific 

information. The file contains the (always included) number of compartments and reactions. 

Some models also contain rules, functions and events. The file acts as a ‘dictionary’ for all 

ABC-SysBio steps. The software renames parameters and species. In the second column are 

the original sbml identifiers, while the new names are in the third column. The numbers in 

brackets denote the default values as defined in the sbml model file.
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Figure 4. Example trajectories of intermediate and final ABC-SMC populations.
After each population, the software produces diagnostic plots, which enable the user to 

follow the progress of the algorithm implementation. These plots include 10 example 

trajectories plotted in comparison with the data. Shown are these trajectories for the first 

ABC-SMC population (a) and the last ABC-SMC population (b).
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Figure 5. Model probabilities after each ABC-SMC population.
Each of the histograms in this figure is produced after each ABC-SMC population. Shown 

are the model probabilities as barplots. The numbers in () represent the population number; 

numbers in [] are the distance thresholds for each population (epsilon-schedule); numbers 

below the above-mentioned parentheticals are the acceptance rates. In population 1 both 

models have approximately the same probability of representing the data. After population 

16 model 1 has a much higher probability of representing the data best.
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Figure 6. Analyzing the posterior distribution.
(a) The marginal posterior density for each of the four reaction rates to be estimated in the 

mRNA self-regulation model (diagonal) as well as the joint pairwise posterior distribution 

for each couple of reaction rates. The two-dimensional distributions are represented with 

orange-contours, where the darker the color the higher the probability. (b) Exploiting the 

posterior distribution to predict the evolution of the three species (from left to right: mRNA, 

P1 and P2) of the mRNA self-regulation model. We plot 10 simulated trajectories for 10 

parameter vectors sampled from the posterior distribution (top). To analyze the distribution 

of the evolution of the three species, we sample 1000 parameters sets from the posterior 

distribution and plot the mean (dark red), the 25 and 75 percentiles (orange) and the 5 and 95 

percentiles (yellow) of the simulated (bottom). (c) Examples of posterior distributions. From 

left to right: the marginal posterior distribution for a well-inferred parameter; a bi-modal 

posterior distribution; a posterior distribution over two linearly correlated parameters; a 

posterior distribution over two parameters that are highly dependent, but in a non-linear 

manner; a bi-modal posterior distribution over two parameters.
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Table 1
Implemented algorithms for numerical simulation of biological systems and references.

All three algorithms are implemented in Python, C and PyCuda. The Python implementation is the default 

option, which is used in this protocol. The C routines are applied when adding ‘the option ‘-c++’ to the 

command line in step 15, while the cuda routines are used when using ‘-cu’.

type of model Numerical algorithm lit. reference

ODE LSODA 64

SDE Euler–Maruyama 65

MJP Gillespie 66
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