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RESEARCH Open Access

A framework for performance analysis of
geographic delay-tolerant routing
Erik Kuiper1*, Simin Nadjm-Tehrani2 and Di Yuan3

Abstract

A major tool used for evaluating routing protocols in ad hoc and delay-tolerant networks is simulation. Whereas
the results from simulations give good insights, they are limited to the specific scenario set-up that is used. If the
scenario changes, new and often time-consuming simulations have to be run. Moreover, the simulation time in
packet-level simulators with fairly realistic physical layer implementation, such as ns-2, generally grows rapidly in
the number of nodes. This practically limits the number of nodes in a simulation, even if the limit can be extended
by the use of simulation federations. Larger scenarios can also be facilitated by the use of more abstraction in the
physical layer; abstractions that may impact the validity of the results. In this article, we present the forward-wait
framework–a mathematical model describing the packet movements for opportunistic geographic delay-tolerant
routing protocols. By describing packet movements as a sequence of alternating forwarding and waiting phases,
the framework can accurately predict the routing performance. Key input parameters to the framework are random
variables describing the forwarding and waiting phases. We show how the properties of the random variables can
be derived, both via abstract modeling and small scale ns-2 simulation data. The model is then used to
demonstrate the prediction capabilities of the framework in providing results that are close to the (much slower)
packet-level simulations.

Keywords: geographic routing analysis, routing performance, delay-tolerant networks, opportunistic routing

1. Introduction
Simulation is the most common method for evaluating
routing protocols in infrastructure-free wireless commu-
nication networks. Using detailed network modeling,
simulation enables us to examine the performance of
routing protocols without incurring the high costs asso-
ciated with practical experiments. However, with high
fidelity simulations, the simulation time grows rapidly
with the number of nodes. Scaling up simulations in
terms of number of nodes typically requires the use of a
more abstract physical layer or simulation federations.
Instead of relying on a simulator to provide routing

performance, we propose the forward-wait mathematical
framework to provide key performance properties of
geographic routing protocols. The framework is suitable
for intermittently connected mobile ad hoc networks
(IC-MANETs) where the routing consists of alternating
forwarding and waiting phases. In the forwarding phase,

a packet is forwarded towards the destination by a par-
tial path, and in the waiting phase a packet is stored at
a node awaiting the formation of a new partial path that
can forward the packet further towards the destination.
The model is applicable to all protocols characterized by
alternating forwarding and waiting phases. As an exam-
ple, we use the Location-Aware Routing for Delay-toler-
ant networks (LAROD) [1] for numerical performance
evaluation.
For opportunistic delay-tolerant networks (DTNs), the

inter contact time (ICT) model [2-4] is the most widely
used approach for mathematical characterization. The
ICT model describes the time between node encounters.
This works well for very sparse networks with unguided
or random routing protocols. The ICT model is intrinsi-
cally limited to forwarding packets at the start of an
encounter, and multi-hop partial paths are not a compo-
nent of the model. If the network density is high enough
for nodes to form connected islands (partitions), and a
routing protocol tailored for such topologies is used, the
ICT model is not suitable for describing the routing.
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The reason is that the model does not describe the rout-
ing options within a partition; that is, the possibility to
route to nodes currently reachable through an encoun-
tered node.
The forward-wait framework models the movement of

a packet as a sequence of alternating forwarding and
waiting phases. A packet is forwarded towards the desti-
nation as far as the topology allows it within a partition.
When the packet reaches the edge of the partition, it
waits until node movements have restructured the
topology in such a way that forwarding becomes possi-
ble again in a newly formed partition. In order to deal
with a large multiplicity of network scenarios and mobi-
lity factors, we describe each phase using random
variables.
For the forwarding phase and the waiting phase,

respectively, we model the distance a packet moves
towards (the presumed location of) the destination until
it has to wait, and the time a packet has to wait before
the next forwarding opportunity arises. The characteris-
tics of the forwarding and waiting random variables
depend on both node mobility and the routing protocol.
It is thus important to correctly establish the properties
of the random variables to obtain accurate predictions
from the framework. A feature of the framework is that
the characteristics of the forwarding and waiting phases
can be derived from multiple sources: models, small
scale simulations, or practical data.
We can combine the models of the forwarding and

waiting phases to determine the packet delivery prob-
ability as a function of source-destination distance and
maximum allowed delivery time (time-to-live, TTL). By
adding a description of the Euclidian distance from the
source to the destination for a given scenario, the packet
delivery ratio can be computed for any given value of
the TTL parameter. Alternatively, an appropriate TTL
can be set to satisfy a given delivery probability. These
results are provided more efficiently by the framework
than by running packet-level simulations.
To summarize, the contributions of this article are as

follows:

1. A general framework for analysis of geographical
routing protocols in opportunistic DTNs with locally
connected partitions.
2. Two methods to derive the characteristics of for-
warding and waiting phases: (1) abstract mobility
and routing models, and (2) actual simulation data
for arbitrary mobility models and geographic delay-
tolerant routing protocols.
3. An illustration of the application of the frame-
work, which includes deriving the forwarding and
waiting properties for the pheromone reconnaissance

mobility model and the LAROD routing protocol
[1].

The article is organized as follows. The next section
relates our work to other proposed models for routing
analysis in opportunistic DTNs. The main contribution,
the forward-wait framework, is presented in Section 3.
This is followed by deriving the properties of the for-
warding and waiting phases in Section 4. In Section 5,
the mathematical framework is validated against simula-
tion results. Section 6 discusses the validity of the
assumptions made by the model. In Section 7, we illus-
trate how the forward-wait framework can be used.
Finally, the article ends with concluding remarks in Sec-
tion 8.

2. Related studies
The benefit of using partial paths in IC-MANETs has
formally been proven by Heimlicher et al. [5]. Under
some simple and reasonable assumptions, they have
shown that the forward-wait paradigm will outperform
end-to-end forwarding. While their results do not pro-
vide mechanisms to predict the routing performance,
they confirm the intuition that partial paths should be
used by routing protocols in IC-MANETs.
For predicting routing performance in DTNs, the

most commonly used model is the ICT model. The ICT
model describes when nodes encounter each other and
are capable of exchanging data. Combined by a descrip-
tion of the routing protocol and the properties of the
node encounter time, routing performance can be pre-
dicted. The two most commonly used metrics to
describe the node encounter time are the inter-meeting
time and the next encounter time. The inter-meeting
time is the time between encounters of two specified
nodes, and the next encounter time specifies when a
node next encounters any other node. It is very com-
mon to characterize these encounter times using expo-
nentially distributed random variables. It has been
shown that, for several popular synthetic mobility mod-
els, assuming exponential distributions is indeed a rea-
sonable choice [6,7]. Examples of analyses using
exponential distributions are those by Spyropoulos et al.
[4], Small and Haas [3], Groenevelt et al. [2], and Resta
and Santi [8].
The exponential distribution has been contended by

Chaintreau et al. [9] in a study of actual encounter data
from humans carrying mobile devices. They have found
that the encounter distributions exhibit a power law dis-
tribution with a coefficient less than one. The work has
been continued by Karagiannis et al. [10]. They showed
that the power law distribution is only valid up to a cer-
tain time after which the distribution decays
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exponentially. The power law distribution with exponen-
tially decaying tail can also be found in some synthetic
mobility models [10-12]. Another perspective on the
ICT distributions comes from Zhang et al. [13] who
have studied encounter properties in a network of
scheduled buses. One important observation they made
was that the delivery delays between bus pairs can differ
quite significantly. The forward-wait model proposed in
this article has a waiting component similar to the delay
distributions used in ICT analyses, and for our illustra-
tive scenario we have found that the wait distribution
has an exponentially decaying tail.
An extension of the ICT model has been presented by

Resta and Santi [8]. In their framework, they compute
the distribution of the packet delivery delay, not only
the expected mean. While this is a result similar to the
one we present, their analysis is limited to very sparse
systems where the ICT model assumptions hold. An
additional characteristic of their framework is that they
analyze monotone relaying schemes, i.e., once a node
has received a copy of the packet it will keep a copy
until the packet reaches the destination.
Due to the discrete nature of the ICT model, its appli-

cation in large systems is computationally complex. To
overcome this problem, Zhang et al. [14] have proposed
to model the routing using ordinary differential equa-
tion, and Altman et al. [15] have proposed to describe
packet spreading among nodes using a fluid model.
Both approaches study epidemic and limited epidemic
schemes. This means that, for a single-copy routing pro-
tocol, such as the one we consider, these models are not
suitable. Additionally, our approach is to provide the
option to use a detailed analysis of small-scale scenarios
as a foundation to enable the analysis of large systems.
The above works have provided an analysis of how long

time it takes to reach the destination, an outcome that
analysis with the forward-wait framework also provides. In
addition to the delivery delay, an analysis of geographic
routing protocols can also study the time-distance rela-
tionship in packet forwarding. For this, Jacquet et al. [16]
have presented an upper bound on the information propa-
gation speed in very sparse networks. While we use the
time-distance relationship in our analysis, the results by
Jacquet et al. cannot be used since we describe systems
with significantly higher node densities.
The assumption of sparse network is, in fact, a major

limitation of the previously described models. With this
assumption, connected groups of nodes are not taken
into account. If the node movements and node density
are such that nodes normally do have neighbors, then
these models are not appropriate for predicting routing
performance. A concept that accounts for connected
partitions and non-uniform node mobility is delay
expansion, introduced by Asplund [17]. Delay expansion

enables us to determine bounds on worst-case latency
for a wide class of broadcast protocols. The key idea is
to describe the least number of uninformed nodes that
will meet an informed node during the time period of
interest. By having the number of informed nodes as a
function parameter, non-uniform mobility can be
handled. However, the results in [17] are not directly
applicable to unicast routing.
When location information is available many works

attempt to optimize network connectivity by actively
adapting transmission power. Some research within the
area of MANET topology control focuses on mathemati-
cal studies that trade-off the degree of connectivity
against energy efficiency (interested reader may refer to
a survey by Santi on the topic [18]). This is a different
problem compared to the one addressed in this article,
where we focus on studies of delivery probability
towards a given distance and within a given time using
some abstraction of node mobility and routing.

3. The forward-wait framework
In the forward-wait framework, the movement of a
packet towards the destination is modeled by two
phases: forwarding and waiting. The forwarding phase is
used to characterize how much closer a packet gets to
the destination when it can be forwarded within a con-
nected partition of the network. Once forwarding is not
possible, the waiting phase accounts for how long time
a packet has to wait until it can be forwarded again.
While the model is developed for geographical routing,
it is agnostic to the routing mechanism used to forward
the packet. However, the model does make the following
assumptions.

1. Only one copy of a packet is routed at any time.
2. The delivery latency is dominated by the waiting
time, and thus the forwarding time can be neglected.
3. Packet movement is dominated by the forwarding,
and thus in the waiting phase, packet movement due
to node mobility can be neglected.

In Section 6, we will discuss the validity of these
assumptions. There we will show the impact of viola-
tions of these assumptions, and that the impact can be
compensated for to some extent. The reason to defer
the discussion until then is the need for delay and for-
warding data for the purpose of determining the impact
of the assumptions.
Figure 1 visualizes assumptions 2 and 3 with two

packets moving from source to destination. In a for-
warding phase, a packet is routed from one node to
another until it has to wait. While forwarding, the
elapsed time is ignored by the second assumption
above, which is depicted by the horizontal lines in the
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figure. The waiting phases, on the other hand, ignore
node movements, as indicated by the vertical lines. The
two cases in the figure illustrate that when a packet is
generated by the source, it either has to wait if the
source node is at the frontier of a partition (upper
track) or it can be forwarded immediately, within the
current partition, until it reaches the edge (lower track).
Thus, a packet will travel in time and space in a manner
similar to one of the two tracks depicted in Figure 1.
The forwarding and waiting components of the frame-

work are described by means of independent random
variables. In the forwarding phase, the corresponding
random variable describes how far a packet can be for-
warded until it reaches the edge of its current partition.
In the waiting phase, we use a random variable to
describe how long time it takes until node movements
have restructured the topology in such a way that the
packet can be forwarded again. The reason that inde-
pendence between the random variables can be assumed
is that, as a packet is forwarded, it is handled by new
nodes whose movements are independent of the nodes
previously holding the packet. Examples of how the
properties of the random variables can be derived for a
specific scenario are provided in Section 4. In the same
section, we show why it is important to separate the
two cases, depending on whether or not a packet had to
wait at the source or not before it could be forwarded.
The mathematical description of the framework will be
presented in a bottom-up fashion. As a final outcome,
we will have the probability of reaching the destination
at a (Euclidian) distance d within time t, Pd(t, d), and
two random variables X(t) and T(d); the former variable
describes how much a packet has reduced the distance
to the destination at a specific time, and the latter
describes the time it took to move towards a (presumed)
destination at the specific distance from source. All
results are derived based on the random variables
describing the forwarding and waiting phases. In Table
1, we summarize the key notation and terms.
To describe the packet forwarding distance we create

auxiliary variables that describe (as random variables)

the reduction of distance to the destination after n for-
warding phases. The reduction in distance in forwarding
refers to the difference between the Euclidean distances
between the packet location and its destination before
and after a forwarding phase. Note that the first for-
warding phase is different from the later forwarding
phases, since in the latter cases there are no nodes
ahead of the custodian in the direction towards the des-
tination. In the first forwarding case, we may or may
not have nodes to route through in the current parti-
tion. Due to this difference in the forwarding character-
istics, we need one auxiliary variable for each of the two
cases (Dn and D’n). These variables are the sum of the
independent random variables that make up the sepa-
rate forwarding phases, and they are defined in Equa-
tions (1) and (2). For the case where the packet has to
wait at the source before it can be forwarded, D’n is
zero with probability one before the first forwarding
phase (n = 0). This is denoted by means of a random
variable I that always takes the value 0.

Dn =
{

L n = 1
Dn−1 + Ln n > 1

(1)

D′
n =

⎧⎨
⎩

I n = 0
L′

n n = 1
D′

n−1 + L′
n n > 1

(2)

The probability that a packet is in its nth forwarding
phase when the distance to the destination has been
reduced by d, measuring from the original source loca-
tion, is then given by Equation (3). Probability Pfw(d, n)
is defined in the same way using D’n. It is important to
note that while P(Dn ≥ d) is the probability of having
moved at least a distance d using exactly n forwarding
phases, Pfi(d, n) is the probability of being in the nth
forwarding phase when the distance to the destination
has been reduced by d.

Pfi(d, n) =⎧⎨
⎩

P(D1 ≥ d) n = 1

P(Dn ≥ d) −
n−1∑
m=1

Pfi(d, m) = P(Dn ≥ d) − P(Dn−1 ≥ d) n > 1
(3)

Similar to the derivation of the random variables for
the forwarding phase, Equation (4) computes the ran-
dom variable describing the time of waiting after exactly
n waiting phases. Analogous to the definition of D’n, Wn

is defined also for the case where no waiting has
occurred. In Equation (5), we give the probability of
being in the nth waiting phase at time t.

Wn =

⎧⎨
⎩

I n = 0
Vn n = 1
Wn−1 + Vn n > 1

(4)
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Figure 1 Time-distance illustration of packet routing.
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Pw(t, n) =⎧⎨
⎩

P(W1 ≥ t) n = 1

P(Wn ≥ t) −
n−1∑
m=1

Pw(t, m) = P(Wn ≥ t) − P(Wn−1 ≥ t) n > 1
(5)

Using the above results, we can now define expres-
sions predicting routing performance. The main result is
presented in Equation (6) where we compute the prob-
ability that a packet has, within time t, been delivered to
a node that was a distance d from the source. The two
terms in the equation consider the cases where a packet
initially waits before being forwarded, and the case
where it is immediately forwarded from the source,
respectively. These two cases correspond to the two
tracks in Figure 1. Each term is a sum of the probabil-
ities of the possible sequences of forwarding and waiting
at the evaluation point. This equation will be used to
compute the packet delivery ratio.

Pd(t, d) = Pwi ·
∞∑

n=1

(
Pfw(d, n) · P(Wn ≤ t)

)
+ (1 − Pwi) ·

∞∑
n=1

(
Pfi(d, n) · P(Wn−1 ≤ t)

)
(6)

The probabilistic answer provided by (6) might not be
enough if a more detailed analysis of the routing perfor-
mance is to be conducted. To complement Pd(t, d), we
define how much a packet has reduced its distance to
the destination at time t by stochastic variable X(t) in
(7), and the time required to reach a distance d from
the source by stochastic variable T(d) in (8). To describe
these two properties, we use stochastic variables defining
the indices of the forwarding or waiting phase that the
packet is in. For the selection of distribution for a parti-
cular case, we use the Kronecker delta defined as fol-
lows.

δ(n) =
{

1 n = 0
0 n �= 0

Table 1 Key notation and terms

Notation Description

d Euclidian distance

t Time

L Random variable describing the reduction of distance to the destination during the first forwarding phase, if the packet could be
forwarded immediately when it was generated

Ln Random variable describing the reduction of distance to the destination at the nth forwarding phase after waiting, if the packet could be
forwarded immediately when it was generated

L’n Random variable describing the reduction of distance to the destination at the nth forwarding phase after waiting, if the packet had to
wait at the source before forwarding

I Random variable that with 100% probability takes the value 0

Dn Random variable describing the reduction of distance to the destination after n forwarding phases, if the packet could be forwarded
immediately when it was generated

D’n Random variable describing the reduction of distance to the destination after n forwarding phases, if the packet had to wait at the
source before forwarding

Vn Random variable describing the time that a packet is in the nth waiting phase until it can be forwarded

Wn Random variable describing the time that a packet has waited after n waiting phases

X(t) Random variable describing how much a packet has reduced the distance to the destination at time t

T(d) Random variable describing the time taken to reach distance d from the source

Swi Random variable describing if there was an initial wait or not. Swi = 1 if there was an initial wait and 0 if there was no initial wait

Sw(t) Random variable describing the index number of the current wait phase at time t, assuming that the packet was forwarded immediately
when it was generated

S’w(t) Random variable describing the index number of the current wait phase at time t, assuming that the packet had to wait at the source
before forwarding

Sfi(d) Random variable describing the index number of the current forwarding phase when the packet has reduced the distance to the
destination by d, assuming that the packet could be forwarded immediately when it was generated

Sfw(d) Random variable describing the index number of the current forwarding phase when the packet has reduced the distance to the
destination by d, assuming that the packet had to wait at the source before forwarding

P(expr) Probability that the expression expr is true

Pfi(d, n) Probability of being in the nth forwarding phase when the packet has reduced the distance to the destination by d (measured from the
source), assuming that the packet could be forwarded immediately when it was generated

Pfw(d, n) Probability of being in the nth forwarding phase when the packet has reduced the distance to the destination by d (measured from the
source), assuming that the packet had to wait at the source before forwarding

Pw(t, n) Probability of being in the nth waiting phase at time t

Pd(t, d) Probability of delivery of a packet within time t to a destination at a distance d from the source

Pwi Probability that a packet has to wait before it can be forwarded from the source
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Equations (7) and (8) have the same structure as (6),
but instead of probabilities, we operate on random vari-
ables. Equation (7) describes how much a packet has
reduced its distance to the destination at time t. The
first term describes the case when the packet was for-
warded after an initial wait, and the second term
describes the case for a sequence of forwards without an
initial wait. The equation uses selection elements (Swi,
Sw(t), and S’w(t)) defined by the following probabilities
described earlier.

P(Swi = 1) = Pwi

P(Sw(t) = n) = P(S′
w(t) = n) = Pw(t, n)

X(t) = δ (1 − Swi) ·
∞∑

n=1

(
δ
(
n − (

S′
w(t) − 1

)) · D′
n
)

+δ (Swi) ·
∞∑

n=1

(
δ
(
n − Sw(t)

) · Dn
)

(7)

Equation (8) has the same structure as (7), but instead
computes the time taken to move towards the destina-
tion with distance d from the source. In addition to Swi,
the equation uses the selection elements Sfw(d) and Sfi
(d) defined by the following probabilities described ear-
lier.

P(Sfw(d) = n) = Pfw(d, n)

P(Sfi(d) = n) = Pfi(d, n)

T(d) = δ (1 − Swi) ·
∞∑

n=1

(
δ
(
n − Sfw(d)

) · Wn
)

+δ (Swi) ·
∞∑

n=1

(
δ
(
n − (

Sfi(d) − 1
)) · Wn

)
(8)

The forthcoming sections will be devoted to deriving
the properties of the forwarding and waiting random
variables in a given context, and validating the model
using simulation data. In addition, we will show how Pd
(t, d) can be used in a practical application of the
framework.

4. Characterizing forwarding and waiting
In order to use the framework presented in Section 3
for estimating the routing performance with a given
mobility model and routing protocol, we need a descrip-
tion of the properties of the random variables for for-
warding and waiting. We explore two alternatives: (1)
using abstract models for mobility and routing in Sec-
tion 4.2, and (2) using data from a protocol simulation,
i.e., LAROD ns-2 simulations [1], in Section 4.3.
The first alternative is useful if the properties of a

mobile scenario and routing protocol are well known
and can be modeled. The second alternative can capture

the distributions of any routing protocol and mobility
scenario, including protocols for which the characteris-
tics are not well known. For illustration of the process
of creating the abstract model based on a known mobi-
lity and routing algorithm, we use the knowledge about
LAROD routing protocol, the characteristics of which
will briefly be described in Section 4.1.
In ad hoc wireless networks, distances have little

meaning, unless the range capabilities of the chosen
radio technology are also specified. For this reason, we
have chosen to express distance in the nominal radio
range. Moreover, we will treat node densities by the
average node degree. The average node degree, c, is the
average number of nodes per area covered by the nom-
inal radio range, defined as rπr2, where r is the average
node density and r is the nominal radio range. For Pois-
son distributed nodes in an infinitely large system, the
average node degree equals the average expected num-
ber of neighbors of a node [19].

4.1. Abstract mobility and routing model
In this section, we detail the mobility and routing mod-
els that will be used in Section 4.2 to derive the model-
based forwarding and waiting properties. The model is
intended to capture the mobility and routing in the
LAROD ns-2 simulations used in Section 4.3, but still
be manageable so that using the model is significantly
simpler than using simulations.
4.1.1. Poisson-based mobility
For the abstract mobility model, we choose the Poisson
distribution [19] to describe the statistical distribution of
the nodes. The Poisson distribution describes the statis-
tical location properties of independent nodes that are
equally likely to be in all locations in an infinite space.
The choice of using Poisson distribution is justified by
three reasons. First, it is a commonly used abstraction
and mathematically attractive. Second, it is a reasonable
simplification of the pheromone mobility model that we
have used in the ns-2 simulations. Third, it describes
the location properties of nodes in some commonly
used synthetic mobility models [20,21].
The Poisson distribution only describes how the nodes

are statistically distributed, not how they move. To
derive the properties of the waiting phase, we need to
characterize how the nodes move during a limited time
period. To this end, we assume that the nodes move
independently at a common constant speed, and that for
short time periods the movements can be regarded rec-
tilinear. The common constant speed reflects the speed
used in the LAROD ns-2 simulations.
Modeling geographic forwarding
Many geographic opportunistic forwarding algorithms
are based on forwarding areas, a notion that we use in
the abstract routing model. Since we will demonstrate
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the use of the wait-forward framework by predicting the
performance of LAROD [1], we will use its parameters
when modeling routing behavior. LAROD is a delay-tol-
erant geographic single-copy routing protocol. At each
hop, the protocol selects the node providing the most
routing progress. Here, progress refers to the reduction
in distance to destination. As a packet is forwarded, the
custody of the packet is transferred from one node to
another, guaranteeing that there always is a node
responsible for the packet. If there is no node that can
provide a pre-defined minimum progress, LAROD waits
until node movements have changed the nodes’ posi-
tions in such a way that forwarding becomes feasible.
The area in which the next custodian can be selected is
called the forwarding area; see Figure 2 for an illustra-
tion. The protocol periodically attempts to detect new
nodes in the forwarding area. The time period of two
successive attempts is referred to as the retry interval, tr.
Setting the value of tr involves a trade-off between the
latency in detecting new nodes and protocol overhead.
In LAROD ns-2 simulations, tr is set randomly and uni-
formly between 8 and 12 s.
Modeling custodian selection in the geographic rout-

ing protocol with a minimum progress requirement
leads to Equations (9) and (10), for which the terms are
defined in Table 2. Equation (9) defines the forwarding
area, and (10) describes the position of the next custo-
dian. The forwarding operation is characterized by the
reduction in distance to destination as measured from
the current custodian. When a forwarding phase starts,
the packet is routed without delay, until forwarding is
no longer possible, because the current custodian’s for-
warding area is empty. In the waiting phase, the proto-
col regularly attempts to start a new forwarding.

X ∈ fa(Xc → Xd) | |X − Xd| ≤ |Xc − Xd| + p, |Xc − X| ≤ r (9)

Xx = Xn | min
( |Xn − Xd| | Xn ∈ fa(Xc → Xd)

)
(10)

Framework inputs based on models
In this section, we will derive the properties for the for-
warding and waiting random variables based on the
mobility and forwarding models described in Section
4.1. The random variables will be described using distri-
butions [19]. To describe the probability density func-
tion (pdf) and cumulative distribution function (cdf) we
use the notations pdf(X, x) and cdf(X, x) where X is a
random variable and x is the value of the random vari-
able. To see the impact of node density, we will evaluate
four different node densities within a relevant range.
Forwarding distribution based on models
Even for the ideal disk-based transmission model, deter-
mining the forwarding distribution analytically for Pois-
son distributed nodes is unfortunately too complex to
be practically tractable. For details, please see Appendix
1. For this reason, we have derived the forwarding cdfs
using Monte Carlo simulation.
For determining the reduction of distance to the desti-

nation that a packet achieves while approaching the des-
tination from the source (L), the Monte Carlo
simulation is set up as follows. A number of nodes
drawn from a Poisson distribution are placed in a rec-
tangular area. The area is large enough so that at most
0.1% of the packets will reach the area boundary. Each
node’s coordinate is set randomly following a rectangu-
lar distribution. A packet is sent towards a destination
located infinitely far away, and the forwarding progress,
measured along the line connecting the source and des-
tination, is determined. Custodian selection is performed
according to (10), until an empty forwarding area is
encountered.
The result is shown in Figure 3 using the complemen-

tary cdf (ccdf) for four different values of node density
(where c denotes the node degree described earlier).
The ccdf in the figure is (1 - cdf(L, d))·(1 - Pwi), as the
Monte Carlo simulation also records the occasions

Custodian Forwarding
Area

Destination

Figure 2 An illustration of the forwarding area with minimum
required progress requirement.

Table 2 Terms in custodian selection

Notation Description

fa(Xc ® Xd) Forwarding area for a custodian at Xc and destination at Xd
r Nominal radio range

p Minimum-required progress. The parameter is set to 0.04r

X Two-dimensional Euclidian position

Xc Position of the current custodian

Xd Position of the destination

Xn Position of node n

Xx Position of the next custodian
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when no node is present in the forwarding area and the
packet has to wait. In order to derive a well-behaved
density function, the distribution from the Monte Carlo
simulation has been fitted to a curve described by (11),
where G is a gamma-distributed random variable with
shape parameter r and scale parameter l. The transition
points in (11) are selected to achieve an optimal match
between the measured distribution and the fitted curve.
Using the assumption of Poisson distributed nodes,

the measured probability that a packet could not be for-
warded from the source (Pwi) obtained from the Monte
Carlo simulations can be verified theoretically. Knowing
the node density and forwarding area size the theoretical
probability for not forwarding is trivial to determine
(this is the probability that there are no nodes in the
forwarding area). For our definition of the forwarding
area, the results are presented in Table 3. These values
are closely matched by the Monte Carlo simulations.

cdf(L, d) =

⎧⎨
⎩

0 d < 0.04
k0 + k1 · d + k2 · d2 + k3 · d3 0.04 ≤ d ≤ 1.3
cdf

(
G(r, λ), d

)
d > 1.3

(11)

When the packet is forwarded to the edge of a parti-
tion, it has to wait until further forwarding can take
place. When at least one node enters the forwarding
area this wait ends, and forwarding can continue. The
property of this forwarding will not be the same as the
forwarding experienced by the source node when the

packet was generated. The reason is that a custodian
candidate in the forwarding area after a wait will be
found close to the edge of the current custodian’s for-
warding area. This is due to the fact that the node
movements are small during a retry interval compared
to the size of the forwarding area. We will see that this
will have significant implications for the forwarding
distribution.
The Monte Carlo simulations used to determine the

distance forwarded after a wait (Ln, L’n) are set up simi-
lar to the ones used for analyzing packet forwarding
from the source (L). A simulation run starts by placing
a number of nodes, drawn from a Poisson distribution,
in a rectangular area. Searching through the nodes, the
first node having an empty forwarding area is selected
to be the custodian of a packet. If no node with an
empty forwarding area exists, the simulation run is
aborted. Provided that a custodian is found, the next
step is to move all the nodes (including the custodian)
in random directions with a distance randomly selected
to correspond to the retry interval employed between
forward attempts (in the abstract model we have used
the same interval, 8-12 s, as in LAROD ns-2 simula-
tions). If a node has entered the forwarding area after
the retry interval, the forwarded distance of the packet
is recorded; otherwise the simulation run is discarded.
The resulting distribution is shown in Figure 4 using its

ccdf. The figure leads to several interesting observations.
The steep drop at the beginning of the curves corre-
sponds to the scenario that a node enters the forwarding
area from the rear. In this case, the forwarding areas of
the initial and new custodians have a large overlap. As a
result, the probability of making another hop is low.
Similar to the cdfs for initial forwarding at the source,
the cdfs corresponding to the ccdfs in Figure 4 have been
curve-fitted to derive well-behaved pdfs. The curve fitting
is done according to Equation (12), where the transition
points are selected based on a maximum match between
the measured distribution and the fitted curve. In the

Table 3 Probability of having an initially empty
forwarding area

Avg. node degree c Pwi (%)

2 38.7

3 24.1

4 15.0

5 9.3
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Figure 4 Probability of being forwarded by at least a given
distance from the source after a wait (ccdf), for four node
density values.
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Figure 3 Probability of being forwarded by at least a given
distance from the source with no initial wait (ccdf), for four
node density values.
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equation, parameters d4 and d5 are density dependent,
and selected to achieve an optimal fit.

cdf(Ln, d) = cdf(L′
n, d)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 d ≤ 0.04
k0 + k1 · d + k2 · d2 + k3 · d3 0.04 < d ≤ 0.16
k10 + k11 · d + k12 · d2 + k13 · d3 0.16 < d ≤ 0.85
k20 + k21 · d + k22 · d2 + k23 · d3 0.85 < d ≤ d4

k30 + k31 · d + k32 · d2 + k33 · d3 d4 < d ≤ d5

cdf
(
G(r, λ), d

)
d > d5

(12)

Waiting distribution based on models
A wait period starts when a packet reaches the edge of a
partition where it has to wait until mobility makes
further forwarding possible. To determine the distribu-
tions for the waiting phase based on the modeled mobi-
lity and routing, we consider the periodic forward
attempts employed by LAROD. After waiting a time t
the probability of successful forwarding is described by
Pf(t). With the knowledge of when a forward attempt is
made, described by R, the waiting distribution can be
established. For the LAROD simulations, pdf(R, t) is a
rectangular distribution as specified in (13).

pdf(R, t) =
{

0.25 8 ≤ t ≤ 12
0 otherwise

(13)

For Pf(t), we note that it is zero at t = 0 and equals Pwi
as t approaches infinity. Therefore, Pf(t) is expected to
have an exponential-type shape. Since we are only inter-
ested in Pf(t) when pdf(R, t) is non-zero, a linear
approximation is considered. An analysis of the data
points used to establish Pf(t) has shown that this is a
reasonable approximation over the relevant interval.
The probability of forwarding after a given waiting

time (Pf(t)) is not trivial to determine analytically, and
for this reason we have used Monte Carlo simulations.
In each simulation run, a number of nodes are placed in
a rectangular area, following a Poisson distribution. The
size of the area is selected such that the expected num-
ber of nodes with an empty forwarding area is 100. All
nodes are then randomly moved. Whether or not nodes
have entered forwarding areas that initially are empty is
then recorded. The simulation has been run for 100
times for each of the time values 8, 9, 10, 11, and 12 s,
giving approximately 10,000 samples per point. The col-
lected data are then fitted to a linear function to repre-
sent Pf(t). The coefficients in the linear function and
two sample values are provided in Table 4, and the lin-
ear function itself is given in (14).

Pf (t) = k · t + o (14)

What remains to compute is the waiting time Vn

based on R and (14). To this end, we first determine the

probability that a forward attempt is a success or a fail-
ure (see Equations 15 and 16). Next, we use two ran-
dom variables, En and An, to describe the waiting times
for a successful or a failed forward attempt, respectively.
The density functions of En and An are defined in (17)
and (18). Based on these and the failed wait time
described by (19), a random variable describing the time
when a successful forward attempt is made after n - 1
failed attempts is defined in (20). The random variable
Vn is then defined in (22) using the selection element Sf
(21) and the Kronecker delta. The notation is summar-
ized in Table 5. In Figure 5, cdf(Vn, t) is illustrated.

Pf =

∞∫
0

pdf(R, t) · Pf(t)dt =

12∫
8

0.25 · (k · t + o) dt = 10 · k + o (15)

Pa =

∞∫
0

pdf(R, t) · (1 − Pf(t)
)

dt = 1 − Pf = 1 − 10 · k − o (16)

pdf(En, t) =
pdf(R, t) · Pf(t)

Pf
(17)

pdf(An, t) =
pdf(R, t) · (1 − Pf(t)

)
Pa

(18)

Bn =
{

An n = 1
Bn−1 + An n > 1

(19)

Fn =
{

En n = 1
Bn−1 + En n > 1

(20)

P(Sf = n) = Pf · Pn−1
a (21)

Vn =
∞∑

n=1

(
δ(n − Sf) · Fn

)
(22)

Distributions from ns-2 data
In this section, we present the alternative approach to
deriving probability distributions for the framework for

Table 4 Average probability of forwarding after a retry
interval

Avg. node degree c k o t = 8 (%) t = 12 (%)

2 0.0059 0.013 6.0 8.3

3 0.0080 0.023 8.7 11.9

4 0.0127 0.008 11.0 16.1

5 0.0167 -0.002 13.2 19.9
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an arbitrary protocol and mobility model, provided that
some detailed simulation traces are available. As an
example, we compute numerically the forwarding and
waiting distributions from ns-2 simulations of LAROD
under the pheromone reconnaissance mobility model.
The idea is to compare the results to the distributions
derived in the previous section, in which mobility and
routing are modeled more abstractly. We do not expect
that the results will match each other perfectly due to
the following reasons. First, the ns-2 simulator has a
more realistic radio model. Second, the pheromone
reconnaissance mobility model does not produce Pois-
son distributed nodes. Third, the location of a destina-
tion is assumed to be known in the abstract model, i.e.,
a perfect location service is assumed in our derivation of
the distributions. This is however not the case in the
ns-2 simulations.
Forwarding distribution based on simulations
Extracting forwarding distributions from simulation
traces calls for some methodological considerations,
because distance measurements in the simulations can
only provide finite values. The consequence of a finite
distance is that a packet might reach its destination dur-
ing a forwarding operation, and in this case it is impos-
sible to tell how much further the forwarding could
have continued. Consider a packet transmitted by its
custodian. If the packet reaches the edge of the partition
before reaching its destination, the simulation data give

relevant distance information for deriving the distribu-
tions. On the other hand, if the packet reaches the desti-
nation, then one cannot tell how much further it could
have been forwarded. To limit the impact of this issue
when establishing the simulation-based cdf(L, d), cdf(Ln,
d), and cdf(L’n, d), we only consider simulation data
where forwarding takes place to destinations for which
the distance from the custodian is above a pre-defined
threshold. Thus, the computed forwarding distribution
will be representative for the true distribution up to the
distance threshold. A problem with setting a high dis-
tance threshold is that the number of data points avail-
able for establishing the distribution becomes very low.
For the LAROD ns-2 simulations, a distance threshold
of 5 radio radii is used. In order to obtain a smooth dis-
tribution over this value, we apply an extrapolation
technique.
A second issue in deriving forwarding distributions via

simulations is packet duplication. This can happen due
to LAROD routing logic, e.g., when a custodian for-
wards the same packet to two nodes that are not within
the radio range of each other. To deal with the issue,
the consideration is limited to the copy that has reached
furthest towards the destination. In the LAROD simula-
tions, the average node degree equals 3.93. Throughout
the article, the data extracted from simulations are
based on a TTL value of 1,000 s.
In Figures 6 and 7, we provide the ccdfs of forwarding,

obtained by trace data from the LAROD simulations.
The modeled (dashed) curve is based on the equations
in Section 4.2.1. For the solid black curve representing
the LAROD ns-2 data, we see a drop after 5 radio radii.
After this value, some packets have reached their desti-
nations, and hence they only provide a truncated for-
warding distance. The LAROD ns-2 curves have been
extrapolated and curve-fitted using the functions given
in Section 4.2.1. The modeled curve uses the same node
density level (3.93) to ease the comparison. From the
simulation results, the probability of having an initial
waiting phase, Pwi, is 19% for an average node degree of
3.93. This is considerably higher than the value of 15%

Table 5 Notation and terms in deriving distributions for the waiting phase

Notation Description

Pf Probability that a forward attempt is successful

Pf(t) Probability that a forward attempt at time t is successful

Pa Probability that a forward attempt fails

An Random variable describing the waiting time of the nth failed forward attempt

Bn Random variable describing the waiting time of n failed forward attempts

En Random variable describing the waiting time for a successful forward attempt after n-1 failed attempts

Fn Random variable describing the waiting time if the nth forward attempt is successful

R Random variable describing time to the next transmission attempt

Sf Random variable describing the index number of the wait attempt when a packet was successfully forwarded
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Figure 5 Probability of waiting for at most a given time, for
four node density values.
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derived for the similar node degree level under Poisson
distribution (see Table 3). From these results, we see
that the model we use does not exactly describe the for-
warding properties experienced in the simulations. Some
probable causes were discussed at the beginning of Sec-
tion 4.3.
The lower ccdf curves from LAROD ns-2 compared to

those derived for Poisson distributed nodes reveals
lower average forwarding distance. Consequently, more
waiting phases are required before the destination is
reached. Whether or not this means a longer delivery
time depends on the characteristics of waiting — an
aspect that we will study in the next section.
Waiting distribution based on simulations
We now turn our attention to characterizing waiting time
using LAROD ns-2 simulations. Processing waiting data
is less problematic compared to the case of forwarding
data. Yet some caution is necessary, because some pack-
ets may time out while waiting to be forwarded. In data
processing, such packets are discarded. Hence, only pack-
ets for which forwarding does occur after waiting are
considered. Consequently, information associated with
very long waiting times is not available, meaning that the
distribution derived from simulations is slightly optimis-
tic. The results are presented in Figure 8, and compared
to the curve computed by the modeling approach (Sec-
tion 4.2.2) under the same node density level. From the

figure, it is apparent that the distribution derived from
the Poisson distributed nodes yields a very good approxi-
mation; the waiting time obtained from the LAROD
simulations is only slightly longer than the one derived in
Section 4.2.2. The study in Section 4 has thus demon-
strated that with carefully constructed models the model-
based and simulation-based distributions can be fairly
close to each other. The challenge is to know when the
models are good enough.

5. Validation of the framework
Having presented the forward-wait framework in Sec-
tion 3, and its parameters in terms of random variables
in Section 4, we are now in a position to evaluate the
validity of the framework. We compare the predictions
by the framework to those given by LAROD ns-2 simu-
lations, and if they are reasonably similar we conclude
that the framework accurately can predict the routing
performance. While this only proves that the framework
can predict the routing performance for this specific
case, it strengthens our belief that its use can be
extended to previously unexplored scenario
configurations.
For the framework, we consider both the model-based

input from Section 4.2 and the simulation-based input
from Section 4.3. Due to the difference between the two
sources of input, the routing performance predictions
should somewhat differ. What we hope, however, is that
when simulation-based input is used, the predictions by
the framework come close to the simulation results. Dif-
ferences in the results, if any, should originate from the
assumptions made in the framework and data extraction
issues.
We need a final part of the puzzle before the frame-

work predictions can be compared to the simulation
results. The output from the ns-2 simulations is the
packet delivery ratio for various maximum packet life
times, whereas the output from the forward-wait frame-
work is the probability that a packet has reached a desti-
nation located at distance d from the source within time
t. To make them comparable, we need a description of
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Figure 7 Probability of being forwarded by at least a given
distance after an initial wait (ccdf).
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Figure 8 Probability of waiting for at most a given time before
forwarding (cdf).
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distance from the source with no initial wait (ccdf).
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source-destination distance. This aspect is addressed
first, followed by results of the comparison.

Distance to destination
The source-destination distance differs for each packet.
This variation will be described by the random variable
Y. We determine properties of Y along two lines, one
based on a mathematical description of the source and
destination locations, and the other based on LAROD
ns-2 simulations.
In the mathematical description, we assume that the

nodes are evenly and independently distributed in a
square area. Denoting the side length of the area by k,
the density function of Y follows (23). For the derivation
of the equation, the reader is referred to Appendix 2.
The corresponding results obtained from LAROD ns-2

simulations are illustrated in Figure 9 for the 8 × 8 radio
radii square. The source-destination distance from the
ns-2 simulation is somewhat higher than that from the
mathematical description. We conjecture that non-uni-
form node placement, movement of the destination dur-
ing packet routing, and location service inaccuracies
have all contributed to the difference between the
curves.

pdf(Y, d) =⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2d ·
(

π

k2
− 4d

k3
+

d2

k4

)
0 ≤ d ≤ k

2d ·
(

2
k2

tan−1

(
2k2 − d2

2k
√

d2 − k2

)
− 2

k2
+

4
√

d2 − k2

k3
− d2

k4

)
k < d <

√
2k

0 otherwise

(23)

Delivery predictions
With the tools and data previously presented, we can
now estimate the delivery ratio using the forward-wait
framework, and compare the prediction to the delivery
ratio obtained by LAROD ns-2 simulations. The delivery
ratio based on Pd(t, d) and Y is computed according to
(24). The equation models the fact that when a packet is
within the radio range of the destination, the last hop is
a guaranteed success.

PTTL(t) =

r∫
0

pdf(Y, x)dx +

∞∫
r

pdf(Y, x) · Pd(t, x − r)dx (24)

The delivery ratio predicted by the forward-wait fra-
mework, using input from the modeling approach and
the LAROD ns-2 simulations, is presented in Figure 10.
The figure also shows the delivery ratio from the
LAROD ns-2 simulations with a 95% confidence
interval.
Two major observations follow from the figure: (1) the

predicted delivery ratio can differ significantly, depend-
ing on the type of input, and (2) providing the frame-
work with key input parameters from simulations leads
to highly accurate predictions of the delivery perfor-
mance. The remaining gap can be attributed to simplifi-
cations made in the framework, and the fact that it is
difficult to estimate long forwarding chains and delays
from the simulation data, as described earlier in Section
4.3.
The first observation illustrates the importance of

using a relevant data source when predicting routing
performance. Assuming idealistic conditions, predictions
become too optimistic in comparison to the simulation
results, even though the latter may not necessarily
represent real-world performance.

Distance and time predictions
In addition to validating the model in terms of the final
delivery ratio, it is also of interest to validate the distance
and time distributions predicted by Equations (7) and (8)
against data from the LAROD ns-2 simulations. From
the simulations, it is easy to extract how far a packet has
traveled from the source at some specific time, as well as
at the time taken for achieving a given reduction in the
distance to packet destination. The measurements are
however performed only for packets that have not yet
been delivered to their destinations. For the time for hav-
ing reached a distance from the source (Equation 8), the
data from the simulations can directly be compared to
the predictions made by the forward-wait framework.
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The reason for this is that while we cannot extract data
for packets having reached their destinations before the
measurement point, all packets have the same distribu-
tion regarding time of passing the measurement point.
For the time to reach a certain point analysis, we have

chosen a measurement point 4 radio radii from the
source. In Figure 11, the distribution function from the
ns-2 simulations is compared to the one computed by
the forward-wait framework using the ns-2-based distri-
butions. As can be seen from the figure, the two distri-
butions are very close to each other. The distribution
from the framework is slightly more optimistic on how
fast a packet travels, an effect also reflected in the
slightly optimistic results from the framework in the
previous section.
The direct validation of Equation (7) is not possible

due to the following reason. In practical, simulations
packets are delivered to their destinations, and if a
packet reaches its destination before the time used for
measurement, data for that packet cannot be gathered.
Thus, we only measure packets for which the following
is true, X(t) <Y - r, where Y is the distance to destina-
tion, and r is the radio range. As in the previous section,
we assume that when a packet is within radio range of
the destination, the last hop is a guaranteed success.
In Figure 12, we have plotted the distributions of X(t)

<Y - r and the data from the ns-2 simulations at time t
= 200 s. We observe a visible difference between the fra-
mework prediction and the ns-2 data. The main reason
for the difference is that the forward-wait framework
assumes that the node holding the packet does not
move while it waits. The ns-2 data on the other hand
includes node movements during waiting. Obviously,
node movements can be in any direction, both towards
and away from the source, but since we measure the
absolute distance from the source we cannot tell if the
packet has advanced towards the destination or not.
What we clearly see is that the impact on node mobility
while waiting cannot be ignored. A further discussion
regarding the validity of the forward-wait framework
due to this effect is provided in the next section.

From the results in this and the previous section, we
conclude that the forward-wait framework can reason-
ably accurately predict the routing performance for
LAROD, provided that representative forward and wait
distributions are used. We believe that these results
extend to other geographic routing protocols in IC-
MANETs.

6. The validity of the framework assumptions
In the previous section, we have shown that the for-
ward-wait framework can successfully predict simulation
results. Let us now examine how well the assumptions
used for building up the framework (see Section 3) are
met. We consider first the assumption that forwarding
takes no time and that packet movement is minimal in
the waiting phase. Table 6 shows the mean values of
waiting times and forwarding distances, obtained from
the mobility model in Section 4.1.1 and the LAROD ns-
2 evaluations, respectively.
It is striking to observe the significant amounts of dis-

tance that packets traveled during waiting in relation to
the forwarding distance. An immediate question is how
much this result influences the validity of the model.
The answer is that the impact is in fact not significant–
whereas some nodes move closer to the destination of a
packet waiting to be forwarded, other nodes will move
away from the destination. Assuming directional unifor-
mity of the movements, they cancel each other’s effect
in the infinite case. In the finite case, the distance to a
static destination will somewhat increase (on average)
during a waiting phase. However, this increase is typi-
cally small enough to be negligible.
We now consider the related assumption that time for

forwarding is negligible. The time that a forwarding
phase takes depends greatly on the communication
technology and packet size. As the modeling approach
in Section 4.1.2 does not include these aspects, we look
in more detail into LAROD ns-2 simulations. From the
simulation results in Table 6, we observe that the time
consumed by forwarding is small (≈1.5%) in comparison
to the waiting time. This confirms that the assumption
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respect to time.
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in the framework holds. If this was not the case, Equa-
tion (5) would have been adapted to include forwarding
time.
Another assumption in Section 3 was that, at any

given time, only one copy of a packet is routed. For
LAROD, however, occasionally this is not true in our
ns-2 simulation data. For such cases, we use the copy
that reaches furthest towards the destination for deriv-
ing the forwarding distributions. Hence, the assumption
can be respected by extraction of suitable traces from
simulations (at the expense of being more or less opti-
mistic). To analyze the delivery ratio of a routing proto-
col that routes multiple copies of a packet, the
forwarding and waiting distributions can be extended by
considering the first copy arriving at the destination and
modeling the routing decisions made for those packets.

7. Practical application of the forward-wait
framework
In Section 5, we showed that the forward-wait frame-
work can accurately match the results by simulations.
This establishes some trust in the capability of the fra-
mework in predicting routing performance. In this sec-
tion, we illustrate how the framework can be used in
connection with a large-scale deployment. For the illus-
trations, we require data for multiple node densities.
Since these data are only available for the model of
routing and mobility from Section 4.1, we will in this
section use the distributions derived in Section 4.2.
A first natural use of the framework is to predict the

packet delivery ratio for large scenarios. In Figure 13,
we show the delivery ratio for different scenario sizes at
a constant average node degree of 4. With the random
selection of destination in the used scenario and the
constant node density, more nodes means longer
source-destination distances. This is reflected in the fig-
ure by lower delivery ratio for larger scenarios for the
same packet life time.
In addition to being predictive, the framework can be

used to enable a source node to dynamically set the
packet TTL to achieve a desired delivery probability. To
illustrate this, in Figure 14 we plot the relationship

between distance to destination and TTL for various
density levels with a 95% delivery probability.
If the TTL is fixed, Pd(t, d) can be used to determine

whether a packet shall be transmitted or not for the
required delivery probability. Figure 15 shows Pd(t, d)
for the mobility and routing models for an average node
degree of 4. For example, if the requirement of delivery
probability is 95% or higher, then the packets to destina-
tions that are over 6.5 radio radii away can be discarded
if the TTL is set to 600 s.

8. Conclusions and further study
We have presented and validated the forward-wait
mathematical framework for geographic routing. The
framework describes the probability of delivery as a
function of the maximum allowed delivery time and the
distance to destination. As input, the framework uses
scenario- and protocol-specific random variables charac-
terizing the forwarding and waiting phases. Combined
with a description of the distance to destination, the
delivery ratio can be computed for any scenario size.
The framework can also be used to dynamically assess
delivery probabilities based on different packet life time
settings. A first application of the framework in the con-
text of a military reconnaissance scenario has already
provided useful insights [22].
A major challenge in modeling routing performance is

that the routing performance is scenario- and protocol-
dependant. For the proposed forward-wait framework,

Table 6 Average waiting times and forwarding distances

Avg. node
degree

Avg. wait
time (s)

Dist. traveled in waiting
(radio radii)

Avg. fwd. dist. initial
(radio radii)

Avg. fwd. dist. after wait
(radio radii)

Avg. time
fwd. (s)

Modeled mobility

2 144 0.81 1.0 0.9 -

3 97 0.54 1.6 1.3 -

4 74 0.42 2.4 2.0 -

5 60 0.34 3.7 3.1 -

LAROD ns-2 simulations

3.93 78.1 0.47 1.9 1.4 1.2
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Figure 13 Delivery ratio for different scenario sizes.
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the scenario- and protocol-specific elements are cap-
tured by the properties of the forwarding and waiting
phases. For a specific scenario evaluated in ns-2, we
determined these properties using two methods: (1) an
abstract mobility model with Poisson distributed node
placement and a routing protocol model, and (2) basic
routing data from the ns-2 simulations. Comparing the
two approaches, we observed that only with the latter
input the forward-wait framework could accurately pre-
dict the routing results from the ns-2 simulations. This
illustrates the difficulty of accurately describing node
mobility and routing protocol using simple abstractions,
and that if simplistic models are used, then the perfor-
mance results are generally not reliable.
While the proposed framework is believed to be gen-

eral enough to apply to other geographic routing algo-
rithms, further study is needed to provide the evidence
for this. In addition to the validation of the framework
to broaden its usefulness, the prediction accuracy could
be improved by explicitly considering both time and
motion in the models describing forwarding and waiting.

Appendix 1
Complexity of deriving the distribution of forwarding
distance
In illustrating the complexity of determining forwarding
distance analytically, it is instructive to make a couple of

major simplifications. First, nodes are Poisson distribu-
ted. Second, the destination is infinitely far away. With
these assumptions, the forwarding area has a constant
shape. Yet, an analytical derivation of the forwarding
distance is still practically unfeasible. For the first hop
from the source, it is trivial to establish whether or not
a packet can be forwarded, and the probability distribu-
tion of the progress if forwarding takes place. For the
possible second hop, the distribution becomes harder to
derive. Depending on the location of the custodian after
the first hop, there are three different cases, as illu-
strated in Figure 16. Under the assumption of perfect
custodian selection, the intersection of the two forward-
ing areas does not contain any other node. Although the
process is cumbersome, it is feasible to derive analytical
expressions on a case-by-case basis. However, with a
chain of forwarding operations, the derivation becomes
overwhelmingly complex and practically unfeasible. This
justifies the use of determining the distributions of the
forwarding phase by means of Monte Carlo simulations.

Appendix 2
Source-destination distribution
In this section, we derive the source-destination distance
density function, by considering two nodes being placed
randomly with a uniform distribution in a square area.
Let the positions of the two nodes A and B be repre-
sented by random variables defined below, where k is
the side length of the square.

A = (XA, YA)

B = (XB, YB)

pdf(XA, x) = pdf(YA, x) = pdf(XB, x) = pdf(YB, x) =
{

1/k 0 ≤ x ≤ k
0 otherwise

The random variable representing the distance
between the two nodes has the following expression.

Y = |A − B| =
√

(XA − XB)2 + (YA − YB)2
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Figure 15 Delivery probability in distance to destination and
TTL.

(a) (b) (c)

Figure 16 An illustration of the custodian location after first
hop.
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In determining the density function of Y, we make use
of the below relationships.

pdf(A + B, t) =
∫∫

pdf(A, x) · pdf(B, y) · δ((x + y) − t)dxdy

pdf(A − B, t) =
∫∫

pdf(A, x) · pdf(B, y) · δ((x − y) − t)dxdy

pdf(f (X), y) = pdf(X, x) ·
∣∣∣∣dx
dy

∣∣∣∣ , where f(x) is a continu-

ous and strictly increasing or decreasing function of x
within the range where pdf(X, x) > 0.
The density function of Y, pdf(Y, d), can then be

derived as follows.

pdf(XA − XB, d) = pdf(YA − YB, d) =
∫∫

pdf(XA, x) · pdf(XB, y) · δ((x − y) − d)dxdy =

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

k+d∫
0

1
k

· 1
k

dx −k ≤ d ≤ 0

k∫
d

1
k

· 1
k

dx 0 < d ≤ k

0 otherwise

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

=

⎧⎨
⎩

1/k + d/k2 −k ≤ d ≤ 0
1/k − d/k2 0 < d ≤ k
0 otherwise

pdf(|XA − XB| , d) =
{

2/k − 2d/k2 0 ≤ d ≤ k
0 otherwise

pdf
(

(XA − XB)2, d
)

= pdf
(|XA − XB|2, d

)
= pdf

(
|XA − XB| ,

√
d
)

·
∣∣∣∣ 1

2
√

d

∣∣∣∣
=

⎧⎨
⎩

1

k
√

d
− 1

k2
0 ≤ d ≤ k2

0 otherwise

pdf
(
(XA − XB)2 + (YA − YB)2, d

)
=

∫∫
pdf

(
(XA − XB)2, x

) · pdf
(
(YA − YB)2, y

) · δ((x + y) − d)dxdy =

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d∫
0

(
1

k
√

x
− 1

k2

)(
1

k
√

d − x
− 1

k2

)
dx 0 ≤ d ≤ k2

k2∫
d−k2

(
1

k
√

x
− 1

k2

)(
1

k
√

d − x
− 1

k2

)
dx k2 < d < 2k2

0 otherwise

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
2
k2

tan−1

( √
x√

d − x

)
+

2
√

d − x
k3

− 2
√

x
k3

+
x
k4

]d

0

0 ≤ d ≤ k2

[
2
k2

tan−1

( √
x√

d − x

)
+

2
√

d − x
k3

− 2
√

x
k3

+
x
k4

]k2

d−k2

k2 < d < 2k2

0 otherwise

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

=

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

π

k2
− 4

√
d

k3
+

d
k4

0 ≤ d ≤ k2

2
k2

tan−1

(
2k2 − d

2k
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d − k2

)
− 2

k2
+

4
√

d − k2

k3
− d

k4
k2 < d < 2k2

0 otherwise

pdf(Y, d) = pdf
(
(XA − XB)2 + (YA − YB)2, d2) · |2d|

=

⎧⎪⎪⎪⎪⎪⎨
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2d ·
(

π

k2
− 4d

k3
+

d2

k4

)
0 ≤ d ≤ k

2d ·
(

2
k2
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(
2k2 − d2

2k
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d2 − k2

)
− 2

k2
+

4
√

d2 − k2

k3
− d2

k4

)
k < d <

√
2k

0 otherwise
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