
A Framework for Planning Motion in Environments with Moving Obstacles

Samuel Rodriguez, Jyh-Ming Lien, and Nancy M. Amato

Abstract— In this paper we present a heuristic approach
to planning in an environment with moving obstacles. Our
approach assumes that the robot has no knowledge of the
future trajectory of the moving objects. Our framework also
distinguishes between two types of moving objects in the
environment: hard and soft objects. We distinguish between the
two types of objects in the environment as varying application
domains could allow for some collision between some types
of moving objects. For example, a robot planning a path in
an environment with people could have the people modeled
as circular disks with a safe zone surrounding each person.
Although the robot may try to stay out of each safe zone,
violating that criteria would not necessarily result in planning
failure. We will show the effectiveness of our planner in general
dynamic environments with the soft objects having varying
behaviors.

I. INTRODUCTION

Planning a path for a robot has been widely studied.

There has been quite a lot of work on planning a path
for a holonomic, free-flying, robot [1]–[3], and planning
a path for a nonholonomic robot with constraints on the
movement of the robot [4]–[6]. One problem that has been
less studied is planning a path for a robot with constraints
in a realistic environment. This includes environments that
can change dynamically and that include other agents in

the environment. The problem we will study in this paper
includes dynamically moving obstacles and agents. This has
applications in robotics, graphics, virtual reality and games.

The goal of the robot is to avoid the moving obstacles in
the environment as well as the other agents. Although we
cannot guarantee to avoid objects in the environment (as the
environment is unknown) we will present a heuristic planner
that works well in many planning instances.

In our framework we distinguish between hard and soft

moving objects. Hard objects in the environment are moving

or static objects that the robot will attempt to avoid as
a highest priority. Collisions with hard objects will result
in planning failure for the robot. These types of objects
could include objects such as a wall, automatic sliding door,
carousel or any other barrier in the environment. The robot is
allowed some “collision” with soft objects. Soft objects could
be considered other agents in the environment. Examples of

these types of agents could include members of a crowd
in a virtual reality scenario or pursuers in a pursuit-evasion
application. These are some examples where it could be
acceptable to have some amount of “collision” between the
robot and soft objects, as shown in Figure 2. For example, a

S. Rodriguez and N. M. Amato with Parasol Lab,
Department of Computer Science,Texas A&M University
({sor8786,amato}@cs.tamu.edu)

J-M. Lien with Department of Computer Science, George Mason Uni-
versity (jmlien@cs.gmu.edu)

This research supported in part by NSF Grants EIA-0103742, ACR-
0081510, ACR-0113971, CCR-0113974, ACI-0326350, and by the DOE.
Rodriguez supported in part by a National Physical Sciences Consortium
Fellowship.

Fig. 1. A test environment showing different aspects considered in our
planning framework. These aspects include (a) a robot, (b) soft objects (other
agents), (c) hard objects (moving and static), (d) a global-dynamic roadmap
and (e) kinodynamic local plans (also showing the update step on the right).

robot could enter a safe zone surrounding a person without
actually colliding with the person, Figure 2(a). A robot could
also enter an area, represented as a soft object, which could
increase the probability of being caught in a pursuit-evasion
application, Figure 2(b). In an application where a robot
can endure a certain amount of damage and certain areas

or agents can cause the damage, soft objects can represent
these areas or agents, as shown in Figure 2(c).

Planning among moving obstacles is a very difficult prob-
lem. It is made even more difficult in environments when

the future trajectories of the moving objects are unknown. In
this work, the only information we are assuming the robot
has access to during planning is the position and orientation
information of the other objects at each planning step. It
is important to note that we give no guarantee of planning
success. This is in large part due to the dynamic nature
of the environments as well as time constraints. Whereas

many other approaches have constrained the problem to make
it easier to solve and allow for success we put very few
constraints on the problem. Examples of constraints that have
been used include restricting the robot and obstacle shape
(usually to disks) [7], [8], assuming constant or known ve-
locities [8] or knowing the dynamics of the moving obstacles
a priori [9].

Our approach. We propose a two-stage approach to
planning in environments with different types of moving
obstacles. The first stage maintains approximate information
about the dynamic global connectivity of the environment. In

particular, a roadmap is constructed that considers only the
hard objects and may also use a conservative approximation

Proceedings of the 2007 IEEE/RSJ International
Conference on Intelligent Robots and Systems
San Diego, CA, USA, Oct 29 - Nov 2, 2007

ThB5.3

1-4244-0912-8/07/$25.00 ©2007 IEEE. 3309

(a) (b) (c)

Fig. 2. Examples of soft objects: (a) a person modeled as a disk with a
safe surrounding area, (b) a pursuing agent with increasing probability of
capturing other agents closer to the center, (c) an area, agent or danger zone
with increasing probability of causing damage to a robot depending on area
of collision.

of the robot. The roadmap is updated as the hard objects
move. Hence, the global roadmap encodes a conservative
approximation of the connectivity of the environment when

only hard objects are considered. The second stage uses a
global path extracted from the dynamic roadmap to locally
plan in the environment. These kinodynamic local plans
take into account the soft objects, or neighboring agents,
to find safe plans. The local paths are also updated as the
environment changes.

Benefits of our approach over others proposed for dynamic
environments include:

• Integrating global planning amidst moving objects and

kinodynamic local planning.
• Kinodynamic local paths are generated incrementally to

follow a global path.
• Focused computation to local regions of the environ-

ment where the robot is positioned
• Consideration of other agents in the environment and

how to plan around them.

Outline. The remainder of the paper is outlined as follows:
related work is described in Section II, we describe aspects
of planning among moving obstacles in Section III and IV,

in Section V we describe how kinodynamic planning is
done among other agents and we conclude with results and
conclusions.

II. RELATED WORK

In this section we describe work that is related to our path

planning technique. The general methods that we will discuss
include global randomized motion planning techniques, and
kinodynamic path planning in static and dynamic environ-
ments. Although we cannot give a full overview of related
work, we will describe work that is closely related to our
approach.

A. Motion Planning

Probabilistic Roadmap Methods (PRMs) [1] are one of
the most popular types of sampling-based planners. PRMs
construct a roadmap in a two-staged approach. First config-
urations, or placements of the robot, are randomly generated.
The free configurations are then connected using local plan-

ners. After the roadmap has been constructed, a solution can
be extracted by connecting both start and goal configurations
to the resulting roadmap. There have been many attempts to
improve the node generation portion of the PRM framework.
These approaches try to generate nodes in interesting areas
such as near the obstacle surface [2], [3] or near the medial
axis of the configuration space [10].

A tree-based path planner was developed in [11], [12] that
is useful for exploring C-space. This path planning technique

is known as the Rapidly-Exploring Random Tree (RRT). A
similar tree-based planner, Expansive Space Tree (EST), was
developed in [13]. These tree-based methods work well for
single query problems by only exploring the relevant portions
of the configuration space needed to solve a given query.

B. Kinodynamic Planning

Static Environments.
In [4], [5], a randomized kinodynamic approach is presented
to planning a path in a static environment. The state space
is explored by applying a set of allowable control inputs in

order to grow a tree. The exploring of the state space is
complete when the goal configuration can be reached and a
path in the tree can be extracted.

In [14] an RRT based planner is proposed which performs
better over time, improving paths, over a number of runs,
in a given environment. In this work, an RRT is integrated
with a “way-point” cache for improved performance in static

environments. It is not described how these way-points are
generated or how the way-points could be updated in a
dynamic environment.

In [15], a modified expansive space tree approach to
planning a path for a robot with motion constraints is
proposed to search the space. The goal is to find a path
that has a low cost and has a relatively straight path.

Dynamic Environments.
An early approach to kinodynamic planning among moving
obstacles was proposed in [7]. An EST approach is used
to plan a path for a circular robot through an environment
consisting of circular obstacles with restrictions on the ve-
locity and shape of the obstacles. In this approach, when

uncertainty in the environment is found, a path is completely
replanned.

A PRM based approach is proposed for planning paths
among moving objects in [16]. A roadmap is built and
updated according to the movements of the obstacles. In this
work, they attempt to update only the necessary portions
of the roadmap, that are relevant to the moving obstacles.

If simple repairs cannot be made in the roadmap, then an
RRT is used to repair the roadmap. Complete paths for the
robot are obtained for the robot from the roadmap and a path
to the goal is always required.

Another PRM based approach to planning a path in a
dynamic environment is proposed in [9]. The roadmap used
during the planning phase is one that is constructed as a

preprocessing step and does not change as the environment
changes. This alone could cause many problems in envi-
ronments that are constantly changing. Local trajectories are
then planned along valid portions of the roadmap from the
start to goal configuration. This approach also assumes the
dynamics of the moving obstacles are known a priori. Al-

though this may work in some situations, in highly dynamic
environments, this could result in unnecessary computation
when constantly replanning from the start to goal configura-
tion and when the dynamics of the obstacles are not known
beforehand.

In [8], the problem of planning a safe path for a robot
disk is proposed among unpredictably moving obstacles. The

obstacles are modeled as disks growing over time given their
known maximum velocities, modeling unpredictable motion.

3310

Although this would model unpredictable motion, given the
restrictions on the shape and velocities of the robot and
obstacles, many situations could occur where planning a path
to the goal is unfeasible. Some of these situations include
having a large number of moving obstacles or having some
obstacles with large maximum velocities.

III. PLANNING AMONG MOVING OBSTACLES

The framework proposed here for planning a path for a
robot in an environment with moving obstacles is a two-
staged approach. A rough outline of this approach, taken at
each planning step for the robot, can be seen in Algorithm 1.

The first stage will use a dynamic global roadmap when
needed in order to find a conservative path avoiding hard
objects. The dynamic global roadmap should be maintained
as much as possible as the environment changes. Changes
in the environment can change the connectivity of the free-
space, which can then be reflected in the dynamic global
roadmap by repairing the roadmap.

The second stage of our approach will involve planning
local valid paths in the environment taking into account
constraints on the robot’s movement. Another thing con-

sidered in the second planning phase are soft objects or
neighboring agents. The local paths obtained attempt to avoid
these neighboring agents as much as possible. However, in
our approach it cannot be guaranteed that these agents will
be avoided.

Algorithm 1 Robot’s planning stages during each time step.

1: # Stage 1

2: Update Global Roadmap
3: regular planning = TRUE
4: if not Valid Global Path then

5: Global Path Repair
6: if Path To Goal Exists then

7: Set Global Path
8: else

9: regular planning = FALSE
10: end if

11: end if

12: # Stage 2
13: if regular planning then

14: Plan Along Global Path
15: else

16: Alternative Planning
17: end if

IV. DYNAMIC GLOBAL ROADMAPS

We use a dynamic global roadmap to represent the con-

nectivity of the free space in the environment at a given time
step. In this stage of planning, only the hard objects in the
environment are considered. In this section we describe how
the roadmap is maintained. When the roadmap is needed in
planning, it is important that the connectivity of the roadmap
be as accurate as possible. This is so a path to the goal can be
found. The roadmap is created using PRM with MAPRM [10]

used for node generation. MAPRM was selected as the node
generation method as this will generate configurations near

(a) (b) (c)

Fig. 3. In this figure (a) a global path obtained by the robot, (b) the global
path becomes invalid, and (c) the global path is repaired.

the medial axis of the free space allowing for a maximal
amount of space between neighboring obstacles.

A. Roadmap Validity

We use the validity of the roadmap to mean that a path
extracted at a given time will not include nodes or edges
in collision with hard objects. The validity of the roadmap
can be checked at any point during planning. Our roadmap
validity tests include removing any nodes or edges that are in
collision with the hard objects. While removing the collision
nodes in the roadmap, we keep track of the colliding nodes

for use in next roadmap repair stage.

B. Roadmap Repair

In order to maintain the connectivity of the free space in
the environment, we want to attempt to repair any discon-
nections that may have occurred. The first step to attempt
to maintain connectivity is to approximate the previous
coverage. We achieve this by generating samples in areas
where colliding nodes were previously found. This can be

seen as an OBPRM node sampling method sampling nodes
near the surface of moving objects [2]. This is only one way
to maintain coverage that has worked empirically.

We then attempt to ensure the connectivity of the roadmap
by connecting smaller connected components to the largest

connected component in the environment. The smaller con-
nected components include the nodes that have been re-
generated and any other unconnected components that were
previously in the roadmap. The connectivity of the global
roadmap is considered throughout the planning stage and
should be maintained while planning.

C. Query

When a global path is needed during planning, the

roadmap is queried. A path should be returned that connects
the goal to the current configuration of the robot. This path
will be a continuous sequence of configurations, approximat-
ing a free path in the environment. It cannot be guaranteed
that the roadmap contains a valid path. This could happen,
for example, when the goal position is in collision or when
there is no path in the environment connecting the current

start and goal positions. It could also happen if a path to the
goal does not exist in the environment or if the roadmap does
not appropriately reflect the free space in the environment.
In the event that a global path does not exist, it is up to the
robot to determine what to do, described in more detail in
Section V-D.

D. Maintaining a Global Path

Although the roadmap is maintained throughout the plan-

ning process, the roadmap is only queried if the robot does
not already have a valid global path. The global path is used

3311

to approximate a potential path the robot can take to reach
the goal. The robot keeps track of the global path taken as it
progresses through the environment. As the hard objects in
the environment move, this global path can become invalid.
In order to maintain some of the local paths generated in the
next planning stage, the global path is altered, if needed, in a

similar way the roadmap is repaired. If a portion of the global
path becomes in collision, the nodes causing the collision
are regenerated within a certain distance of the collision
configuration. This process can be seen in Figure 3 and is
done to maintain as close of an approximate representation
to the previous path as possible. If the global path cannot
be repaired, the global roadmap is queried in order to obtain

another global path which will be used in planning local
paths.

V. KINODYNAMIC LOCAL PLANNING

Kinodynamic planning involves the planning for a robot
based on a given set of valid control inputs resulting in valid
paths for the robot. We will use the approximate path to goal
obtained from the global roadmap to guide local planning
along the path. This planning stage not only considers hard
objects but will consider interactions with soft objects and

how these soft objects can be avoided. The soft objects
considered at this stage are the objects within the robot’s
viewing range. The local paths are also updated at each stage
during planning so paths can be selected when needed that
avoid both hard and soft objects. Due to space constraints, we
give a detailed overview of some of the aspects that should

be considered, but omit some of the robot-specific details.

A. Planning Along A Global Path

The global path obtained is used to plan kinodynamic local
paths. We use the approximate global path as a guide and do

not require that the robot strictly follow the path. In this way,
the local paths obtained follow the global path and likely
remain free from collision with the hard objects, although
we still need to verify this criteria during this phase.

An overview of the algorithm can be seen in Algorithm 2.
For a given number of iterations K , a tree, Tl, is expanded
from a random start configuration csrc in the tree (line 2).
Next a subgoal is found taking into account the global path

(line 3). A subgoal is selected to be a configuration along or
near the path, in order to plan along the global path. Subgoals
biased toward the global path are selected with probability
δ and biased toward the goal with probability 1 − δ. The
distance in which a subgoal can be generated near the global
path is a predefined value set by the user. One possibility,
which we have not yet implemented, is to place the subgoal

in such a way that it avoids the neighboring hard and soft
objects. Next a control input U toward the subgoal is applied
while there is no collision with any object in the environment
and applying U results in a satisfactory outcome.

It is important to note that we do not attempt to locally
plan an entire path to the goal (unless the goal is reachable
within a given number of iterations K). We plan incremen-
tally along the global approximate path. This avoids planning
the more expensive local paths in regions potentially far from

the current location of the robot, which are more likely to
become invalid in highly dynamic environments. The areas

further from the robot are also areas in which the robot may
not have local information about such as the positions of soft
objects. This is something that other PRM based planners do
not consider [9], [16].

Algorithm 2 Planning Along a Global Path.

Require: tree Tl, global path P , Iterations K , Maxi, and
Mini

1: for i = 1 . . .K do

2: csrc = random node in Tl

3: subgoal = configuration given P , δ

4: U = control toward subgoal
5: iter = 0, Collision = false, cnew = csrc

6: while not Collision and iter < Maxi do

7: cprev = cnew

8: cnew = apply U

9: Collision = isCollision(cnew)
10: if Collision or not satisfactory(cnew, cprev, sub-

goal) then

11: cnew = cprev

12: break
13: end if

14: iter++
15: end while

16: if iter ≥ Mini then

17: Tl.addNode(csrc, cnew)
18: end if

19: end for

20: return Tl

B. Considering Soft Objects

When trying to avoid soft objects at each planning step,

it is ideal to have local plans that are clear of soft objects.
We do a coarse check of this criteria. This can be considered
pruning edges in the tree Tl or local paths that collide with
the soft objects. It is also done before the local paths are
updated so that valid local paths can be created from collision
free paths.

The pruning of the local paths are done at a much coarser
level along each edge in the local path. We do this by

checking configurations along the start, midpoint and end
of an edge in the local path. An edge colliding with any of
the local soft objects along any of those configurations can
be discarded along with the remainder of the path connected
to the collision edge as the path is no longer valid. Along
with invalid edges in the local paths, we also remove parts
of the local paths that are no longer reachable. An example

of these steps can be seen on the right side of Figure 1.

This type of tree pruning is useful when attempting to
totally avoid the soft objects which is what is considered in
this paper. Although not needed here, for a crowd simulation
application, where the robot could be totally surrounded
by soft objects, another approach may be to only prune
old portions of the tree and weight local paths based on
the amount of collision. This could be measured by the

penetration depth with soft objects or number of neighboring
soft objects along an edge.

3312

C. Extracting Local Paths

Once the local paths have been updated, a local path is
selected for the robot to follow. We select this path from
the available safe local paths, that also keep the robot near
the global approximate path. A local path LPi is selected
such that the end point of the path is the closest node in Tl

to an unreached point along the global path. Although there

are many possible ways to determine which local path to
take at a given time step, this is an intuitive way to select
the local path. We however do not consider the entire local
path. Rather, only a portion of the local path is used, as
configurations further along the local path are more likely
become invalid later. For a crowd simulation application, the
local path LPi could also be selected based upon the weights

assigned to each local path and the likelihood of the path
being free of soft agents.

D. Alternative Safe Planning

There are many situations in which the robot may not have
a good candidate local path. In this case, some safe local
planning method can be selected and is dependent on the
application domain. This could include a stopping behavior
where the robot waits until a safe path can be found, although

this may not work in the presence of hostile agents. Another
behavior could be to still try and progress toward the goal,
considering collision inevitable. This behavior is reasonable
depending on the application. For example, if the success
of the robot is determined by the progress made toward the
goal, then the robot may want to consider continuing, even
though it could result in collision. An example of this could

be in a game situation, where an agent attempts to reach
a goal location given a certain number of chances (as in
football). The behavior assigned to the robot here, and in the
experiments, is one in which the robot will select a path that
minimizes the time spent in collision with the soft objects
and will be studied further in Section VI.

VI. DETAILS AND EXPERIMENTAL RESULTS

In this section, we will discuss some of the implementation
details of our framework and present the performance and

flexibility of our proposed approach for planning paths in
highly dynamic environments under various situations.

A. Experiment Setup

As stated, the goal of the robot is to find a path through
the environment avoiding, if possible, hard and soft objects.
The start and goal configurations are predefined and remain
the same through each run. A test run is considered a
failure if collision with a hard object occurs. Collisions
with soft objects in the environment are accumulated and

reported; the only soft objects that need to be tested are the
objects within the robot’s view radius. During each planning
run, the start positions of the soft objects are randomly
generated. Each table will list the number of soft objects in
the environment, average number of planning steps required
during the planning process, percentage of successful runs,
average number of soft object collisions and average time

spent in the planning process.

In Sections VI-B and VI-C the soft objects have a basic
flocking behavior applied to them. This means that basic

TABLE I

CORRIDORS

Soft Steps Success Soft Time
Obj. % Coll. (sec)

0 407 100 0 0.0257
1 475 100 4 0.0272
5 569 100 18 0.0273
10 504 80 42 0.0266
20 457 70 43 0.0245

flocking behavior properties are applied which are typically
composed of separation, alignment and coherence with re-

spect to their neighboring agents [17]. By emphasizing sepa-
ration, we are able to have the agents cover the environment,
making planning more difficult. In Sections VI-D, the soft
objects have an attacking behavior (described later).

All of our experimental results are obtained using a
notebook computer with a 1.7 GHz CPU and 1 Gb memory.
Animations and more detailed results are available at our
website†.

B. Corridors Environment

The first environment tested is the corridors environment,
shown in Table I(left). The environment consists of three

static blocks, creating two distinct corridors in the envi-
ronment. Two moving hard objects are present in the en-
vironment (the vertical plates in the environment) one which
has only rotational motion and one with only translational
motion. The number of soft objects in the environment ranges
from 0 to 20. As mentioned, these agents have a basic
flocking property as they move through the environment. The

robot must navigate through one of the corridors in order to
reach the goal from the start configuration.

In Table I, it can be seen that when planning among 0 to

5 soft objects in the environment, safe planning can be done
relatively easily. Although some soft collision does occur,
the amount of collision is relatively small. The amount of
planning time and steps required does increase in these cases
although it is only slightly.

When planning among 10 and 20 soft objects, the planner
is able generate successful plans 80 and 70 percent of the
time, respectively. This is very promising considering the few
number of restrictions put on the the motion and shape of

the hard and soft objects. The number of planning steps and
planning time for 10 soft object is slightly higher than for
20, which can be contributed to the planners ability to plan
safer paths in the environment, even away from the goal if
necessary. Shown in Table I, is the robot traveling through
one of the corridors among 10 soft objects. The potential
kinodynamic local paths are also shown.

C. Rotors Environment

In the rotors environment, shown in Table II(left), the robot

must navigate around the moving rotors trying to avoid soft
objects in the process. The start and goal configurations are
at opposite corners of the environment. The hard objects in
the environment are the three large rotor-shaped objects. Two
of these hard objects only have rotational motion, while the
third hard object has both rotational and translational motion.

†http://parasol.tamu.edu

3313

TABLE II

ROTORS ENVIRONMENT

Soft Steps Success Soft Time
Obj. % Coll. (sec)

0 625 100 0 0.0186
5 885 100 34 0.0170
10 1060 80 83 0.0137
20 828 60 113 0.0188

TABLE III

ATTACKING AGENTS

Soft Steps Soft Time
Obj. Coll. (sec)

2 162 6 0.0330
4 162 16 0.0368
6 187 25 0.0441
8 258 37 0.0468

10 381 52 0.0517
15 226 64 0.0649

The soft objects are the tear-drop shaped objects which also
have the basic flocking behavior. Shown in Table II(left) the
robot is planning among 10 soft objects and shown with the
current kinodynamic local paths.

In Table II a similar trend can be seen as in the previous
environment. For a small number of soft objects, the robot
is able to plan safe plans with relatively few soft collisions.

For 10 and 20 soft objects, successful plans cannot always
be found. The success rates still seem promising, given how
dynamic the environment is and how little information the
robot is using while planning a path. For 10 soft objects, the
number of steps needed to generate a plan is generally more,
as before, since the robot may spend more time planning

given that safer plans can be found while avoiding the soft
objects.

It is also important to note that the planning time is
relatively similar regardless of the number of agents. This is
in part due to the view radius of the robot, only sensing so
many agents at each time step. It can also be attributed to the
tree pruning done, resulting in fewer nodes to consider. Also,
as the number of agents increases, invalid local paths may be
found sooner when planning resulting in less computational

work and potentially fewer safe paths. This can be seen in
both the success rate and number of soft collisions.

D. Attacking Agents

This environment is composed of only soft objects and
does not include hard or static objects. Additionally, these
soft objects have an attacking behavior. If the robot is
visible to these agents, then the robot will be approached,
otherwise the agents have the same basic flocking behavior

as before. The planner is tested with 2 to 15 soft objects in
the environment. An example environment consisting of 15
soft objects can be seen in Table III(left). It is clear from the
figure that planning a path in such an environment is very
difficult, especially given the behavior of the soft objects in
the environment. The robot must travel from one end of the
environment to the other, avoiding the soft objects if possible.

As shown in Table III the trend is nearly always followed

in respect to the average number of steps needed, number of
soft collisions, and average planning time. While avoiding

soft collisions when there are few soft objects, it gradually
become more difficult as the number of soft objects increases.
Although able to deal with about 10 soft objects in the
environment, it becomes increasingly difficult for the robot
to plan evasive actions. Rather than moving through the
environment until a free path exists, the robot is swarmed and

has to attempt to minimize collision with the soft objects.

VII. CONCLUSION

In this paper we have presented a preliminary approach to
the problem of planning a path in environments with moving
obstacles. The proposed framework takes into account differ-
ent types of moving obstacles and could have applications in

many application domains. While we are at the early stages
of this work, the results thus far seem promising.

REFERENCES

[1] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Trans. Robot. Automat., vol. 12, no. 4, pp. 566–580,
August 1996.

[2] N. M. Amato, O. B. Bayazit, L. K. Dale, C. V. Jones, and D. Vallejo,
“OBPRM: An obstacle-based PRM for 3D workspaces,” in Robotics:
The Algorithmic Perspective. Natick, MA: A.K. Peters, 1998,
pp. 155–168, proc. Third Workshop on Algorithmic Foundations of
Robotics (WAFR), Houston, TX, 1998.

[3] V. Boor, M. H. Overmars, and A. F. van der Stappen, “The Gaussian
sampling strategy for probabilistic roadmap planners,” in Proc. IEEE
Int. Conf. Robot. Autom. (ICRA), vol. 2, 1999, pp. 1018–1023.

[4] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 1999, pp. 473–479.

[5] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
The International Journal of Robotics Research, vol. 20, no. 5, pp.
378–400, 2001.

[6] A. M. Ladd and L. Kavraki, “Fast tree-based exploration of state space
for robots with dynamics,” Algorithmic Foundation of Robotics VI, pp.
297–312, 2005.

[7] R. Kindel, D. Hsu, J. Latombe, and S. Rock, “Kinodynamic motion
planning amidst moving obstacles,” in Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), 2000, pp. 537–543.

[8] J. van den Berg and M. Overmars, “Planning the shortest safe
path amidst unpredictably moving obstacles,” Proc. Int. Workshop on
Algorithmic Foundations of Robotics (WAFR), pp. 885–897, 2006.

[9] J. P. van den Berg and M. H. Overmars, “Roadmap-based motion
planning in dynamic environments,” IEEE Trans. Robot. Automat., pp.
885–897, 2005.

[10] S. A. Wilmarth, N. M. Amato, and P. F. Stiller, “MAPRM: A
probabilistic roadmap planner with sampling on the medial axis of the
free space,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), vol. 2,
1999, pp. 1024–1031.

[11] J. J. Kuffner and S. M. LaValle, “RRT-Connect: An Efficient Approach
to Single-Query Path Planning,” in Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), 2000, pp. 995–1001.

[12] S. M. LaValle and J. J. Kuffner, “Rapidly-Exploring Random Trees:
Progress and Prospects,” in Proc. Int. Workshop on Algorithmic
Foundations of Robotics (WAFR), 2000, pp. SA45–SA59.

[13] D. Hsu, J.-C. Latombe, and R. Motwani, “Path planning in expansive
configuration spaces,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
1997, pp. 2719–2726.

[14] J. Bruce and M. Veloso, “Real-time randomized path planning for
robot navigation,” in Proc. IEEE Int. Conf. Intel. Rob. Syst. (IROS),
Switzerland, 2002.

[15] J. Phillips, N. Bedrosian, and L. Kavraki, “Guided expansive spaces
trees: A search strategy for motion- and cost-constrained state spaces,”
in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 2004, pp. 3968–3973.

[16] L. Jaillet and T. Simeon, “A PRM-based motion planner for dynam-
ically changing environments,” in Proc. IEEE Int. Conf. Intel. Rob.
Syst. (IROS), 2004.

[17] C. W. Reynolds, “Flocks, herds, and schools: A distributed behaviroal
model,” in Computer Graphics, 1987, pp. 25–34.

3314

