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Abstract

This paper describes CES, a prototype of a new programming language for robots and other

embedded systems, equipped with sensors and actuators. CES contains two new ideas, currently

not found in other programming languages: support of computing with uncertain information,

and support of adaptation and teaching as a means of programming. These innovations facilitate

the rapid development of software for embedded systems, as demonstrated by two mobile robot

applications.
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1 Introduction

This paper introduces CES, a new language for programming robots. CES, which is short for C

for Embedded Systems, supports the development of adaptable code: Instructing robots in CES

interleaves phases of conventional programming and training, in which the code is improved

through examples. CES also supports computation with uncertain information, which is often

encountered in embedded systems.

To date, there exist two complementary methodologies for programming robots, which are

usually pursued in isolation: conventional programming and learning, which includes teaching

and trialanderror learning. Undoubtedly, the vast majority of successful robots are programmed

by hand, using procedural languages such as C, C++, or Java. Robots, their tasks, and their

environments are usually complex. Thus, developing robotic software usually incurs substantial

costs, and often combines coding, empirical evaluation, and analysis.

Recently, several researchers have successfully substituted inductive learning for conventional

program development so that they could train their software to perform nontrivial tasks. For

example, Pomerleau, in his ALVINN system, trained an artificial neural network to map camera

images to steering directions for an autonomous land vehicle [83, 82]. After approximately 10

minutes of training, his system provided a remarkable level of skill in driving on various types of

roads and under a wide range of conditions. Coding the same skill manually is difficult, as the

work by Dickmanns and his colleagues has shown [23]. This example demonstrates that adaptable

software, if used appropriately, may reduce the design time of robotic software substantially. In

our own work, we recently employed neural networks for sensor interpretation and mapping tasks

[105, 107], which, among other aspects, led to a mobile robot that successfully navigates in densely

crowded public places [12]. As argued in [105], the use of neural networks led to a significant

speedup in software development; it also provided an enhanced level of flexibility in that the

robot could easily be retrained to new conditions, as demonstrated at a recent AAAI mobile robot

competition [11, 106].

The importance of learning in robotics has long been recognized. However, despite an

enormous research effort in this direction, learning has had little impact on robotics. This is

partially because most of the research on robot learning is focused on the design of general

purpose learning algorithms, which keep the amount of taskspecific knowledge at a minimum.

For example, virtually all robotics research on reinforcement learning (e.g., [1, 64, 61, 103, 16])

and evolutionary computation (e.g., [27, 62, 94]) seeks to establish algorithms that learn the entire

mapping from sensors to actuators from scratch. Consequently, this field often resorts to narrow

assumptions, such as full observability of the environment’s state, or an abundance of training

data. The current best demonstrations of reinforcement learning in robotics solve relatively simple

tasks, such as collision avoidance, coordination of legged locomotion, or visual servoing.

This paper advocates the integration of conventional programming and learning. We argue

that conventional programming and tabula rasa learning are just two ends of a spectrum, as shown

in Figure 1. Both ends are ways of instructing robots, characterized by unique strengths and

weaknesses. Conventional programming is currently the preferred way to make robots work, as

it is often relatively straightforward to express complex structures and procedures in conventional

program code. As the above examples suggest, however, certain aspects of robot software are
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Programming � - Teaching

Figure 1: To data, there are two complimentary ways to instruct robots: conventional programming

and teaching (learning). Most existing robots live close to one of the two extremes. This research

seeks to integrate both, so that robots can be instructed using a mixture of programming and

teaching.

easier to program through teaching and other means of learning. It is therefore a desirable goal

to integrate both conventional programming and learning to find ways to develop better software

with less effort.

This paper presents a prototype of a new programming language, called CES, designed to

facilitate the development of adaptable software for embedded systems. Programming in CES

interleaves conventional code development and learning. CES allows programmers to leave

“gaps” in their programs, in the form of function approximators, such as artificial neural networks

[91]. To fill these gaps, the programmers train their program, by providing examples of the desired

program behavior or by letting the program learn from trialanderror. To bridge the gap between a

program’s behavior and the parameters of a function approximator, CES possesses a builtin credit

assignment mechanism. This mechanism adjusts the parameters of the function approximators

incrementally, so as to improve the program’s performance.

CES differs from conventional programming languages in a second aspect relevant to em

bedded systems, in that it provides the programmer with the ability to compute with uncertain

information. Such information often arises in robotics, since sensors are noisy and limited in

scope, imposing intrinsic limitations on a robot’s ability to sense the state of its environment.

CES provides new data types for representing probability distributions. Under appropriate inde

pendence assumptions, computing with probability distributions is analogous to computing with

conventional data types, with the only difference that CES’s probabilistic variables may assume

multiple values at the same time. The probabilistic nature of these variables provides robustness.

CES is an extension of C, a highly popular programming language. The choice to base CES

on C seeks to retain the advantages of C while offering the concepts of adaptable software and

probabilistic computation to programmers of embedded systems. Throughout this paper, we will

assume that the reader is already familiar with C. The remainder of this paper describes the two

major extensions in CES: probabilistic computation and learning. Both ideas are interrelated, as

the particular learning mechanism in CES relies on the probabilistic nature of the variables. The

paper also describes in some depth the development of an example program for a gesturedriven

mail delivery robot, illustrating how conventional programming and teaching are closely integrated

in CES. It also shows that by using CES’s probabilistic constructs, sensor data can be processed in

more robust (and more natural) ways. Finally, the paper briefly documents how an existing mobile

robot localization algorithm, called BaLL, can be programmed in 58 lines, replacing a 5,000 line

implementation in conventional C [104].
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The reader should notice that CES is currently not implemented as described in this article,

i.e., there exists no interpreter or compiler. The empirical result have been obtained with an

implemented function library that is functionally equivalent to CES, but which differs syntactically.

Thus, the results reported here should be viewed as a proofofconcept only.

2 Probabilistic Computation in CES

This section describes CES’s probabilistic data types, operators, and functions. The key idea

for handling uncertainty is to allow variables to take on more than just one value, and to

describe the probability of each value by a probability distribution. For example, a variable

close to obstacle might simultaneously take on both values yes and no, each value being

weighted by a numerical likelihood. Under appropriate independence assumptions, computing

with probability distributions is analogous to computing with conventional values. Drawing on

this analogy, this section describes the major probabilistic data types, operators and functions.

Towards the end of this section, we will introduce three mechanisms that lack a direct analogy in

the land of conventional programming: convolved data types, the probloop command, and the

Bayes operator.

2.1 Probabilistic Data Types

CES uses methods from probability theory to represent and process uncertain information. Un
certain information is represented by a collection of new data types

probchar
probint
probfloat

which parallel existing data types in C: char, int, float. These new data types will be referred

to as probabilistic data types. Notice that each numerical data type in C possesses a corresponding

probabilistic data type in CES, called the dual.

These new data types are used to declare variables that represent probability distributions over

values. For example, a variable declared probint specifies, for every possible integer value x,

a probability that the value of the variable is x:

Pr(x = 0)
Pr(x = 1)
Pr(x = �1)
Pr(x = 2)
Pr(x = �2)

...

According to Kolmogarov’s axioms of probability, each of these values must be nonnegative, and

they must sum up to 1. These properties are guaranteed by the language.

There is a close correspondence between probabilistic data types and their (conventional) duals.

Whereas conventional numerical data types are used to represent single values, probabilistic data
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types represent probability distributions over such values. One might think of the probabilistic

data types as generalizations of conventional data types which enable a variable to take on multiple

values at the same time. For example, if x is an integer with value 2, this corresponds to the special

case of a probabilistic variable where Pr(x = 2) = 1 and all other values of x take on probabilities

of 0. As will be shown below, there is a close correspondence between computing with values

and computing with probability distributions over values. There also exist straightforward ways

for merging conventional and probabilistic data.

Of course, representing probability distributions for probabilistic variables whose duals can

take more than a handful of values can be extremely memoryintense. For example, more than

4 � 109 numbers are needed to specify an arbitrary probability distribution over all floating point

values at 4 byte resolution. The statistical literature offers many compact representations, such

as mixtures of Gaussians [22], piecewise constant functions [13], MonteCarlo approximations

[44, 50], trees [8, 71], and other variableresolution methods [77]. In our current implementation all

probability distributions are represented by piecewise constant density functions. The granularity

of this function can be determined by the programmer, by setting the systemlevel variable

prob dist resolution, whose default is 10.

2.2 Constants

CES offers a variety of ways to assign distributions to probabilistic variables. The statement

x = 2.4;

assigns a Dirac distribution to x whose probability is centered on 2.4, that is

Pr(x) =

(
1 if x = 2.4

0 if x 6= 2.4
(1)

Finite probability distributions can be specified through lists. Lists consist of tuples composed of
a number (event) and its probability. For example, the assignment

x = { {1, 0.5}, {2, 0.3}, {10, 0.2} };

assigns the following distribution to the probabilistic variable x:

Pr(x) =

8>>><
>>>:

0:5 if x = 1

0:3 if x = 2

0:2 if x = 10

0 otherwise

(2)

CES possesses definitions for commonly used probability distributions. The statement

x = UNIFORM1D(0.0, 10.0);

initializes a probabilistic variable x with a onedimensional uniform distribution over the interval
[0; 10]. The statement

x = NORMAL1D(0.0, 1.0);
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assigns to x a normal distribution with mean 0.0 and variance 1.0.

While the predefined constants in CES cover a large number of common distributions, certain

distributions cannot be specified directly. As described in turn, distributions can be combined

using various arithmetic operations. An alternative way for initializing probabilistic variables is

the probloop command, which will be described further below.

2.3 Arithmetic Operations

Arithmetic with probabilistic data types is analogous to conventional arithmetic in C. For example,

let us assume that x, y and z are three probabilistic variables of the type probint, and x and y
possess the following distributions:

Pr(x) =

8><
>:

0:5 if x = 0

0:5 if x = 3

0 otherwise

Pr(y) =

(
0:1 if 0 � y < 10

0 otherwise
(3)

Then the statement

z = x + y;

generates a new distribution,whose values are all possible sums ofx andy, and whose probabilities

are the products of the corresponding marginal probabilities:

Pr(z) =

8>>><
>>>:

0:05 if 0 � z < 3

0:1 if 3 � z < 10

0:05 if 10 � z < 13

0 otherwise

(4)

(5)

Thus, arithmetic operations are performed on the domain (e.g., the floatingpoint values), not on

probability distributions.

It is important to notice that CES makes an implicit independence assumption between different

righthand operands of the assignment. More specifically, when computing z, CES assumes that

x and y are stochastically independent of each other. The issue of independence in CES will be

revisited in Section 2.7.

2.4 Type Conversion

Just as in C, CES provides mechanisms for type conversions. The most interesting conversions
are between conventional and probabilistic variables. Suppose x is declared as a float, and y is
declared as a probfloat. The statement

y = (probfloat) x;

assigns to y a Dirac distribution whose probability mass is centered on the value of x

Pr(y) =

(
1 if y = x
0 if y 6= x

(6)

The inverse statement,
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x = (float) y;

assigns to x the mean of the distribution y. CES offers a collection of alternative functions that
convert probabilistic variables to numerical values (floats):

mean( );
ml( );
median( );
variance( );

As the names suggest, mean() computes the mean, ml() the maximum likelihood value,

median() the median, and variance() the variance of a probabilistic variable.

Probabilities of individual values of probabilistic variables (or ranges thereof) can be accessed
by the library function prob. This function accepts a logical expression as input, and computes
the probability of the expression for the probabilistic variable at hand. For example, the statement

p = prob(x < value);

assigns to p the probability that x is smaller than value. Here p must be of the type float, x
must be a probabilistic variable and value must be its (nonprobabilistic) dual.

2.5 Truncation and Inversion

Probabilistic truncation removes lowprobability values from a probabilistic variable. Truncation
is a library function in CES:

x = probtrunc(&y, bound);

Truncation first identifies the value with the largest probability in y. It then sets to zero all proba
bilities of values, whose current probability is smaller than bound times the largest probability in
y. The bound is of the type float and should lie between 0 and 1. For example, the following
code segment

probfloat x, y;
y = { {1, 0.5}, {2, 0.3}, {3, 0.1}, {4, 0.1} };
x = probtrunc(&y, 0.4);

generates the probability distribution

Pr(x) =

8><
>:

0:625 if x= 1

0:375 if x= 2

0 otherwise

(7)

In this example, the largest probability in y is 0.5; thus, probtrunc removes all values whose

probability is smaller than 0:4 � 0:5 = 0:2. In our example, the values are 3 and 4 are removed,

since their probability is 0.1, which is smaller than 0.2. Normalization of the remaining probability

values (for 1 and 2) leads to the distribution specified above.

Truncation is useful to remove lowlikelihood values from future consideration, thereby speed

ing up the computation. In situations where most events are unlikely but not impossible, trunca

tion can often reduce the computation time by several orders of magnitude while only marginally

changing the result.
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Another useful probabilistic operation is inversion. Let x be a probabilistic variable that

represents some probability distribution

Pr(x) (8)

Then the function

inverse(x);

computes the inverse of Pr(x):

Pr(x)�1 (9)

If Pr(x) = 0 for some x, then the inverse is undefined.

2.6 Probabilistic Arrays

In preparation for the experimental results discussed further below, let us briefly present a less

obvious example: a CES program for averaging distributions over the same domain. Let Pri with

i = f1; 4g denote four different distributions over the same domain x. Then

Pr(x) =
1

4

4X
i=1

Pri(x) (10)

is their average. In CES, averaging can be expressed as follows. Let

probfloat pri[4];

represent those four distributions. Then the code segment

probfloat pr;
probint index = {{0, 0.25}, {1, 0.25}, {2, 0.25}, {3, 0.25}};

pr = pri[index];

assigns to pr the average of the four distributions pri[].

2.7 Independence in CES

When computing with probabilistic variables, CES makes implicit independence assumptions
between different probabilistic variables. Consider, for example, a statement of the type

z = x  y;

CES assumes that x and y are independent, that is, CES assumes that their joint distribution is the

product of the marginal distributions:

Pr(x; y) = Pr(x) Pr(y) (11)
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It is important to notice that the independence assumption is necessary. Without it, results of

statements like the one above are usually illdefined. To demonstrate this point, let us assume that

x and y are identically distributed:

Pr(x = i) = Pr(y = i) =

8><
>:

0:5 if i = 0

0:5 if i = 1

0 otherwise

(12)

If x and y are independent,

Pr(z) =

8>>><
>>>:

0:25 if z = �1

0:5 if z = 0

0:25 if z = 1

0 otherwise

(13)

but if x = y (hence x and y are dependent),

Pr(z) =

(
1 if z = 0

0 otherwise
(14)

The reader will quickly notice that (13) and (14) are not equivalent; thus, in the absence of the

independence assumption (or a similar assumption) assignments in CES are not welldefined.

The independence assumption in CES, together with the fact that CES does not possess an
inference mechanism of the type used in Bayes networks [81, 41], has important consequences.
These might not appear obvious at first. Consider, for example, the following statement:

z = x  x;

If the initial conditions are as specified in (12), the result is the distribution given in (14). The
slightly more complicated sequence of statements

y = x;
z = x  y;

however, leads to the distribution specified in (13). This is because when executing the second

instruction, the variables x and y are assumed to be independent. Statements like the ones

above specify assignments, not constraints on probability distributions (as in Bayes networks).

Consequently, CES does not keep track of the implicit dependence between x and y arising from

the first assignment when computing the second. The relation between CES and Bayes networks,

a popular but quite different framework for computing with probabilistic information, will be

discussed towards the end of this paper.

While the independence assumption is essential for computational efficiency, sometimes it

is too strict. In the next two sections, mechanisms will be described that allow the programmer

to explicitly maintain dependencies. One is called compounding and permits the creation of

multidimensional probabilistic variables that describe the full joint distribution of more than

one variable. Another is the probloop command, which makes it possible to trace dependencies

correctly through sequences of statements.
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2.8 Compounds

Compounds are data structures that enable the programmer to compute with multidimensional
probability distributions. Their syntax is equivalent to that of struct in conventional C. The
following declaration

compound {
probfloat a, b;
probint c;

} x;

creates a variable x that models a threedimensional probability distribution. The first two

dimensions of x are realvalued, whereas the third is integer. The marginal distributions of

compounded variables can be accessed by the dotoperator. For example, x.b refers to the

marginal distribution of x projected onto b

x:b = Pr(x = b) =

Z Z
Pr(x = ha; b; ci) da dc (15)

Compounding variables results in allocating memory for the full joint distribution. It is generally

advisable to keep the dimension of compounded variables small, as the size of the joint distribution

space grows exponentially with its dimension (the number of probabilistic variables).

Compounded probabilistic variables can be used just like (onedimensional) probabilistic

variables, as long as all other operands are of the same type and dimension. Accessing the

marginals requires additional computation, since they are not memorized explicitly.

2.9 The probloop Command

Often, it is necessary to access individual events covered by a probabilistic variable. The most

powerful tool for processing probabilistic information is theprobloop command. This command

enables the programmer to handle probabilistic variables just like regular ones, by looping over

all possible values.

The syntax of the probloop command is as follows:

probloop(varlistin; varlistout) programcode

where varlistin and varlistout are lists of probabilistic variables separated by commas, and

programcode is regular CES code. Variables may appear in both lists, and either list may be

empty.

The probloop command interprets the variables in varlistin as “input” probability distri

butions. It executes the programcode with all combinations of values for the variables in this

list, with the exception of those whose probabilities are zero. Inside the programcode, the types

of all variables in varlistin and varlistout are converted to their nonprobabilistic duals. The

programcode can read values from the variables in varlistin, and write values into probabilistic

variables in varlistout. For each iteration of the loop, CES caches two things: The probability of

the combination of values (according to the probabilistic variables in the varlistin), and the effect

of the programcode on the probabilistic variables in varlistout. From those, it constructs new
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probability distributions for all probabilistic variables in the varlistout. The body of probloop
command may not change the value of variables other than those listed in varlistout or declared

locally, inside the probloop.

The probloop command is best illustrated with an example. Consider the following pro
gram:

probint x, y, z;

x = {{1, 0.2}, {2, 0.8}};
y = {{10, 0.5}, {20, 0.5}};

probloop(x, y; x, z){
if (10 * x  1 > y)
z = 1;

else{
z = 0;
x = 5;

}
}

Since x and y are specified in the varlistin, the probloop instruction loops through all

combinations of values for the variables x and y, with the exception of those whose probability is

zero. There are exactly four such combinations: h1; 10i, h1; 20i, h2; 10i, and h2; 20i. For all those

combinations, the programcode is executed and the result, which according to the varlistout

resides in x and z, is cached along with the probability assigned to values assigned to x and y:

x = 1 y = 10 �! z = 0 with probability Pr(x = 1; y = 10) = 0:1

x = 1 y = 20 �! z = 0 with probability Pr(x = 1; y = 20) = 0:1

x = 2 y = 10 �! z = 1 x = 5 with probability Pr(x = 2; y = 10) = 0:4

x = 2 y = 20 �! z = 0 with probability Pr(x = 2; y = 20) = 0:4

Upon completion of all iterations, the results are converted into a probability distribution for the

variables mentioned in the varlistout: z and x.

Pr(z) =

8><
>:

0:6 if z = 0

0:4 if z = 1

0 otherwise

Pr(x) =

(
1 if x = 5

0 otherwise
(16)

Notice that in this example, the probability of assigning a value to x is only 0.4. CES automatically

normalizes the probabilities, so that each resulting probability distribution integrates to 1.

The probloop command can be applied to more complex constructs, such as loops and
recursion. For example the following code segment

probint x, y;
int i;

x = {{1, 0.7}, {2, 0.3}};

probloop(x; y){
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y = 0;
for (i = 0; i < x; i++)

y = y + x + i;
}

generates the probability distribution

Pr(y) =

8><
>:

0:7 if y = 1

0:3 if y = 5

0 otherwise

(17)

Notice that in this example, the actual number of iterations x is a probabilistic variable. Thus, the

number of iterations is varies, depending on the value of x inside the probloop.

The probloop command also provides a solution to the problem raised in Section 2.7. There,
the side effect of CES’s independence assumption in sequences of statements such as

y = x;
z = x  y;

was discussed. The following piece of code generates the result that appears to be intuitively
correct and specified in (14):

probloop(x; y, z){
y = x;
z = x  y;

}

The probloop command enables the programmer to manipulate individual elements of proba

bilistic variables. Inside a probloop, CES keeps track of all implicit probabilistic dependencies

arising from the variables specified in the varlistin. The probloop command provides a

sound way to use probabilistic variables in commands such as for loops, while loops, and

ifthenelse. Its major limitation lies in its computational complexity, which grows expo

nentially with the number of variables in varlistin. If varlistin contains variables of the type

probint or probfloat, it is usually impossible to loop through all values. Here probloop
samples the variable in predefined sampling intervals, as specified in the systemlevel variable

prob dist resolution. The efficiency of theprobloop command can be further increased

by truncation, as described above.

The reader may notice that every singleline assignment is equivalent to a probloop command,
in which probabilistic variables on the left handside appear in the varlistin, and all probabilistic
variables on the right hand side are in the varlistout list. For example, the following two
statements,

y = (x * z)  2 * x + y;

and

probloop(x, y, z; y)
y = (x * z)  2 * x + y;

are equivalent.
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2.10 The Bayes Operator for Multiplying Distributions

CES features a special operator for integrating probabilistic variables, which does not possess a
dual in conventional C. This operator is denoted # and called Bayes operator. It multiplies two
or more probability distributions in the following way: Let y and z be two probabilistic variables
that represent distributions (denoted Pry and Prz) over the same domain. Then the statement

x = y # z;

assigns to x the product distribution

Prx(a) = � Pry(a) Prz(a) (18)

for all a in the domain of y and z. Here � is a normalizer that ensures that the lefthand expression

integrates to 1. If PryPrz(a) = 0 for all a, the result of this statement is undefined.

The Bayes operator is useful for integrating conditionally independent sensor information
using Bayes rule (hence the name). Suppose we want to estimate a quantity x, and suppose we
have two different sources of evidence, y and z. For example, x could be the proximity of an
obstacle to a mobile robot, y could be an estimate obtained from sonar sensors, and z the estimate
obtained with a laser range finder. The statement

x = y # z;

integrates the probabilistic variables y and z (called: evidence variables) into a single distribution

x, in the same way information is integrated in Kalman filters [47], dynamic belief networks

[18, 92], and various other AI algorithms that deal with conditionally independent probability

distributions.

Let us make this more formal. Suppose we want to estimate a quantity d from a set of n sensor

readings, denoted s1; s2; : : : ; sn. Now let us suppose we know already how to estimate d based

on a single sensor datum, and the problem is to integrate the results from multiple sensor data into

a single, consistent estimate of d.

In the language of probability theory, we are facing the problem of computing the conditional

probability Pr(djs1; : : : ; sn). Using Bayes rule, this probability can be expressed as

Pr(djs1; : : : ; sn) =
Pr(snjd; s1; : : : ; sn�1) Pr(djs1; : : : ; sn�1)

Pr(snjs1; : : : ; sn�1)
(19)

Under the assumption that different sensor readings are conditionally independent given d, which

is often referred to as the independenceofnoise assumption and which is written

Pr(sijd; sj) = Pr(sijd) for i 6= j; (20)

the desired probability can be expressed as

Pr(djs1; : : : ; sn) =
Pr(snjd) Pr(djs1; : : : ; sn�1)

Pr(snjs1; : : : ; sn�1)
: (21)

The denominator does not depend d and hence is a constant. The desired expression can be

rewritten as

Pr(djs1; : : : ; sn) = � Pr(snjd) Pr(djs1; : : : ; sn�1) (22)

with an appropriate normalizer �. Suppose the probabilistic variables x = Pr(djs1; : : : ; sn�1) and
y = Pr(snjd). Then the statement
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x = x # y;

assigns to x the probability Pr(djs1; s2).

Sometimes, one is given probabilistic evidence of the type Pr(djsi), instead of Pr(sijd) as

assumed above. Applying Bayes rule to Pr(snjd) in Equation (22) yields

Pr(djs1; : : : ; sn) = �
Pr(djsn) Pr(sn)

Pr(d)
Pr(djs1; : : : ; sn�1) (23)

which, since Pr(sn) does not depend on d, can be transformed to

Pr(djs1; : : : ; sn) = �
Pr(djsn)

Pr(d)
Pr(djs1; : : : ; sn�1) (24)

with appropriate normalizer �. Induction over n yields

Pr(djs1; : : : ; sn) =  Pr(d)
nY

i=1

Pr(djsi)

Pr(d)
(25)

with appropriate normalizer . Using the function inverse, the incremental update equation
(24) can be realized using the Bayes operator:

x = x # y # inverse(z);

where x represents Pr(djs1; : : : ; sn�1), y represents Pr(djsn), and z represents the “prior” distri

bution Pr(d). If Pr(d) is uniform, this term can be omitted since it has no effect. Pr(d) can also be

approximated using data, by averaging y as described in Section 2.9.

The # operator is specifically useful when integrating information over time. For example,
suppose the subroutine obstacle proximity computes a distribution over possible obstacle
distances based on sensor data recorded by a mobile robot. Iterative application of the recursive
assignment

dist = dist # obstacle_proximity(sensor_data);

computes the conditional probability of the obstacle distance, conditioned on all past sensor

readings. Here the variablesdist and the subroutineobstacle proximity are both assumed

to be of the type probfloat.

As noted above, the # operator is identical to the evidence integration step in Kalman filters

[47], dynamic belief networks [18, 92], and various other approaches dealing with the integration of

probabilistic information (e.g., [72, 18]). Using the#operator to integrate probability distributions

is only justified under a conditional independence assumption: y and z have to be conditionally

independent given the true value of x. If y and z are both measurements of a variable x, then this

assumption can be interpreted as an assumption that the noise when measuring x is independent

across multiple measurements.

3 Learning in CES

Having described the probabilistic data types, operators, and functions in CES, we will now

return to the issue of integrating conventional programming and teaching. Programming in CES
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parameter name type default description

step size float 0.01 step size for gradient descent

momentum float 0.9 momentum

params init range float 1.0 initial parameter range

min gradient, max gradient float � bounds for gradient size (if defined)

learning flag int 1 learning flag

Table 1: Control parameters for function approximators in CES.

is an activity that interleaves conventional code development and learning. For example, when

programming a mobile robot in CES, the programmer might start with a basic level of functionality,

leaving certain parameterized “gaps” in his program. He might then train the robot by examples,

thereby providing the information necessary to “fill” these gaps. Afterwards, the programmer

might resume the code development and implement the next level of functionality, followed by

additional training and programming phases.

The division of conventional programming and programming learning/teaching is flexible

in CES, and typically depends on their relative difficulties and merits. However, programming

and teaching are not symmetric, as programming must always precede teaching. CES’s builtin

learning mechanism is only capable of changing parameters of function approximators specified

by the programmer. It does not modify or create program code directly.

3.1 Function Approximation in CES

CES possesses predefined, parameterized function approximators whose parameters can be mod

ified based on examples. These function approximators are parameterized; their parameters are

estimated when training a CES program.

The declaration

fa faname();

creates such a function approximator called faname, where faname adheres to the same con

ventions as function names in C. Function approximators possess three groups of parameters: (1)

adjustable parameters, (2) userdefinable control parameters, and (3) internal control parameters.

The first group of parameters is modified automatically by CES when training a program. If

the programmer chooses to use a neural network, these parameters are the weights and biases

of the network. The second group of parameters are control parameters which can be set by the

programmer. Currently, CES offers the control parameters listed in Table 1, which can be modified

if the initial default parameters are inappropriate, using the command faset:

faset(&faname, paramname, value);

Here faname denotes of the name of the function approximator, paramname the name of the
parameter according to Table 1, and value the desired parameter value. For example, the code
segment
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fa myfa;
faset(&myfa, step_size, 0.5);

sets the step size for the function approximator myfa to 0.5. The third group of parameters

are internal control parameters which specify the input and output dimension of the function

approximator and the nature of the representation (probabilistic or conventional). These parameters

are configured initially, using the function faconfigure:

faconfigure(&faname, type, inputdim, inputtype,

outputdim, outputtype, additionalparams);

Here myfa refers to the function approximator to be configured. The field type specifies the type of

the function approximator. It may currently be one of the following: NEURONET,RADIALBASIS,

POLYNOMIAL, or LINEAR. The dimensions of the input and output spaces are specified by the

fields inputdim and outputdim. The fields inputtype and outputtype specify the types of these

variables (which may have an impact on the number of parameters, as will be discussed below).

Finally, the field additionalparams may contain additional parameters for the specific function

approximator, such as the number of hidden units in a neural network.

For example, the function call

faconfigure(&myfa, NEURONET, 3, FLOAT, 2, PROBFLOAT, 10);

configures myfa to be a neural network with 3 input, 2 output and 10 hidden units, where the

inputs are conventional floats and the outputs are probfloats.

Function approximators must be configured before using them. Once a configured, a function
approximator can be used just like a conventional function, e.g.:

y = myfa(x);

This statement uses the function approximator myfa to map x to y. The variables x and y can be

vectors of floats or compounds of probfloats. In both cases, they must have the length/dimension

specified in the faconfigure command. The outputs of function approximators are always in

[0; 1]outputdim.

3.2 Training

The parameters of function approximators are adjusted by minimizing the error between actual
and desired values, using gradient descent. Desired values are set using the symbol “<”, called
the training operator. For example, the statement

y < ytrue;

specifies that the desired value for the variable y is ytrue (at the current point of program

execution). The training operator uses CES’s builtin credit assignment mechanisms to change the

parameters of all function approximators who contributed to y (and whose learning flag is set) by

a small amount in the direction that minimizes the deviation (error) between y and ytrue.
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The training operator permits the combination of different variable types (probabilistic and

nonprobabilistic), but the variables must share the same dimensionality. The induced error metric,

which is the basis for the parameter change, depends on the variable types:

E = (y� x)2 if x and y nonprobabilistic

E =

Z
(y� x)2 Pr(x) dx if x probabilistic, y nonprobabilistic

E =

Z
(y� x)2 Pr(y) dy if x nonprobabilistic, y probabilistic

E =

Z Z
(y� x)2 Pr(x) Pr(y) dx dy if x and y probabilistic

(26)

A key feature of CES is that the programmer does not have to provide target signals directly for
the output of each function approximator. Instead, it suffices to provide target signals for some
variable(s) whose values depend on the parameters of the function approximator. For example,
the following code might, with appropriate training signals, instruct a mobile robot to turn parallel
to a wall.

float sonars[24];
probfloat turn, angle;
float target_turn;
fa mynet();

faconfigure(&mynet, NEURONET, 24, FLOAT, 1, PROBFLOAT, 10);
angle = mynet(sonars) * M_PI;
turn = angle  (0.5 * M_PI);
turn < target_turn;

The programmer specifies, on an examplebyexample basis, the amount and direction that the

robot should turn to be parallel to a wall. Here we assume that this value is stored in the

variable target turn. Such target values are used to modify the parameters of mynet, thereby

modifying the function that maps sonar measurements to angle. Here we assume that sonar

scans are available in the variable sonars, and M PI is the numerical constant �.

CES updates parameters by gradient descent. To solve the problem of credit assignment,

every time a variable is updated CES also computes gradients of its value(s) with respect to all

relevant function approximator parameters (e.g., weights of neural networks). More specifically,

each value that depends on a function approximator is annotated by a gradient field that measures

the dependence of this value on the parameters of this function approximator. The chain rule

of differentiation enables CES to propagate gradients just like values (and probabilities). CES

detects if a parameter influences the value of a variable more than once and sums up the corre

sponding gradients. When a training operator is encountered, the error is evaluated, its derivative

is computed, and the chain rule applied to update the parameters of all contributing function

approximators. This creditassignment mechanism is a version of gradient descent, similar to

the realtime Backpropagation algorithm [35, 112], where gradients are propagated through CES

program code. Gradients are only propagated for variables whose learning flag is set (c.f.,

Section 3.1).
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3.3 The Importance of Probabilities for Learning

Probabilistic computation is a key enabling factor for the learning mechanism in CES. Conventional
C code is usually not differentiable. Consider, for example, the statement

if (x > 0) y = 1; else y = 2;

where x is assumed to be of the type float. Obviously,

@y

@x
= 0 with probability 1. (27)

Consequently, program statements of this and similar types will, with probability 1, alter all

gradients to zero, gradient descent will not change the parameters, and no learning will occur.

Fortunately, the picture changes if probabilistic variables are used. Suppose both x and y
are of the type probfloat. Then the same statement becomes differentiable with nonzero

gradients:

@Pr(y = 1)

@Pr(x = a)
=

(
1 if a > 0

�1 if a � 0
(28)

@Pr(y = 2)

@Pr(x = a)
=

(
1 if a � 0

�1 if a > 0
(29)

Notice that none of the gradients are zero. Probabilistic CES programs are essentially differen

tiable. This observation is crucial. The use of probabilistic computation is a necessary component

of the learning approach in CES, not just an independent component of CES. Without it, the current

credit assignment mechanisms would fail in most cases. In particular, CES’s learning mechanism

fails when conventional variables are used in conjunction with nondifferentiable statements such

as ifthenelse (see the literature on automatic program differentiation [5, 37, 88] for alter

natives).

3.4 Function Approximation with Probabilistic Variables

Usually, function approximators are not used for probabilistic variables; instead, their inputs

and outputs correspond to conventional (nonprobabilistic) variables. This section explains how

function approximators are used for probabilistic variables in CES.

If the input to a function approximator is a probabilistic variable, the function approximator is

run for every combination of input values (at a userdefined resolution), and the output is weighted

by the probability of the input vector and averaged. This is similar, though not identical, to the

probloop command.

If the output of a function approximator is probabilistic, the picture becomes more problematic.

Function approximators output values, not probabilities; these outputs might not integrate to 1.

CES solves this dilemma by converting outputs into inputs, and interpreting the (normalized)

output of the function approximator as the desired probability. More specifically, suppose x is

the input and y is the output of a function approximator. Let m be the dimension of x and n the
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(a) (b)

Figure 2: (a) AMELIA, the Real World Interface B21 robot used in our research. (b) Schematics

of the robot’s environment.

dimension of y. CES considers the function approximator as a function from <m+n to [0; 1]. The

probability of y is given by

Pr(yjx) =
f(x; y)Z
f(x; ȳ) dȳ

(30)

Thus, to compute the distribution for y, CES loops over all possible values in y, just as if the input

were probabilistic. The computation of the denominator is a sideproduct of computing f(x; y)
for every output value in y.

Just as in the probloop command, CES samples the function f at a userspecified resolution

if probabilistic variables are involved. Once trained, the resolution can easily be changed to sample

continuousvalued distributions at different granularities. In learning mode, gradients of the input

variables with respect to other function approximator parameters, if any, are propagated through

the function approximator using the chain rule of differentiation.

4 Programming a Mail Delivery Robot in CES

This section illustrates the development of an example program in CES. Its purpose is to demon

strate how robust software can be developed in CES with extremely little effort. Therefore,

instead of just presenting the final result, emphasis is placed on describing the process of software

development, which involves both conventional coding and training.

The robot is shown in Figure 2a. It is equipped with a color camera, an array of 24 sonar

sensors, and wheel encoders for odometry. Odometry measurements are incremental, consisting
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left hand right hand both hands

no gesture no gesture no gesture

Figure 3: Positive (top row) and negative (bottom row) examples of gestures.

of the relative change of heading direction (the rotation) and the distance traveled (the translation).

To keep the computational overhead manageable, camera images are automatically subsampled

to a resolution of 10 by 10 pixels. The robot is controlled by directly setting its translational and

rotational velocities.

The performance task, which will be programmed in this section, is the task of mail delivery in

the office environment shown in Figure 2b. The task requires a collection of skills. When the robot

does not carry any mail, it has to wait in a prespecified location (called the home position) for the

postal carrier to arrive. Every day, the carrier hands over mail to the robot for local delivery. Mail

might be available for one or both of two possible destinations, A and B, as shown in Figure 2b. To

inform the robot of the nature of the mail, the carrier instructs the robot using gestures: If mail has

to be delivered to location A, he raises his left hand; If he wants the robot to go to location B, he

raises his right hand; If mail is available for both locations, he raises both hands. Figure 3 shows

examples of such gestures, along with some negative training examples. The robot then moves

to the corresponding location(s), stops, and gives an acoustic signal, so that people in adjacent

offices know that the robot is there and can pick up their mail. When all mail has been delivered,

the robot returns to its home position. While in motion, the robot has to avoid collisions with

obstacles such as walls and with people that might step in its way.

For the robot to perform this task, it has to be able to recognize gestures from camera images.

It has to navigate to the target destinations and stop at the appropriate place. The environment is

ambiguous. The only distinguishing feature is the door niche next to location A. This makes it

difficult to recognize the other target locations and the homing position. In addition, the corridor
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(a) Local corridor angle (normalized)
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(b) Integrated corridor angle and target
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(c) Integrated corridor angle and target for the testing set
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-

Figure 4: Estimating the corridor angle: Diagram (a) shows the local estimate, extracted from a

single sensor reading. Diagram (b) shows the integrated corridor angle, obtained as described in

the text. The solid white line in (b) depicts the labels with which the program is trained. Diagram

(c) shows the performance over a testing set. In all diagrams, the horizontal axis corresponds to

time, and the vertical axis to the angle of the corridor; the darker a value, the higher its likelihood.

is populated by people, which often corrupt sensor readings.

Our program will exploit the fact that the robot operates on a single corridor and does not have to

enter offices. To program the mail delivery robot in CES, we will first develop a localization routine.

This routine recognizes the robot’s xy location and its heading direction in a global Cartesian

coordinate frame based on sonar scans. We will then develop code for navigating to a goal location

(specified in xycoordinates). Finally, we will develop software for recognizing gestures from

camera images, along with a scheduler for coordinating the various required activities.

The reader should notice that all results reported here are based on a prototype implementation

of CES as a function library. This prototype is functionally equivalent to the language described

here, but it uses a somewhat different syntax, as declarations and operations involve function calls.

Statements in our implemented version, however, can be translated onebyone into CES.

4.1 Corridor Angle

Let us begin by developing code for recognizing one of the most obvious feature in the environment:

the angle of the corridor relative to the robot. This angle, denoted �, lies in [0; �]. Due to the

symmetry of the corridor, the corridor angle alone is insufficient to determine the global heading

direction; however, knowledge of � is useful, as it reduces the space of heading directions to two

possibilities, leaving open only which end of the corridor the robot is facing.
The following code, with the appropriate training, tracks the corridor angle �:

A01: fa net_sonar();
A02: probfloat alpha, alpha_local, prob_rotation;
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A03: float alpha_target;
A04: float scan[24];
A05: struct { float rotation, transl; } odometry_data;
A06:
A07: alpha = UNIFORM1D(0.0, M_PI);
A08: faconfigure(&net_sonar, NEURONET, 24, FLOAT, 1, PROBFLOAT, 5);
A09:
A10: for (;;){
A11: GET_SONAR(scan);
A12: alpha_local = net_sonar(scan) * M_PI;
A13: alpha = alpha # alpha_local;
A14:
A15: GET_ODOM(&odometry_data);
A16: prob_rotation = (probfloat) odometry_data.rotation
A17: + NORMAL1D(0.0, 0.1 * fabs(odometry_data.rotation));
A18: alpha += prob_rotation;
A19: if (alpha < 0.0) alpha += M_PI;
A20: if (alpha >= M_PI) alpha = M_PI;
A21:
A22: GET_TARGET(&alpha_target);
A23: alpha < alpha_target;
A24: }

Functions of the type GET xxx are part of the robot application interface and will not be discussed

any further. Line numbers have been added for the reader’s convenience.

The most important variable is alpha, a probabilistic variable that keeps an uptodate

estimate of the corridor angle. In line A07, alpha is initialized uniformly, indicating that

initially the robot is unaware of its orientation. The angle alpha is modified upon two types of

information: sonar scans and odometry. Upon querying its sonar sensors (line A11), the robot

uses a function approximator to convert a sensor scan into a “local” estimate of the corridor angle,

called alpha local (line A12). In the code above, this function approximator is a neural

network called net sonar, with the topology specified in line A08. Subsequently, in line

A13, the local estimate of � is integrated into alpha using the Bayes operator.

The robot’s odometry is queried in line A15. Naturally, a rotation by odometry data.
rotation causes the corridor angle to change by about the same amount. However, robot

odometry is erroneous. To accommodate errors in the perceived rotation, line A16 converts the

measurement into a probabilistic variable and adds a small Gaussian term. In line A18, it adds

its value to the current value of alpha. This addition reflects the programmer’s knowledge that a

rotation, measured by the robot’s shaft encoders, causes the wall orientation to change accordingly.

Since after executing the summation in line A18, the new value of alpha might not lie any

longer in [0; �], lines A19 and A20 normalize alpha accordingly.

The program is trained using sequences of measurements (sonar and odometry), for which the

corridor angle is labeled manually. Line A22 retrieves the label from the training database, and

line A23 imposes the target signal for the estimate alpha. CES’s builtin credit assignment

mechanism modifies the parameters of the neural network p sonar so as to maximize the

accuracy of the variable alpha. Notice that training signals do not directly specify the output of

the network; instead, they constrain the values of alpha, which is a function of the network’s

outputs.
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We successfully trained the network with a 3minutelong sequence of measurements, during

which the robot was joysticked through the corridor. The dataset contained 317 measurements

(sonar and odometry), which we labeled by hand in less than 10 minutes. Approximately half the

data was used for training and the other half for crossvalidation (early stopping). Figure 4a shows

the value of alpha local for the training set after training. Here the vertical axis corresponds to

different values of alpha local, the horizontal axis depicts time, and the greylevel visualizes

the probability distribution: the darker a value, the higher its likelihood. The value of alpha, as

computed in line A18, is shown in Figure 4b. The solid white line in this figure corresponds to

the labels. After an initial localization phase, the variable alpha tracks the angle well. Figure 4c

shows the tracking performance using the crossvalidation set, illustrating that the data is sufficient

to training the program to track �.

It is interesting to notice that both sonar and odometry data are needed for tracking �. Without

sonar data, the robot could never determine the initial angle; thus would be unable to track �.

However, as Figure 4a illustrates, alpha local does not produce accurate estimates of �; based

on it alone, the robot would not be able to track � either. Thus, both sources of information are

needed, along with the builtin geometric model that relates odometry to wall angle.

4.2 Heading Direction

Next, we will extend our program to compute the heading direction of the robot, called �, which

differs from the corridor angle in that it is defined over [0; 2�], not just [0; �] as is �. We will

exploit the fact that

� = � MOD �; (31)

that is, the corridor angle is the heading direction modulo the information regarding which end of

the corridor the robot is facing. Because global localization in highly symmetric environments is

challenging, we will make the assumption that initially the robot always faces the same end of the

corridor.
The following pieces of code, inserted into the above program as specified, usealpha local

to compute theta local, which in turn is used to compute an estimate theta of heading
direction �:

 following A05 
B01: probfloat theta_local, theta;
B02: probint coin = {{0, 0.5}, {1. 0.5}};

 following A08 
B03: theta = UNIFORM1D(0.0, M_PI);

 following A13 
B04: probloop(alpha_local, coin; theta_local)
B05: if (coin)
B06: theta_local = alpha_local;
B07: else
B08: theta_local = alpha_local + M_PI;
B09: theta = theta # theta_local;

 following A19 
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Figure 5: Plot of the heading direction (in [0; 2�] over the training and the testing set. The robot

accurately tracks the heading direction.

B10: theta += prob_rotation;
B11: if (theta < 0.0) theta += 2.0 * M_PI;
B12: if (theta >= 2.0 * M_PI) theta = 2.0 * M_PI;
B13: theta = probtrunc(theta, 0.01);

The “trick” here lies in the probabilistic variable coin, which maps the probabilistic variable

alpha local from [0; �] to [0; 2�]. More specifically, the probloop command (lines B04
to B09) copies the probability in alpha local probabilistically to theta local, so that the

distribution of theta local in [0; �] and in [�; 2�] are both equal in shape to the distribution

of alpha local.

The sense of the global heading direction is obtained through appropriate initialization. Line

B03 confines the actual heading direction to the initial interval [0; �], thereby ruling out [�; 2�].
When updating theta (just like alpha), the robot considers only one of the two possible global

heading directions—the other one is not considered since its initial likelihood is zero. To avoid

the problem of the robot slowly losing its direction (an effect called leaking), the variable theta
is truncated at regular intervals (line B13). No further training is required at this point.

Figure 5 shows the new program in action. Plotted there is the heading direction � for the

dataset used above (training and cross validation run), annotated with the handlabeled, global

heading direction. In both cases, theta is initially confined to the interval [0; �]. The program

quickly determines the heading direction and then tracks it accurately over the entire dataset.

The traces in Figure 5 and a collection of other experiments, some of which lasted 30 minutes

or more, suggest that the program is capable of determining and tracking the heading direction

indefinitely—despite the fact that the environment is highly ambiguous and populated. We did

not observe a single failure of the localization approach. Notice that only 37 lines of code were

required, along with 13 minutes of data collection and labeling (and a few more minutes for

function fitting).

4.3 Estimating x and y

In environments such as the one considered here, the two most informative sonar readings are the

ones pointing west and east (c.f., Figure 2b). This is because sonar readings that hit a wall at a
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Figure 6: Estimating the xcoordinate. In both data sets, some of the data is partially mislabeled.

Nevertheless, the program recovers an accurate estimate.

right angle maximize the chances of measuring the correct distance; whereas those hitting a wall

at a steep angle are often reflected away. To extract these sensor readings, one has to translate

robotcentered coordinates to worldcoordinates.
This operation is straightforward, as we have now an estimate of the robot’s heading direction:

 following B03 
C01: compound { probfloat east, west; } new_sonar;
C02: int i, j;

 following B09 
C03: probloop(theta; new_sonar){
C04: i = (int) (theta / M_PI * 12.0);
C06: j = (i + 12) % 24;
C07: if (scan[i] < 300.0) new_sonar.east = scan[i];
C08: if (scan[j] < 300.0) new_sonar.west = scan[j];
C09: }

The two sonar readings extracted here are probabilistic variables, as the heading direction � is not

known exactly either. Notice that our loop filters out sonar readings more than 3 meters long, which

in a 2.5 meterswide corridor are bound to be specular reflections (and therefore uninformative).
With the new, worldcentered sonar measurements it is now straightforward to design CES

code for estimating the x and ycoordinates of the robot:

 following C02 
D01: fa net_x(), net_y();
D02: probfloat x, x_local, y, y_local, prob_transl;
D03: float x_target, y_target;

 following A08 
D04: x = X_HOME; y = Y_HOME;
D05: faconfigure(&net_x, NEURONET, 2, PROBFLOAT, 1, PROBFLOAT, 5);
D06: faconfigure(&net_y, NEURONET, 2, PROBFLOAT, 1, PROBFLOAT, 5);

 following C10 
D07: x_local = net_x(new_sonar);
D08: y_local = net_y(new_sonar);
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D09: x = x # x_local;
D10: y = y # y_local;

 following B13 
D11: prob_transl = (probfloat) odometry_data.transl
D12: + NORMAL1D(0.0, 0.1 * fabs(odometry_data.transl));
D13: x = x + prob_transl * cos(theta);
D14: y = y + prob_transl * sin(theta);
D15: x = probtrunc(x, 0.01);
D16: y = probtrunc(y, 0.01);

 following A23 
D17: GET_TARGET(&x_target);
D18: x < x_target;
D19: GET_TARGET(&y_target);
D20: y < y_target;

This code is largely analogous to the code for extracting the corridor angle. As there, we use

neural networks to extract local x and y estimates from our newly computed sonar readings, using

the same training set as above (but different labels). Local information is integrated using the

Bayes operator. The robot is told its initial position, called X HOME and Y HOME.

While the estimation of y is largely based on odometry (the network net y does not return

much useful information), the estimation of x is close to the actual sensor readings. Figure 6

shows the estimation of x for the two runs, illustrating that our program can accurately track the

robot’s position.

4.4 Navigation to Goal Points

With our probabilistic estimates of where the robot is at any point in time, it is now straightforward
to implement a function that makes the robot move to arbitrary target locations in the corridor.
The following code segment, inserted as indicated, makes the robot move to arbitrary locations
specified by the two variables x goal and y goal:

 following D03 
E01: float x_goal, y_goal, t, v, theta_goal, theta_diff;
E02: probfloat trans_vel, rot_vel;

 following D16 
E03: probloop(theta, x, y, x_goal, y_goal; trans_vel, rot_vel){
E04: theta_goal = atan2(y  y_goal, x  x_goal);
E05: theta_diff = theta_goal  theta;
E06: if (theta_diff < M_PI) theta_diff += 2.0 * M_PI;
E07: if (theta_diff > M_PI) theta_diff = 2.0 * M_PI;
E08:
E09: if (theta_diff < 0.0)
E10: rot_vel = MAX_ROT_VEL;
E11: else
E12: rot_vel = MAX_ROT_VEL;
E13:
E14: if (fabs(theta_diff) > 0.25 * M_PI)
E15: trans_vel = 0;
E16: else
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E17: trans_vel = MAX_TRANS_VEL;
E18: }
E19:
E20: v = (float) rot_vel;
E21: t = (float) trans_vel;
E22: SET_VEL(t, v);

Here the functionSET VEL is used to set the robot’s velocity, and the constantsMAX TRANS VEL
and MAX ROT VEL specify the maximum translational and rotational velocities.

In lines E04 to E07, this code segment computes (and stores in theta diff) the differ

ence between the robot’s heading directiontheta and the relative angle to the goal,theta goal.

It then implements a bangbang controller: The robot always attempts to rotate full speed towards

the goal, as specified in lines E09 to E11. If the deviation theta diff is larger than 45 de

grees in magnitude (line E14), the robot does not move forward at all; otherwise, its translational

velocity is set to its maximum value.

This code segment computes two probabilistic variables, trans vel and rot vel, which

assign probabilities to either of their respective motion commands. These probabilistic variables

are converted into conventional floats by assigning their likelihoodweighted means, as specified

by the type conversions in lines E20 and E21. These values are fed to the robot’s motors.

The resulting controller is not a bangbang controller; instead, it delivers smooth control whose

magnitude depends on the degree as to which the above conditions are assumed to hold true

(c.f., [28]). For example, if 50% of the probability in rot vel suggests a rotational velocity of

MAX ROT VEL and the other 50% suggests�MAX ROT VEL, as is often the case when the robot’s

heading direction is aligned with the goal, the likelihoodweighted average v will be 0, and the

robot will not rotate at all.
The current code works well in empty hallways,but it does not avoid collisions with unexpected

obstacles, such as humans. A simpleminded, reactive collision avoidance mechanism, which
checks the two frontal sonar sensors and makes the robot stop is something comes too close, is
easily designed by inserting the following code before the final motion command:

 following E20 
F01: if (sonar[0] < 15.0 || sonar[23] < 15.0) t = 0.0;

This code makes the robot stop if an obstacle comes close. Since only the forward motion is

disabled, the robot can still turn—preventing it from getting stuck when it is too close to a wall.

4.5 Gesture Interface

Gestures are recognized by the robot’s cameras. In our application domain, the gesture

interface must be robust to lighting changes, changes of the viewpoint, daylight changes, and

variations in the postal carrier’s clothes. The carrier is assumed to be cooperative, in that he poses

himself at about the same distance to the camera, so that the hands appear at roughly the same

position in the camera’s field of view (see Figure 3).
The following, extremely brief piece of CES code turns out to suffice for recognizing gestures:

 following E02 
G01: fa net_left(), net_right();
G02: float image[300];
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actual gesture

none left hand right hand both hands

none 84 – 1 –

recognized as left hand 2 14 – –

right hand 1 – 26 –

both hands – – – 10

Table 2: Gesture recognition results, measured on an independent testing set.

G03: probint gesture_left, gesture_right;

 following D06 
G04: faconfigure(&net_left, NEURONET, 300, PROBFLOAT, 1, PROBINT, 5);
G05: faconfigure(&net_right, NEURONET, 300, PROBFLOAT, 1, PROBINT, 5);

 following D16 
G06: GET_IMAGE(image);
G07: gesture_left = net_left(image);
G08: gesture_right = net_right(image);

 following D20 
G09: GET_TARGET(&target_left);
G10: gesture_left < target_left;
G11: GET_TARGET(&target_right);
G12: gesture_right < target_right;

This code segment uses neural networks to map camera images into a probabilistic variable that

indicates the likelihood that a gesture was shown. It is trained by labeled data.
We trained the code using a training set of 199 images, 115 of which are used for training and

84 for crossvalidation (early stopping). This dataset was collected in approximately 31
2

minutes,

and labeled in approximately 5 minutes. After training, gestures were recognized by thresholding
the likelihood:

if ((float) gesture_left > 0.5)
printf("Left hand up.\n");

if ((float) gesture_right > 0.5)
printf("Right hand up.\n");

This interface yielded 100% accuracy on the training set, and 97.6% accuracy on the cross

validation set. These numbers have to be taken with a grain of salt, as both portions of the

dataset participated in the training process. To validate these recognition rates, we collected and

handlabeled another dataset, consisting of 138 images. This dataset was collected on a different

day, with the postal carrier wearing different clothes. The results obtained for this independent

evaluation set, summarized in Table 2, confirm the high reliability of the gesture interface. Here

the overall accuracy was 97.83%, with a falsepositive rate of 3.45% and a falsenegative rate

of 1.96%. All falsepositive cases were highly ambiguous, involving arm motion similar to the

corresponding gesture.
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4.6 Scheduling

Finally, a scheduler is required to coordinate the delivery requests and the final return to the home
position. This is achieved by the following code, which is wrapped around the navigation code as
indicated.

 following G03 
H01: int num_goals = 0, active_goal;
H02: struct { float x, y, dir; } stack[3];

 following G08 
H03: if (num_goals == 0){ /* nothing scheduled? */
H04: if ((float) gesture_left > 0.5){ /* left hand gesture? */
H05: stack[num_goals ].x = X_A; /* then: schedule A */
H06: stack[num_goals ].y = Y_A;
H07: stack[num_goals++].dir = 1.0;
H08: }
H09: if ((float) gesture_right > 0.5){ /* right hand gesture? */
H10: stack[num_goals ].x = X_B; /* then: schedule B */
H11: stack[num_goals ].y = Y_B;
H12: stack[num_goals++].dir = 1.0;
H13: }
H14: if (num_goals > 0){ /* any gesture? */
H15: stack[num_goals ].x = X_HOME; /* then: schedule return */
H16: stack[num_goals ].y = Y_HOME;
H17: stack[num_goals++].dir = 1.0;
H18: active_goal = 0; /* start here */
H19: }
H20: }
H21:
H22: else if (stack[active_goal].dir * /* reached goal? */
H23: ((float) y  stack[active_goal].y) > 0.0){
H24: SET_VEL(0, 0); /* stop robot */
H25: active_goal = (active_goal + 1) % depth;
H26: if (active_goal) /* mail stop? */
H27: for (HORN(); !GET_BUTTON(); ); /* blow horn and wait */
H28: else
H29: num_goals = 0; /* done, restart */
H30: }
H31:
H32: else{ /* approaching goal? */
H33: x_goal = stack[active_goal].x;
H34: y_goal = stack[active_goal].y;

 following E22 
H35: }

This scheduler uses the variable stack to memorize a list of goal positions in response to a

gesture. The statement in line H03 ensures that gestures are only accepted when the robot is

not already delivering mail. In lines H04 to H19, the robot checks whether a gesture has been

spotted, and adds the corresponding destination into its stack, followed by the home position. If

the robot is moving, it first checks whether a goal location has been reached. This is done in

line H22, which checks if the robot’s xcoordinate has crossed the goal’s x coordinate—the
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Figure 7: Plot of the robot trajectory (raw odometry) during 8 consecutive runs, in which AMELIA

successfully delivers 11 pieces of mail. Shown here are also the raw sonar measurements. The

robot reaches the various destination points within 1 meter accuracy, despite the rather significant

error in the robot’s odometry.

ycoordinate is ignored here. If a destination has been reached, the counter active goal is

incremented and, if the location is not the final stop (the home position), the horn is activated and

the robot waits for a person to push a button (line H27). Otherwise, it simply empties the stack

(line H29), at which point the delivery is completed. Finally, line H32 is activated when none

of the conditions above are met, in which case the active goal is given to the navigation software

for determining an appropriate motion command.

4.7 Results

Table 3 shows the complete CES program with minor reordering of the variable declarations. This

program is only 144 lines long, but together with the appropriate training it suffices for the control

of a gesturedriven mail delivery robot, all the way from raw sensor readings to motor controls.

In practice, the program proved extremely reliable when delivering mail in a populated cor

ridor. Figure 7 shows raw data collected during eight delivery missions, during which AMELIA

(correctly) delivered 11 pieces of mail. As the figure suggests, the raw odometry is too inac

curate to reliably track the robot’s position. The figure also illustrates the noise in the sonar

measurements, partially caused by total reflection, and partially caused by people walking close

to the robot. Nevertheless, during this and other testing runs, the program tracked the position

reliably (the error was always below 1 meter), and it successfully delivered the mail to the correct

recipients.
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main(){

/*********** Declarations ***********/

fa net_sonar(), net_x(), net_y(), net_left(), net_right();
probfloat alpha, alpha_local, prob_rotation;
probfloat theta_local, theta, trans_vel, rot_vel;
probfloat x, x_local, y, y_local, prob_transl;
probint coin = {{0, 0.5}, {1. 0.5}};
probint gesture_left, gesture_right;
compound { probfloat east, west; } new_sonar;
float alpha_target, scan[24], image[300];
float x_target, y_target, x_goal, y_goal, t, v;
float theta_goal, theta_diff;
struct { float rotation, transl; } odometry_data;
struct { float x, y, dir; } stack[3];
int i, j, num_goals = 0, active_goal;

/*********** Initialization ***********/

alpha = UNIFORM1D(0.0, M_PI);
theta = UNIFORM1D(0.0, M_PI);
faconfigure(&net_sonar, NEURONET, 24, FLOAT, 1, PROBFLOAT, 5);
faconfigure(&net_x, NEURONET, 2, PROBFLOAT, 1, PROBFLOAT, 5);
faconfigure(&net_y, NEURONET, 2, PROBFLOAT, 1, PROBFLOAT, 5);
faconfigure(&net_left, NEURONET, 300, PROBFLOAT, 1, PROBINT, 5);
faconfigure(&net_right, NEURONET, 300, PROBFLOAT, 1, PROBINT, 5);
x = X_HOME; y = Y_HOME;

/*********** Main Loop ***********/

for (;;){

/*======== Localization ========*/

GET_SONAR(scan);
alpha_local = net_sonar(scan) * M_PI;
alpha = alpha # alpha_local;
probloop(alpha_local, coin; theta_local){
if (coin)
theta_local = alpha_local;

else
theta_local = alpha_local + M_PI;

theta = theta # theta_local;
probloop(theta; new_sonar){
i = (int) (theta / M_PI * 12.0);
j = (i + 12) % 24;
if (scan[i] < 300.0) new_sonar.east = scan[i];
if (scan[j] < 300.0) new_sonar.west = scan[j];

}
x_local = net_x(new_sonar);
y_local = net_y(new_sonar);
x = x # x_local;
y = y # y_local;

GET_ODOM(&odometry_data);
prob_rotation = (probfloat) odometry_data.rotation

+ NORMAL1D(0.0, 0.1 * fabs(odometry_data.rotation));
alpha += prob_rotation;
if (alpha < 0.0) alpha += M_PI;
if (alpha >= M_PI) alpha = M_PI;
theta += prob_rotation;
if (theta < 0.0) theta += 2.0 * M_PI;
if (theta >= 2.0 * M_PI) theta = 2.0 * M_PI;
theta = probtrunc(theta, 0.01);
prob_transl = (probfloat) odometry_data.transl
+ NORMAL1D(0.0, 0.1 * fabs(odometry_data.transl));

x = x + prob_transl * cos(theta);
y = y + prob_transl * sin(theta);
x = probtrunc(x, 0.01);
y = probtrunc(y, 0.01);

/*======== Gesture Interface, Scheduler ========*/

GET_IMAGE(image);
gesture_left = net_left(image);
gesture_right = net_right(image);
if (num_goals == 0){

if ((float) gesture_left > 0.5){
stack[num_goals ].x = X_A;
stack[num_goals ].y = Y_A;
stack[num_goals++].dir = 1.0;

}
if ((float) gesture_right > 0.5){

stack[num_goals ].x = X_B;
stack[num_goals ].y = Y_B;
stack[num_goals++].dir = 1.0;

}
if (num_goals > 0){

stack[num_goals ].x = X_HOME;
stack[num_goals ].y = Y_HOME;
stack[num_goals++].dir = 1.0;
active_goal = 0;

}
}
else if (stack[active_goal].dir *

((float) y  stack[active_goal].y) > 0.0){
SET_VEL(0, 0);
active_goal = (active_goal + 1) % depth;
if (active_goal)

for (HORN(); !GET_BUTTON(); );
else

num_goals = 0;
}
else{

/*========== Navigation ==========*/

x_goal = stack[active_goal].x;
y_goal = stack[active_goal].y;
probloop(theta, x, y, x_goal, y_goal;

trans_vel, rot_vel){
theta_goal = atan2(y  y_goal, x  x_goal);
theta_diff = theta_goal  theta;
if (theta_diff < M_PI) theta_diff += 2.0 * M_PI;
if (theta_diff > M_PI) theta_diff = 2.0 * M_PI;
if (theta_diff < 0.0)

rot_vel = MAX_ROT_VEL;
else

rot_vel = MAX_ROT_VEL;
if (fabs(theta_diff) > 0.25 * M_PI)

trans_vel = 0;
else

trans_vel = MAX_TRANS_VEL;
}
v = (float) rot_vel;
t = (float) trans_vel;
if (sonar[0] < 15.0 || sonar[23] < 15.0) t = 0.0;
SET_VEL(t, v);

}

/*========== Training ==========*/

GET_TARGET(&alpha_target);
alpha < alpha_target;
GET_TARGET(&x_target);
x < x_target;
GET_TARGET(&y_target);
y < y_target;
GET_TARGET(&target_left);
gesture_left < target_left;
GET_TARGET(&target_right);
gesture_right < target_right;

}
}

Table 3: The complete CES implementation of the mail delivery program.
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Figure 8: Plot of the key variables during a successful mail delivery. See text.
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Figure 8 shows the major variables during a single mail delivery. In this example, the postal

carrier lifts the left arm, the robot moves to location A, delivers its mail, and returns. In all

diagrams, the horizontal axis corresponds to the time. Figure 8a illustrates the different phases

involved: waiting for the carrier, moving to location A, delivering mail, moving back, and waiting.

The mail delivery is triggered by the left arm gesture, as shown in Figure 8f. Figures 8ce illustrate

the position estimates, which accurately track the robot’s position during that run. The velocity

profile is shown in 8i&k, demonstrating that the control is rather smooth. When the robot is in

motion, it moves at approximately 20 cm/sec.

5 CES Implementation of BaLL

Table 4 shows a CES implementation of the BaLL algorithm [104], a recent extension of the

popular Markov localization algorithm [12, 13, 45, 49, 75, 97]. BaLL, which is short for Bayesian

Landmark Learning, is a probabilistic algorithm for mobile robot localization. A key feature

of the BaLL algorithm is its ability to select its own landmarks, and to learn functions for their

recognition. It does this by minimizing the expected (Bayesian) error in localization. BaLL was

originally implemented in C. An estimated 5,000 of its 13,000 lines of code were dedicated to

the basic algorithm; the other ones are concerned with graphics and the robot interface. The

implementation in Table 4 implements BaLL in 58 lines; a reduction by two orders of magnitude.

56 of these lines implement the basic Markov localization algorithm, and two the extension that

enables BaLL to select its own landmarks.
Since the algorithm and its motivation is described in detail elsewhere [104], and since Markov

localization generalizes the localization approach described in the previous section, we will only
briefly describe it here. Markov localization maintains a probabilistic belief (distribution) of the
robot’s position. This belief is stored in the threedimensional variable pose which is declared in
line 14 and whose type is defined in line 5:

05: typedef compound { probfloat x, y, theta; } pose_type;
14: pose_type pose, pose_prime;

The pose belief is updated upon two events: perception (something is observed) and robot motion.

1. Perception. Observations are compared to a map of the environment, to produce a mo

mentary estimate as to where the robot might be (just based on the one observation). This

momentary estimate is then incorporated into the robot’s belief via Bayes rule—which is

the mathematically correct way if the world is Markov [85].

In the implementation shown in Table 4, the map is represented by a data set read from a file

23: LOAD_DATA(&data, &num_data, &min_x, &max_x, &min_y, &max_y);

Here we assume that LOAD DATA is a library function provided by the robot application
interface. The reference map, which associates landmarks to xy� positions, is initialized
by running the landmark detecting network.

24: for (n = 0; n < num_data; n++){
25: data[n].landmark = p(data[n].sensor_data);
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01: main(){
02: /*********** Part 1: Declarations ***********/
03:
04: typedef struct { float x, y, theta; } target_type; /* pose targets */
05: typedef compound { probfloat x, y, theta; } pose_type; /* poses, xytheta space */
06: struct { int new_episode_flag; /* 1, if new episode */
07: int episode_num; /* number of episode */
08: float sensor_data[164]; /* sensor data */
09: float rotation, transl; /* motion command */
10: target_type target; /* handlabeled pose */
11: probbool landmark; } *data; /* landmark observation */
12: int num_data; /* size of the data set */
13: float min_x, max_x, min_y, max_y; /* bounds on robot pose */
14: pose_type pose, pose_prime; /* pose estimates */
15: probfloat prob_rotation, prob_trans; /* motion command + noise */
16: probbool landmark; /* landmark present? */
17: probfloat prob_transl, prob_rotation; /* motion estimate */
18: fa p(); /* network for landmarks. */
19:
20: /*********** Part 2: Initialization ***********/
21:
22: faconfigure(&p, NEURONET, 164, FLOAT, 1, PROBFLOAT, 5); /* initialize network */
23: LOAD_DATA(&data, &num_data, &min_x, &max_x, &min_y, &max_y);
24: for (n = 0; n < num_data; n++)
25: data[n].landmark = p(data[n].sensor_data); /* initialize map */
26:
27: /*********** Part 3: Localization and Training ***********/
28:
29: for (;;)
30: for (n = 0; n < num_data; n++){ /* go over the data */
31: if (data[n].new_episode_flag) /* new episode? */
32: pose = UNIFORM3D(min_x, max_x, min_y, max_y, /* then pose unknown */
33: 0.0, 2.0 * M_PI);
34: landmark = p(data[n].sensor_data); /* find landmarks */
35: probloop(; pose_prime)
36: for (k = 0; k < num_data; k++) /* estimate robot’ pose */
37: probloop(landmark, data[k].landmark; )
38: if (data[n].episode_num != data[k].episode_num &&
39: landmark == data[k].landmark){ /* ...by comparing it to */
40: pose_prime.x = data[k].target.x; /* ...landmark vectors with */
41: pose_prime.y = data[k].target.y; /* ...known poses */
42: pose_prime.theta = data[k].target.theta;
43: }
44: pose = pose # pose_prime; /* integrate into estimate */
45: pose = probtrunc(pose, 0.01); /* remove small probabilities */
46: data[n].landmark = landmark; /* update data set (map) */
47: prob_rotation = (probfloat) data[n].rotation /* incorporate control noise */
48: + NORMAL1D(0.0, 0.1 * fabs(data[n].rotation));
49: prob_transl = (probfloat) data[n].transl
50: + NORMAL1D(0.0, 0.1 * fabs(data[n].transl));
51: probloop(pose, prob_rotation, prob_transl; pose){ /* robot kinematics */
52: pose.theta = (pose.theta + prob_rotation) % (2.0 * M_PI);
53: pose.x = pose.x + prob_transl * cos(pose.theta);
54: pose.y = pose.y + prob_transl * sin(pose.theta);
55: }
56: pose < data[n].target; /* training, BaLL */
57: }
58: }

Table 4: CES implementation of the BaLL mobile robot localization algorithm. This code is

trained using sequences of sensor snapshots (camera, sonar) labeled with the position at which

they were taken.
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When a sensor datum is processed, a landmark vector is extracted and the momentary
estimate is constructed, using the variable pose prime:

34: landmark = p(data[n].sensor_data);
35: probloop(; pose_prime)
36: for (k = 0; k < num_data; k++)
37: probloop(landmark, data[k].landmark; )
38: if (data[n].episode_num != data[k].episode_num &&
39: landmark == data[k].landmark){
40: pose_prime.x = data[k].target.x;
41: pose_prime.y = data[k].target.y;
42: pose_prime.theta = data[k].target.theta;
43: }

Notice the nested probloop commands. The first is used to indicate that the variable

pose prime will be computed in the body of the probloop command. The second

iterates over all landmark values for the actual observation (landmark) and the reference

map (data[k].landmark).

The first condition in the ifclause (line 38) ensures that when constructing the momentary

belief, the program does not use use data from the same episode. This is important for

learning, as the program “simulates” a map built by independently collected data (see

[104]). The second condition (line 39) checks the consistency of the landmark observations.

To the extent that they are consistent, the momentary estimate pose prime is updated

accordingly. As a result, pose prime contains a probability distribution for the robot’s

pose conditioned on the sensor data item.

After computing the momentary estimate pose prime, it is integrated into the robot’s
belief using the Bayes operator:

44: pose = pose # pose_prime;

The subsequent truncation command

45: pose = probtrunc(pose, 0.01);

removes lowlikelihood poses from future considerations. While it is not part of the basic

Markov localization algorithm, it reduces the computational complexity by several orders

of magnitude while altering the results only minimally [12].

2. Motion. To incorporate a motion command, it is first converted into a probabilistic variable
that models the noise in robot motion. In the current program, this noise is described by a
zerocentered Gaussian variable whose variance is proportional to the motion command:

47: prob_rotation = (probfloat) data[n].rotation
48: + NORMAL1D(0.0, 0.1 * fabs(data[n].rotation));
49: prob_transl = (probfloat) data[n].transl
50: + NORMAL1D(0.0, 0.1 * fabs(data[n].transl));

Subsequently, the robot’s pose is updated by convolving the previous belief with the motion
command:
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51: probloop(pose, prob_rotation, prob_transl; pose){
52: pose.theta = (pose.theta + prob_rotation) % (2.0 * M_PI);
53: pose.x = pose.x + prob_transl * cos(pose.theta);
54: pose.y = pose.y + prob_transl * sin(pose.theta);
55: }

These equations are a probabilistic variant of the familiar kinematics of wheeled mobile

robots like Amelia.

All code discussed thus far implements the basic Markov localization algorithm, using a neural

network to extract landmark information from sensor readings, and a prerecorded data set as

reference map.
In CES, BaLL is a twoline extension of Markov localization: First, it uses CES’s builtin

learning mechanism to train the neural network so as to extract landmarks that minimize the
localization error:

56: pose < data[n].target;

Second, it continually updates the reference map:

46: data[n].landmark = landmark;

In [104], BaLL is evaluated by comparing it to other, popular localization algorithms. In particular,

this paper compares the utility of learned landmarks with popular choices such as doors and

ceiling lights. In all these comparisons BaLL performs favorably. It localizes the robot faster and

maintains higher accuracy, due to the fact that it can learn its own, environment and sensorspecific

landmarks. The interesting aspect here is that in CES it can be implemented in 58 lines, and that

in CES, that BaLL is a twoline modification of the basic Markov localization approach. For this

example, the use of CES reduced several weeks of programming effort to just a few hours.

6 Related Work

Historically, the field of AI has largely adopted an inferencebased problem solving perspective.

Typical AI systems are programmed declaratively, and they rely on builtin inference mechanisms

for computing the desired quantities. A typical example is the Prolog programming language

[54], where programs are collection of Horn clauses, and a builtin logical inference mechanism

(a theorem prover) is used to generate the program’s output. Another popular example is Bayes

networks [41, 81], where programmers specify probability distributions using a graphical lan

guage, and builtin probabilistic inference mechanisms are applied to marginalize them. To date,

there exists a diverse variety of frameworks for knowledge representation (e.g., first order logic,

influence diagrams, graphical models), along with a wide variety of “generalpurpose” inference

mechanisms, ranging from theorem provers and planners to probabilistic inference algorithms.

CES differs from all this work in that it is a procedural programming language, not a declarative

one. In CES, the program code specifies directly the computation involved in arriving at a result;

thus, CES lacks a generalpurpose inference mechanism of the type discussed above. In fields

like robotics, procedural languages like C are by far the most popular programming tool. In

comparison to declarative languages, procedural languages offer much tighter control over the
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program execution, they often enable programmers to arrive at more efficient solutions, and they

also facilitate debugging during software development.

The issue of integrating learning into inference systems has been studied intensely before. For

example, recent work on explanationbased learning [69, 42, 20], theory refinement [95, 108, 80,

78], and inductive logic programming [73, 86] has led to a variety of learning algorithms that modify

programs written in first order logic based on examples. Several research teams have integrated

such learning algorithms into problem solving architectures, such as SOAR [90, 26, 66, 57]

PRODIGY [67, 39] and THEO [70]. These architectures all require declarative theories of the

domain, using builtin theorem provers or specialpurpose planners to generate control. Learning

is applied to modify the domain theory in response to unexplained observations, or to speed up

the reasoning process. In some systems, humans are observed to learn models of their problem

solving strategies, in order to facilitate subsequent problem solving [109].

Despite several attempts (see e.g., [3, 48, 68]), such approaches have had little impact on

robotics, for various reasons. First, inference mechanisms are often slow and their response

characteristics are too unpredictable, making them inadequate for the control of realtime systems

(as noted above). Second, these approaches are often inappropriate for perception—a major issue

in robotics and embedded systems in general—since they lack the flexibility to robustly deal

with noisy and highdimensional sensor data. Third, the builtin learning mechanisms are often

too brittle, restrictive, or dataintense to be useful in domains where data is noisy and costly to

obtain. For example, explanationbased learning is often used to compile existing knowledge, not

to add new knowledge [25]. Approaches that go beyond this limitation by including an inductive

component [4, 80, 78, 89, 103] are often not robust to noise. Inductive logic programming increases

the hypothesis space size with the amount of background knowledge, imposing intrinsic scaling

limitations on the amount of background knowledge that may be provided. Logicbased learning

algorithms are often brittle if data is noisy, the environment changes over time, and data spaces

are highdimensional.

As the results in this paper demonstrate, CES can successfully learn in the context of noise

and highdimensional sensor data while retaining the full advantages of procedural programming

languages. It is common practice to program embedded systems using procedural programming

languages, such as C or C++. From a machine learning point of view, program code in CES is

analogous to domain theories in the AI architectures discussed above. CES’s “domain theory”

is procedural C code, which integrates the convenience of conventional programming with the

advantages of adaptive mechanisms and mechanisms for handling uncertain information.

Probabilistic representations have proven to be useful across a variety of application domains.

Recent work on Bayes networks [41, 81] and Markov chains [47, 87, 59, 46] has demonstrated,

both on theoretical and practical ends, the usefulness of probabilistic representations in the real

world. In robotics, integrating uncertain sensor information over time using Bayes rule is common

practice. For example, most approaches to building occupancy grid maps, an approach to learning

an environmental model which was originally proposed by Moraveć and Elfes [29, 30, 72] and

since applied in numerous successful robotic systems [6, 38, 113], employs update rules that are

equivalent to the Bayes operator in CES. Markov localization, a probabilistic method for mobile

robot localization that recently enjoyed enormous practical success [12, 13, 45, 49, 75, 97, 106],

uses Bayes rule for integrating sensor information. Hidden Markov models [87], Kalman filters
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[47, 34, 65, 111], and dynamic belief networks [18, 92] are other, successful approaches that

employ Bayes rule in temporal domains. CES’s Bayes operator supports these approaches. In

fact, most of these algorithms can—at least in principle—be implemented much more efficiently

in CES than in conventional programming languages.

In the tradition of AI, much of the work on probabilistic algorithms focuses on efficient

inference and problem solving. For example, the Bayes network community has proposed conve

nient ways to compactly specify structured probability distributions, along with efficient inference

mechanisms for marginalizing them [81]. Learning is typically applied to construct a probabilis

tic “domain theory,” e.g., the Bayes network, from examples. Recognizing the analogy, some

researchers proposed methods that bridge the gap between logic and probabilistic representations

[40, 36, 52, 84].

CES differs from Bayes networks in about the same way as C differs from PROLOG. Bayes
networks specify joint distributions of random variables in a way that facilitates computationally
efficient marginalization. Thus, inference mechanisms for Bayes networks keep track of all
dependencies between random variables. As a result, computing the marginal distributions can
be computationally challenging (e.g., for a Bayes network with undirected cycles, see [81]). If in
CES, assignments would be interpreted as constraints on the joint distribution of random variables,
programs that contain cyclic dependencies, such as

y = NORMAL1D(x, 1.0);
z = UNIFORM1D(x, x);
a = y + z;

would be similarly difficult to compute. Program statements in CES are computational rules

for manipulating data, not mathematical constraints on probability distributions. Just as in C,

statements such as x = y; and y = x; have fundamentally different effects. CES’s builtin

independence assumption ensures the efficiency of execution and therefore the scalability to very

large programs. It provides loops, ifthenelse statements and recursion, currently not available

in Bayes networks. It also facilitates the integration of probabilistic reasoning into mainstream

programming, as it smoothly blends probabilistic and conventional representations. However,

these advantages come with limitations. Just as in C, one cannot present the output of a CES

program and ask for a distribution over its inputs—an operation supported by Bayes networks

under the name of “diagnostic inference.”

The ability to generate distributions procedurally by sequences of assignments in CES is

similar in spirit to a recent proposal by Koller [51], who proposed a language for defining complex

probability distributions. Her language, however, is exclusively tailored towards approximate

probabilistic inference, and is therefore not suited as generalpurpose programming language.

In the field of robotics, researchers have proposed alternative languages and methodologies

for programming robots. None of these approaches integrates learning at the architectural level,

and none supports computation with uncertain information. For example, Brooks’s popular

subsumption architecture [9, 10] provides a modular way for programming robots, by coupling

together finite state machines that map sensor readings more or less directly into motor commands.

Unfortunately, this approach does not address the uncertainty typically arising in robotic domains,

and as a consequence it fails to provide adequate mechanisms for dealing with sensor limitations

and unobservable state. As a result, robots programmed using the subsumption architecture are

typically reactive, that is, their behavior is a function of the most recent sensor readings. In
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environments such as the ones considered here, dealing with perceptual noise and maintaining

internal state is essential. In addition, the subsumption architecture does not support adaptation—

even though some researchers successfully implemented adaptive mechanisms on top of it [61, 60,

63]. Other researchers have proposed more flexible programming languages for tasklevel robot

control, providing specialized mechanisms that support concurrency, exception handling, resource

management, and synchronization [31, 33, 53, 96, 98]. These languages address certain aspects

that arise when interacting with complex, dynamic environments—such as unexpected conditions

that might force a robot to deviate from a previously generated plan—but they do not address

the uncertainty in robotic perception. In fact, they typically assume that all important events can

be detected with sufficient certainty. Programming in these languages does not include learning

phases.

As argued in the introduction, the vast majority of the research in the field of robot learning

focuses on tabula rasa learning methods. In particular, approaches like reinforcement learning

[2, 46, 100, 110] and evolutionary computation/genetic programming [55, 56] currently lack the

necessary flexibility to integrate prior knowledge, and therefore are subject to scaling limitations,

especially when training data is scarce. In reinforcement learning, for example, common ways to

insert knowledge include choice of input representations, the type of function approximator used for

generalization [7, 99, 102], and ways to decompose the controllers hierarchically [17, 24, 58, 79].

Similarly, genetic programming gives users the choice of the data representations, the building

blocks of the programs that evolve, and the genetic operators used in their search [55, 56, 101].

In robotics, programmers often posses knowledge that cannot be expressed easily in these terms,

such as knowledge of the performance task, the environment, or generic knowledge such as the

laws of physics or geometry. The inability to integrate such knowledge into learning makes it

difficult for these approaches to learn complex controllers from limited amounts of data. CES

critically departs from this line of thought, in that it adopts a powerful (and commonly accepted)

method for programming robots with the benefits of learning.

Currently, CES’s builtin learning mechanism is less powerful than reinforcement learning

and genetic programming, in that CES programs cannot learn from delayed penalty and reward;

instead, they require target signals, very much like supervised learning. CES’s learning component

differs from genetic programming in that it does not manipulate program code. In principal, genetic

programming can easily be applied to CES programs. Practical experience shows, however, that

humans find it difficult to understand machinegenerated program code, even for very simple

problems [56].

7 Discussion

This paper described CES, a new programming language designed for programming robots and

other sensorbased systems. CES is an extension of C, retaining C’s full functionality but providing

additional features. To accommodate existing difficulties in developing robotic software, CES

offers its programmers the option to teach their code. CES programmers can use function

approximators in their program, and teach them by providing examples. CES’s builtin credit

assignment mechanism allows programmers to provide training signals for arbitrary variables

(e.g., the program output). In addition, CES provides mechanisms to adequately deal with the
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uncertainty, which naturally arises in any system that interacts with the real world. The idea of

probabilistic data types makes programming with uncertain information analogous to programming

with conventional data types, with the added benefit of increased robustness and performance.

To demonstrate the usefulness of these concepts in practice, this paper described the program

ming of a gesturedriven mobile mail delivery robot. A short CES program (144 lines), along with

less than an hour of training, was demonstrated to control a mobile robot highly reliably when

delivering mail and interacting with a postal carrier in a populated corridor. Comparable programs

in conventional programming languages are typically orders of magnitude larger, requiring much

higher development costs. To demonstrate this point, this paper showed that a CES implementa

tion of a stateoftheart localization algorithm was two orders of magnitude more compact than a

previous implementation in C.

Our current implementation of CES possesses several limitations that warrant future research:

� We currently lack a suitable interpreter or compiler for CES. In fact, all our experiments

were carried out using a C library, functionally equivalent to CES but not syntactically.

This limitation is purely a limitation of the current implementation, and not a conceptual

difficulty, as the syntax of the language is welldefined.

� Our current implementation uses piecewise constant functions for the representation of

probability distributions. Such representations suffer several limitations. Their size scales

exponentially with the dimension of compounded variables, making it infeasible to compute

in highdimensional spaces. They are unable to represent finite distributions exactly, such

as the outcomes of tossing a coin. They also suffer from an inflexible assignment of

resources (memory and computation); mechanisms that place resources where needed (e.g.,

in regions with high likelihood) would be advantageous. The use of piecewise constant

representations is not a limitation of the language per se; it is only a shortcoming of our

current implementation. Several other options exist, such as such as mixtures of Gaussians

[22], MonteCarlo approximations [21, 44, 50], and variableresolution methods such as

trees [8, 71, 77]. Of particular interest are resourceadaptive algorithms which can adapt

their resource consumptions in accordance with the available resources [19]. Probabilistic

representations facilitate the design of resourceadaptive mechanisms by selectively focusing

computation on highlikelihood cases.

� As noticed above, CES’s learning mechanism is restricted to cases where labeled data is

available. While in all examples given in this paper, these labels were generated manually,

labels can also be generated automatically. For example, for learning to predict upcoming

collisions, a robot might wander around randomly and use its tactile sensors to label the

data. Not addressed by CES, however, is the issue of delayed reward, as typically addressed

in the reinforcement learning literature. Augmenting CES with a learning component that

can learn control from delayed reward is a subject for future work. Also not addressed is

learning from unlabeled data. Recent research, carried out in domains such as information

retrieval, has demonstrated the utility of unlabeled data when learning from labeled data

[14, 15, 74, 76]. In principle, unlabeled data can be collected in everyday operation, and

it could be used to further train CES’s functions approximators. To what extent such an

approach can improve the performance of a CES program remains to be found out.
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Despite these opportunities for future research, CES in its current form is already wellsuited for

a wide range of robotic tasks, as demonstrated by the experimental results in this paper.

The true goal of this research, however, is to change the current practice of computer program

ming, for embedded systems and beyond. At present, instructing computers focuses narrowly

on conventional programming, where keyboards are used to instruct robots. People, in compar

ison, are instructed through much richer means, involving teaching, demonstrating, explaining,

answering questions, letting them learn through trialanderror, and so on. All these methods of

instruction possess unique strengths and weaknesses, and much can be gained by combing them.

There is no reason why we should not teach our programs, instead of just programming them.

CES goes a step in this direction, by providing mechanisms for writing adaptable software that

can improve based by learning from examples. We hope that this paper stimulates further research

in this direction, as the space of possible learning languages is huge and barely explored.
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