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Abstract—Humans use a remarkable set of strategies to
manipulate objects in clutter. We pick up, push, slide,
and sweep with our hands and arms to rearrange clutter
surrounding our primary task. But our robots treat the world
like the Tower of Hanoi — moving with pick-and-place
actions and fearful to interact with it with anything but
rigid grasps. This produces inefficient plans and is often
inapplicable with heavy, large, or otherwise ungraspable
objects. We introduce a framework for planning in clutter
that uses a library of actions inspired by human strategies.
The action library is derived analytically from the mechanics
of pushing and is provably conservative. The framework
reduces the problem to one of combinatorial search, and
demonstrates planning times on the order of seconds. With
the extra functionality, our planner succeeds where tradi-
tional grasp planners fail, and works under high uncertainty
by utilizing the funneling effect of pushing. We demonstrate
our results with experiments in simulation and on HERB, a
robotic platform developed at the Personal Robotics Lab at
Carnegie Mellon University.

I. Introduction

Humans routinely perform remarkable manipulation
tasks that our robots find impossible. Imagine waking
up in the morning to make coffee. You reach into the
fridge to pull out the milk jug. It is buried at the back of
the fridge. You immediately start rearranging content —
you push the large heavy casserole out of the way, you
carefully pick up the fragile crate of eggs and move it to
a different rack, but along the way you push the box of
leftovers to the corner with your elbow.

The list of primitives that we use to move, slide,
push, pull and play with the objects around us is nearly
endless. But they share common themes. We are fearless
to rearrange clutter surrounding our primary task — we
care about picking up the milk jug, and everything else
is in the way. We are acutely aware of the consequences of
our actions — we push the casserole with enough control
to be able to move it without ejecting it from the fridge.

How can we enable our robots to fearlessly rearrange
the clutter around them while maintaining provable
guarantees on the consequences of their actions? How
can we do this in reasonable time? We would rather not
have our robot stare at the fridge for 20 minutes planning
intricate moves. Finally, can we demonstrate that these
human-inspired actions do work on our robots with their
limited sensing and actuation abilities? These are the
research questions we wish to address in this paper.

The idea of rearranging objects to accomplish a task
has been around for a few hundred years. We encounter

this idea in games like the Tower of Hanoi [1], the 15-
Puzzle and numerous others. The blocks-world problem
[2] introduced this idea to the AI community. STRIPS [3]
is a well-known planner to solve this problem. Planners
that solve similar rearrangement problems in manipu-
lation using real robotic hardware are also known [4].
In all of these cases, the physical act of manipulating
an object is abstracted into a simple action, like pick-
and-place. The problem is then reduced to a discrete
search over all the actions that can be applied to all of the
objects. The exact solution has been shown to have com-
binatorial complexity and various encouraging heuristics
have been proposed. While extremely successful and
algorithmically elegant, the simplified assumptions on
actions severely restrict versatility. For example, such an
algorithm would produce a solution whereby the robot
carefully empties the contents of the fridge onto the
countertop, pulls out the milk jug and then carefully
refills the fridge. A perfectly valid plan, but one that is
inefficient, and often impossible to execute with heavy,
large, or otherwise ungraspable objects.

Pick-and-place actions are, however, easy to analyze.
Once an object is rigidly grasped, it can be treated
as an extension of the robot body, and the planning
problem reduces to one of geometry. Performing actions
other than pick-and-place requires reasoning about the
consequences of actions.

A separate thread of work, rooted in Coulomb’s for-
mulation of friction, uses mechanics to analyze the con-
sequences of manipulation actions. For example Mason
[5] investigates the mechanics and planning of pushing
in object manipulation under uncertainty. One of the
first planners that incorporates the mechanics of pushing
was developed by Lynch and Mason [6]. This planner is
able to push an object in a stable manner using edge-
edge contact to a goal position, using a quasi-static
analysis of the mechanics of pushing. Brost [7] presents
an algorithm that plans parallel-jaw grasping motions
for polygonal objects with pose uncertainty. The object
is pushed by one plate towards the second one, and
then squeezed between the two. Howe and Cutkosky
[8] show how the limit surface, which determines how
a pushed object moves in the quasi-static mode, can be
approximated by a three-dimensional ellipsoid in robotic
pushing tasks.

In this work we make an attempt at merging these
two threads of work: geometric planning and mechanical
modeling and analysis. We present a framework that



Fig. 1. An example scene. The robot’s task is picking up the red can.
The robot rearranges the clutter around the goal object and achieves
the goal in the final configuration. The robot executes the series of
actions shown in Fig. 2. We present the planning process in Fig. 3.

plans sequences of actions to rearrange clutter in manip-
ulation tasks. This is a generalization of the planner from
Stilman et al. [4]. But our framework is not restricted
to pick-and-place operations and can accomodate other
non-prehensile actions. We also present mechanically
realistic pushing actions that are integrated into our
planner.

The presented framework opens up the possibility to
use different non-prehensile manipulation primitives as
a part of the same planner. Researchers came up with
many such primitives over the years. In previous work
[9] we introduced push-grasping as a robust way of grasp-
ing objects under uncertainty and clutter, and it is used
as one of the actions in this paper. Stulp et al. [10] present
a system to learn similar action primitives to robustly
grasp objects. Lynch [11] uses toppling as a manipulation
primitive. Diankov et al. [12] use caging to open doors
as an alternative to grasping the handle rigidly. Chang
et al. [13] present a system that plans to rotate an object
on the support surface, before grasping it. Omrcen et
al. [14] propose a method to learn the effect of pushing
actions on objects and then use these actions to bring
an object to the edge of a table for successful grasping.
Kappler et al. [15] propose a generic representation for
such pre-grasp manipulation of objects.

Through the use of different non-prehensile actions,
our planner generates plans where an ordinary pick-and-
place planner cannot; e.g. when there are large, heavy
ungraspable objects in the environment. We also show
that our planner is robust to uncertainty.

II. Planning Framework

We present an open-loop planner that rearranges the
clutter around a goal object. This requires manipulating
multiple objects in the scene. The planner decides which
objects to move and the order to move them, decides
where to move them, chooses the manipulation actions
to use on these objects, and accounts for the uncertainty
in the environment all through this process. This section
describes how we do that.

We describe our framework with the following exam-
ple (Fig. 1). The robot’s task is picking up the red can.
There are two other objects on the table: a brown box
which is too large to be grasped, and the dark blue
dumbbell which is too heavy to be lifted.

The sequence of robot actions shown in Fig. 2 solves
this problem. The robot first pushes the dumbbell away

to clear a portion of the space, which it then uses to push
the box into. Afterwards it uses the space in front of the
red can to grasp and move it to the goal position.

Fig. 2 also shows that the actions to move objects
are planned backwards in time. We visualize part of
this planning process in Fig. 3. In each planning step
we move a single object and plan two arm trajectories.
The first one (e.g. Push-grasp and Sweep in Fig. 3) is to
manipulate the object. The second one (GoTo in Fig. 3)
is to move the arm to the initial configuration of the
next action to be executed. We explain the details of
these specific actions in Section III. We discuss a number
of questions below to explain the planning process and
then present the algorithm in Section II-E.

A. Which objects to move?

In the environment there are a set of movable objects,
obj. The planner identifies the objects to move by first
attempting to grasp the goal object (Step 1 in Fig. 3).
During this grasp, both the robot and the red can, as it is
moved by the robot, are allowed to penetrate the space
other objects in obj occupy. Once the planner finds an
action that grasps the red can, it identifies the objects
whose spaces are penetrated by this action and adds
them to a list called move. These objects need to be moved
for the planned grasp to be feasible. At the end of Step
1 in Fig. 3, the brown box is added to move.

We define the operator FindPenetrated to identify the
objects whose spaces are penetrated:

FindPenetrated(vol, obj) = {o ∈ obj |

vol penetrates the space of o}

We compute the volume of space an object occupies by
taking into account the pose uncertainty (Section II-B).

In subsequent planning steps (e.g. Step 2 in Fig. 3)
the planner searches for actions that move the objects
in move. The robot and the manipulated object are again
allowed to penetrate other movable objects’ spaces, and
penetrated objects are added to move.

This recursive process continues until all the objects in
move are moved. The objects that are planned for earlier
should be moved later in the execution. In other words,
we do backward planning to identify the objects to move.

Allowing the planner to penetrate other objects’ spaces
can result in a plan where objects are moved unneces-
sarily. Hence, our planner tries to minimize the number
of these objects. This is described in Section III.

We also restrict the plans we generate to monotone
plans; i.e. plans where an object can be moved at most
once. This avoids dead-lock situations where a plan to
move object A results in object B being moved, which
in turn makes object A move, and so on. But more
importantly restricting the planner to monotone plans
makes the search space smaller: the general problem of
planning with multiple movable objects is NP-hard [16].
We enforce monotone plans by keeping a list of objects
called avoid. At the end of each sucessful planning step
the manipulated object is added to avoid. The planner
is not allowed to penetrate the spaces of the objects in



Fig. 2. We show the snapshots of the planned actions in the order they are executed. The execution timeline goes from left to right. Each
dot on the execution timeline corresponds to a snapshot. Planning goes from right to left. Each dot on the planning timeline corresponds to a
planning step. The connections to the execution timeline shows the robot motions planned in a planning step. Details of this planning process
are in Fig. 3.

Fig. 3. The planning timeline. Three snapshots are shown for each
planning step. The planner plans two consecutive arm motions at each
step, from the first snapshot to the second snapshot, and from the
second snapshot to the third snapshot. These motions are represented
by blue dashed lines. The purple regions show the negative goal regions
(NGRs), which are the regions the object needs to be moved out
of (Section II-D). The object pose uncertainty is represented using a
collection of samples of the objects.

avoid. In Fig. 3 in Step 2 the avoid list includes the red
can, in Step 3 it includes the red can and the brown box.

B. How to address uncertainty?

Robots can detect and estimate the poses of objects
with a perception system [17]. Inaccuracies occur in pose
estimation, and manipulation plans that do not take this
into account can fail. Non-prehensile actions can also
decrease or increase object pose uncertainty. Our planner
generates plans that are robust to uncertainty. We ex-
plicitly represent and track the object pose uncertainty
during planning. Fig. 3 visualizes the pose uncertainty
using copies of the object at different poses.

In this paper we use the word region to refer to a
subset of the configuration space of a body. We define
the uncertainty region of an object o at time t as the set
of poses it can be in with probability larger than ǫ:

U(o, t) = {q ∈ SE(3)|o is at q at time t with prob. > ǫ}

The manipulation actions change the uncertainty of an
object. This is represented as a trajectory ν:

ν : [0, 1]→ R

where R is the set of all subsets of SE(3). We call ν the
evolution of the uncertainty region of that object.

In the rest of this paper, we will drop the time
argument to U and use U(o) to stand for the initial
uncertainty region (i.e. the uncertainty region before
manipulation) of the object o. We will use ν to refer to
the uncertainty region as the object is being manipulated,
and specifically ν[1] to refer to the final uncertainty
region of the object after manipulation. We get U(o)
by modeling the error profile of our perception system.
Each manipulation action outputs ν. Section III describes
how this is computed for our actions.

During planning, we compute the volume of space an
object occupies using U, not only the most likely pose.
Likewise we compute the space swept by a manipulated
object using ν. We define the operator Volume, which
takes as input an object and a region, and computes the
total 3-dimensional volume of space the object occupies
if it is placed at every point in the region. For example,
Volume(o, U(o)) gives the volume of space occupied
by the initial uncertainty region of object o. We over-
load Volume to accept trajectories of regions too; e.g.
Volume(o, ν) gives the volume of space swept by the
uncertainty of the object during its manipulation.

C. How to move an object?

The traditional manipulation planning algorithms as-
sume two types of actions: Transfer and Transit [18],
[19] or Manipulation and Navigation [4]. Transit does
not manipulate any objects, Transfer manipulates only
an already rigidly grasped object. Our algorithm lifts
this assumption and opens the way for non-prehensile
actions. At each planning step, our planner searches over
a set of possible actions in its action library. For example



in Step 1 of Fig. 3 the planner uses the action named push-
grasp, and in Step 2 it uses the action sweep. Push-grasp
uses pushing to funnel a large object pose uncertainty
into the hand. Sweep uses the outside of the hand to
push large objects. We will describe the details of specific
actions we use (e.g. push-grasp and sweep) in Section III.
Below we present the general properties an action should
have so that it can be used by our planner.

In grasp based planners robot manipulation actions
are simply represented by a trajectory of the robot arm:
τ : [0, 1] → C where C is the configuration space of
the robot. The resulting object motion can be directly
derived from the robot trajectory. With non-prehensile
actions this is not enough and we also need information
about the trajectory of the object motion: the evolution of
the uncertainty region of the object. Hence the interface
of an action a in our framework takes as an input the
object to be moved o, a region of goal configurations for
the object G, and a volume of space to avoid avoidVol;
and outputs a robot trajectory τ, and the evolution of
the uncertainty region of the object during the action ν:

(τ, ν)← a(o, G, avoidVol) (1)

The returned values τ and ν must satisfy:

• ν [1] ⊆ G; i.e. at the end all the uncertainty of the
object must be inside the goal region.

• Volume(robot, τ) and Volume(o, ν) are collision-
free w.r.t avoidVol; where robot is the robot body.

If the action cannot produce such a τ and ν, it returns
an empty trajectory, indicating failure.

We also use a special action called GoTo, that does not
necessarily manipulate an object, but moves the robot
arm from the end of one object manipulation action to
the start of other.

D. Where to move an object?

The planner needs to decide where to move an object
— the goal of the action. This is easy for the original
goal object, the red can in the example above. It is the
goal configuration passed into the planner, e.g. the final
configuration in Fig. 1. But for subsequent objects, the
planner does not have a direct goal. Instead the object
(e.g. the box in Step 2 of Fig. 3) needs to be moved out of
a certain volume of space in order to make the previously
planned actions (Step 1 in Fig. 3) feasible. We call this
volume of space the negative goal region (NGR) at that
step (shown as a purple region in Fig. 3) 1. Given an NGR
we determine the goal G for an object o by subtracting
the NGR from all possible stable poses of the object in
the environment: G ← StablePoses(o)− NGR.

The NGR at a planning step is the sum of the volume
of space used by all the previously planned actions.
This includes both the space the robot arm sweeps and
the space the manipulated objects’ uncertainty regions
sweep. At a given planning step, we compute the neg-
ative goal region to be passed on to the subsequent

1Note that the NGR has a 3D volume in space. In Fig. 3 it is shown
as a 2D region for clarity of visualization.

planning step, NGRnext, from the current NGR by:

NGRnext ← NGR + Volume(robot, τ) + Volume(o, ν)

where τ is the planned robot trajectory, o is the manip-
ulated object, and ν is the evolution of the uncertainty
region of the object at that planning step.

E. Algorithm

In our problem, a robot whose configurations we
denote by r ∈ C ⊆ Rn interacts with movable objects
in the set obj. We wish to generate a sequence of robot
motions plan that brings a goal object goal ∈ obj into
a goal pose qgoal ∈ SE(3). The planning process is
initiated with the call:

plan← Reconfigure(goal, {qgoal}, {}, {}, ∗)

The ∗ here means that the final configuration of the arm
does not matter as long as the object is moved to qgoal.

Each recursive call to Reconfigure is a planning step
(Alg. 1). The function searches over the actions in its
action library between lines 1-21, to find an action that
moves the goal object to the goal configuration (line 4),
and then to move the arm to the initial configuration
of the next action (line 7). On line 11 it computes the
total volume of space the robot and the manipulated
object uses during the action. Then it uses this volume
of space to find the objects whose spaces have been
penetrated and adds these objects to the list move (line
12). If move is empty the function returns the plan. On
line 15 the function adds the volume of space used by
the planned action to the NGR. On line 16 it adds the
current object to avoid. Between lines 17-20 the function
iterates over objects in move making recursive calls. If
any of these calls return a plan, the current trajectory is
added at the end and returned again (line 20). The loop
between 17-20 effectively does a search over different
orderings of the objects in move. If none works, the
function returns an empty plan on line 22, indicating
failure, which causes the search tree to backtrack. If the
planner is successful, at the end of the complete recursive
process plan includes the trajectories in the order that
they should be executed.

III. Action Library

In this section we describe the actions implemented in
our action library. There are four actions.
• Push-grasp: Grasp objects even when they have large

initial uncertainty regions.
• Sweep: Push objects with the outer side of the hand.

Useful to move large objects.
• GoTo: Moves from a robot configuration to another.
• PickUp: Combination of Push-grasp and GoTo. Used

to grasp an object and move it to somewhere else by
picking it up.

The generic interface for actions is given in (1). In this
section we describe how the actions we implemented
satisfy this interface.

Each action can be parametrized in different ways in
a given environment. For example the robot can Push-
grasp an object by pushing in different directions. An



Algorithm 1:
plan← Reconfigure(o, G, NGR, move, avoid, rt+2)

1 repeat
2 a ← next action from action library
3 avoidVol ← ∑

i∈avoid
Volume(i, U(i))

4 (τ1, ν)← a(o, G, avoidVol)
5 if τ1 is empty then
6 Continue at line 2
7 τ2 ←

GoTo(τ1[1], rt+2, avoidVol + Volume(o, ν[1]))
8 if τ2 is empty then
9 Continue at line 2

10 τ ← τ1 + τ2

11 vol ← Volume(robot, τ) + Volume(o, ν)
12 movenext ← move+ FindPenetrated(vol, obj)
13 if movenext is empty then
14 return {τ}
15 NGRnext ← NGR + vol
16 avoidnext ← avoid+ {o}
17 foreach i ∈ movenext do
18 plan← Reconfigure(i, StablePoses(i)−

NGRnext, NGRnext, movenext −
{i}, avoidnext, τ[0])

19 if plan is not empty then
20 return plan+ {τ}
21 until all actions in action library are tried
22 return empty

action searches over its parameter space to find valid
robot and object trajectories. In this section we specify
these parameters for each action and present the way
the search is done. We also explain how we compute the
evolution of the uncertainty region.

A. Push-grasp

Our planner uses the push-grasp action to grasp objects.
This action, which utilizes the mechanics of pushing, was
introduced in [9].

Push-grasping is a robust way of grasping objects
under uncertainty. It is a straight motion of the hand
parallel to the pushing surface along a certain direction,
followed by closing the fingers. In effect, a push-grasp
sweeps a region on the pushing surface, so that wherever
an object is in that region, at the end of the push it ends
up inside the hand, ready to be grasped. An example is
presented in Fig. 4(d-g).

A push-grasp is parametrized (Fig. 4a) by PG(ph, a, d):

• ph = (x, y, θ) ∈ SE(2) is the initial pose of the hand
relative to the pushing surface.

• a is the aperture of the hand during the push. The
hand is shaped symmetrically and is kept fixed
during motion.

• v is the pushing direction along which the hand
moves in a straight line. The pushing direction is
normal to the palm and is fully specified by ph.

(a) Parametrization (b) Capture Region (c) Object poses after
the push

(d) Uncertainty (e) Push grasp (f) Push grasp (g) Push grasp

Fig. 4. (a) Push-grasp parametrization. (b) The capture region of
a for a rotationally symmetric bottle. Every point corresponds to a
bottle position where the coordinate frame of the bottle is at its center.
(c) Uncertainty region of the object after the push, before closing the
fingers. (d-g) A push grasp funneling the uncertainty into the hand.

• d is the push distance measured as the translation of
the hand along the pushing direction.

We do not search all the parametrization space since
most of the space produces push-grasps that do not even
touch the object. Instead, we discretize the directions
to push the object at a resolution of π/18 rad (i.e. 36
different directions) and use a predefined set of 9 hand
aperture values (some of which may not be used if the
object does not fit into the hand with that aperture). For
each value of v and a in a simulated environment we
place the hand over the most probable object position
with the direction v and aperture a. Then we move the
hand along the line perpendicular to v for an amount l,
the lateral offset. l changes between [−a, a] with a resolu-
tion of 0.01m. After this we move the hand backwards
(in the direction of −v) until the hand is not penetrating
the initial uncertainty region of the object. At the end
the hand is at a specific ph. We then use the capture
regions (described below) to decide if all the uncertainty
of the object can be funnelled into the hand, and if yes,
to compute the necessary pushing distance d to do that.

For a given object, the capture-region (Fig. 4b) of a
parametrized push-grasp is the set of all object poses
that results in a successful grasp. We denote a capture
region by C(PG, o), where PG is a parametrized push-
grasp, and o is the object. We use our pushing simulation
to compute the set of poses the object can be at, so that,
at the end of the push the object ends up inside the
hand (Fig. 4c), ready to be grasped. We do not assume
that we know all the necessary physical properties of the
object. Instead, we assume conservative values for these
parameters, such that the computed capture region will
still be valid for any other reasonable choice of these
values. We do not do this simulation during planning.



(a) Parametrization (b) Example sweep (c) Capture Region

Fig. 5. (a) Sweep is parametrized by the initial hand pose and
pushing distance. (b) Sweeping can move objects that are too large
to be grasped. (c) The capture region of the sweep action for the a
cylindrically symmetric bottle.

We precompute the the necessary information to build a
capture region offline, and during planning we can build
capture regions for different values of a and d in a fast
way. A push-grasp funnels the initial uncertainty region
of an object into the hand if the uncertainty region is
encapsulated in the capture region of the push-grasp.
We use this method to find the smallest capture region
(which corresponds to the shortest pushing distance d)
that will succeed. More details are given in [9]. Once we
know d we compute the pose the object will end up in
if the push-grasp is executed and fingers are closed. We
check if this pose is inside the goal region. If it is, we try
generating a series of arm configurations, τ, for the push-
grasp. We also make sure that the Volume(robot, τ) and
Volume(o, ν) (how we compute ν is explained below)
are not penetrating avoidVol.

While the action we compute avoids the objects in
avoid it is allowed to penetrate the space of other
movable objects as explained in Section II-A. But we
try to minimize the number of such objects to get more
efficient plans. Therefore we compute a heuristic value
for the 36 different directions to push-grasp the object.
We rotate the robot hand around the goal object and
check the number of objects it collides with. We prefer
directions v with a smaller number of colliding objects.

We also use the capture region (e.g. Fig. 4b) to rep-
resent the evolution of the uncertainty region, ν. As the
push proceeds, the top part of the capture region shrinks
towards the hand and the resulting uncertainty region is
captured inside the hand (Fig. 4c). Since the object cannot
escape out of the capture region during the push-grasp,
the uncertainty during the action can be conservatively
estimated using the shrinked capture region at every
discrete step. These series of capture regions can be used
to represent ν. Volume operator samples poses from a
capture region to compute the total volume.

B. Sweep

Sweep is another action we use to move obstacles out of
negative goal regions. Sweep uses the outside region of
the hand to push an object. Sweeping can move objects
that are too large to be grasped (Fig. 5b). Similar to Push-
grasp, we parametrize a Sweep by S(ph, d); the hand
pose and the pushing distance (Fig. 5a).

A push-grasp requires a minimum pushing distance
because it has to keep pushing the object until it com-
pletely rolls into the hand. Since sweeping only needs
to move an object out of a certain volume of space, it
does not require a particular pushing distance. But we
still use the capture region to guarantee that the object
will not escape the push by rolling outside during the
sweep. When computing the capture region for sweep
(Fig. 5c) we use the pushing simulation for the side of
the fingers but approximate the other side with a straight
line located at the end of the wrist link.

The sweep action can also address initial object pose
uncertainty. Similar to Push-grasp, we check that the cap-
ture region of the Sweep includes all the poses sampled
from the uncertainty region of the object (Fig. 5c).

We cannot know the exact location of the object after
the sweep because a sweep action does not have a
particular minimum pushing distance. We know that the
object ends up inside the hand at the end of a push-
grasp, and the uncertainty is very small. However, for
sweeping this uncertainty can be large. We approximate
the evolution of the uncertainty region of sweep by using
samples from two different regions. The first region is
object’s initial uncertainty region. Until the sweeping
hand makes a contact with a sample from this region that
sample is included in ν. The second region is around the
sweeping surface of the hand representing all possible
poses of the object in contact with the hand surface.

C. GoTo

The GoTo action moves the robot arm from one con-
figuration to the other. The search space of the GoTo
action is the configuration space of the arm. We use the
Constrained Bi-directional RRT planner (CBiRRT) [20] to
implement this action.

The GoTo action either does not manipulate an object
or moves an already grasped object. At the end the object
pose is derived from the forward kinematics of the arm.

D. PickUp

In highly cluttered environments, moving objects lo-
cally may not be possible because all the immediate
space is occupied. In such cases, picking up an obstacle
object and moving it to some other surface may be
desirable. We implement this action in our planner as the
PickUp action. PickUp is also useful to move the original
goal object of the plan to the final goal configuration. We
implement PickUp as a Push-grasp followed by a GoTo.

IV. Implementation and Results

A. Implementation

We implemented the planner on our robot HERB [21].
We conducted simulation experiments using OpenRAVE
[22]. We created scenes in simulation and in real world.
The robot’s goal was to retrieve objects from the back
of a cluttered shelf and from a table. We used everyday
objects like juice bottles, poptart boxes, coke cans. We
also used large boxes which the robot cannot grasp.



TABLE I
Planning Time Comparison

Total GT PU SW PG

Pushing 25.86 10.92 6.76 6.08 1.92
Pick-and-Place 12.52 6.54 5.98 - -

We present snapshots from our experiments in the
figures of this section. The video versions can be viewed
at www.cs.cmu.edu/~mdogar/pushclutter

B. Pushing vs. Pick-and-Place

Here, we compare our planner in terms of the effi-
ciency (planning and execution time) and effectiveness
(whether the planner is able to find a plan or not) with a
planner that can only perform pick-and-place operations.
To do this, we used our framework algorithm to create a
second version of our planner, where the action library
consisted of only the PickUp and GoTo actions, similar
to the way traditional planners are built using Transfer
and Transit operations. We modified the PickUp action
for this planner, so that it does not perform the pushing
at the beginning, instead it grasps the object directly.
We call this planner the pick-and-place planner, and our
original planner the pushing planner.

An example scene where we compare these two plan-
ners is given in Fig. 6. The robot’s goal is to retrieve the
coke can from among the clutter. We present the plans
that the two different planners generate. The pushing
planner sweeps the large box blocking the way. The pick-
and-place planner though cannot grasp and pick up the
large box, hence needs to pick up two other objects and
avoid the large box. This results in a longer plan, and
a longer execution time for the pick-and-place planner.
The planning time for the pick-and-place planner is also
longer, since it has to plan more actions. These times are
shown on the figure.

In the previous example the pick-and-place planner
was still able to generate a plan. Fig. 7 presents a scene
where the pick-and-place planner fails. The pushing
planner generates a plan and is presented in the figure.

C. Addressing uncertainty

One of the advantages of using pushing is that push-
ing actions can account for much higher uncertainty
than direct grasping approaches. To demonstrate this
we created scenes where we applied high uncertainty
to the detected object poses. Fig. 8 presents an example
scene. Here the objects have an uncertainty region which
is a Gaussian with σx,y = 2cm for translation and
σθ = 0.05rad for the rotation of the object. The pick-
and-place planner fails to find a plan in this scene too,
as it cannot find a way to guarantee the grasp of the
objects with such high uncertainty. The pushing planner
generates plans even with the high uncertainty.

D. Effect on planning time

We also conducted experiments to see the effect of
adding the pushing actions to the pick-and-place planner

in cases where both planners would work. We created
five random scenes with different graspable objects and
generated plans using the pushing and pick-and-place
planner in these scenes. We ran each planner three times
for each scene, due to the random components of our
GoTo and PickUp actions. The average planning time for
each planner is shown in Table I in seconds. The division
of this time to each action is also shown (GT: GoTo, PU:
pick-up, SW: sweep, PG: push-grasp).

On average, the pushing planner takes two times the
time the pick-and-place planner takes. This is due to
a variety of reasons. First, our implementation gives
priority to pushing actions Push-grasp and Sweep before
trying PickUp. An ordering where the PickUp comes
first will generate results similar to the pick-and-place
planner. The second reason is the large uncertainty
region the Sweep action generates. This usually causes
more objects to be moved, which is reflected in the higher
time spent on the GoTo action.

V. Conclusion and Discussion

In this paper we present a planning framework capa-
ble of incorporating actions beyond the traditional pick-
and-place operations. We introduce pushing actions that
can be used to manipulate otherwise ungraspable ob-
jects. We demonstrate that this planner generates plans
where a pick-and-place planner fails.

However, there are also limitations of using pushing
actions that result in high uncertainty. One problem that
we came across in tight spaces, e.g. shelves, was the
consumption of the space by the resulting uncertainty
of a sweep action. This large uncertainty sometimes also
cause the unnecessary displacement of objects.

We believe some of these problems can be solved
by interleaving planning with sensing. Currently we
generate a sequence of actions that are executed without
any sensing. Sensing can be used (i) at the level of
pushing actions using tactile/force sensors; and (ii) using
robot vision to look at the scene between steps of a plan.
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