
A Framework for Quality Assessment of ROS Repositories*

André Santos, Alcino Cunha, Nuno Macedo and Cláudio Lourenço
HASLab — High-Assurance Software Laboratory

INESC TEC & Universidade do Minho, Braga, Portugal

Abstract— Robots are being increasingly used in safety-
critical contexts, such as transportation and health. The need
for flexible behavior in these contexts, due to human interaction
factors or unstructured operating environments, led to a tran-
sition from hardware- to software-based safety mechanisms in
robotic systems, whose reliability and quality is imperative to
guarantee. Source code static analysis is a key component in
formal software verification. It consists on inspecting code, often
using automated tools, to determine a set of relevant properties
that are known to influence the occurrence of defects in the final
product. This paper presents HAROS, a generic, plug-in-driven,
framework to evaluate code quality, through static analysis,
in the context of the Robot Operating System (ROS), one of
the most widely used robotic middleware. This tool (equipped
with plug-ins for computing metrics and conformance to coding
standards) was applied to several publicly available ROS
repositories, whose results are also reported in the paper, thus
providing a first overview of the internal quality of the software
being developed in this community.

I. INTRODUCTION

In the next decades, service robotics is expected to expand
significantly and to be deployed in complex, unstructured
environments, often requiring close human-robot interaction.
This proximity to humans increases the chances of catas-
trophic consequences due to robot malfunction, including
human injury or even loss of life.

Traditionally, safety is ensured by confining robots to
controlled environments, through electronic safeguards or
by physical barriers, but such mechanisms are not flexible
enough to support the desired interaction and cooperation
with humans. This need for more flexibility led to a gradual
transition from hardware- to software-based safety mecha-
nisms in robotic systems, whose reliability and quality is
imperative to guarantee. Unfortunately, most robotic software
comes from developers not proficient in software engineering
techniques, which results in products with highly variable
quality. In fact, a recent literature review [1] concludes that
most developers rely on ad-hoc or bespoke techniques to
verify safety, making it hard to assess their effectiveness.

Among the various software engineering techniques that
promote the quality of the final product, source code static
analysis is one of the most widely adopted, since it is able
to (usually automatically) extract valuable information about

*This work is financed by the ERDF – European Regional Develop-
ment Fund through the Operational Programme for Competitiveness and
Internationalisation – COMPETE 2020 Programme within project «POCI-01-
0145-FEDER-006961», and by National Funds through the FCT – Fundação
para a Ciência e a Tecnologia (Portuguese Foundation for Science and
Technology) as part of project UID/EEA/50014/2013.

a program without actually executing it. This information
includes internal quality metrics – which have shown to
predict defects upon release [2] – or conformance with
coding standards – widely enforced in safety-critical contexts
to improve reliability [3]. Such techniques are simple and
time-efficient, applicable from early development stages,
and moreover, are easily understandable by developers not
accustomed with more advanced formal methods.

Developing a robot requires the integration of many
complex subsystems, such as perception, planning, reasoning,
navigation, and manipulation. To ease the development
of robotic software systems and conceal the underlying
heterogeneity, a number of middleware architectures have
been developed [4]. This is essential in an area where
modularity, re-usability and portability are inherent to the
development process, as the physical components of the robot
are replaced or control algorithms are re-used from other
application contexts. The Robot Operating System (ROS) [5]
is one such architecture that has been increasingly adopted by
robotic software developers and has reached a high level of
maturity. This growing community currently stands on tens
of thousands of users worldwide, with projects as varied as
autonomous vehicles and humanoid, surgical and industrial
robots. Unfortunately the quality of the software is just as
varied, as expected in such open communities, which renders
the automatic extraction of software quality indicators even
more relevant.

ROS was designed to be a thin, multi-lingual, open
source framework, consisting of the interoperability of many
small tools and components, and based on a peer-to-peer
architecture. This modularity allows users to determine to
what extent they need ROS’s functionalities, and allows ROS
to interoperate with other robotic frameworks. Moreover, ROS
promotes a policy of publicly sharing projects as GitHub
repositories through a centralized distribution file. For ROS
Indigo Igloo, the latest long-term support release of ROS, the
distribution file features about 700 repositories. This provides
a unique opportunity not only to perform static analysis on the
most relevant ROS projects, but also collect process metrics
associated with the evolution of the repositories, which some
studies actually indicate to be more effective in predicting
defects [6].

Our main contribution in this paper is to provide an
infrastructure to promote the quality of ROS software. Instead
of proposing a self-contained framework targeting a fixed
set of static analyses, we instead propose an infrastructure



that can be easily extended to perform varied analyses.
These techniques can be incorporated without specific ROS
knowledge and then applied by users without any need for
static analysis expertise. The resulting framework – HAROS –
together with the incorporated plug-ins, is built to provide the
regular ROS developer with valuable information without the
need to learn complex techniques: as long as the repository is
indexed, and a specific analysis is available through a plug-in,
analyzing its code is an automatic process. As a proof-of-
concept, plug-ins for the extraction of code and process
metrics, and violations to coding standards have already been
developed. These are then applied to a set of relevant ROS
repositories, serving not only to evaluate the framework, but
also to provide a snapshot of the current internal quality of
software being developed in the ROS community.

The remainder of the paper unfolds as follows. Section II
presents ROS as well as static analysis techniques that can be
applied in its context, while Section III explores previous work
on this topic. Section IV then presents HAROS along with
the currently accompanying plug-ins. Section V presents the
results of applying the tool to a number of ROS repositories,
painting a landscape of the area. Finally, Section VI draws
conclusions and points directions to future work.

II. ROS AND SOFTWARE QUALITY

The Robot Operating System (ROS) [5] is an open-source
framework that provides hardware and operating system
abstractions, as well as libraries and tools for the development
of robotic systems software. It can also be seen as a
middleware aiming to address the heterogeneity of these
systems, by allowing the use of multiple programming
languages, high-level modularity and code reuse.

A typical ROS system is composed by a set of nodes
(processes executing different tasks) connected under a peer-
to-peer topology. A special node, called Master, provides
name registration, lookup services, and a key-value store for
regular nodes to use. The communication between nodes
follows mainly a publish-subscribe architecture pattern, but
point-to-point communication through remote procedure calls
is also supported.

ROS components, such as nodes and message descriptions,
are organized into packages – the smallest build and release
units. A ROS system aggregates several packages, typically
developed by different people in varied contexts and using
different programming languages. Since packages are logical
components that depend on other components, they can in
general be classified as core packages, libraries, drivers and
applications depending on their role in the system. The core
packages comprise the ROS tools and libraries, and make a
minimal ROS installation. Libraries and drivers are developed
by the community, the former providing general utility and
the latter encapsulating hardware components. They can then
be used as components in application packages, that represent
a final robotic system – the high-level controller of a robot
with some logic or instructions to execute (e.g., making a
robot move in circles). The source code in a ROS package is

written in general-purpose languages, being C++ and Python
the most widely used among the community.

The ROS community uses Git repositories for its source
code, hosting them freely on GitHub. Distribution repositories
host distribution files for the various ROS releases – they
contain information about all packages featured in a release,
such as the addresses of the repositories, the current version
of each package and the supported platforms for that release.
GitHub is thus a central service for the ROS community.

Static analysis of source code [7] consists on extracting
information from the source code with no need to compile or
execute it. The kind of properties that can be verified range
from simple conformity checks, such as variable initialization,
to more complex properties, such as functional behavior of
the program. This allows for problems to be detected early in
the software development life cycle, which would otherwise
go unnoticed into later stages or even into production.

Software quality metrics [8] assess the internal quality of
software by means of concrete values – the idea is to have
a number, calculated through static analysis, that indicates
how well, or how bad, a software system conforms with a
property. The values obtained can provide different types
of feedback. For instance, they can say how complex or
maintainable a system is, or even help to predict faults in
the software product [2]. In order to monitor and control the
overall quality of the software, thresholds may be defined
over the measured metrics.

In the context of safety critical systems (e.g., automotive
or space industries), enforcement of coding standards is the
norm [9]. These consist mainly of rules or guidelines aiming
to increase the robustness of software systems. They impose
style guidelines and limit the use of certain programming
languages’ features to avoid common mistakes and achieve
a safer subset of the language. Violations to these rules are
detected through static analysis techniques.

The ROS community proposes two mechanisms to promote
the quality of software components: a set of quality metrics
thresholds [10] and a ROS C++ style guide [11] based
on Google’s C++ Style Guide [12]. This is still work in
progress and the rules are non-strict, in the sense that they
provide guidelines, instead of literal rules – most of them
address stylistic concerns, such as naming conventions, and
code formatting. It could be interesting to explore how ROS
packages fare under more strict coding standards for C++, like
MISRA C++ [13] and JSF AV C++ [14] which are widely and
successfully used in the automotive and air vehicle industries.

Although there are plenty of static analysis tools capable of
carrying the tasks described above, they do not consider the
specificities of ROS (for instance, its package architecture),
or if they do, they are too restrictive w.r.t. the analysis
they perform, as is the case of the ROS package roslint1

which encapsulates Google’s cpplint in order to assess the
compliance of ROS code to the style guide. This lack of
suitable tools presents an opportunity to contribute to the
ROS community, with an unified ROS-specific infrastructure

1http://wiki.ros.org/roslint

http://wiki.ros.org/roslint


that allows for different static analysis tools to be plugged in
and to promote better development practices which will lead
to more robust robotic software.

III. RELATED WORK

Research on the quality of robotic software systems is
scarce, and, in general, does not target ROS systems. Cortesi et
al. [15] motivate the use of static analysis techniques in robotic
software. Four techniques are presented and explored, but
concrete solutions on how to adapt them to the development
of robotics are not proposed. Ingibergsson et al. [1] review
the safety certification practices applied in the development
of software for field robots. They conclude that most of the
time ad-hoc or bespoke methodologies are used to assess the
safety of robotic systems, disregarding the recommendations
of existing robotic standards, such as ISO 13482 (personal
robots) and ISO 10218 (industrial robots). Reichardt et al. [16]
advocate instead that the development framework should itself
provide quality promoting mechanisms. They propose a new
framework for the development of robotic software with a
focus on quality, in particular on maintainability, by providing
components that ensure quality and enforcing development
guidelines. Such components may be integrated as ROS nodes.

The collection of metrics through static analysis, and
the prediction of their impact on the overall quality of the
software is a very active research topic (see for instance [2]
for a review). More closely related to our work, Ray et
al. [17] collect several process metrics from public GitHub
repositories and try to infer how these affect the quality of the
projects and how this is related with the chosen programming
language.

The idea to aggregate quality metrics in a plug-in-driven
framework is not new. For instance, SonarQube2 is an open
source code quality management platform that allows teams
to manage, track and improve the quality of their projects.
However, such generic tools are not able to exploit some
of the particularities of ROS (like the automatic retrieval
of source code from the repositories) nor present them in a
manner suitable to the regular ROS developer (taking into
consideration the particular architecture employed by ROS).

IV. THE HAROS FRAMEWORK

It is often accepted that static analysis techniques, like
the measurement of non-trivial code metrics, are effective
only when assisted by tools and automation. There are plenty
of such tools, but considering their limitations or inability
to fit seamlessly into a ROS development environment, we
developed a new ROS-centered static analysis tool, HAROS3,
with two main priorities: (i) it should be seamlessly integrated,
considering specific settings of a ROS system, and (ii) it
should have a broad focus, not restricting itself to particular
static analysis techniques (for instance, it should support
the extraction of code metrics and compliance with coding
standards, but also more advanced analysis techniques). The
best way of achieving (ii) is by allowing the integration of

2http://www.sonarqube.org/
3https://github.com/git-afsantos/haros

third-party analysis tools, encapsulated as HAROS plug-ins.
In this perspective, the main features of this tool are:

1) source code fetching of indexed ROS packages;
2) easy integration of plug-ins for static analysis;
3) interactive graphic reports of the results mirroring the

ROS architecture.
The use of plug-ins gears the tool towards providing static
analysis benefits to the regular ROS developer, with minimal
effort and required knowledge. Automating source code
fetching, analysis and report production makes the tool both
easy to use and to integrate in the current development process.
The generation of graphic models to report quality issues
also eases the use of the tool, rendering manageable what
can otherwise be an overwhelming amount of information.
The plug-in system makes the tool extensible, flexible,
and adaptable to specific requirements and programming
languages by selecting appropriate plug-ins.

Regarding the architecture of the framework, we split its
core into two components that work almost independently:
a configurable component that fetches and feeds the source
code to the different static analysis plug-ins; and a component
for rendering a visualization of the analysis results. These
components are backed by a local database that the framework
uses to store an index of all known source code, properties and
analysis reports between sessions. The following subsections
present the core components and their interaction with other
components, as well as some proof-of-concept plug-ins.

A. Analysis Component

The analysis component, implemented in Python, is the
main component of the tool. It runs as a console program,
and it is responsible for everything but data presentation. This
includes managing the source code repositories, running static
analysis plug-ins, and keeping the local database updated. Its
general workflow is phased in startup operations, and then
the update, analysis and export stages, as depicted in Fig. 1.

During startup operations the tool parses user arguments
and configurations. These control which of the succeeding
stages will be executed, and the extent of their functionality.
For instance, users can explicitly disable all operations that
require a network connection. The configurations determine
the list of plug-ins that should be dynamically loaded for
later execution, and the output format for the analysis results.

In the first stage of execution, the tool updates its database
and local copy of the source code repositories. It does so
using a ROS distribution file and a filter file that defines the
set of packages that should be analyzed. Also during this
stage, a properties file is provided to the tool to determine
which properties are expected to be analyzed and reported
by the plug-ins. These properties are either rules or metrics –
the former reporting violations and the latter a quantitative
result – and are declared with an identifier, a description,
and a set of tags. The tags are user-defined labels that serve
mainly as a way to categorize, filter and sort rules. These files
are currently made by hand, following the human-readable
YAML syntax. They should be automatically provided by
plug-ins in a future version.

http://www.sonarqube.org/
https://github.com/git-afsantos/haros


Fig. 1. Simplified workflow of the developed tool.

The tool verifies the source code in the analysis stage,
relying on dynamically loaded plug-ins to look for occur-
rences of the defined properties. Plug-ins have access to
an interface, provided by the framework, that abstracts the
internal database and data structures, while allowing them to
register occurrences in the form of rule violations or metric
values. The framework validates whether the occurrences refer
to existing properties, packages or files; further validation
is left as future work – e.g., what action to take when
multiple plug-ins agree (or disagree). Although plug-ins may
be full-fledged analysis tools, they are expected to act as a
bridge between free analysis tools and HAROS, wrapping the
capabilities of third-party tools. A consequence of separating
property declaration from the proper analysis is that the data
structures for rules and metrics do not need to hold any
information on how they are verified or measured. Another
result of this plug-in model is that the source code of the
tool itself needs not change to accommodate new rules,
metrics or programming languages. Only the plug-ins and
the configuration files loaded on startup need be adapted.

The final stage of execution exports report files with data
from the database, as a way to interoperate with other tools.
In particular, this functionality is used to interoperate with
the visualization component of HAROS presented in the next
section. The reports include the set of considered properties, a
summary of the selected packages, and a detailed analysis for
each package. The summary contains general details about
each package, while the analysis files contain information
about each measured property in a package, as detailed as
possible (e.g., measured values, source file and line number).
All exported files are under the JSON or CSV formats.

B. Graphic Component

From the exported data, this component, implemented
in HTML and JavaScript, builds a diagram – a directed
graph where each node represents a package, and each edge
represents a package dependency. It then applies a color
scheme in which darker nodes have more reported violations.
Fig. 2 shows a graph, as rendered by the application. The
side menu allows inspection of all rule violations. However,
inspecting code metric values is still a work in progress.

The tags associated to each rule allow the user to filter
the reported violations, so that a subset can be hidden or
emphasized (e.g., show only a certain quality standard). The
component adjusts node colors to the filters in place. This
coloring system is relative: the darkest node just represents
the package with most rule violations in the visible graph.

Fig. 2. A package graph rendered by the tool, with a selected node.

Regarding user interaction, a user can zoom and pan the
graph (zooming in reveals node names), as well as select
specific packages to inspect and highlight. Package inspection
shows the user which rules were violated, along with all the
registered information about each violation. This detailed
inspection is also subject to the tag filters. One possible
enhancement for future versions is to allow inspection of
particular files, classes or functions. Fig. 2 depicts the effects
of node selection on the graph and on the collapsible side
menu. Additionally, users can focus the graph on a node of
their choice, reducing the visible graph to that node and its
neighbours. Clearing the focus renders the complete graph
again.

C. Currently Implemented Plug-ins

As a proof-of-concept, a series of plug-ins were developed
for HAROS, mainly encapsulating existing third-party tools.
The focus was on collecting metrics and rule violations that
would primarily fit the ROS quality metrics thresholds and
ROS C++ Style Guide (Section II). These are summarized
in Table I.

The set of collected metrics includes common metrics, such
as the number of lines of code and comments, the average
cyclomatic complexity [18], the Maintainability Index [19],
and some other metrics proposed in [20]. The complete set
of metrics includes half of those defined in ROS quality
metrics and other metrics that the ROS quality model does
not include.

As for coding rules, unrelated to metrics, we support the
verification of about 120 rules from various C++ coding
standards – a result of wrapping the roslint and Cppcheck4

tools as plug-ins – 90 of which come from the combined
Google and ROS C++ coding standards. Other C++ standards,
such as HIC++, MISRA C++ and JSF AV C++, were also
covered, although to a much smaller extent, of about 30 rules
(when excluding overlaps).

Since quality models essentially define thresholds over the
metrics, quality metrics plug-ins report both the measured
values and threshold violations. Such is the case with the
ROS quality thresholds (RQV) and others from which it drew
inspiration (listed in [10]). This has two advantages: firstly, it
results in an uniform report, since all violations, on metrics or

4http://cppcheck.sourceforge.net/

http://cppcheck.sourceforge.net/


TABLE I
SUMMARY OF COLLECTED METRICS

property description

ru
le

s

RQV violations to the ROS quality thresholds
NQV violations to the NASA SATC quality thresholds
HQV violations to the HIS quality thresholds
KQV violations to the KTH quality thresholds
AQV violations to the University of Akureyri quality thresholds
RCV violations to the ROS C++ style guide
GCV violations to the Google C++ style guide
HCV violations to the HIC++ coding standard
JCV violations to the JSF AV C++ coding standard

MCV violations to the MISRA C++ coding standard

so
ur

ce
m

et
ri

cs

LOC number of lines of code
LOCom number of lines of comments
%Com comment to code ratio

CC average cyclomatic complexity
MI maintainability index

CBO coupling between objects
WMC weighted methods in class
MAC methods available in class
#Dep number of depending packages
#RQV number of ROS quality model violations
#RCV number of C++ coding violations

pr
oc

es
s

m
et

ri
cs

#Rev number of commits
#DC number of distinct contributors
#OI number of open issues
#CI number of closed issues

otherwise, are considered equal (although these can be filtered
in the visualizations); secondly, the number of violations to
the ROS quality thresholds and coding standard constitute
other metrics for consideration (#RQV and #RCV).

A plug-in was also developed to collect process metrics
from the GitHub repositories, including contributors to the
repositories, number of commits and number of repository
issues.

V. OVERVIEW OF THE ROS CORPUS

Although HAROS was developed with the goal of providing
ROS developers with relevant information regarding their
repositories, the public nature of the ROS distribution policy
allowed us to apply the tool to a series of ROS repositories
considered relevant. The result is a snapshot of the current
state of the ROS corpus. Additionally, this also serves as
evaluation for the proposed framework.

Specifically, we hope to shed some light regarding the
following questions:
• Are the quality thresholds and coding standards followed

by the developers?
• What are the most common violations to those rules?
• What is the relation between the internal code quality

of a package and its process metrics?
• What is the relation between the internal code quality

of a package and its role in a ROS system?
The repositories were selected based on their popularity

and level of activity in GitHub. Concretely, the repositories
for 11 ROS robots that contained at least 100 commits, and
development branches for ROS Hydro Medusa or newer were
collected. Examples include the PR25 and TurtleBot6, that

5http://wiki.ros.org/Robots/PR2
6http://wiki.ros.org/Robots/TurtleBot

have been used in public events and research. This yielded
nearly 50 very heterogeneous repositories – a total of 180
packages that contain C++ source code.

We deliberately left out the ROS core packages from this
process, in order to focus on the products (robotic systems)
developed by the ROS community, the target of the proposed
framework. Furthermore, we believe that a reliable quality
assessment of the ROS core packages demands a greater
range of techniques and more refinement than what we can
muster at the moment. The selected packages were categorized
according to their role in a ROS system, as follows:

1) drivers, hardware interfaces and other low-level code;
2) libraries and hardware-independent utility code;
3) applications that depend on the previous items.

As we are still unaware of any simple, deterministic criteria
to classify packages, this categorization was made manually,
based on the traits that each package exhibited the most.

A descriptive overview of the analyzed packages can be
seen in Table II, which shows that most packages have tens
of violations to the ROS quality model thresholds, but these
numbers scale to the thousands when regarding the ROS C++
coding standard. The few packages with no violations to the
thresholds are very small, with fewer than 300 lines of code.
The most violated thresholds are the minimum comment
ratio (the code is not documented enough), the maximum
CBO (the classes are heavily coupled), and the maximum CC
(the functions have too many decisions). On the other hand,
the less violated thresholds are the maximum WMC (class
methods are not too complex) and the maximum MAC (the
classes do not have too many methods), both below a dozen
violations. These observations manifest consistently across
all package roles, but, perhaps surprisingly, the majority of
the violations regarding insufficient documentation occurs
in library code. A possible explanation is that, sometimes,
documentation is stored separately from the source code (e.g.,
ROS Wiki, or tutorials).

Although looking at raw data is valuable in identifying
problematic targets, it does not provide the whole picture.
We calculated the Pearson correlation coefficients between
the measured metrics, in order to try to identify patterns
and influences. Unfortunately, the correlation coefficients are
very low, in general, and the correlations are not surprising.
For instance, the lines of comments increase as the lines of
code increase, but so does the number of violations (#RQV
and #RCV), which are also correlated to each other. Some
worthy mentions are the correlations between the MI and the
comment ratio (well documented code is more maintainable),
and between the WMC and the MAC (the more methods a
class has, the more complex it tends to be).

In our setting, the metrics show that applications and drivers
tend to have more developers, commits and raised issues than
library code, suggesting that these packages may be more
faulty. Indeed, this code is, at least, more complex (CC) and
tightly coupled (CBO). However, libraries exhibit greater
reported violation figures. These packages are less ROS-
oriented, and so these rules (e.g., formatting) may be less
of a concern to the developers. Or it could be that libraries

http://wiki.ros.org/Robots/PR2
http://wiki.ros.org/Robots/TurtleBot


TABLE II
DESCRIPTIVE PACKAGE ANALYSIS

Median Standard Deviation Min. Max. Threshold
Role 1 0.71 1 3 —
LOC 461 3779.17 20 36353 —

LOCom 270.50 1322.57 0 14503 —
%Com 0.52 0.53 0 3.85 0.2 ≤ x <∞

CC 3.92 5.03 0 47.48 1 ≤ x ≤ 15

MI 73.13 17.58 0 99.97 0 ≤ x ≤ 100

CBO 1.70 0.60 0 3.20 0 ≤ x ≤ 5

WMC 4.67 3.76 1 28.36 1 ≤ x ≤ 100

MAC 2.00 2.66 0 21.20 1 ≤ x ≤ 20

#Dep 1 5.94 0 41 —
#RQV 3 26.80 0 333 —
#RCV 387 5384.63 10 61712 —
#Rev 292 572.71 16 2706 —
#DC 9 10.03 1 49 —
#OI 6 9.93 0 41 —
#CI 50 91.67 1 343 —

are simply more static, and less fun to work on, than other
packages. Overall, the various quality indicators are not very
conclusive, and an accurate quality assessment may depend
on a prioritization of said indicators.

VI. CONCLUSION

This paper presented HAROS, a plug-in-driven framework
for the automatic static source code analysis of ROS repos-
itories. HAROS’s primary focus is to assist in uncovering
potential faults and defects in ROS systems, by employing
diverse analysis techniques, but requiring as little effort and
prior knowledge from the ROS developer as possible. Hence
the importance of incorporating the specificities of ROS
systems and presenting the analysis reports in a user-friendly
way, without neglecting detail. This framework also presents
an opportunity for new static analysis tools to emerge, or for
existing tools to be reused as plug-ins.

In order to evaluate the tool, we analyzed a set of ROS
repositories, consisting of 11 robots and containing some of
the most popular and iconic robots of this community, such as
the PR2 and TurtleBot. Consequently, this analysis provides
a snapshot and an overview of the quality of the ROS body
of work. Although we focused on gathering quality metrics
and violations to coding standards for manually categorized
packages, our results clearly suggest that, both at global and
role levels, there are many occurrences of overly complex
and insufficiently documented code, and compliance with
standards is not yet a strong concern of the community.

The extraction of quality metrics and violations to coding
standards is but a first step towards our goals of promoting
the quality of ROS software. Concretely, we are currently
working on the formal verification of functional properties and
exploring model-based techniques. Regarding HAROS itself,
there are many improvements underway. These include typical
performance optimizations and enhancements to the user
interface, but also an overhaul to the current data structures,
to better accommodate new analysis techniques. We intend
to allow interoperation between plug-ins, to integrate the tool
with the catkin build system, and to track package quality
evolution over time. Finally, concerning our analysis results,

we hope yet to achieve a deterministic and automatic system
to categorize ROS packages, perhaps with finer grained roles.
We look forward to revisit this quality assessment of the ROS
corpus with more accurate and conclusive results.

REFERENCES

[1] J. Ingibergsson, U. Schultz, and M. Kuhrmann, “On the use of safety
certification practices in autonomous field robot software development:
A systematic mapping study,” in PROFES’15, ser. LNCS, vol. 9459.
Springer, 2015.

[2] D. Radjenovic, M. Hericko, R. Torkar, and A. Zivkovic, “Software
fault prediction metrics: A systematic literature review,” Information
& Software Technology, vol. 55, no. 8, pp. 1397–1418, 2013.

[3] G. J. Holzmann, “Mars code,” Communications of the ACM, vol. 57,
no. 2, pp. 64–73, 2014.

[4] A. Elkady and T. Sobh, “Robotics middleware: A comprehensive
literature survey and attribute-based bibliography,” Journal of Robotics,
vol. 2012, pp. 959 013:1–959 013:15, 2012.

[5] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: An open-source Robot Operating
System,” in ICRA Workshop on Open Source Software, 2009.
[Online]. Available: https://www.willowgarage.com/sites/default/files/
icraoss09-ROS.pdf

[6] F. Rahman and P. T. Devanbu, “How, and why, process metrics are
better,” in ICSE’13. IEEE/ACM, 2013, pp. 432–441.

[7] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, and W. Pugh,
“Using static analysis to find bugs,” IEEE Software, vol. 25, no. 5, pp.
22–29, 2008.

[8] C. Kaner and W. P. Bond, “Software engineering metrics: What do
they measure and how do we know?” in Metrics’04, 2004.

[9] A. Goforth, “The role and impact of software coding standards on
system integrity,” in I@A’13. AIAA, 2013.

[10] Open Source Robotics Foundation, “ROS code quality,” http://wiki.ros.
org/code_quality, 2013, [Online; accessed 14-October-2015].

[11] ——, “ROS C++ style guide,” http://wiki.ros.org/CppStyleGuide, 2014,
[Online; accessed 14-October-2015].

[12] Google, “Google C++ style guide,” http://google-styleguide.googlecode.
com/svn/trunk/cppguide.html, 2014, [Online; accessed 14-October-
2015].

[13] C. Tapp, “An introduction to MISRA C++,” SAE International Journal
of Passenger Cars-Electronic and Electrical Systems, vol. 1, no. 1, pp.
265–268, 2009.

[14] Lockheed Martin Corporation, “Joint Strike Fighter Air Vehicle
C++ coding standard for the system development and demonstration
program,” Tech. Rep. 2RDU00001 Rev C, December 2005.

[15] A. Cortesi, P. Ferrara, and N. Chaki, “Static analysis techniques for
robotics software verification,” in ISR’13. IEEE, 2013, pp. 1–6.

[16] M. Reichardt, T. Föhst, and K. Berns, “On software quality-motivated
design of a real-time framework for complex robot control systems,”
ECEASST, vol. 60, 2013.

[17] B. Ray, D. Posnett, V. Filkov, and P. T. Devanbu, “A large scale study
of programming languages and code quality in GitHub,” in FSE’14.
ACM, 2014, pp. 155–165.

[18] T. J. McCabe, “A complexity measure,” IEEE Transactions on Software
Engineering, vol. 2, no. 4, pp. 308–320, 1976.

[19] P. Oman and J. Hagemeister, “Metrics for assessing a software system’s
maintainability,” in ICSM’92. IEEE, 1992, pp. 337–344.

[20] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Transactions on Software Engineering, vol. 20, no. 6,
pp. 476–493, 1994.

https://www.willowgarage.com/sites/default/files/icraoss09-ROS.pdf
https://www.willowgarage.com/sites/default/files/icraoss09-ROS.pdf
http://wiki.ros.org/code_quality
http://wiki.ros.org/code_quality
http://wiki.ros.org/CppStyleGuide
http://google-styleguide.googlecode.com/svn/trunk/cppguide.html
http://google-styleguide.googlecode.com/svn/trunk/cppguide.html

	Introduction
	ROS and Software Quality
	Related Work
	The HAROS Framework
	Analysis Component
	Graphic Component
	Currently Implemented Plug-ins

	Overview of the ROS Corpus
	Conclusion
	References

