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Abstract

Multibiometric systems fuse the evidence (e.g., match
scores) pertaining to multiple biometric modalities or clas-
sifiers. Most score-level fusion schemes discussed in the lit-
erature require the processing (i.e., feature extraction and
matching) of every modality prior to invoking the fusion
scheme. This paper presents a framework for dynamic clas-
sifier selection and fusion based on the quality of the gallery
and probe images associated with each modality with mul-
tiple classifiers. The quality assessment algorithm for each
biometric modality computes a quality vector for the gallery
and probe images that is used for classifier selection. These
vectors are used to train Support Vector Machines (SVMs)
for decision making. In the proposed framework, the bio-
metric modalities are arranged sequentially such that the
stronger biometric modality has higher priority for being
processed. Since fusion is required only when all unimodal
classifiers are rejected by the SVM classifiers, the average
computational time of the proposed framework is signif-
icantly reduced. Experimental results on different multi-
modal databases involving face and fingerprint show that
the proposed quality-based classifier selection framework
yields good performance even when the quality of the bio-
metric sample is sub-optimal.

1. Introduction

Multibiometrics-based verification systems use two or
more classifiers pertaining to the same biometric modality
or different biometric modalities. As discussed by Woods
et al. [19], there are two general approaches to fusion:
(1) classifier fusion and (2) dynamic classifier selection. In
classifier fusion, all constituent classifiers are used and their
decisions are combined using fusion rules [10], [14]. On the
other hand, in dynamic selection, the most appropriate clas-
sifier or a subset of specific classifiers is selected [8], [16]

for decision making. In the biometrics literature, classifier
fusion has been extensively studied [14], whereas dynamic
classifier selection has been relatively less explored. Mar-
cialis et al. [11] designed a serial fusion scheme for com-
bining face and fingerprint classifiers and achieved signifi-
cant reduction in verification time and the required degree
of user cooperation. Alonso-Fernandez et al. [3] proposed
a method where quality information was used to switch
between different system modules depending on the data
source. Veeramachaneni et al. [17] proposed a Bayesian
framework to fuse decisions pertaining to multiple biomet-
ric sensors. Particle Swarm Optimization (PSO) was used
to determine the “optimal” sensor operating points in order
to achieve the desired security level by switching between
different fusion rules. Vatsa et al. [15] proposed a case-
based context switching framework for incorporating bio-
metric image quality. Further, they proposed a sequential
match score fusion and quality-based dynamic selection al-
gorithm to optimize both verification accuracy and compu-
tational cost [16]. Recently, a sequential score fusion strat-
egy was designed using sequential probability ratio test [2].
Though existing approaches improve the performance, in
general, it is necessary to capture all biometric modalities
prior to processing them.

This research focuses on developing a dynamic selec-
tion approach for a multi-classifier biometric system that
can yield high verification performance even when operat-
ing on moderate-to-poor quality probe images. The case
study considered in this work has two biometric modalities
(face and fingerprint) and two classifiers per modality. It is
generally accepted that the quality of a biometric sample is
an important factor that can affect matching performance.
Therefore, the proposed approach utilizes image quality to
dynamically select one or more classifiers for verifying if
a given gallery-probe pair belongs to the genuine class or
the impostor class. Experiments on a multimodal database
involving face and fingerprint, with variations in probe qual-
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ity, suggest that the proposed approach provides significant
improvements in recognition accuracy compared to individ-
ual classifiers and the classical sum-rule fusion scheme.

2. Quantitative Assessment Algorithm

In the proposed approach, different quality assessment
techniques are used to generate a composite quality vector
for a given biometric sample. The quality vector used in
this study comprises of four quality attributes (scores): no-
reference quality, edge spread, spectral energy, and modal-
ity specific image quality. Details of each quality attribute
are provided below:

∙ No-reference quality: Wang et al. [18] used blocki-
ness and activity estimation in both horizontal and ver-
tical directions in an image to compute a no-reference
quality score. Blockiness is estimated by the average
intensity difference between block boundaries in the
image. Activity is used to measure the effect of com-
pression and blur on the image. These individual esti-
mates are combined to give a composite no-reference
quality score.

∙ Edge spread: Marziliano et al. [7] used edge spread
to estimate motion and off-focus blurriness in images
based on edges and adjacent regions. Their technique
computes the effect of blur in an image based on the
difference in image intensity with respect to the local
maxima and minima of pixel intensity in every row of
the image.

∙ Spectral energy: It describes abrupt changes in illu-
mination and specular reflection [13]. The image is
tessellated into several non-overlapping blocks and the
spectral energy is computed for each block. The value
is computed as the magnitude of Fourier transform
components in both horizontal and vertical directions.

∙ Modality specific image quality: Along with the
above mentioned general image quality attributes, the
quality assessment algorithm also computes “usabil-
ity” quality measures specific to each biometric modal-
ity.

Face quality: For face images, pose is a major co-
variate that determines the usability of the face im-
age. Even a good quality face image may not be use-
ful during recognition due to pose variations. Pose
is estimated based on the geometric relationship be-
tween face, eyes, and mouth. Depending upon the yaw,
pitch and roll values of the estimated pose, a composite
score is computed for denoting face quality.

Fingerprint quality: For fingerprint images, Chen et
al. [5] measured the quality of ridge samples by com-
puting the Fourier energy spectral density concentra-

Table 1. Range of quality attributes over the images used in this
research.

Face images
Quality attribute Range
Spectral Energy [1.09, 1.34]
No reference quality [12.43, 13.50]
Edge spread [8.51, 16.88]
Pose [302.31, 466.12]

Fingerprint images
Quality attribute Range
Spectral Energy [0.96, 1.15]
No reference quality [8.10, 11.50]
Edge spread [3.94, 6.68]
Global entropy [0.91, 1.16]

tion in particular frequency bands. Such a measure is
global in nature and encodes the overall quality of fin-
gerprint ridges. This quality measure, referred to as
global entropy, is used in this work.

For a given image, a quality vector comprising of the
four aforementioned quality scores is generated. Table 1
shows the range of values obtained by the quality attributes
over the face-fingerprint images used in this research (de-
tails are available in Section 4.2). The spectral energy is
considered good if its value is close to 1. For no refer-
ence quality, higher the value better is the quality of image.
For a frontal face image, the value of pose attribute is 400.
Therefore, a face is right aligned if pose is less than 400,
otherwise, the face is aligned to the left. For edge spread,
lower the value better is the quality of image. For global
entropy, higher the value better is the quality of the finger-
print image. For a given gallery-probe pair, the quality vec-
tor of both gallery and probe images are concatenated to
form a quality vector of eight quality scores represented as
𝑄 = [𝑄𝑔, 𝑄𝑝], where 𝑄𝑔 and 𝑄𝑝 are the quality vectors of
gallery and probe images, respectively.

3. Quality Driven Classifier Selection Frame-
work

The proposed framework utilizes the quality vector for
classifier selection. As shown in Figure 1, in a face-
fingerprint bimodal setting, the individual modalities are
processed sequentially. It starts from the strongest modality
such that the system has higher chances of correctly classi-
fying the gallery-probe pair using the first biometric modal-
ity and obviating the need for processing the second modal-
ity. Since classifier selection can also be posed as a clas-
sification problem, Support Vector Machine (SVM) is used
for classification. One SVM is trained for each biometric
modality to select the best classifier for that modality using
quality vectors. In this paper, the classifier selection frame-
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Figure 1. Illustrating the proposed quality based classifier selection
framework for face-fingerprint biometrics.

work is presented for a two-classifier two-modality setting
involving face and fingerprint. However, the framework can
be easily extended to accommodate more choices as it pro-
vides the flexibility to add new biometric modalities and to
add/remove classifiers for each modality. The framework
is divided into two stages: (1) training the SVMs and (2)
dynamic classifier selection for probe verification.

3.1. SVM Training

The SVM corresponding to each biometric modality is
trained independently using a labeled training database.

Training SVM for Fingerprints: SVM1 is trained for three
classes using the labeled training data {𝑥1𝑖, 𝑦1𝑖}. Here, in-
put 𝑥1𝑖 = [𝑄𝑔 , 𝑄𝑝] is the quality vector of the 𝑖𝑡ℎ gallery-
probe fingerprint image pair in the training set and the out-
put 𝑦1𝑖 ∈ {−1, 0,+1}. The labels are assigned based on
the match score distribution of genuine and impostor scores
and the likelihood ratio of the two fingerprint classifiers.
As shown in Figure 2, for each modality, distance scores
are computed using the training data and the two finger-
print verification algorithms. If the impostor score com-
puted using classifier1 is greater than the maximum gen-
uine score (confidently classified as impostor) or if the gen-
uine score computed using 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟1 is less than the min-
imum impostor score (confidently classified as genuine),
the {−1} label is assigned to indicate that classifier1 can
correctly classify the gallery-probe pair. Label {0} is as-
signed when the impostor score computed using classifier2
is greater than the maximum genuine score (confidently
classified as impostor) or when the genuine score computed
using 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟2 is less than the minimum impostor score

Figure 2. Illustrating the process of assigning labels: the genuine-
impostor match score distribution are used to assign labels of input
gallery-probe quality vector 𝑄 = [𝑄𝑔, 𝑄𝑝] during SVM training.

(confidently classified as genuine). If the score lies within
the conflicting region for both the verification algorithms,
the {+1} label is assigned which signifies that for the given
gallery-probe pair, the individual fingerprint classifiers is
not able to classify the gallery-probe pair and that another
modality, i.e. face, is required. If both the verification al-
gorithms correctly classify the gallery-probe pair based on
the score distribution, then the likelihood ratio is used to
make a decision (genuine or impostor). The quality vector
of the gallery-probe pair is assigned the label correspond-
ing to the verification algorithm that classifies it with higher
confidence (based on the accuracy computed using training
samples). Under Gaussian assumption, the likelihood ra-
tio is computed from the estimated densities 𝑓𝑔𝑒𝑛(𝑥) and
𝑓𝑖𝑚𝑝(𝑥) as 𝐿𝑅(𝑥)=𝑓𝑔𝑒𝑛(𝑥)/𝑓𝑖𝑚𝑝(𝑥).

Training SVM for Face: Similar to SVM1, SVM2 is also
a three-class SVM trained using the labeled training data
{𝑥2𝑖, 𝑦2𝑖}, where, 𝑥2𝑖= [𝑄𝑔, 𝑄𝑝] is the quality vector of the
𝑖𝑡ℎ gallery-probe face image pair in the training set. The
labels are assigned in a similar manner as SVM1. The only
variation here is with the {+1} label. If the score lies within
the conflicting region for both the face verification algo-
rithms, the {+1} label is assigned which signifies that for
the given gallery-probe pair, the individual classifiers are
not able to classify the gallery-probe pair and that match
score fusion is required.

3.2. Classifier Selection for Verification

During verification, the trained SVMs are used to select
the most appropriate classifier for each modality based only
on quality. The biometric modalities are used one at a time
and the second modality is selected only when the individ-
ual classifiers pertaining to the first modality are not able to
classify the given gallery-probe pair.

The quality vectors of gallery-probe pair for the first
modality is computed and provided as input to the trained
SVM1. Based on the quality vector, SVM1 makes the pre-
diction. If SVM1 predicts that one of the classifiers of the
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first modality can be used to correctly classify the given
gallery-probe pair, then the framework selects the classi-
fier predicted by SVM1. Otherwise, the quality vector for
the gallery-probe pair corresponding to the second modal-
ity is computed and provided as input to SVM2. If SVM2
predicts that one of the classifiers of the second modality
can correctly classify the gallery-probe pair, then the frame-
work selects the classifier predicted by SVM2. Otherwise, if
both SVMs predict that the individual classifiers of both the
modalities are unable to classify the gallery-probe pair, the
sum rule-based score level fusion of the classifiers across
both modalities is used to generate the final score. It should
be noted that since the SVMs are based only on the quality
of the gallery-probe pair, the framework does not require
computing the scores for all the modalities and classifiers.

4. Experimental Results

To evaluate the effectiveness of the proposed framework,
experiments are performed on two different multimodal
databases using two face classifiers and two fingerprint clas-
sifiers. Details about the feature extractors and matchers
used for each modality, database, experimental protocol,
and key observations are presented in this section.

4.1. Unimodal Algorithms

Fingerprint: The two fingerprint classifiers used in this
study are the NIST Biometric Image Software (NBIS)1 and
a commercial2 fingerprint matching software. NBIS con-
sists of a minutiae detector called MINDTCT and a finger-
print matching algorithm known as BOZORTH3. The sec-
ond classifier, a commercial fingerprint matching software,
is also based on extracting and matching minutiae points.

Face: The two face classifiers used in this research
are Uniform Circular Local Binary Pattern (UCLBP) [1]
and Speeded Up Robust Features (SURF) [4]. UCLBP is
a widely used texture-based operator whereas SURF is a
point-based descriptor which is invariant to scale and rota-
tion. 𝜒2 distance measure is used to compare two UCLBP
feature histograms and two SURF descriptors.

4.2. Database

The evaluation is performed on two different databases.
The first is the WVU multimodal database [6] from which
270 subjects that have at least 6 fingerprint and face images
each are selected. For each modality, two images per sub-
ject are placed in the gallery and the remaining images are
used as probes.

To evaluate the scalability of the proposed approach, a
large multimodal (chimeric) database is used. The WVU

1http://www.nist.gov/itl/iad/ig/nbis.cfm
2The license agreement does not allow us to name the software in any

comparative study.

Table 2. Parameters of noise and blur kernels used to create the
synthetic degraded database.

Type Parameter
Gaussian noise 𝜎 = 0.05
Poisson noise 𝜆 = 1
Salt & pepper noise d = 0.05
Speckle noise v = 0.05
Gaussian blur 𝜎 = 1
Motion blur angle 5𝑜 & length 1-10 pixels
Unsharp blur 𝛼 = 0.1 to 1

multimodal database consists of fingerprint images from
four fingers per subject. Assuming that the four fingers
are independent, a database of 1068 virtual subjects with
six or more samples per subject is prepared. For associat-
ing face with fingerprint images, a face database of 1068
subjects is created containing 446 subjects from the MBGC
Version2 database3, 270 subjects from the WVU database
[6], 233 from the CMU MultiPIE database [9], and 119 sub-
jects from the AR face database [12].

4.3. Experimental Protocol

In all the experiments, 40% of the subjects in the
database are used for training and the remaining 60% are
used for performance evaluation. During training, the
SVMs are trained as explained in Section 3.1. The 40%-
60% partitioning was done five times (repeated random sub-
sampling validation) and verification accuracies are com-
puted at 0.01% false accept rate (FAR). Two experiments
are performed as explained below:

Experiment 1: In this experiment, with two biometric
modalities (face and fingerprints) and four classifiers, the
proposed quality-based classifier selection framework se-
lects the most appropriate unimodal classifier to process the
gallery-probe pair based on the quality. In this experiment
both gallery and probe images are of good quality (unal-
tered/original images).

Experiment 2: In this experiment, the quality of probe im-
ages is synthetically degraded. A synthetic poor quality
database is prepared where probe images are corrupted by
adding different types of noise and blur as shown in Fig-
ure 3. Table 2 shows the parameters of noise and blur ker-
nels used to create the synthetic database. Experiments are
performed for each type of degradation introduced in both
fingerprints and face images. It should be noted that for ex-
periment 2, training is done on good quality gallery-probe
pairs and performance is evaluated on non-overlapping sub-
jects from the synthetically corrupted database.

3http://www.nist.gov/itl/iad/ig/mbgc-presentations.cfm
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Figure 3. Sample images from the database that are degraded using
different types of noise and blur.

Figure 4. Sample decisions of the proposed algorithm when (a)
Fingerprint classifier 1 is selected, (b) Fingerprint classifier 2 is
selected, and (c) Face classifier 2 is selected.

4.4. Results and Analysis

Figure 4 illustrates sample decisions of the proposed al-
gorithm. Figures 5 and 6 show the Receiver Operating
Characteristic (ROC) curves for experiment 1. Table 3
summarizes the verification accuracy for different types of
degradations introduced in the probe set. The key results
are listed below:

∙ ROC curves in Figures 5 and 6 show that for exper-
iment 1, the proposed quality-based classifier selec-

Figure 5. ROC curves of the individual classifiers, sum-rule fusion
and the proposed quality based classifier selection framework on
the WVU multimodal database with good gallery-probe quality.

Figure 6. ROC curves of the individual classifiers, sum-rule fusion
and the proposed quality based classifier selection framework on
the large scale chimeric database with good gallery-probe quality.

tion framework outperforms the unimodal classifiers
and sum-rule fusion by at least 1.05% and 1.57% on
the WVU multimodal database and the large scale
chimeric database, respectively.

∙ It is observed that when the quality of probe images
is degraded, the performances of individual classifiers
are affected. However, the quality-based classifier se-
lection framework still performs better than individual
classifiers and sum rule fusion. This improvement is
attributed to the fact that the proposed framework can
dynamically determine when to use the most appropri-
ate single classifier and when to perform fusion based
on the quality of gallery-probe image pairs. Table 3 re-
ports the performance of all the algorithms when probe
images are of sub-optimal quality.

∙ In experiment 1 with the WVU database, 27.95%
gallery-probe pairs were processed by fingerprint clas-
sifier1 - NBIS, 25.33% pairs with fingerprint classi-
fier2 - commercial matcher, 18.99% with face clas-
sifier1 - UCLBP, and 15.51% with face classifier2 -
SURF. The remaining 12.19% pairs were processed
using weighted sum rule fusion. Similarly for the
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chimeric database, 31.45% gallery-probe pairs were
processed by fingerprint classifier1 - NBIS, 32.12%
pairs with fingerprint classifier2 - commercial matcher,
15.32% with face classifier1 - UCLBP, and 13.56%
with face classifier2 - SURF. The remaining 7.55%
pairs were processed using weighted sum rule fusion.

∙ Unlike parallel fusion, the proposed framework does
not require computing the image quality scores for
all modalities up-front. Image quality scores for
each modality are computed only when the framework
needs to make a decision for that particular modality.
Moreover, if one of the biometric modalities cannot be
captured, the framework can easily skip that unimodal
classifier.

∙ The proposed classifier selection is about two times
faster than the match score fusion algorithm. The time
to process a probe using dynamic classifier selection
(including quality assessment and feature extraction) is
much lesser than the time to process a probe using the
sum rule fusion (including processing both the modal-
ities and four classifiers).

∙ The major advantage of the proposed quality based
classifier selection framework is that it can be easily
extended to include other biometric modalities, uni-
modal classifiers and fusion rules.

5. Conclusion

This paper presents a dynamic classifier selection frame-
work for multibiometric systems. The sequential design
of the classifier selection framework allows it to process
each biometric modality in sequence using the quality of the
gallery-probe pair. Since the stronger modality is typically
selected for verification, it also offers reduction in compu-
tational time. This work establishes the utility of dynamic
classifier selection in the context of biometrics.
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Table 3. The performance of the proposed quality-based classifier selection algorithm in comparison with unimodal classifiers and the
sum-rule fusion algorithm on different databases. Verification accuracies are reported at 0.01 false accept rate (FAR).

WVU Multimodal Database Large scale Chimeric Database
Type of Noise Added Algorithm Accuracy Accuracy

Good Quality Probe

Face classifier1 82.08% 77.48%
Face classifier2 84.96% 79.04%
Fingerprint classifier1 87.84% 84.83%
Fingerprint classifier2 91.34% 88.68%
Sum-rule Fusion 93.86% 89.84%
Proposed 94.91% 91.41%

Gaussian Noise

Face classifier1 77.58% 72.48%
Face classifier2 80.86% 76.86%
Fingerprint classifier1 81.14% 79.74%
Fingerprint classifier2 86.74% 82.74%
Sum-rule Fusion 88.36% 84.74%
Proposed 90.41% 87.81%

Gaussian Blur

Face classifier1 81.36% 75.16%
Face classifier2 83.14% 79.64%
Fingerprint classifier1 87.42% 81.28%
Fingerprint classifier2 90.74% 84.36%
Sum-rule Fusion 91.58% 87.43%
Proposed 92.62% 89.52%

Speckle Noise

Face classifier1 76.48% 73.82%
Face classifier2 79.63% 76.41%
Fingerprint classifier1 81.42% 80.38%
Fingerprint classifier2 84.35% 82.43%
Sum-rule Fusion 86.22% 84.28%
Proposed 87.58% 85.76%

Salt and Pepper Noise

Face classifier1 77.56% 74.16%
Face classifier2 79.38% 77.42%
Fingerprint classifier1 84.54% 81.18%
Fingerprint classifier2 87.36% 84.38%
Sum-rule Fusion 89.12% 86.24%
Proposed 90.16% 87.32%

Motion blur

Face classifier1 78.23% 75.48%
Face classifier2 80.16% 78.86%
Fingerprint classifier1 86.32% 83.64%
Fingerprint classifier2 88.48% 85.47%
Sum-rule Fusion 89.74% 86.24%
Proposed 90.81% 87.14%

Poisson Noise

Face classifier1 76.35% 74.28%
Face classifier2 79.28% 77.63%
Fingerprint classifier1 85.32% 82.51%
Fingerprint classifier2 87.44% 84.29%
Sum-rule Fusion 88.94% 85.74%
Proposed 89.65% 86.35%

Unsharp Noise

Face classifier1 76.64% 73.48%
Face classifier2 79.85% 77.86%
Fingerprint classifier1 83.85% 83.64%
Fingerprint classifier2 86.48% 85.38%
Sum-rule Fusion 88.41% 86.49%
Proposed 89.72% 87.14%
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